
Building Web
Services with Java

Sams Publishing, 800 East 96th Street, Indianapolis, Indiana 46240

DEVELOPER’S
LIBRARY

M A K I N G S E N S E O F X M L , S O A P ,
W S D L , A N D U D D I

Steve Graham
Doug Davis

Simeon Simeonov
Glen Daniels

Peter Brittenham
Yuichi Nakamura
Paul Fremantle
Dieter König

Claudia Zentner

Second Edition

00 0672326418 FM 6/4/04 9:49 AM Page i

Building Web Services with Java,
Second Edition
Copyright © 2005 by Sams Publishing

All rights reserved. No part of this book shall be reproduced, stored
in a retrieval system, or transmitted by any means, electronic,
mechanical, photocopying, recording, or otherwise, without written
permission from the publisher. No patent liability is assumed with
respect to the use of the information contained herein.Although
every precaution has been taken in the preparation of this book, the
publisher and author assume no responsibility for errors or omis-
sions. Nor is any liability assumed for damages resulting from the use
of the information contained herein.

International Standard Book Number: 0-672-32641-8

Library of Congress Catalog Card Number: 2004091343

Printed in the United States of America

First Printing: July 2004

07 06 05 4

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use of a
term in this book should not be regarded as affecting the validity of
any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and as
accurate as possible, but no warranty or fitness is implied.The infor-
mation provided is on an “as is” basis.The author and the publisher
shall have neither liability nor responsibility to any person or entity
with respect to any loss or damages arising from the information
contained in this book or from the use of the CD or programs
accompanying it.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales

1-800-382-3419

corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales

international@pearsoned.com

Associate Publisher
Michael Stephens

Acquisitions Editor
Todd Green

Development Editor
Tiffany Taylor

Managing Editor
Charlotte Clapp

Senior Project Editor
Matthew Purcell

Indexer
Larry Sweazy

Proofreader
Eileen Dennie

Technical Editors
Alan Moffet
Alan Wexelblat
Marc Goldford
Kunal Mittal

Publishing Coordinator
Cindy Teeters

Designer
Gary Adair

00 0672326418 FM 7/20/05 4:52 PM Page ii

2
XML Primer

SINCE ITS INTRODUCTION IN 1998, Extensible Markup Language (XML) has revolu-
tionized how we think about structuring, describing, and exchanging information.The
ways in which XML is used in the software industry are many and growing. Certainly
for Web services the importance of XML is paramount; all key Web service technologies
are based on it.

One great thing about XML is that it’s constantly changing and evolving. However,
this can also be its downside. New problems require new approaches and uses of XML
that drive aggressive technological innovation.The net result is a maelstrom of inven-
tion—a pace of change so rapid that it leaves most people confused.To say that you’re
using XML is meaningless.Are you using DTDs or XML Schema and, if so, whose?
How about XML Namespaces, XML Encryption, XML Signature, XPointer, XLink,
XPath, XSLT, XQuery, XKMS, RDF, SOAP,WSDL, UDDI, XAML, BPEL,WSIA,
WSRP, or WS-Whatever? Does your software use SAX, DOM, JAXB, JAXP, JAXM,
JAXR, or JAX-RPC? It’s easy to get lost, to drown in the acronym soup.You’re interest-
ed in Web services (you bought this book, remember?). How much do you really need
to know about XML?

The truth is pleasantly surprising. First, many XML technologies you might have
heard about aren’t relevant to Web services.You can safely forget half the acronyms you
wish you knew more about. Second, even with relevant technologies, you need to know
only a few core concepts. (The 80/20 rule doesn’t disappoint.) Third, this chapter is all
you need to read and understand to be able to handle the rest of the book and make the
most of it.

This chapter will develop a set of examples around SkatesTown’s processes for sub-
mitting POs and generating invoices.The examples cover all the technologies we’ve list-
ed here.

If you’re an old hand at XML who understands the XML namespace mechanism and
feels at home with schema extensibility and the use of xsi:type, you should go straight
to Chapter 3,“The SOAP Protocol,” and dive into Web services. If you can parse and
process a significant portion of the previous sentence, you should skim this chapter to

04 0672326418 CH02 6/4/04 9:48 AM Page 31

32 Chapter 2 XML Primer

get a quick refresher of some core XML technologies.And if you’re someone with more
limited XML experience, don’t worry—by the end of this chapter, you’ll be able to hold
your own.

XML is here to stay.The XML industry is experiencing a boom. XML has become
the de facto standard for representing structured and semistructured information in tex-
tual form. Many specifications are built on top of XML to extend its capabilities and
enable its use in a broader range of scenarios. One of the most exciting areas of use for
XML is Web services.The rest of this chapter will introduce the set of XML technolo-
gies and standards that are the foundation of Web services:

n XML instances—The rules for creating syntactically correct XML documents
n XML Schema—A standard that enables detailed validation of XML documents as

well as the specification of XML datatypes
n XML Namespaces—Definitions of the mechanisms for combining XML from mul-

tiple sources in a single document
n XML processing—The core architecture and mechanisms for creating, parsing, and

manipulating XML documents from programming languages as well as mapping
Java data structures to XML

Document- Versus Data-Centric XML
Generally speaking, there are two broad application areas of XML technologies.The first
relates to document-centric applications, and the second to data-centric applications.
Because XML can be used in so many different ways, it’s important to understand the
difference between these two categories.

Document-Centric XML
Because of its SGML origins, in the early days of its existence, XML gained rapid adop-
tion within publishing systems as a mechanism for representing semistructured docu-
ments such as technical manuals, legal documents, and product catalogs.The content in
these documents is typically meant for human consumption, although it could be
processed by any number of applications before it’s presented to humans.The key ele-
ment of these documents is semistructured marked-up text.

The following markup is a perfect example of XML used in a document-centric
manner.The content is directed toward human consumption—it’s part of the FastGlide
skateboard user guide.The content is semistructured.The usage rules for tags such as
, <I>, and <LINK> are loosely defined; they could appear just about anywhere in the
document:

<H1>Skateboard Usage Requirements</H1>

<P>In order to use the FastGlide skateboard you have to

have:</P>

<LIST>

04 0672326418 CH02 6/4/04 9:48 AM Page 32

33Document- Versus Data-Centric XML

<ITEM>A strong pair of legs.</ITEM>

<ITEM>A reasonably long stretch of smooth road surface.</ITEM>

<ITEM>The impulse to impress others.</ITEM>

</LIST>

<P>If you have all of the above, you can proceed to <LINK

HREF=”Chapter2.xml”>Getting on the Board</LINK>.</P>

Data-Centric XML
By contrast, data-centric XML is used to mark up highly structured information such as
the textual representation of relational data from databases, financial transaction informa-
tion, and programming language data structures. Data-centric XML is typically generated
by machines and is meant for machine consumption. XML’s natural ability to nest and
repeat markup makes it the perfect choice for representing these types of data.

Consider the example in Listing 2.1. It’s a purchase order (PO) from the Skateboard
Warehouse, a retailer of skateboards to SkatesTown.The order is for 5 backpacks, 12
skateboards, and 1,000 SkatesTown promotional stickers (this is what the stock-keeping
unit [SKU] 008-PR stands for).

Listing 2.1 Purchase Order in XML

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”>

04 0672326418 CH02 6/4/04 9:48 AM Page 33

34 Chapter 2 XML Primer

</item>

</order>

</po>

The use of XML is very different from the previous user guide example:
n The ratio of markup to content is high.The XML includes many types of tags.

There is no long-running text.
n The XML includes machine-generated information; for example, the PO’s submis-

sion date uses a date-time format of year-month-day.A human authoring an XML
document is unlikely to enter a date-time value in this format.

n The tags are organized in a highly structured manner. Order and positioning mat-
ter, relative to other tags. For example, <description> must be under <item>,
which must be under <order>, which must be under <po>.The <order> tag can
be used only once in the document.

n Markup is used to describe what a piece of information means rather than how it
should be presented to a human.

In short, if you can easily imagine the XML as a data structure in your favorite program-
ming language, you’re probably looking at a data-centric use of XML.An example Java
class that could, with a bit more work, be used to represent the PO data is shown here:

class PO

{

int id;

Date submitted;

int customerId;

Address billTo;

Address shipTo;

Item order[];

}

Document Lifetime
Document- and data-centric uses of XML can differ in one other significant aspect: the
lifetime of the XML document.Typically, XML documents for human consumption
(such as technical manuals and research papers) live a long time because the information
they contain can be used for a long time. On the other hand, some data-centric XML
may live for only a few milliseconds. Consider the example of a database that is return-
ing the results of a query in XML format.The whole operation takes several millisec-
onds.After the query is used, the data is discarded. Further, no real XML document
exists—the XML is just bits on a wire or bits in an application’s data structure. Still, for

Listing 2.1 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 34

35XML Instances

convenience purposes, we’ll use the term XML document to refer to any whole piece of
XML.To identify parts of a whole XML document, this book uses the highly technical
term chunk.

Web services are about data-centric uses of XML.Through the rest of this chapter
and the rest of this book, we’ll purposefully ignore discussing document-centric XML.

XML Instances
The structure and formatting of XML in an XML document must follow the rules of
the XML instance syntax.The term instance g is used to explicitly distinguish the dif-
ference between the use of some particular type of XML and its specification.This usage
parallels the difference in object-oriented terminology between an object instance and
an object type.

Document Prolog
XML documents contain an optional prolog g followed by a root element g that holds
the contents of the document.Typically the prolog serves up to three roles:

n Identifies the document as an XML document
n Includes any comments about the document
n Includes any meta-information about the content of the document

A document is identified as an XML document through the use of a processing instruction
g. Processing instructions (PIs) are special directives to the application that will process
the XML document.They have the following syntax:

<?PITarget ...?>

PIs are enclosed in <? ... ?>.The PI target is a keyword meaningful to the processing
application. Everything between the PI target and the ?> marker is considered the con-
tents of the PI.

In general, data-oriented XML applications don’t use application-specific processing
instructions. Instead, they tend to put all information in elements and attributes.
However, you should use one standard processing instruction—the XML declaration
g—in the XML document prolog to determine two important pieces of information:
the version of XML in the document and the character encoding. Here’s an example:

<?xml version=”1.0” encoding=”UTF-8”?>

The version parameter of the xml PI tells the processing application the version of the
XML specification to which the document conforms. (W3C released an updated XML
specification, XML 1.1, in early 2004; but all examples in this book use the 1.0 version
of XML, which came in 1998.) The encoding parameter is optional. It identifies the
character set of the document.The default value is “UTF-8”.

04 0672326418 CH02 6/4/04 9:48 AM Page 35

36 Chapter 2 XML Primer

Note
UTF-8 (RFC 2279) stands for Unicode Transformation Format-8. It’s an octet (8-bit) lossless encoding of

characters from the Universal Character Set (UCS), aka Unicode (ISO 10646). UTF-8 is an efficient represen-

tation of English because it preserves the full US-ASCII character range. One ASCII character is encoded in 8

bits, whereas some Unicode characters can take up to 48 bits. UTF-8 encoding makes it easy to move XML

on the Internet using standard communication protocols such as HTTP, SMTP, and FTP. XML is international-

ized by design and can support other character encodings such as Unicode and ISO/IEC 10646. However, for

simplicity and readability purposes, this book will use UTF-8 encoding for all samples.

If you omit the XML declaration, the XML version is assumed to be 1.0, and the pro-
cessing application will try to guess the encoding of the document based on clues such
as the raw byte order of the data stream.This approach has problems, and whenever
interoperability is of high importance—such as for Web services—applications should
provide an explicit XML declaration and use UTF-8 encoding.

XML document prologs can also include comments that pertain to the whole docu-
ment. Comments use the following syntax:

<!-- Sample comment and more ... -->

Comments can span multiple lines but can’t be nested (comments can’t enclose other
comments).The processing application will ignore everything inside the comment mark-
ers. Some of the XML samples in this book use comments to provide you with useful
context about the examples in question.

With what we’ve discussed so far, we can extend the PO example from Listing 2.1 to
include an XML declaration and a comment about the document (see Listing 2.2).

Listing 2.2 XML Declaration and Comment for the Purchase Order

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- Created by Bob Dister, approved by Mary Jones -->

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<!-- The rest of the purchase order will be the same as before -->

...

</po>

In this case, po is the root element of the XML document.

Elements
The term element g is a technical name for the pairing of a start tag and an end tag in
an XML document. In the previous example, the po element has the start tag <po> and
the end tag </po>. Every start tag must have a matching end tag and vice versa.
Everything between these two tags is the content g of the element.This includes any
nested elements, text, comments, and so on.

Element names can include all standard programming language identifier characters
([0-9A-Za-z]) as well as the underscore (_), hyphen (-), and colon (:), but they must

04 0672326418 CH02 6/4/04 9:48 AM Page 36

37XML Instances

begin with a letter. customer-name is a valid XML element name. However, because
XML is case-sensitive, customer-name isn’t the same element as Customer-Name.

According to the XML Specification, elements can have three different content types
g: element-only content g, mixed content g, or empty content g. Element-only
content consists entirely of nested elements.Any whitespace separating elements isn’t
considered significant in this case. Mixed content refers to any combination of nested
elements and text.All elements in the purchase order example, with the exception of
description, have element content. Most elements in the skateboard user guide exam-
ple earlier in the chapter had mixed content.

Note that the XML Specification doesn’t define a text-only content model. Outside
the letter of the specification, an element that contains only text is often referred to as
having data content; but, technically speaking, it has mixed content.This awkwardness
comes as a result of XML’s roots in SGML and document-oriented applications.
However, in most data-oriented applications, you’ll never see elements whose contents
are both nested elements and text.The content will typically be one or the other,
because limiting it to be either elements or text makes processing XML much easier.

The syntax for elements with empty content is a start tag immediately followed by an
end tag, as in <emptyElement></emptyElement>.This is too much text, so the XML
Specification also allows the shorthand form <emptyElement/>. For example, because
the last item in our PO doesn’t have a nested description element, it has empty con-
tent.Therefore, we could have written it as follows:

<item sku=”008-PR” quantity=”1000”/>

XML elements must be strictly nested.They can’t overlap, as shown here:

<!-- This is correct nesting -->

<P><I>Bold, italicized text in a paragraph</I></P>

<!--Bad syntax: overlapping I and B tags -->

<P><I>Bold, italicized text in a paragraph</I></P>

<!-- Bad syntax: overlapping P and B tags -->

<P><I>Bold, italicized text in a paragraph</I></P>

The notion of an XML document root implies that there is only one element at the
very top level of a document. For example, the following wouldn’t be a valid XML doc-
ument:

<first>I am the first element</first>

<second>I am the second element</second>

It’s easy to think of nested XML elements as a hierarchy. For example, Figure 2.1 shows
a hierarchical tree representation of the XML elements in the purchase order example
together with the data (text) associated with them.

04 0672326418 CH02 6/4/04 9:48 AM Page 37

38 Chapter 2 XML Primer

Figure 2.1 Tree representation of XML elements in a purchase order.

Unfortunately, it’s often difficult to identify XML elements precisely in the hierarchy.To
aid this task, the XML community has taken to using genealogy terms such as parent,
child, sibling, ancestor, and descendant. Figure 2.2 illustrates the terminology as it applies to
the order element of the PO:

n Its parent (the element immediately above it in the hierarchy) is po.
n Its ancestor is po.Ancestors are all the elements above a given element in the hier-

archy.
n Its siblings (elements on the same level of the hierarchy and that have the same

parent) are billTo and shipTo.
n Its children (elements that have this element as a parent) are three item elements.
n Its descendants (elements that have this element as an ancestor) are three item ele-

ments and two description elements.

Attributes
The start tags for XML elements can have zero or more attributes g.An attribute is a
name-value pair.The syntax for an attribute is a name (which uses the same character set
as an XML element name) followed by an equal sign (=), followed by a quoted value.
The XML Specification requires the quoting of values; you can use both single and dou-

04 0672326418 CH02 6/4/04 9:48 AM Page 38

39XML Instances

ble quotes, provided they’re correctly matched. For example, the po element of our PO
has three attributes, id, submitted, and customerId:

<po id=”43871” submitted=”2004-01-05” customerId=”73852”> ... </po>

po order

billTo shipTo

item

item

item

description description

parent/
ancestor

children/

descendants

descendants

siblings

Figure 2.2 Common terminology for XML element relationships

A family of attributes whose names begin with xml: is reserved for use by the XML
Specification. Probably the best example is xml:lang, which identifies the language of
the text used in the content of the element that has the xml:lang attribute. For exam-
ple, we could have written the description elements in our purchase order example to
identify the description text as English:

<description xml:lang=”en”>Skateboard backpack; five pockets</description>

Note that applications processing XML aren’t required to recognize, process, and act
based on the values of these attributes.The key reason the XML Specification identified
these attributes is that they address common use-cases; standardizing them aided interop-
erability between applications.

Without any meta-information about an XML document, attribute values are consid-
ered to be pieces of text. In the previous example, the ID might look like a number and
the submission date might look like a date, but to an XML processor, they will both be
strings.This behavior causes headaches when processing data-oriented XML, and it’s one
of the primary reasons most data-oriented XML documents have associated meta-
information described in XML schemas (introduced later in this chapter).

XML applications are free to attach any semantics they choose to XML markup.A
common use-case leverages attributes to create a basic linking mechanism within an
XML document.The typical scenario involves a document that has duplicate

04 0672326418 CH02 6/4/04 9:48 AM Page 39

40 Chapter 2 XML Primer

information in multiple locations.The goal is to eliminate information duplication.The
process has three steps:

1. Put the information in the document only once.

2. Mark the information with a unique identifier.

3. Refer to this identifier every time you need to refer to the information.

The purchase order example offers the opportunity to try this technique (see Listing
2.3).As shown in the example, in most cases, the bill-to and ship-to addresses will be the
same.

Listing 2.3 Duplicate Address Information in a Purchase Order

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</shipTo>

...

</po>

There is no reason to duplicate this information. Instead, we can use the markup shown
in Listing 2.4.

Listing 2.4 Using ID/IDREF Attributes to Eliminate Redundancy

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo id=”addr-1”>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

04 0672326418 CH02 6/4/04 9:48 AM Page 40

41XML Instances

<shipTo href=”addr-1”/>
...

</po>

We followed the three steps described previously:

1. We put the address information in the document only once, under the billTo
element.

2. We uniquely identified the address as “addr-1” and stored that information in the
id attribute of the billTo element.We only need to worry about the uniqueness
of the identifier within the XML document.

3. To refer to the address from the shipTo element, we use another attribute, href,
whose value is the unique address identifier “addr-1”.

The attribute names id and href aren’t required but nevertheless are commonly used by
convention.

You might have noticed that now both the po and billTo elements have an attribute
called id.This is fine, because the attribute names are unique within the context of the
two elements.

Elements Versus Attributes
Given that information can be stored in both element content and attribute values, sooner or later the

question of whether to use an element or an attribute arises. This debate has erupted a few times in the

XML community and has claimed many casualties.

One common rule is to represent structured information using markup. For example, you should use an

address element with nested company, street, city, state, postalCode, and country ele-

ments instead of including a whole address as a chunk of text.

Even this simple rule is subject to interpretation and the choice of application domain. For example, the

choice between

<work number=”617.219.2000”>

and

<work>

<area>617</area>

<number>219.2000</number>

<ext/>

</work>

depends on whether your application needs to have phone number information in granular form (for exam-

ple, to perform searches based on the area code only).

In other cases, only personal preference and stylistic choice apply. We might ask if SkatesTown should have

used

<po>

<id>43871</id>

Listing 2.4 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 41

42 Chapter 2 XML Primer

<submitted>2004-01-05</submitted>

<customerId>73852</customerId>

...

</po>

instead of

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
...

</po>

There’s no good way to answer this question without adding stretchy assumptions about extensibility needs

and so on.

In general, whenever humans design XML documents, you’ll see more frequent use of attributes. This is true

even in data-oriented applications. On the other hand, when XML documents are automatically “designed”

and generated by applications, you may see more prevalent use of elements. The reasons are somewhat

complex; Chapter 3 will address some of them.

Character Data
Attribute values as well as the text and whitespace between tags must follow precisely a
small but strict set of rules. Most XML developers think of this character data as map-
ping to the string data type in their programming language of choice. Unfortunately,
things aren’t that simple.

Encoding

First, and most important, all character data in an XML document must comply with the
document’s encoding.Any characters outside the range of characters that can be includ-
ed in the document must be escaped and identified as character references g.The escape
sequence used throughout XML uses the ampersand (&) as its start and a semicolon (;)
as its end.The syntax for character references is an ampersand, followed by a pound/hash
sign (#), followed by either a decimal character code or lowercase x followed by a hexa-
decimal character code, followed by a semicolon.Therefore, the 8-bit character code 128
is encoded in a UTF-8 XML document as €.

Unfortunately, for obscure document-oriented reasons, there is no way to include
character codes 0 through 7, 9, 11, 12, or 14 through 31 (typically known as non-
whitespace control characters g in ASCII) in XML documents. Even a correctly escaped
character reference won’t do.This situation can cause unexpected problems for program-
mers whose string data types sometimes end up with these values.

Whitespace

The rules for whitespace handling are also a legacy from the document-centric world
XML came from. It isn’t important to completely define these rules here, but a couple of
them are worth mentioning:

04 0672326418 CH02 6/4/04 9:48 AM Page 42

43XML Instances

n An XML processor is required to convert any carriage return (CR) character it
sees in the XML document, as well as the sequence of a carriage return and a line
feed (LF) character, into a single LF character.

n Whitespace can be treated as either significant or insignificant.The set of rules for
how applications are notified about either of these has caused more than one
debate in the XML community.

Luckily, most data-oriented XML applications care little about whitespace.

Entities

In addition to character references, XML documents can define entities g as well as
references to them (entity references g). Entities typically aren’t important for data-
oriented applications, and we won’t discuss them in detail. However, all XML processors
must recognize several predefined entities that map to characters that can be confused
with markup delimiters.These characters are less than (<); greater than (>); ampersand
(&); apostrophe, aka single quote (‘); and quote, aka double quote (“).Table 2.1 shows the
syntax for escaping these characters.

Table 2.1 Predefined XML Character Escape Sequences

Character Escape Sequence

< <

> >

& &

‘ '

“ "

For example, to include a chunk of XML as text rather than markup inside an XML
document, you should escape all special characters:

<example-to-show>

<?xml version="1.0"?>

<rootElement>

<childElement id="1">

The man said: "Hello, there!".

</childElement>

</rootElement>

</example-to-show>

The result is not only reduced readability but also a significant increase in the size of the
document, because single characters are mapped to character escape sequences whose
length is at least four characters.

To address this problem, the XML Specification has a special multi-character escape
construct.The name of the construct, the CDATA section g, refers to the section hold-
ing character data.The syntax is <![CDATA[, followed by any sequences of characters

04 0672326418 CH02 6/4/04 9:48 AM Page 43

44 Chapter 2 XML Primer

allowed by the document encoding that don’t include]]>, followed by]]>.Therefore,
you can write the previous example much more simply as follows:

<example-to-show><![CDATA[

<?xml version=”1.0”?>
<rootElement>

<childElement id=”1”>
The man said: “Hello, there!”.

</childElement>

</rootElement>

]]></example-to-show>

A Simpler Purchase Order
Based on the information in this section, we can re-write the PO document as shown in
Listing 2.5.

Listing 2.5 Improved Purchase Order Document

<?xml version=”1.0” encoding=”UTF-8”?>
<!-- Created by Bob Dister, approved by Mary Jones -->

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo id=”addr-1”>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo href=”addr-1”/>
<order>

<item sku=”318-BP” quantity=”5”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000”/>
</order>

</po>

XML Namespaces
An important property of XML documents is that they can be composed to create new
documents.This is the most basic mechanism for reusing XML. Unfortunately, simple
composition creates the problems of recognition and collision.

04 0672326418 CH02 6/4/04 9:48 AM Page 44

45XML Namespaces

To illustrate these problems, consider a scenario where SkatesTown wants to receive
its POs via the XML messaging system of XCommerce Messaging, Inc.The format of
the messages is simple:

<message from=”...” to=”...” sent=”...”>
<text>

This is the text of the message.

</text>

<!-- A message can have attachments -->

<attachment>

<description>Brief description of the attachment.</description>

<item>

<!-- XML of attachment goes here -->

</item>

</attachment>

</message>

Listing 2.6 shows a complete message with a PO attachment.

Listing 2.6 Message with Purchase Order Attachment

<message from=”bj@bjskates.com” to=”orders@skatestown.com”
sent=”2004-01-05”>
<text>

Hi, here is what I need this time. Thx, BJ.

</text>

<attachment>

<description>The PO</description>

<item>

<po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo id=”addr-1”>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo href=”addr-1”/>
<order>

<item sku=”318-BP” quantity=”5”>
<description>

Skateboard backpack; five pockets

</description>

</item>

<item sku=”947-TI” quantity=”12”>
<description>

04 0672326418 CH02 6/4/04 9:48 AM Page 45

46 Chapter 2 XML Primer

Street-style titanium skateboard.

</description>

</item>

<item sku=”008-PR” quantity=”1000”/>
</order>

</po>

</item>

</attachment>

</message>

It’s relatively easy to identify the two problems mentioned earlier in the composed docu-
ment:

n Recognition—How does an XML processing application distinguish between the
XML elements that describe the message and the XML elements that are part of
the PO?

n Collision—Does the element description refer to attachment descriptions in mes-
sages or order item descriptions? Does the item element refer to an item of
attachment or an order item?

Very simple applications might not be bothered by these problems.After all, the
knowledge of what an element means can reside in the application logic. However, as
application complexity increases and the number of applications that need to work with
a particular composed document type grows, the need to clearly distinguish between the
XML elements becomes paramount.The XML Namespaces specification brings order to
the chaos.

Namespace Mechanism
The problem of collision in composed XML documents arises because of the likelihood
that elements with common names (description, item, and so on) will be reused in dif-
ferent document types.This problem can be addressed by qualifying an XML element
name with an additional identifier that’s much more likely to be unique within the com-
posed document. In other words:

Qualified name (aka QName) = Namespace identifier + Local name

This approach is similar to the way namespaces are used in languages such as C++ and
C# and to the way package names are used in the Java programming language.

The problem of recognition in composed XML documents arises because no good
mechanism exists to identify all elements belonging to the same document type. Given
namespace qualifiers, the problem is addressed in a simple way—all elements that have
the same namespace identifier are considered together.

For identifiers, XML Namespaces uses Uniform Resource Identifiers g (URIs), which
are described in RFC 2396. URIs are nothing fancy, but they’re very useful.They can be

Listing 2.6 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 46

47XML Namespaces

locators, names, or both. URI locators are known as Uniform Resource Locators g

(URLs), a term familiar to anyone using the Web. URLs are strings such as
http://www.skatestown.com/services/POSubmission and
mailto:orders@skatestown.com.

Uniform Resource Names g (URNs) are URIs that are globally unique and persist-
ent. Universally Unique Identifiers g (UUIDs) are perfect for use as URNs. UUIDs are
128-bit identifiers that are designed to be globally unique.Typically, they combine net-
work card (Ethernet) addresses with a high-precision timestamp and an increment
counter.An example URN using a UUID is urn:uuid:2FAC1234-31F8-11B4-A222-
08002B34C003. UUIDs are used as unique identifiers in Universal Description Discovery
and Integration (UDDI) as detailed in Chapter 6,“Web Services Registries.”

Namespace Syntax
Because URIs can be long and typically contain characters that aren’t allowed in XML
element names, the syntax of including namespaces in XML documents involves two
steps:

1. A namespace identifier is associated with a prefix, a name that contains only legal
XML element name characters with the exception of the colon (:).

2. Qualified names are obtained as a combination of the prefix, the colon character,
and the local element name, as in myPrefix:myElementName.

Listing 2.7 shows an example of the composed XML document using namespaces.

Listing 2.7 Message with Namespaces

<msg:message from=”bj@bjskates.com” to=”orders@skatestown.com”
sent=”2004-01-05” xmlns:msg=”http://www.xcommercemsg.com/ns/message”
xmlns:po=”http://www.skatestown.com/ns/po”>
<msg:text>

Hi, here is what I need this time. Thx, BJ.

</msg:text>

<msg:attachment>

<msg:description>The PO</msg:description>

<msg:item>

<po:po id=”43871” submitted=”2004-01-05” customerId=”73852”>
<po:billTo id=”addr-1”>

<po:company>The Skateboard Warehouse</po:company>

<po:street>One Warehouse Park</po:street>

<po:street>Building 17</po:street>

<po:city>Boston</po:city>

<po:state>MA</po:state>

<po:postalCode>01775</po:postalCode>

</po:billTo>

<po:shipTo href=”addr-1”/>

04 0672326418 CH02 6/4/04 9:48 AM Page 47

48 Chapter 2 XML Primer

<po:order>

<po:item sku=”318-BP” quantity=”5”>
<po:description>

Skateboard backpack; five pockets

</po:description>

</po:item>

<po:item sku=”947-TI” quantity=”12”>
<po:description>

Street-style titanium skateboard.

</po:description>

</po:item>

<po:item sku=”008-PR” quantity=”1000”/>
</po:order>

</po:po>

</msg:item>

</msg:attachment>

</msg:message>

In this example, the elements prefixed with msg are associated with a namespace whose
identifier is http://www.xcommercemsg.com/ns/message, and those prefixed with po
are associated with a namespace whose identifier is http://www.skatestown.com/
ns/po.The prefixes are linked to the complete namespace identifiers by the attributes on
the top message element beginning with xmlns: (xmlns:msg and xmlns:po). XML pro-
cessing software has access to both the prefixed name and the mapping of prefixes to
complete namespace identifiers.

Adding a prefix to every element in the document decreases readability and increases
document size.Therefore, XML Namespaces lets you use a default namespace in a docu-
ment. Elements belonging to the default namespace don’t require prefixes. Listing 2.8
makes the msg namespace the default.

Listing 2.8 Using Default Namespaces

<message from=”bj@bjskates.com” to=”orders@skatestown.com”
sent=”2004-01-05” xmlns =”http://www.xcommercemsg.com/ns/message”
xmlns:po=”http://www.skatestown.com/ns/po”>
<text>

Hi, here is what I need this time. Thx, BJ.

</text>

<attachment>

<description>The PO</description>

<item>

<po:po id=”43871” submitted=”2004-01-05” customerId=”73852”>
...

</po:po>

Listing 2.7 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 48

49XML Namespaces

</item>

</attachment>

</message>

Default namespaces work because the content of any namespace-prefixed element is
considered to belong to the namespace of its parent element—unless, of course, the ele-
ment is explicitly defined to be in another namespace with its own xmlns-type attribute.
We can use this to further clean up the composed XML document by moving the PO
namespace declaration to the po element (see Listing 2.9).

Listing 2.9 Using Nested Namespace Defaulting

<message from=”bj@bjskates.com” to=”orders@skatestown.com”
sent=”2004-01-05” xmlns=”http://www.xcommercemsg.com/ns/message”>
<text>

Hi, here is what I need this time. Thx, BJ.

</text>

<attachment>

<description>The PO</description>

<item>

<po:po id=”43871” submitted=”2004-01-05” customerId=”73852”
xmlns:po=”http://www.skatestown.com/ns/po”>
<billTo id=”addr-1”>

...

</billTo>

<shipTo href=”addr-1”/>
<order>

...

</order>

</po:po>

</item>

</attachment>

</message>

This example shows an efficient, readable syntax that eliminates the recognition and col-
lision problems. XML processors can identify the namespace of any element in the doc-
ument.

Namespace-Prefixed Attributes
Attributes can also have namespaces associated with them. Initially, it might be hard to
imagine why a capability like this would be useful for XML applications.The common
use-case scenario is the desire to extend the information provided by an XML element
without having to make changes directly to its document type.

Listing 2.8 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 49

50 Chapter 2 XML Primer

A concrete example might involve SkatesTown wanting to have an indication of the
priority of items in POs. High-priority items could be shipped immediately, without
waiting for any back-ordered items to become available. SkatesTown’s automatic order-
processing software doesn’t understand item priorities; they’re just hints that tell the ful-
fillment system how it should react in case of back-ordered items.

A simple implementation could involve extending the item element with an optional
priority attribute. However, doing so could cause a problem for the order-processing
software, which doesn’t expect to see such an attribute.A better solution is to attach pri-
ority information to items using a namespace-prefixed priority attribute. Because the
attribute will be in a namespace different from that of the item element, the order-
processing software will ignore it.

The example in Listing 2.10 uses this mechanism to make the backpacks high priori-
ty and the promotional materials low priority. By default, any items without a priority
attribute, such as the skateboards, are presumed to be of medium priority.

Listing 2.10 Adding Priority to Order Items

<message from=”bj@bjskates.com” to=”orders@skatestown.com”
sent=”2004-01-05” xmlns=”http://www.xcommercemsg.com/ns/message”>
<text>

Hi, here is what I need this time. Thx, BJ.

</text>

<attachment>

<description>The PO</description>

<item>

<po:po id=”43871” submitted=”2004-01-05” customerId=”73852”
xmlns:po=”http://www.skatestown.com/ns/po”>
xmlns:p=”http://www.skatestown.com/ns/priority”>
...

<po:order>

<po:item sku=”318-BP” quantity=”5” p:priority=”high”>
<po:description>

Skateboard backpack; five pockets

</po:description>

</po:item>

<po:item sku=”947-TI” quantity=”12”>
<po:description>

Street-style titanium skateboard.

</po:description>

</po:item>

<po:item sku=”008-PR” quantity=”1000” p:priority=”low”/>
</po:order>

</po:po>

</item>

</attachment>

</message>

04 0672326418 CH02 6/4/04 9:48 AM Page 50

51XML Schemas

Dereferencing URIs
All the examples in this section use namespace URIs that are URLs. A natural question arises: What is the

resource at that URL? The answer is that it doesn’t matter. XML Namespaces doesn’t require that a resource

be there. The URI is used entirely for identification purposes.

This could cause problems for applications that see an unknown namespace in an XML document and have

no way to obtain more information about the elements and attributes that belong to that namespace. In the

next section, you’ll see a mechanism that addresses this issue.

XML Schemas
XML provides a flexible set of structures that can represent many different types of doc-
ument- and data-oriented information. XML offers an optional feature called Document
Type Definitions (DTDs).A document associated with a DTD has a set of rules regard-
ing the elements and attributes that can be part of the document and where they can
appear. DTDs offer the basic mechanism for defining a vocabulary g specifying the
structure of XML documents in an attempt to establish a contract (how an XML docu-
ment will be structured) between multiple parties working with the same type of XML.

DTDs came into existence because people and applications needed to be able to treat
XML at a higher level than a collection of elements and attributes.Well-designed DTDs
attach meaning to the XML syntax in documents.At the same time, DTDs fail to
address the common needs of namespace integration, modular vocabulary design, flexible
content models, and tight integration with data-oriented applications.This failure comes
as a direct result of XML’s SGML origins and the predominantly document-centric
nature of SGML applications.To address these issues, the XML community, under the
leadership of the W3C, took up the task of creating a meta-language for describing both
the structure of XML document and the mapping of XML syntax to data types.After
long deliberation, the effort produced the final version of the XML Schema specification
in March 2001.All the Web services specifications use XML Schema for defining their
vocabularies.

Well-Formedness and Validity
The presence of schema information allows us to distinguish the concepts of well-
formedness g and validity g. If a document subscribes to the rules of XML syntax (as
described in the section “XML Instances”), it’s considered well-formed.Well-formedness
implies that XML processing software can read the document without any basic errors
associated with parsing, such as invalid character data, mismatched start and end tags,
multiple attributes with the same name, and so on.The XML Specification mandates
that if any well-formedness constraint isn’t met, the XML parser must immediately gen-
erate a nonrecoverable error.This rigid mandate makes it easy to separate the doings of
the software focused on the logical structure g of an XML document (what the markup
means) from the mundane details of the physical structure g of the document (the
markup syntax).

04 0672326418 CH02 6/4/04 9:48 AM Page 51

52 Chapter 2 XML Primer

However, well-formedness isn’t sufficient for most applications. Consider, for example,
the SkatesTown order-processing application.When an XML document is submitted to
the application, it doesn’t care whether the document is well-formed XML but that the
document is a PO in the specific XML format it requires.The notion of format applies to
the set of rules describing SkatesTown’s POs:“The document must begin with a po ele-
ment that has three attributes (id, submitted, and customerId), which will be followed
by a billTo element, …” and so on. In other words, before a submitted document is
processed, it must be identified as a valid PO.

This is how the notion of validity comes in. Schemas offer an automated, declarative
mechanism for validating the contents of XML documents as they’re parsed.Therefore,
XML applications can limit the amount of validation they need to perform. If the
SkatesTown PO-processing application couldn’t delegate validation to the XML proces-
sor, it would have to express all validation rules directly in code. Code is procedural in
nature and much harder to maintain than schemas, which are declarative and have read-
able XML syntax.

To handle validity checks, schemas enable the following:
n Identification of the elements that can be in a document
n Identification of the order and relation between elements
n Identification of the attributes of every element and whether they’re optional or

required or have some other special properties
n Identification of the datatype of attribute content

Last but not least, schemas offer significant capabilities for modular vocabulary design
that let you reuse and repurpose existing vocabularies.

XML Schema Basics
In a nutshell, XML Schema is both powerful and complex. It’s powerful because it allows
for much more expressive and precise specification of the content of XML documents.
It’s complex for the same reason.The specification is broken into three parts:

n XML Schema Part 0: Primer is a non-normative document that tries to make sense
of XML Schema by parceling complexity into small chunks and using many
examples.

n XML Schema Part 1: Structures focuses primarily on serving the needs of document-
oriented applications by laying out the rules for defining the structure of XML
documents.

n XML Schema Part 2: Datatypes builds on the structures specification with additional
capabilities that address the needs of data-oriented applications such as defining
reusable datatypes, associating XML syntax with schema datatypes, and mapping
these to application-level data.

04 0672326418 CH02 6/4/04 9:48 AM Page 52

53XML Schemas

Part 0 is meant for general consumption, whereas Parts 1 and 2 are deeply technical and
require a skilled and determined reader.The rest of this section will provide an introduc-
tion to XML Schema that is biased toward schema usage in data-oriented applications.
You should gain sufficient understanding of structure and datatype specifications to com-
prehend and use common Web service schemas. Still, because XML Schema is funda-
mental to Web services, we recommend that you go through the primer document of
the XML Schema specification.

One way to visualize the structure of a document is as a tree of possible element and
attribute combinations. For example, Figure 2.3 shows the document structure for POs
as expressed by a popular XML processing tool.The image uses some syntax from regu-
lar expressions to visualize the multiplicity of elements: question mark (?) stands for
optional (zero or one), asterisk (*) stands for any (zero or more), and plus (+) stands for
at least some (one or more).

id
i

positiveInteger

billTo

addressType

submitted
i

date

customerId
i

positiveInteger

id
–

ID
?

href
–

IDREF
?

sku

*/string

?
name

string

?
company

string

?
street

string

?
city

string

?
state

string

?
postalCode

string

?
country

string

quantity

positiveInteger

+
item

itemType
?

description

string

po

poType

shipTo

addressType

order

i

Figure 2.3 Document structure defined by purchase order schema

04 0672326418 CH02 6/4/04 9:48 AM Page 53

54 Chapter 2 XML Primer

Listing 2.11 shows the basic structure of the SkatesTown PO schema.

Listing 2.11 Basic XML Schema Structure

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.skatestown.com/ns/po”>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Purchase order schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

...

</xsd:schema>

Schema are expressed in XML and designed with namespaces in mind from the ground
up. In this particular schema document, all elements belonging to the schema specifica-
tion are prefixed with xsd:.The prefix’s name isn’t important, but xsd: (which comes
from XML Schema Definition) is the convention.The prefix is associated with the
http://www.w3.org/2001/XMLSchema namespace, which identifies the W3C
Recommendation of the XML Schema specification.The default namespace of the doc-
ument is set to be http://www.skatestown.com/ns/po, the namespace of the
SkatesTown PO.The schema document needs both namespaces to distinguish between
XML elements that belong to the schema specification versus XML elements that
belong to POs. Finally, the targetNamespace attribute of the schema element identifies
the namespace of the documents that will conform to this schema.This is set to the PO
schema namespace.

The schema is enclosed by the xsd:schema element.The content of this element is
other schema elements that are used for element, attribute, and datatype definitions.The
annotation and documentation elements can be used liberally to attach auxiliary infor-
mation to the schema.

Associating Schemas with Documents
Schemas don’t have to be associated with XML documents. For example, applications
can be preconfigured to use a particular schema when processing documents.
Alternatively, there is a powerful mechanism for associating schemas with documents.
Listing 2.12 shows how to associate the previous schema with a PO document.

04 0672326418 CH02 6/4/04 9:48 AM Page 54

55XML Schemas

Listing 2.12 Associating Schemas with Documents

<?xml version=”1.0” encoding=”UTF-8”?>
<po:po xmlns:po=”http://www.skatestown.com/ns/po”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/po

http://www.skatestown.com/schema/po.xsd”
id=”43871” submitted=”2004-01-05” customerId=”73852”>

...

</po:po>

First, because the PO schema identifies a target namespace, PO documents are required
to use namespaces to identify their elements.The PO document uses the po prefix for
this task.

Next, the document uses another namespace—http://www.w3.org/2001/

XMLSchema-instance—which has a special meaning. It defines a number of attributes
that are part of the schema specification.These attributes can be applied to elements in
instance documents to provide additional information to a schema-aware XML proces-
sor. By convention, most documents use the namespace prefix xsi: (for XML Schema:
Instance).

The binding between the PO document and its schema is established via the
xsi:schemaLocation attribute.This attribute contains a pair of values.The first value is
the namespace identifier whose schema’s location is identified by the second value.
Typically, the second value is a URL, but specialized applications can use other types of
values, such as an identifier in a schema repository or a well-known schema name. If the
document used more than one namespace, the xsi:schemaLocation attribute would
contain multiple pairs of values.

Simple Types
Prior to the arrival of schemas, one of the biggest problems with XML processing was
that XML had no notion of datatypes, even for simple values such as the character data
content of an element or an attribute value. Because of this limitation, XML applications
included a large amount of validation code. For example, even a simple PO requires the
following validation rules, which are outside the scope of the XML Specification:

n Attributes id and customerId of the po element must be positive integers.
n Attribute submitted of the po element must be a date in the format yyyy-mm-dd.
n Attribute quantity of the item element must be a positive integer.
n Attribute sku (stock keeping unit) of the item element must be a string with this

format: three digits, followed by a dash, followed by two uppercase letters.

XML schemas address these issues in two ways. First, the specification comes with a large
set of predefined basic datatypes such as string, positiveInteger, and date, which you

04 0672326418 CH02 6/4/04 9:48 AM Page 55

56 Chapter 2 XML Primer

can use directly. For custom data types, such as the values of the sku attribute, the speci-
fication defines a powerful mechanism for defining new types.Table 2.2 shows some of
the commonly used predefined schema types with examples of their use.

Table 2.2 Predefined XML Schema Simple Types

Examples (Delimited
Simple Type by Commas) Notes

string Confirm this is electric

base64Binary GpM7

hexBinary 0FB7

integer -126789, -1, 0, 1, 126789

positiveInteger 1, 126789

negativeInteger -126789, -1

nonNegativeInteger 0, 1, 126789

nonPositiveInteger -126789, -1, 0

decimal -1.23, 0, 123.4, 1000.00

boolean true, false

1, 0

time 13:20:00.000

13:20:00.000-05:00

dateTime 1999-05-31T13:20:00.000-05:00
(May 31, 1999 at 1.20pm Eastern
Standard Time, which is 5 hours
behind Coordinated Universal
Time)

duration P1Y2M3DT10H30M12.3S (1 year,
2 months, 3 days, 10 hours, 30
minutes, and 12.3 seconds)

date 1999-05-31

Name shipTo XML Name type

QName po:USAddress XML Namespace QName

anyURI http://www.example.com/,
http://www.example.com/
doc.html#ID5

ID XML ID attribute type

IDREF XML IDREF attribute type

The information in this table comes from the XML Schema Primer.

A note on ID/IDREF attributes:An XML processor is required to generate an error if a
document contains two ID attributes with the same value or an IDREF with a value that

04 0672326418 CH02 6/4/04 9:48 AM Page 56

57XML Schemas

has no matching ID value.This makes ID/IDREF attributes perfect for handling attributes
such as id and href in SkatesTown’s PO address element.

Extending Simple Types

The process for creating new simple datatypes is straightforward.The new type must be
derived from a base type: a predefined schema type or another already-defined simple
type.The base type is restricted along a number of facets to obtain the new type.The facets
identify various characteristics of the types, such as

n length, minLength, maxLength—The exact, minimum, and maximum character
length of the value

n pattern—A regular expression pattern for the value
n enumeration—A list of all possible values
n whiteSpace—The rules for handling whitespace in the value
n minExclusive, minInclusive, maxInclusive, maxExclusive—The range of

numeric values that are allowed
n totalDigits—The number of decimal digits in a numeric value
n fractionDigits—The number of decimal digits after the decimal point

Of course, not all facets apply to all types. For example, the notion of fraction digits
makes no sense for a date or a name.Tables 2.3 and 2.4 cross-link the predefined types
and the facets that are applicable for them.

Table 2.3 XML Schema Facets for Simple Types

Simple Type Facets

length minLength maxLength pattern enumeration whiteSpace

string ✔ ✔ ✔ ✔ ✔ ✔

base64Binary ✔ ✔ ✔ ✔ ✔ ✔

hexBinary ✔ ✔ ✔ ✔ ✔ ✔

integer ✔ ✔ ✔

positiveInteger ✔ ✔ ✔

negativeInteger ✔ ✔ ✔

nonNegativeInteger ✔ ✔ ✔

nonPositiveInteger ✔ ✔ ✔

decimal ✔ ✔ ✔

boolean ✔ ✔

time ✔ ✔ ✔

dateTime ✔ ✔ ✔

duration ✔ ✔ ✔

date ✔ ✔ ✔

04 0672326418 CH02 6/4/04 9:48 AM Page 57

58 Chapter 2 XML Primer

Name ✔ ✔ ✔ ✔ ✔ ✔

QName ✔ ✔ ✔ ✔ ✔ ✔

anyURI ✔ ✔ ✔ ✔ ✔ ✔

ID ✔ ✔ ✔ ✔ ✔ ✔

IDREF ✔ ✔ ✔ ✔ ✔ ✔

The information in this table comes from the XML Schema Primer.

The facets listed in Table 2.4 apply only to simple types that have an implicit order.

Table 2.4 XML Schema Facets for Ordered Simple Types

Simple Types Facets

Max Max Min Min Total Fraction

Inclusive Exclusive Inclusive Exclusive Digits Digits

integer ✔ ✔ ✔ ✔ ✔ ✔

positiveInteger ✔ ✔ ✔ ✔ ✔ ✔

negativeInteger ✔ ✔ ✔ ✔ ✔ ✔

nonNegativeInteger ✔ ✔ ✔ ✔ ✔ ✔

nonPositiveInteger ✔ ✔ ✔ ✔ ✔ ✔

decimal ✔ ✔ ✔ ✔ ✔ ✔

time ✔ ✔ ✔ ✔

dateTime ✔ ✔ ✔ ✔

duration ✔ ✔ ✔ ✔

date ✔ ✔ ✔ ✔

The information in this table comes from the XML Schema Primer.

The syntax for creating new types is simple. For example, the schema snippet in Listing
2.13 defines a simple type for purchase order SKUs.The name of the type is skuType.
It’s based on a string, and it restricts the string to the following pattern: three digits,
followed by a dash, followed by two uppercase letters.

Table 2.3 Continued

Simple Type Facets

length minLength maxLength pattern enumeration whiteSpace

04 0672326418 CH02 6/4/04 9:48 AM Page 58

59XML Schemas

Listing 2.13 Using Patterns to Define a String’s Format

<xsd:simpleType name=”skuType”>
<xsd:restriction base=”xsd:string”>

<xsd:pattern value=”\d{3}-[A-Z]{2}”/>
</xsd:restriction>

</xsd:simpleType>

Listing 2.14 shows how to force purchase order IDs to be greater than 10,000 but less
than 100,000, and also how to define an enumeration of all U.S. states.

Listing 2.14 Using Ranges and Enumerations

<xsd:simpleType name=”poIdType”>
<xsd:restriction base=”xsd:integer”>

<xsd:minExclusive value=”10000”/>
<xsd:maxExclusive value=”100000”/>

</xsd:restriction>

</xsd:simpleType>

<xsd:simpleType name=”stateType”>
<xsd:restriction base=”xsd:string”>

<xsd:enumeration value=”AK”/>
<xsd:enumeration value=”AL”/>
<xsd:enumeration value=”AR”/>
...

</xsd:restriction>

</xsd:simpleType>

Complex Types
In XML Schema, simple types define the valid choices for character-based content such
as attribute values and elements with character content. Complex types g, on the other
hand, define complex content models, such as those of elements that can have attributes
and nested children. Complex type definitions address both the sequencing and multi-
plicity of child elements as well as the names of associated attributes and whether they’re
required or optional.

The syntax for defining complex types is straightforward:

<xsd:complexType name=”typeName”>
<xsd:someTopLevelModelGroup>

<!-- Sequencing and multiplicity constraints for

child elements defined using xsd:element -->

</xsd:someTopLevelModelGroup>

<!-- Attribute declarations using xsd:attribute -->

</xsd:complexType>

04 0672326418 CH02 6/4/04 9:48 AM Page 59

60 Chapter 2 XML Primer

The element xsd:complexType identifies the type definition.There are many different
ways to specify the model group of the complex type.The most commonly used top-
level model group elements you’ll see are

n xsd:sequence—A sequence of elements
n xsd:choice—Allows one out of a number of elements
n xsd:all—Allows a certain set of elements to appear once or not at all but in any

order
n xsd:group—References a model group that is defined someplace else

These could be further nested to create more complex model groups.The xsd:group
model group element is covered later in this chapter in the section “Content Model
Groups.”

Inside the model group specification, child elements are defined using xsd:element.
The model group specification is followed by any number of attribute definitions using
xsd:attribute.

For example, one possible way to define the content model of the PO address used in
the billTo and shipTo elements is shown in Listing 2.15.The name of the complex
type is addressType. Using xsd:sequence and xsd:element, it defines a sequence of
the elements name, company, street, city, state, postalCode, and country.

Listing 2.15 Schema Fragment for the Address Complex Type

<xsd:complexType name=”addressType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”company” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”street” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”postalCode” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”country” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id” type=”xsd:ID”/>
<xsd:attribute name=”href” type=”xsd:IDREF”/>

</xsd:complexType>

The multiplicities of these elements’ occurrences are defined using the minOccurs and
maxOccurs attributes of xsd:element.The value of zero for minOccurs renders an ele-
ment’s presence optional (? in the document structure diagrams).The default value for
minOccurs is 1.The special maxOccurs value “unbounded” is used for the street ele-
ment to indicate that at least one must be present (+ in the document structure dia-
grams).

04 0672326418 CH02 6/4/04 9:48 AM Page 60

61XML Schemas

As we mentioned earlier, every element is associated with a type using the type
attribute xsd:element. In this example, all elements have simple character content of
type string, identified by the xsd:string type. It might seem unusual that the name-
space prefix is used inside an attribute value. It’s true, the XML Namespaces specification
doesn’t explicitly address this use of namespace prefixes. However, the idea is simple.A
schema can define any number of types. Some of them are built into the specification,
and others are user-defined.The only way to know for sure which type is being referred
to is to associate the type name with the namespace from which it’s coming.What better
way to do this than to prefix all references to the type with a namespace prefix?

After the model group definition come the attribute definitions. In this example,
xsd:attribute defines attributes id and href of types ID and IDREF, respectively. Both
attributes are optional by default.

Now, consider a slightly more complex example of a complex type definition—the
po element’s type (see Listing 2.16).

Listing 2.16 Schema Fragment for the Purchase Order Complex Type

<xsd:complexType name=”poType”>
<xsd:sequence>

<xsd:element name=”billTo” type=”addressType”/>
<xsd:element name=”shipTo” type=”addressType”/>
<xsd:element name=”order”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”item” type=”itemType”
maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”id” use=”required”
type=”xsd:positiveInteger”/>

<xsd:attribute name=”submitted” use=”required”
type=”xsd:date”/>

<xsd:attribute name=”customerId” use=”required”
type=”xsd:positiveInteger”/>

</xsd:complexType>

The poType introduces three interesting aspects of schemas:
n It shows how easy it is to achieve basic reusability of types. Both the billTo and
shipTo elements refer to the addressType defined previously. Note that because
this is a user-defined complex type, a namespace prefix isn’t necessary.

n The association between elements and their types can be implicit.The order ele-
ment’s type is defined inline as a sequence of one or more item elements of type

04 0672326418 CH02 6/4/04 9:48 AM Page 61

62 Chapter 2 XML Primer

itemType.This is convenient because it keeps the schema more readable and pre-
vents the need to define a global type that is used in only one place.

n The presence of attributes can be required through the use=”required” attribute-
value pair of the xsd:attribute element.To give default and fixed values to
attributes, you can also use the aptly named default and fixed attributes of
xsd:attribute.

The Purchase Order Schema
With the information gathered so far, we can completely define the SkatesTown pur-
chase order schema (Listing 2.17).

Listing 2.17 The Complete SkatesTown Purchase Order Schema (po.xsd)

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.skatestown.com/ns/po”>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Purchase order schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

<xsd:element name=”po” type=”poType”/>

<xsd:complexType name=”poType”>
<xsd:sequence>

<xsd:element name=”billTo” type=”addressType”/>
<xsd:element name=”shipTo” type=”addressType”/>
<xsd:element name=”order”>

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”item” type=”itemType”
maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

</xsd:sequence>

<xsd:attribute name=”id” use=”required”
type=”xsd:positiveInteger”/>

<xsd:attribute name=”submitted” use=”required”
type=”xsd:date”/>

<xsd:attribute name=”customerId” use=”required”
type=”xsd:positiveInteger”/>

</xsd:complexType>

04 0672326418 CH02 6/4/04 9:48 AM Page 62

63XML Schemas

<xsd:complexType name=”addressType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”company” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”street” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”postalCode” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”country” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id” type=”xsd:ID”/>
<xsd:attribute name=”href” type=”xsd:IDREF”/>

</xsd:complexType>

<xsd:complexType name=”itemType”>
<xsd:sequence>

<xsd:element name=”description” type=”xsd:string”
minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”sku” use=”required”>
<xsd:simpleType>

<xsd:restriction base=”xsd:string”>
<xsd:pattern value=”\d{3}-[A-Z]{2}”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

<xsd:attribute name=”quantity” use=”required”
type=”xsd:positiveInteger”/>

</xsd:complexType>

</xsd:schema>

Global Versus Local Elements and Attributes
Everything should look familiar except perhaps the standalone definition of the po ele-
ment after the schema annotation.This brings us to the important topic of local versus
global elements and attributes.Any element or attribute defined inside a complex type
definition is considered local to that definition. Conversely, any element or attribute
defined at the top level (as a child of xsd:schema) is considered global.

All global elements can be document roots.That is the main reason why most
schemas define a single global element. In the case of the SkatesTown PO, the po ele-
ment must be the root of the PO document and is hence defined as a global element.

Listing 2.17 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 63

64 Chapter 2 XML Primer

The notion of global attributes might not make much sense at first, but these
attributes are very convenient.You can use them (in namespace-prefixed form) on any
element in a document that allows them.The item priority attribute discussed in the
section “XML Namespaces” is defined with the short schema in Listing 2.18.

Listing 2.18 Defining the Priority Global Attribute Using a Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/priority”

targetNamespace=”http://www.skatestown.com/ns/priority”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

<xsd:attribute name=”priority” use=”optional” default=”medium”>
<xsd:simpleType>

<xsd:restriction base=”xsd:string”>
<xsd:enumeration value=”low”/>
<xsd:enumeration value=”medium”/>
<xsd:enumeration value=”high”/>

</xsd:restriction>

</xsd:simpleType>

</xsd:attribute>

</xsd:schema>

Basic Schema Reusability
The concept of reusability is important for XML Schema. Reusability deals with the
question of how to best leverage existing assets in new projects. In schemas, the assets
include element and attribute definitions, content model definitions, simple and complex
datatypes, and whole schemas.We can roughly break down reusability mechanisms into
two kinds: basic and advanced.The basic reusability mechanisms address the problems of
using existing assets in multiple places.Advanced reusability mechanisms address the
problems of modifying existing assets to serve needs that are different than those for
which the assets were originally designed.

This section will address the following basic reusability mechanisms:
n Element references
n Content model groups
n Attribute groups
n Schema includes
n Schema imports

Element References

In XML Schema, you can define elements using a name and a type.Alternatively, ele-
ment declarations can refer to preexisting elements using the ref attribute of

04 0672326418 CH02 6/4/04 9:48 AM Page 64

65XML Schemas

xsd:element as follows, where a globally defined comment element is reused for both
person and task complex types:

<xsd:element name=”comment” type=”xsd:string”/>

<xsd:complexType name=”personType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:element ref=”comment” minOccurs=”0”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”taskType”>
<xsd:sequence>

<xsd:element name=”toDo” type=”xsd:string”/>
<xsd:element ref=”comment” minOccurs=”0”/>

</xsd:sequence>

</xsd:complexType>

Content Model Groups

Element references are perfect for reusing the definition of a single element. However, if
your goal is to reuse all or part of a content model, then element groups are the way to
go. Element groups are defined using xsd:group and are referred to using the same
mechanism used for elements.The following schema fragment illustrates the concept. It
extends the previous example so that instead of a single comment element, public and
private comment elements are reused as a group:

<xsd:group name=”comments”>
<xsd:sequence>

<xsd:element name=”publicComment” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”privateComment” type=”xsd:string”
minOccurs=”0”/>

</xsd:sequence>

</xsd:group>

<xsd:complexType name=”personType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
<xsd:group ref=”comments”/>

</xsd:sequence>

</xsd:complexType>

<xsd:complexType name=”taskType”>
<xsd:sequence>

04 0672326418 CH02 6/4/04 9:48 AM Page 65

66 Chapter 2 XML Primer

<xsd:element name=”toDo” type=”xsd:string”/>
<xsd:group ref=”comments”/>

</xsd:sequence>

</xsd:complexType>

Attribute Groups

The same reusability mechanism can be applied to commonly used attribute groups.The
following example defines the ID/IDREF combination of id and href attributes as a ref-
erenceable attribute group. It’s then applied to both the person and the task type:

<xsd:attributeGroup name=”referenceable”>
<xsd:attribute name=”id” type=”xsd:ID”/>
<xsd:attribute name=”href” type=”xsd:IDREF”/>

</xsd:attributeGroup>

<xsd:complexType name=”personType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string”/>
</xsd:sequence>

<xsd:attributeGroup ref=”referenceable”/>
</xsd:complexType>

<xsd:complexType name=”taskType”>
<xsd:sequence>

<xsd:element name=”toDo” type=”xsd:string”/>
</xsd:sequence>

<xsd:attributeGroup ref=”referenceable”/>
</xsd:complexType>

Schema Includes and Imports

Element references and groups as well as attribute groups provide reusability within the
same schema document. However, when you’re dealing with very complex schema or
trying to achieve maximum reusability, you’ll often need to split a schema into several
documents.The schema include and import mechanisms allow these documents to refer-
ence one another.

Consider the scenario where SkatesTown is intent on reusing the schema definition
for its address type for a mailing list schema. SkatesTown must solve three small prob-
lems:

n Put the address type definition in its own schema document
n Reference this schema document from the purchase order schema document
n Reference this schema document from the mailing list schema document

04 0672326418 CH02 6/4/04 9:48 AM Page 66

67XML Schemas

Pulling the address definition into its own schema is as easy as a cut-and-paste operation
(see Listing 2.19). Even though this is a different document than the main purchase
order schema, they both define portions of the SkatesTown PO namespace.The binding
between schema documents and the namespaces they define isn’t one-to-one. It’s explic-
itly identified by the targetNamespace attribute of the xsd:schema element.

Listing 2.19 Standalone Address Type Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.skatestown.com/ns/po”>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Address type schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

<xsd:complexType name=”addressType”>
<xsd:sequence>

<xsd:element name=”name” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”company” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”street” type=”xsd:string”

maxOccurs=”unbounded”/>
<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string” minOccurs=”0”/>
<xsd:element name=”postalCode” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”country” type=”xsd:string” minOccurs=”0”/>

</xsd:sequence>

<xsd:attribute name=”id” type=”xsd:ID”/>
<xsd:attribute name=”href” type=”xsd:IDREF”/>

</xsd:complexType>

</xsd:schema>

Referring to this schema is also easy. Instead of having the address type definition inline,
the PO schema needs to include the address schema using the xsd:include element.
During the processing of the PO schema, the address schema will be retrieved and the
address type definition will become available (see Listing 2.20).

Listing 2.20 Referring to the Address Type Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.skatestown.com/ns/po”>

04 0672326418 CH02 6/4/04 9:48 AM Page 67

68 Chapter 2 XML Primer

<xsd:include

schemaLocation=”http://www.skatestown.com/schema/address.xsd”/>

...

</xsd:schema>

The mailing list schema is very simple. It defines a single mailingList element that
contains any number of contact elements whose type is address. Being an altogether
different schema than that used for POs, the mailing list schema uses a new namespace:
http://www.skatestown.com/ns/mailingList. Listing 2.21 shows one possible way to
define this schema.

Listing 2.21 Mailing List Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
targetNamespace=”http://www.skatestown.com/ns/mailingList”>

<xsd:include

schemaLocation=”http://www.skatestown.com/schema/address.xsd”/>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Mailing list schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

<xsd:element name=”mailingList”>
<xsd:sequence>

<xsd:element name=”contact” type=”addressType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:element>

</xsd:schema>

This example uses xsd:include to bring in the schema fragment defining the address
type.There is no problem with that approach. However, there might be a problem with
authoring mailing-list documents.The root of the problem is that the mailingList and
contact elements are defined in one namespace (http://www.skatestown.com/ns/
mailingList), whereas the elements belonging to the address type—name, company,
street, city, state, postalCode, and country—are defined in another
(http://www.skatestown.com/ns/po).Therefore, the mailing list document must refer-
ence both namespaces (see Listing 2.22).

Listing 2.20 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 68

69XML Schemas

Listing 2.22 Mailing List That References Two Namespaces

<?xml version=”1.0” encoding=”UTF-8”?>
<list:mailingList xmlns:list=”http://www.skatestown.com/ns/mailingList”

xmlns:addr=”http://www.skatestown.com/ns/po”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/mailingList

http://www.skatestown.com/schema/mailingList.xsd

http://www.skatestown.com/ns/po

http://www.skatestown.com/schema/address.xsd”>
<contact>

<addr:company>The Skateboard Warehouse</addr:company>

<addr:street>One Warehouse Park</addr:street>

<addr:street>Building 17</addr:street>

<addr:city>Boston</addr:city>

<addr:state>MA</addr:state>

<addr:postalCode>01775</addr:postalCode>

</contact>

</list:mailingList>

Ideally, when reusing the address type definition in the mailing list schema, we want to
hide the fact that it originates from a different namespace and treat it as a true part of
the mailing list schema.Therefore, the xsd:include mechanism isn’t the right one to
use, because it makes no namespace changes.The reuse mechanism that will allow the
merging of schema fragments from multiple namespaces into a single schema is the
import mechanism. Listing 2.23 shows the new mailing list schema.

Listing 2.23 Importing Rather Than Including the Address Type Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/po”

xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:addr=”http://www.skatestown.com/ns/po”
xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/po

http://www.skatestown.com/schema/address.xsd”
targetNamespace=”http://www.skatestown.com/ns/mailingList”>

<xsd:import namespace=”http://www.skatestown.com/ns/po”/>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Mailing list schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

<xsd:element name=”mailingList”>
<xsd:sequence>

04 0672326418 CH02 6/4/04 9:48 AM Page 69

70 Chapter 2 XML Primer

<xsd:element name=”contact” type=”addr:addressType”
minOccurs=”0” maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:element>

</xsd:schema>

Although the mechanism is simple to describe, it takes several steps to execute:

1. Declare the namespace of the address type definition and assign it the prefix addr.

2. Use the standard xsi:schemaLocation mechanism to hint about the location of
the address schema.

3. Use xsd:import instead of xsd:include to merge the contents of the PO name-
space into the mailing list namespace.

4. When referring to the address type, use its fully qualified name:
addr:addressType.

The net result is that the mailing list instance document has been simplified (see Listing
2.24).

Listing 2.24 Simplified Instance Document That Requires a Single Namespace

<?xml version=”1.0” encoding=”UTF-8”?>
<list:mailingList xmlns:list=”http://www.skatestown.com/ns/mailingList”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/mailingList

http://www.skatestown.com/schema/mailingList.xsd”>
<contact>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</contact>

</list:mailingList>

Advanced Schema Reusability
The previous section demonstrated how you can reuse types and elements as is from the
same or a different namespace.This capability can go a long way in some cases, but many
real-world scenarios require more sophisticated reuse capabilities. Consider, for example,
the format of the invoice that SkatesTown will send to the Skateboard Warehouse based
on its PO (see Listing 2.25).

Listing 2.23 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 70

71XML Schemas

Listing 2.25 SkatesTown Invoice Document

<?xml version=”1.0” encoding=”UTF-8”?>
<invoice:invoice xmlns:invoice=”http://www.skatestown.com/ns/invoice”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/invoice

http://www.skatestown.com/schema/invoice.xsd”
id=”43871” submitted=”2004-01-05” customerId=”73852”>
<billTo id=”addr-1”>

<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

<shipTo href=”addr-1”/>
<order>

<item sku=”318-BP” quantity=”5” unitPrice=”49.95”>
<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12” unitPrice=”129.00”>
<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000” unitPrice=”0.00”>
<description>Promotional: SkatesTown stickers</description>

</item>

</order>

<tax>89.89</tax>

<shippingAndHandling>200</shippingAndHandling>

<totalCost>2087.64</totalCost>

</invoice:invoice>

The invoice document has many of the features of a PO document, with a few impor-
tant changes:

n Invoices use a different namespace: http://www.skatestown.com/ns/invoice.
n The root element of the document is invoice, not po.
n The invoice element has three additional children: tax, shippingAndHandling,

and totalCost.
n The item element has an additional attribute: unitPrice.

How can we leverage the work done to define the PO schema in defining the invoice
schema? This section will introduce the advanced schema reusability mechanisms that
make this possible.

04 0672326418 CH02 6/4/04 9:48 AM Page 71

72 Chapter 2 XML Primer

Design Principles

Imagine that purchase orders, addresses, and items were represented as classes in an
object-oriented programming language such as Java.We could create an invoice object
by subclassing item to invoiceItem (which adds unitPrice) and po to invoice (which
adds tax, shippingAndHandling, and totalCost).The benefit of this approach is that
any changes to related classes such as address will be automatically picked up by both
POs and invoices. Further, any changes in base types such as item will be automatically
picked up by derived types such as invoiceItem.

The following pseudocode shows how this approach might work:

public class Address { ... }

public class Item

{

public String sku;

public int quantity;

}

public class InvoiceItem extends Item

{

public double unitPrice;

}

public class PO

{

public int id;

public Calendar submitted;

public int customerId;

public Address billTo;

public Address shipTo;

public Item order[];

}

public class Invoice extends PO

{

public double tax;

public double shippingAndHandling;

public double totalCost;

}

Everything looks good except for one important detail.You might have noticed that
Invoice shouldn’t subclass PO, because the order array inside an invoice object must
hold InvoiceItems and not just Item.The subclassing relationship will force you to
work with Items instead of InvoiceItems. Doing so will weaken static type-checking
and require constant downcasting, which is generally a bad thing in well-designed
object-oriented systems.A better design for the Invoice class, unfortunately, requires
some duplication of PO’s data members:

04 0672326418 CH02 6/4/04 9:48 AM Page 72

73XML Schemas

public class Invoice

{

public int id;

public Calendar submitted;

public int customerId;

public Address billTo;

public Address shipTo;

public InvoiceItem order[];

public double tax;

public double shippingAndHandling;

public double totalCost;

}

Note that subclassing Item to get InvoiceItem is a good decision because InvoiceItem
is a pure extension of Item. It adds new data members; it doesn’t require modifications
to Item’s data members, nor does it change the way they’re used.

Extensions and Restrictions

The analysis from object-oriented systems can be directly applied to the design of
SkatesTown’s invoice schema.The schema defines the invoice element in terms of pre-
existing types such as addressType, and the invoice’s item type reuses the already-
defined purchase order item type via extension (see Listing 2.26).

Listing 2.26 SkatesTown Invoice Schema

<?xml version=”1.0” encoding=”UTF-8”?>
<xsd:schema xmlns=”http://www.skatestown.com/ns/invoice”

targetNamespace=”http://www.skatestown.com/ns/invoice”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”
xmlns:po=”http://www.skatestown.com/ns/po”>

<xsd:import namespace=”http://www.skatestown.com/ns/po”
schemaLocation=”http://www.skatestown.cm/schema/po.xsd”/>

<xsd:annotation>

<xsd:documentation xml:lang=”en”>
Invoice schema for SkatesTown.

</xsd:documentation>

</xsd:annotation>

<xsd:element name=”invoice” type=”invoiceType”/>

<xsd:complexType name=”invoiceType”>
<xsd:sequence>

<xsd:element name=”billTo” type=”po:addressType”/>
<xsd:element name=”shipTo” type=”po:addressType”/>
<xsd:element name=”order”>

04 0672326418 CH02 6/4/04 9:48 AM Page 73

74 Chapter 2 XML Primer

<xsd:complexType>

<xsd:sequence>

<xsd:element name=”item” type=”itemType”
maxOccurs=”unbounded”/>

</xsd:sequence>

</xsd:complexType>

</xsd:element>

<xsd:element name=”tax” type=”priceType”/>
<xsd:element name=”shippingAndHandling” type=”priceType”/>
<xsd:element name=”totalCost” type=”priceType”/>

</xsd:sequence>

<xsd:attribute name=”id” use=”required”
type=”xsd:positiveInteger”/>

<xsd:attribute name=”submitted” use=”required”
type=”xsd:date”/>

<xsd:attribute name=”customerId” use=”required”
type=”xsd:positiveInteger”/>

</xsd:complexType>

<xsd:complexType name=”itemType”>
<xsd:complexContent>

<xsd:extension base=”po:itemType”>
<xsd:attribute name=”unitPrice” use=”required”

type=”priceType”/>
</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

<xsd:simpleType name=”priceType”>
<xsd:restriction base=”xsd:decimal”>

<xsd:minInclusive value=”0”/>
</xsd:restriction>

</xsd:simpleType>

</xsd:schema>

By now the schema mechanics should be familiar.The beginning of the schema declares
the PO and invoice namespaces.The PO schema has to be imported because it doesn’t
reside in the same namespace as the invoice schema.

The invoiceType schema address type is defined in terms of po:addressType, but
the order element’s content is of type itemType and not po:itemType.That’s because
the invoice’s itemType needs to extend po:itemType and add the unitPrice attribute.
This happens at the next complex type definition. In general, the schema extension syn-
tax, although somewhat verbose, is easy to use:

Listing 2.26 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 74

75XML Schemas

<xsd:complexType name=”...”>
<xsd:complexContent>

<xsd:extension base=”...”>
<!-- Optional extension content model -->

<!-- Optional extension attributes -->

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

The content model of extended types contains all the child elements of the base type
plus any additional elements added by the extension.Any attributes in the extension are
added to the attribute set of the base type.

Last but not least, the invoice schema defines a simple price type as a non-negative
decimal number.The definition happens via restriction of the lower boundary of the
decimal type using the same mechanism introduced in the section on simple types.

The restriction mechanism in schemas applies not only to simple types but also to
complex types.The syntax is similar to that of extension:

<xsd:complexType name=”...”>
<xsd:complexContent>

<xsd:restriction base=”...”>
<!-- Content model and attributes -->

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

The concept of restriction has a precise meaning in XML Schema.The declarations of
the type derived by restriction are very close to those of the base type but more limited.
There are several possible types of restrictions:

n Multiplicity restrictions
n Deletion of optional elements
n Tighter limits on occurrence constraints
n Provision of default values
n Provision of types where there were none, or narrowing of types

For example, we can extend the address type by restriction to create a corporate address
that doesn’t include a name:

<xsd:complexType name=”corporateAddressType”>
<xsd:complexContent>

<xsd:restriction base=”addressType”>
<xsd:sequence>

<!-- Add maxOccurs=”0” to delete optional name element -->

<xsd:element name=”name” type=”xsd:string”
minOccurs=”0” maxOccurs=”0”/>

04 0672326418 CH02 6/4/04 9:48 AM Page 75

76 Chapter 2 XML Primer

<!-- The rest is the same as in addressType -->

<xsd:element name=”company” type=”xsd:string”
minOccurs=”0”/>

<xsd:element name=”street” type=”xsd:string”
maxOccurs=”unbounded”/>

<xsd:element name=”city” type=”xsd:string”/>
<xsd:element name=”state” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”postalCode” type=”xsd:string”

minOccurs=”0”/>
<xsd:element name=”country” type=”xsd:string”

minOccurs=”0”/>
</xsd:sequence>

<xsd:attribute name=”id” type=”xsd:ID”/>
<xsd:attribute name=”href” type=”xsd:IDREF”/>

</xsd:restriction>

</xsd:complexContent>

</xsd:complexType>

The Importance of xsi:type

The nature of restriction is such that an application that is prepared to deal with the base
type can certainly accept the derived type. In other words, you can use a corporate
address type directly inside the billTo and shipTo elements of POs and invoices with-
out a problem. Sometimes, however, it might be convenient to identify the actual schema
type used in an instance document. XML Schema allows you to do this through the use
of the global xsi:type attribute.This attribute can be applied to any element to signal
its actual schema type, as Listing 2.27 shows.

Listing 2.27 Using xsi:type

<?xml version=”1.0” encoding=”UTF-8”?>
<po:po xmlns:po=”http://www.skatestown.com/ns/po”

xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”
xsi:schemaLocation=”http://www.skatestown.com/ns/po

http://www.skatestown.com/schema/po.xsd”
id=”43871” submitted=”2004-01-05” customerId=”73852”>

<billTo xsi:type=”po:corporateAddressType”>
<company>The Skateboard Warehouse</company>

<street>One Warehouse Park</street>

<street>Building 17</street>

<city>Boston</city>

<state>MA</state>

<postalCode>01775</postalCode>

</billTo>

...

</po:po>

04 0672326418 CH02 6/4/04 9:48 AM Page 76

77XML Schemas

Although derivation by restriction doesn’t require the use of xsi:type, derivation by
extension often does.The reason is that an application prepared for the base schema type
is unlikely to be able to process the derived type (it adds information) without a hint.
But why would such a scenario ever occur? Why would an instance document contain
data from a type derived by extension in a place where the schema expects a base type?

XML Schema allows derivation by extension to be used in cases where it really
shouldn’t be used, as in the case of the invoice and PO datatypes. In these cases, you
must use xsi:type in the instance document to ensure successful validation. Consider a
scenario where the invoice type was derived by extension from the PO type:

<xsd:complexType name=”invoiceType”>
<xsd:complexContent>

<xsd:extension base=”po:poType”>
<xsd:element name=”tax” type=”priceType”/>
<xsd:element name=”shippingAndHandling” type=”priceType”/>
<xsd:element name=”totalCost” type=”priceType”/>

</xsd:extension>

</xsd:complexContent>

</xsd:complexType>

Remember, extension doesn’t change the content model of the base type; it can only
add to the content model.Therefore, this definition will make the item element inside
invoices of type po:itemType, not invoice:itemType.The use of xsi:type (see Listing
2.28) is the only way to add unit prices to items without violating the validity con-
straints of the document imposed by the schema.An imperfect analogy from program-
ming languages is that xsi:type provides the true type to downcast to when you’re
holding a reference to a base type.

Listing 2.28 Using xsi:type to Correctly Identify Invoice Item Elements

<order>

<item sku=”318-BP” quantity=”5” unitPrice=”49.95”
xsi:type=”invoice:itemType”>

<description>Skateboard backpack; five pockets</description>

</item>

<item sku=”947-TI” quantity=”12” unitPrice=”129.00”
xsi:type=”invoice:itemType”>

<description>Street-style titanium skateboard.</description>

</item>

<item sku=”008-PR” quantity=”1000” unitPrice=”0.00”
xsi:type=”invoice:itemType”>

<description>Promotional: SkatesTown stickers</description>

</item>

</order>

04 0672326418 CH02 6/4/04 9:48 AM Page 77

78 Chapter 2 XML Primer

This example shows a use of xsi:type that comes as a result of poor schema design. If,
instead of extending PO, the invoice type is defined on its own, the need for xsi:type
disappears. However, sometimes even good schema design doesn’t prevent the need to
identify actual types in instance documents.

Imagine that, due to constant typos in shipping and billing address postal codes,
SkatesTown decides to become more restrictive in its document validation.The company
defines three types of addresses that are part of POs and schema.The types have the fol-
lowing constraints:

n Address—Same as always
n USAddress—Country isn’t allowed, and the ZIP Code pattern “\d{5}(-\d{4})?”

is enforced
n UKAddress—Country is fixed to UK, and the postal code pattern “[0-9A-Z]{3}
[0-9A-Z]{3}” is enforced

To get the best possible validation, SkatesTown’s applications need to know the exact
type of address that is being used in a document.Without using xsi:type, the PO and
invoice schema will each have to define nine (three squared) possible combinations of
billTo and shipTo elements: billTo/shipTo, billTo/shipToUS, billTo/shipToUK,
billToUS/shipTo, and so on. It’s better to stick with billTo and shipTo and use
xsi:type to get exact schema type information.

There’s More
This completes the whirlwind tour of XML Schema. Much material useful for data-
oriented applications falls outside the scope of what is included in this chapter; we’ll
introduce some information throughout the book as needed.

Processing XML
So far, this chapter has introduced the key XML standards and explained how they’re
expressed in XML documents.The final section of the chapter focuses on processing
XML, with a quick tour of the specifications and APIs you need to know to be able to
generate, parse, and process XML documents in your Java applications.

Basic Operations
The basic XML processing architecture shown in Figure 2.4 consists of three key layers.
At far left are the XML documents an application needs to work with.At far right is the
application. In the middle is the infrastructure layer for working with XML documents,
which is the topic of this section.

04 0672326418 CH02 6/4/04 9:48 AM Page 78

79Processing XML

Figure 2.4 Basic XML processing architecture

For an application to be able to work with an XML document, it must first be able to
parse the document. Parsing is a process that involves breaking the text of an XML docu-
ment into small identifiable pieces (nodes). Parsers break documents into pieces such as
start tags, end tags, attribute value pairs, chunks of text content, processing instructions,
comments, and so on.These pieces are fed into the application using a well-defined API
implementing a particular parsing model. Four parsing models are commonly used:

n Pull parsing g—The application always has to ask the parser to give it the next
piece of information about the document. It’s as if the application has to “pull” the
information out of the parser (hence the name of the model).The XML commu-
nity has not yet defined standard APIs for pull parsing. However, because pull pars-
ing is becoming popular, this could happen soon.

n Push parsing g—The parser sends notifications to the application about the types
of XML document pieces it encounters during the parsing process.The notifica-
tions are sent in reading order, as they appear in the text of the document.
Notifications are typically implemented as event callbacks in the application code,
and thus push parsing is also commonly known as event-based parsing.The XML
community created a de facto standard for push parsing called Simple API for XML
(SAX) g. SAX is currently released in version 2.0.

n One-step parsing g—The parser reads the whole XML document and generates a
data structure (a parse tree g) describing its contents (elements, attributes, PIs,
comments, and so on).The data structure is typically deeply nested; its hierarchy
mimics the nesting of elements in the parsed XML document.The W3C has
defined a Document Object Model (DOM) g for XML.The XML DOM specifies
the types of objects that are included in the parse tree, their properties, and their
operations.The DOM is so popular that one-step parsing is typically referred to as
DOM parsing.The DOM is a language- and platform-independent API. It offers
many obvious benefits but also some hidden costs.The biggest problem with the
DOM APIs is that they often don’t map well to the native data structures of pro-
gramming languages.To address this issue for Java, the Java community has started
working on a Java DOM (JDOM) specification whose goal is to simplify the
manipulation of document trees in Java by using object APIs tuned to the com-
mon patterns of Java programming.

Character Stream

Serializer

Parser

Standardized
XML APIs

ApplicationXML Document(s)

04 0672326418 CH02 6/4/04 9:48 AM Page 79

80 Chapter 2 XML Primer

n Hybrid parsing g—This approach combines characteristics of the other three
parsing models to create efficient parsers for special scenarios. For example, one
common pattern combines pull parsing with one-step parsing. In this model, the
application thinks it’s working with a one-step parser that has processed the whole
XML document from start to end. In reality, the parsing process has just begun.As
the application keeps accessing more objects on the DOM (or JDOM) tree, the
parsing continues incrementally so that just enough of the document is parsed at
any given point to give the application the objects it wants to see.

The reasons there are so many different models for parsing XML have to do with trade-
offs between memory efficiency, computational efficiency, and ease of programming.
Table 2.5 identifies some of the characteristics of the parsing models. In the table, control
of parsing refers to who manages the step-by-step parsing process. Pull parsing requires
that the application do that; in all other models, the parser takes care of this process.
Control of context refers to who manages context information such as the level of nesting
of elements and their location relative to one another. Both push and pull parsing dele-
gate this control to the application; all other models build a tree of nodes that makes
maintaining context much easier.This approach makes programming with DOM or
JDOM generally easier than working with SAX.The price is memory and computation-
al efficiency, because instantiating all these objects takes up time and memory. Hybrid
parsers attempt to offer the best of both worlds by presenting a tree view of the docu-
ment but doing incremental parsing behind the scenes.

Table 2.5 XML Parsing Models and Their Trade-offs

Model Control of Control of Memory Computational Ease of
parsing context efficiency efficiency programming

Pull Application Application High Highest Low

Push (SAX) Parser Application High High Low

One-step (DOM) Parser Parser Lowest Lowest High

One-step (JDOM) Parser Parser Low Low Highest

Hybrid (DOM) Parser Parser Medium Medium High

Hybrid (JDOM) Parser Parser Medium Medium Highest

In the Java world, a standardized API—Java API for XML Processing (JAXP) g—exists
for instantiating XML parsers and parsing documents using either SAX or DOM.
Without JAXP, Java applications weren’t completely portable across XML parsers because
different parsers, despite following SAX and DOM, had different APIs for creation, con-
figuration, and parsing of documents. JAXP is currently released in version 1.2. It doesn’t
support JDOM yet because the JDOM specification isn’t complete at this point.

Although XML parsing addresses the problem of feeding data from XML documents
into applications, XML output addresses the reverse problem—applications generating
XML documents.At the most basic level, an application can directly output XML

04 0672326418 CH02 6/4/04 9:48 AM Page 80

81Processing XML

markup. In Figure 2.4, this is indicated by the application working with a character
stream.This isn’t difficult to do, but handling the basic syntax rules (attributes quoting,
special character escaping, and so on) can become cumbersome. In many cases, it might
be easier for the application to construct a data structure (DOM or JDOM tree) describ-
ing the XML document that should be generated.Then, the application can use a seriali-
zation g process to traverse the document tree and emit XML markup corresponding
to its elements.This capability isn’t directly defined in the DOM and JDOM APIs, but
most XML toolkits make it very easy to do just that.

Data-Oriented XML Processing
When you’re thinking about applications working with XML, it’s important to note that
all the mechanisms for parsing and generating XML described so far are syntax-oriented.
They force the application to work with concepts such as elements, attributes, and pieces
of text.This is similar to applications that use text files for storage being forced to work
with characters, lines, carriage returns (CR), and line feeds (LF).

Typically, applications want a higher-level view of their data.They aren’t concerned
with the physical structure of the data, be it characters and lines in the case of text files or
elements and attributes in the case of XML documents.They want to abstract this away
and expose the meaning or semantics of the data. In other words, applications don’t want
to work with syntax-oriented APIs; they want to work with data-oriented APIs.Therefore,
typical data-oriented XML applications introduce a data abstraction layer between the
syntax-oriented parsing and output APIs and application logic (see Figure 2.5).

Syntax-oriented
APIs

Application

Data Abstraction
Layer Application Logic

Figure 2.5 Data abstraction layer in XML applications

When working with XML in a data-oriented manner, you’ll typically use one of two
approaches: operation-centric and data-centric.

The Operation-Centric Approach

The operation-centric approach works in terms of custom-built APIs for certain opera-
tions on the XML document.The implementation of these APIs hides the details of
XML processing. Only non-XML types are passed through the APIs.

Consider, for example, the task of SkatesTown trying to independently check the total
amount on the invoices it’s sending to its customers. From a Java application perspective,
a good way to implement an operation like this would be through the interface shown
in Listing 2.29.

04 0672326418 CH02 6/4/04 9:48 AM Page 81

82 Chapter 2 XML Primer

Listing 2.29 InvoiceChecker Interface

package com.skatestown.invoice;

import java.io.InputStream;

/**

* SkatesTown invoice checker

*/

public interface InvoiceChecker {

/**

* Check invoice totals.

*

* @param invoiceXML Invoice XML document

* @exception Exception Any exception returned during checking

*/

void checkInvoice(InputStream invoiceXML) throws Exception;

}

The implementation of checkInvoice() must do the following:

1. Obtain an XML parser.

2. Parse the XML from the input stream.

3. Initialize a running total to zero.

4. Find all order items, and calculate item subtotals by multiplying quantities and unit
prices.Add the item subtotals to the running total.

5. Add tax to the running total.

6. Add shipping and handling to the running total.

7. Compare the running total to the total on the invoice.

8. If there is a difference, throw an exception.

9. Otherwise, return.

The most important aspect of this approach is that any XML processing details are hid-
den from the application. It can happily deal with the InvoiceChecker interface, never
knowing or caring about how checkInvoice() works.

The Data-Centric Approach

An alternative is the data-centric approach. Data-centric XML computing reduces the
problem of working with XML documents to that of mapping the XML to and from
application data and then working with the data independently of its XML origins.
Application data covers the common datatypes developers work with every day: boolean
values, numbers, strings, date-time values, arrays, associative arrays (dictionaries, maps,

04 0672326418 CH02 6/4/04 9:48 AM Page 82

83Processing XML

hash tables), database recordsets, and complex object types. Note that in this context,
DOM tree objects aren’t considered true application data because they’re tied to XML
syntax.The process of converting application data to XML is called marshalling g.The
XML is a serialized representation of the application data.The process of generating
application data from XML is called unmarshalling g.

For example, the XML invoice markup could be mapped to the set of Java classes
introduced in the schema section (see Listing 2.30).

Listing 2.30 Java Classes Representing Invoice Data

class Address { ... }

class Item { ... }

class InvoiceItem extends Item { ... }

class Invoice

{

int id;

Date submitted;

int customerId;

Address billTo;

Address shipTo;

InvoiceItem order[];

double tax;

double shippingAndHandling;

double totalCost;

}

Schema Compilers

The traditional approach for generating XML from application data has been to custom-
code the way data values become elements, attributes, and element content.The tradi-
tional approach of working with XML to produce application data has been to parse it
using a SAX or a DOM parser. Data structures are built from the SAX events or the
DOM tree using custom code. However, there are better ways to map data to and from
XML using technologies specifically built for marshalling and unmarshalling data to and
from XML. Enter schema compilation tools.

Schema compilers are tools that analyze XML schema and code-generate marshalling
and unmarshalling modules specific to the schema.These modules work with data struc-
tures tuned to the schema. Figure 2.6 shows the basic process for working with schema
compilers.The schema compiler needs to be invoked only once; then the application can
use the code-generated modules like any other API.

04 0672326418 CH02 6/4/04 9:48 AM Page 83

84 Chapter 2 XML Primer

Figure 2.6 Using a schema compiler.

Binding Customization

In some cases, the object types generated by the schema compiler offer a good enough
API for working with the types and elements described in the target schema.The appli-
cation can use these classes directly. Other cases may require customization of the default
binding of XML types to object types.That is where the binding customizations come
in:They provide additional information to the schema compiler about how the binding
between XML and application structures should happen.

There are two main reasons for applying customization:
n To deal with predefined application data structures—This reason applies in environments

where the application already has defined object types to represent the concepts
described in the schema.An example is a PO processing system that was designed
to receive inputs from a human-facing UI and an EDI data feed. Now, the system
must be extended to handle XML POs.The task is to map the XML of POs to
the existing application data structures.There is zero chance that the default map-
ping defined by the schema compiler will do this in a satisfactory manner.

n To simplify the API—This reason for applying customization is driven by program-
ming convenience. Sometimes the conventions of schema design don’t map well to
the conventions of object-oriented design. For example, localized text is often rep-
resented in schema as a subelement with an xml:lang attribute identifying the
language. Most applications represent this construct as a string object property
whose value is determined by the active internationalization locale. Further, there
is often more than one way to express a schema type in a programming language.
For example, should an xsd:decimal be mapped to a BigDecimal, double, or
float in Java? The right answer depends on the application.

Common examples of customizations include the following:
n Changing the names of namespaces, object types, and object properties; for exam-

ple, mapping the customerID attribute to the _cid object property.
n Defining the type mapping, especially for simple types, as the previous
xsd:decimal mapping example suggested.

Marshaller Module

Schema Compiler

Target Schema

Binding
Customizations

Unmarshaller Module

Ta
rg

et
 X

M
L

F
or

m
at

A
pp

lic
at

io
n

D
at

a

codegen

codegen

04 0672326418 CH02 6/4/04 9:48 AM Page 84

85Processing XML

n Choosing which subelements to map to object properties and whether to map
them as simple types or as properties that are objects themselves, as the localized
text example suggested.

n Specifying how repeated types should be mapped to collection types in program-
ming languages. For example, should the order items in POs be represented by a
simple array type, a dynamic array type, or some other data structure such as a list?

The Java community has defined a standard set of tools and APIs for mapping schema
types to Java data structures called Java Architecture for XML Binding (JAXB) g. JAXB
took a long time to develop because the problems it was trying to address were very
complex. Initially, the work targeted DTD-to-Java mapping.This, and the fact that JAXB
was JSR-31 in the Java Community Process (JCP), gives you an idea of how long JAXB
has taken to evolve. Because of its long history, JAXB isn’t yet fully aligned with the lat-
est thinking about XML type mapping for Web services.The good news is that JAXB
now supports a significant part of XML Schema and is ready for production use. JAXB
2.0 will synchronize JAXB with JAX-RPC (the Java APIs for remote procedure calls
using Web services), which will make JAXB even better suited for use with Web services.

Chapters 3 and 5 (“Implementing Web Services with Apache Axis”) introduce
advanced data-mapping concepts specific to Web services as well as more sophisticated
mechanisms for working with XML.The rest of this section will offer a taste of XML
processing by implementing the checkInvoice() API described earlier using both a
SAX and a DOM parser as well as JAXB.

SAX-Based checkInvoice()
The basic architecture of the JAXP SAX parsing APIs is shown in Figure 2.7. It uses the
common abstract factory design pattern. First, you must create an instance of
SAXParserFactory that is used to create an instance of SAXParser. Internally, the parser
wraps a SAXReader object that is defined by the SAX API. JAXP developers typically
don’t have to work directly with SAXReader.When the parser’s parse() method is
invoked, the reader starts firing events to the application by invoking certain registered
callbacks.

SAXParser
Factory

SAXParser

SAX
Reader

XML

Content
Handler

Error
Handler

DTD
Handler

Entity
Handler

Figure 2.7 SAX parsing architecture

04 0672326418 CH02 6/4/04 9:48 AM Page 85

86 Chapter 2 XML Primer

Working with JAXP and SAX involves four important Java packages:
n org.xml.sax—Defines the SAX interfaces
n org.xml.sax.ext—Defines advanced SAX extensions for DTD processing and

detailed syntax information
n org.xml.sax.helpers—Defines helper classes such as DefaultHandler
n javax.xml.parsers—Defines the SAXParserFactory and SAXParser classes

Here is a summary of the key SAX-related objects:
n SAXParserFactory—A SAXParserFactory object creates an instance of the parser

determined by the system property javax.xml.parsers.SAXParserFactory.
n SAXParser—The SAXParser interface defines several kinds of parse() methods.

In general, you pass an XML data source and a DefaultHandler object to the
parser, which processes the XML and invokes the appropriate methods in the han-
dler object.

n DefaultHandler—Not shown in Figure 2.7, DefaultHandler implements all
SAX callback interfaces with null methods. Custom handlers subclass
DefaultHandler and override the methods they’re interested in receiving.

The following list contains the callback interfaces and some of their important methods:
n ContentHandler—Contains methods for all basic XML parsing events:

void startDocument()

Receive notification of the beginning of a document.

void endDocument()

Receive notification of the end of a document.

void startElement(String namespaceURI, String localName,

String qName, Attributes atts)

Receive notification of the beginning of an element.

void characters(char[] ch, int start, int length)

Receive notification of character data.

n ErrorHandler—Contains methods for receiving error notification.The default
implementation in DefaultHandler throws errors for fatal errors but does nothing
for nonfatal errors, including validation errors:

void error(SAXParseException exception)

Receive notification of a recoverable error (for example, a validation error).

void fatalError(SAXParseException exception)

Receive notification of a nonrecoverable error (for example, a well-formedness
error).

04 0672326418 CH02 6/4/04 9:48 AM Page 86

87Processing XML

n DTDHandler—Contains methods for dealing with XML entities.
n EntityResolver—Contains methods for resolving the location of external enti-

ties.

SAX defines an event-based parsing model.A SAX parser invokes the callbacks from
these interfaces as it’s working through the document. Consider the following sample
document:

<?xml version=”1.0” encoding=”UTF-8”?>
<sampleDoc>

<greeting>Hello, world!</greeting>

</sampleDoc>

An event-based parser will make the series of callbacks to the application as follows:

start document

start element: sampleDoc

start element: greeting

characters: Hello, world!

end element: greeting

end element: sampleDoc

end document

Because of the simplicity of the parsing model, the parser doesn’t need to keep much
state information in memory.This is why SAX-based parsers are fast and highly efficient.
The flip side to this benefit is that the application has to manage any context associated
with the parsing process. For example, for the application to know that the string “Hello,
world!” is associated with the greeting element, it needs to maintain a flag that is raised
in the start element event for greeting and lowered in the end element event. More
complex applications typically maintain a stack of elements that are in the process of
being parsed. Here are the SAX events with an added context stack:

start document ()

start element: sampleDoc (sampleDoc)

start element: greeting (sampleDoc, greeting)

characters: Hello, world! (sampleDoc, greeting)

end element: greeting (sampleDoc, greeting)

end element: sampleDoc (sampleDoc)

end document ()

With this information in mind, building a class to check invoice totals becomes relative-
ly simple (see Listing 2.31).

04 0672326418 CH02 6/4/04 9:48 AM Page 87

88 Chapter 2 XML Primer

Listing 2.31 SAX-Based Invoice Checker (InvoiceCheckerSAX.java)

package com.skatestown.invoice;

import java.io.InputStream;

import org.xml.sax.Attributes;

import org.xml.sax.SAXException;

import javax.xml.parsers.SAXParser;

import javax.xml.parsers.SAXParserFactory;

import org.xml.sax.helpers.DefaultHandler;

/**

* Check SkatesTown invoice totals using a SAX parser.

*/

public class InvoiceCheckerSAX

extends DefaultHandler

implements InvoiceChecker

{

// Class-level data

// invoice running total

double runningTotal = 0.0;

// invoice total

double total = 0.0;

// Utility data for extracting money amounts from content

boolean isMoneyContent = false;

double amount = 0.0;

/**

* Check invoice totals.

* @param invoiceXML Invoice XML document

* @exception Exception Any exception returned during checking

*/

public void checkInvoice(InputStream invoiceXML) throws Exception {

// Use the default (non-validating) parser

SAXParserFactory factory = SAXParserFactory.newInstance();

SAXParser saxParser = factory.newSAXParser();

// Parse the input; we are the handler of SAX events

saxParser.parse(invoiceXML, this);

}

// SAX DocumentHandler methods

public void startDocument() throws SAXException {

runningTotal = 0.0;

total = 0.0;

isMoneyContent = false;

}

04 0672326418 CH02 6/4/04 9:48 AM Page 88

89Processing XML

public void endDocument() throws SAXException {

// Use delta equality check to prevent cumulative

// binary arithmetic errors. In this case, the delta

// is one half of one cent

if (Math.abs(runningTotal - total) >= 0.005) {

throw new SAXException(

“Invoice error: total is “ + Double.toString(total) +

“ while our calculation shows a total of “ +

Double.toString(Math.round(runningTotal * 100) / 100.0));

}

}

public void startElement(String namespaceURI,

String localName,

String qualifiedName,

Attributes attrs) throws SAXException {

if (localName.equals(“item”)) {
// Find item subtotal; add it to running total

runningTotal +=

Integer.valueOf(attrs.getValue(namespaceURI,

“quantity”)).intValue() *
Double.valueOf(attrs.getValue(namespaceURI,

“unitPrice”)).doubleValue();
} else if (localName.equals(“tax”) ||

localName.equals(“shippingAndHandling”) ||
localName.equals(“totalCost”)) {

// Prepare to extract money amount

isMoneyContent = true;

}

}

public void endElement(String namespaceURI,

String localName,

String qualifiedName) throws SAXException {

if (isMoneyContent) {

if (localName.equals(“totalCost”)) {
total = amount;

} else {

// It must be tax or shippingAndHandling

runningTotal += amount;

}

isMoneyContent = false;

}

}

public void characters(char buf[], int offset, int len)

Listing 2.31 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 89

90 Chapter 2 XML Primer

throws SAXException {

if (isMoneyContent) {

String value = new String(buf, offset, len);

amount = Double.valueOf(value).doubleValue();

}

}

}

InvoiceCheckerSAX must implement the InvoiceChecker interface in order to provide
the checkInvoice() functionality. It also subclasses DefaultHandler to obtain default
implementations for all SAX callbacks.This way, the implementation can focus on over-
riding only the relevant callbacks.

The class members runningTotal and total maintain state information about the
invoice during the parsing process.The class members isMoneyContent and amount are
necessary in order to maintain parsing context. Because events about character data are
independent of events about elements, we need the isMoneyContent flag to indicate
whether we should attempt to parse character data as a dollar amount for the tax,
shippingAndHandling, and totalCost elements.After we parse the text into a dollar
figure, we save it into the amount member variable and wait until the endElement()
callback to determine what to do with it.

The checkInvoice() method implementation shows how easy it is to use JAXP for
XML parsing. Parsing an XML document with SAX only takes three lines of code.

At the beginning of the document, we have to initialize all member variables.At the
end of the document, we check whether there is a difference between the running total
and the total cost listed on the invoice. If there is a problem, we throw an exception
with a descriptive message. Note that we can’t use an equality check because no exact
mapping exists between decimal numbers and their binary representation. During the
many additions to runningTotal, a tiny error will be introduced in the calculation. So,
instead of checking for equality, we need to check whether the difference between the
listed and the calculated totals is significant. Significant in this case would be any amount
greater than half a cent, because a half-cent difference can affect the rounding of a final
value to a cent.

The parser pushes events about new elements to the startElement() method. If the
element we get a notification about is an item element, we can immediately extract the
values of the quantity and unitPrice attributes from its attributes collection.
Multiplying them together creates an item subtotal, which we add to the running total.
Alternatively, if the element is one of tax, shippingAndHandling, or totalCost, we
prepare to extract a money amount from its text content.All other elements are ignored.

When we receive end element notifications, we only need to process the ones where
we expect to extract a money amount from their content. Based on the name of the ele-
ment, we decide whether to save the amount as the total cost of the invoice or whether
to add it to the running total.

Listing 2.31 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 90

91Processing XML

When we process character data and we’re expecting a dollar value, we extract the
element content, convert it to a double value, and save it in the amount class member for
use by the endElement() callback.

Note that we could have skipped implementing endElement() if we had also stored
the element name as a string member of the class or used an enumerated value.Then, we
would have decided how to use the dollar amount inside characters().

That’s all there is to it. Of course, this is a simple example.A real application would
have done at least two things differently:

n It would have used namespace information and prefixed element names instead of
local names.

n It would have defined its own exception type to communicate invoice validation
information. It would have also overridden the default callbacks for error() and
fatalError() and used these to collect better exception information.

Unfortunately, these extensions fall outside the scope of this chapter.The rest of the
book has several examples of building robust XML-processing software.

DOM-Based checkInvoice()
The basic architecture of the JAXP DOM parsing APIs is shown in Figure 2.8.This
architecture uses the same factory design pattern as the SAX API.An application uses the
javax.xml.parsers.DocumentBuilderFactory class to get a DocumentBuilder object
instance, and uses that to produce a document that conforms to the DOM specification.
The value of the system property javax.xml.parsers.DocumentBuilderFactory deter-
mines which factory implementation produces the builder.This is how JAXP enables
applications to work with different DOM parsers.

The important packages for working with JAXP and DOM are as follows:
n org.w3c.dom—Defines the DOM programming interfaces for XML (and, option-

ally, HTML) documents, as specified by the W3C
n javax.xml.parsers—Defines DocumentBuilder and DocumentBuilderFactory

classes

The DOM defines APIs that allow applications to navigate XML documents and to
manipulate their content and structure.The DOM defines interfaces, not a particular
implementation.These interfaces are specified using the Interface Description Language
(IDL) so that any language can define bindings for them. Separate Java bindings are pro-
vided to make working with the DOM in Java easy.

The DOM has several levels and various facets within a level. In the fall of 1998,
DOM Level 1 was released. It provided the basic functionality to navigate and manipu-
late XML and HTML documents. DOM Level 2 builds upon Level 1 with more and
better-segmented functionality:

n The DOM Level 2 Core APIs build on Level 1, fix some problem spots, and
define additional ways to navigate and manipulate the content and structure of
documents.These APIs also provide full support for namespaces.

04 0672326418 CH02 6/4/04 9:48 AM Page 91

92 Chapter 2 XML Primer

n The DOM Level 2 Views API specifies interfaces that let programmers view alter-
nate presentations of the XML or HTML document.

n The DOM Level 2 Style API specifies interfaces that let programmers dynamically
access and manipulate style sheets.

n The DOM Level 2 Events API specifies interfaces that give programmers a generic
event system.

n The DOM Level 2 Traversal-Range API specifies interfaces that let programmers
traverse a representation of the XML document.

n The DOM Level 2 HTML API specifies interfaces that let programmers work
with HTML documents.

Document (DOM)

object

object object

object object

DocumentBuilder
Factory

Document
BuilderXML Data

Figure 2.8 DOM parsing architecture

All interfaces (apart from the Core ones) are optional.This is the main reason most
applications rely entirely on the DOM Core.You can expect parsers to support more of
the DOM soon. In fact, the W3C is currently working on DOM Level 3.

The DOM originated as an API for XML processing at a time when the majority of
XML applications were document-centric.As a result, the interfaces in the DOM
describe low-level syntax constructs in XML documents.This makes working with the
DOM for data-oriented applications somewhat cumbersome and is one of the reasons
the Java community is working on the JDOM APIs.

To better understand the XML DOM, you need to be familiar with the core inter-
faces and their most significant methods. Figure 2.9 shows a Universal Modeling
Language (UML) diagram describing some of them.

The root interface is Node. It contains methods for working with the node name
(getNodeName()), type (getNodeType()), and attributes (getNodeAttributes()). Node
types cover various XML syntax elements: document, element, attribute, character data,
text node, comment, processing instruction, and so on.All of these are shown in subclass
Node, but not all are shown in Figure 2.9.To traverse the document hierarchy, nodes can
access their parent (getParentNode()) as well as their children (getChildNodes()). Node
also has several convenience methods for retrieving the first and last child as well as the
previous and following sibling.

04 0672326418 CH02 6/4/04 9:48 AM Page 92

93Processing XML

Figure 2.9 Key DOM interfaces and operations

The most important operations in Document involve creating nodes (at least one for
every node type); assembling these nodes into the tree (not shown); and locating ele-
ments by name, regardless of their location in the DOM (getElementsByTagName()).
This last API is convenient because it can save you from having to traverse the tree to
get to a particular node.

The rest of the interfaces in the figure are simple. Elements, attributes, and character
data each offer a few methods for getting and setting their data members. NodeList and
NamedNodeMap are convenience interfaces for dealing with collections of nodes and
attributes, respectively.

What Figure 2.9 doesn’t show is that DOM Level 2 is fully namespace-aware and that
all DOM APIs have versions that take in namespace URIs.Typically, their name is the
same as the name of the original API with NS appended, such as Element’s
getAttributeNS(String nsURI, String localName).

With this information in mind, building a class to check invoice totals becomes rela-
tively simple.The DOM implementation of InvoiceChecker is shown in Listing 2.32.

Listing 2.32 DOM-Based Invoice Checker (InvoiceCheckerDOM.java)

package com.skatestown.invoice;

import java.io.InputStream;

import org.w3c.dom.Node;

import org.w3c.dom.NodeList;

import org.w3c.dom.Document;

import org.w3c.dom.Element;

import org.w3c.dom.CharacterData;

import javax.xml.parsers.DocumentBuilder;

interface

NodeList

+item(index:int):Node
+getLength():int

interface

Text

+splitText(offset:int)Text

interface

CharacterData

+getData():String
+setData(data:String):void
+getLength():int

interface

Node

+getNodeName():String
+getNodeValue():String
+setNodeValue(nodeValue:String):void
+getNodeType():short
+getParentNode():Node
+getChildNodes():NodeList
+getAttributes():NamedNodeMap

+getName():String
+getValue():String
+setValue(value:String):void

interface

Document

+createElement(tagName:String):Element
+createDocumentFragment():DocumentFragment
+createTextNode(data:String):Text
+createAttribute(name:String):Attr
+getElementsByTagName(tagname:String):NodeList

interface

NamedNodeMap

+getNamedItem(name:String):Node
+setNamedItem(arg:Node):Node
+item(index:int):Node
+getLength():int

interface

Attr

+getTagName():String
+getAttribute(name:String):String
+setAttribute(name:String,value:String):void
+hasAttribute(name:String):boolean

interface

Element

04 0672326418 CH02 6/4/04 9:48 AM Page 93

94 Chapter 2 XML Primer

import javax.xml.parsers.DocumentBuilderFactory;

/**

* Check SkatesTown invoice totals using a DOM parser.

*/

public class InvoiceCheckerDOM implements InvoiceChecker {

/**

* Check invoice totals.

*

* @param invoiceXML Invoice XML document

* @exception Exception Any exception returned during checking

*/

public void checkInvoice(InputStream invoiceXML)

throws Exception

{

// Invoice running total

double runningTotal = 0.0;

// Obtain parser instance and parse the document

DocumentBuilderFactory factory =

DocumentBuilderFactory.newInstance();

DocumentBuilder builder = factory.newDocumentBuilder();

Document doc = builder.parse(invoiceXML);

// Calculate order subtotal

NodeList itemList = doc.getElementsByTagName(“item”);
for (int i = 0; i < itemList.getLength(); i++) {

// Extract quantity and price

Element item = (Element)itemList.item(i);

Integer qty = Integer.valueOf(

item.getAttribute(“quantity”));
Double price = Double.valueOf(

item.getAttribute(“unitPrice”));

// Add subtotal to running total

runningTotal += qty.intValue() * price.doubleValue();

}

// Add tax

Node nodeTax = doc.getElementsByTagName(“tax”).item(0);
runningTotal += doubleValue(nodeTax);

// Add shipping and handling

Node nodeShippingAndHandling =

doc.getElementsByTagName(“shippingAndHandling”).item(0);

Listing 2.32 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 94

95Processing XML

runningTotal += doubleValue(nodeShippingAndHandling);

// Get invoice total

Node nodeTotalCost =

doc.getElementsByTagName(“totalCost”).item(0);
double total = doubleValue(nodeTotalCost);

// Use delta equality check to prevent cumulative

// binary arithmetic errors. In this case, the delta

// is one half of one cent

if (Math.abs(runningTotal - total) >= 0.005)

{

throw new Exception(

“Invoice error: total is “ + Double.toString(total) +

“ while our calculation shows a total of “ +

Double.toString(Math.round(runningTotal * 100) / 100.0));

}

}

/**

* Extract a double from the text content of a DOM node.

*

* @param node A DOM node with character content.

* @return The double representation of the node’s content.
* @exception Exception Could be the result of either a node

* that doesn’t have text content being passed in
* or a node whose text content is not a number.

*/

private double doubleValue(Node node) throws Exception {

// Get the character data from the node and parse it

String value = ((CharacterData)node.getFirstChild()).getData();

return Double.valueOf(value).doubleValue();

}

}

InvoiceCheckerDOM must implement the InvoiceChecker interface in order to provide
the checkInvoice() functionality.Apart from this, it’s a standalone class.Also, note that
the class has no member data, because there is no need to maintain parsing context.The
context is implicit in the hierarchy of the DOM tree that will be the result of the
parsing process.

The factory pattern used here to parse the invoice is the same as the one from the
SAX implementation; it just uses DocumentBuilderFactory and DocumentBuilder.
Although the SAX parse method returns no data (it starts firing events instead), the
DOM parse() method returns a Document object that holds the complete parse tree of
the invoice document.

Listing 2.32 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 95

96 Chapter 2 XML Primer

Within the parse tree, the call to getElementsByTagName(“item”) retrieves a node
list of all order items.The loop iterates over the list, extracting the quantity and
unitPrice attributes for every item, obtaining an item subtotal, and adding this to the
running total.

The same getElementsByTagName() API combined with the utility function
doubleValue() extracts the amounts of tax, the shipping and handling, and the invoice
total cost.

Just as in the SAX example, the code has to use a difference check instead of a direct
equality check to guard against inexact decimal-to-binary conversions.

The class also defines a convenient utility function that takes in a DOM node that
should have only character content and returns the numeric representation of that con-
tent as a double.Any nontrivial DOM processing will typically require these types of
utility functions. It goes to prove that the DOM is very syntax-oriented and not con-
cerned about data.

That’s all it takes to process the invoice using DOM. Of course, this is a simple exam-
ple; just as in the SAX example, a real application would have done at least three things
differently:

n It would have used namespace information and prefixed element names instead of
using local names.

n It would have defined its own exception type to communicate invoice validation
information. It would have implemented try-catch logic inside the
checkInvoice() method in order to report more meaningful errors.

n It would have either explicitly turned on validation of the incoming XML docu-
ment or traversed the DOM tree step by step from the document root to all the
elements of interest. Using getElementsByTagName() presumes that the structure
of the document (relative positions of elements) has already been validated. If this
is the case, it’s okay to ask for all item elements regardless of where they are in the
document.The example implementation took this approach for code readability
purposes.

These changes aren’t complex, but they would have increased the size and complexity of
the example beyond its goals as a basic introduction to DOM processing.

JAXB-Based checkInvoice()
The basic architecture of the JAXB implementation is shown in Figure 2.10.The various
components are similar to those described in the general architecture of XML processing
using schema compilers in Figure 2.7.

To use JAXB, you first have to invoke the schema compiler that comes with the dis-
tribution.The compiler that comes with the Sun distribution used in this example is
called xjc (XML-to-Java Compiler).The compiler is easy to use: It can produce an ini-
tial mapping of a schema to Java classes by looking at an XML schema, without requir-
ing any binding customization.To try this on the invoice schema, we have to execute the
command xjc invoice.xsd.The output of this command is shown in Listing 2.33.

04 0672326418 CH02 6/4/04 9:48 AM Page 96

97Processing XML

Figure 2.10 JAXB architecture

Listing 2.33 xjc Output After Processing the Invoice Schema

C:\dev\projects\jaxb>xjc invoice.xsd

parsing a schema...

compiling a schema...

com\skatestown\ns\invoice\impl\InvoiceImpl.java

com\skatestown\ns\invoice\impl\InvoiceTypeImpl.java

com\skatestown\ns\invoice\impl\ItemTypeImpl.java

com\skatestown\ns\invoice\impl\JAXBVersion.java

com\skatestown\ns\invoice\impl\runtime\XMLSerializer.java

com\skatestown\ns\invoice\impl\runtime\SAXUnmarshallerHandler.java

com\skatestown\ns\invoice\impl\runtime\MSVValidator.java

com\skatestown\ns\invoice\impl\runtime\PrefixCallback.java

com\skatestown\ns\invoice\impl\runtime\UnmarshallingEventHandlerAdaptor.java

com\skatestown\ns\invoice\impl\runtime\UnmarshallerImpl.java

com\skatestown\ns\invoice\impl\runtime\Discarder.java

com\skatestown\ns\invoice\impl\runtime\SAXUnmarshallerHandlerImpl.java

com\skatestown\ns\invoice\impl\runtime\ValidatorImpl.java

com\skatestown\ns\invoice\impl\runtime\GrammarInfo.java

com\skatestown\ns\invoice\impl\runtime\DefaultJAXBContextImpl.java

com\skatestown\ns\invoice\impl\runtime\ErrorHandlerAdaptor.java

com\skatestown\ns\invoice\impl\runtime\AbstractUnmarshallingEventHandlerImpl.java

com\skatestown\ns\invoice\impl\runtime\GrammarInfoFacade.java

com\skatestown\ns\invoice\impl\runtime\MarshallerImpl.java

com\skatestown\ns\invoice\impl\runtime\UnmarshallingContext.java

com\skatestown\ns\invoice\impl\runtime\UnmarshallableObject.java

com\skatestown\ns\invoice\impl\runtime\ContentHandlerAdaptor.java

com\skatestown\ns\invoice\impl\runtime\NamespaceContext2.java

com\skatestown\ns\invoice\impl\runtime\ValidatingUnmarshaller.java

com\skatestown\ns\invoice\impl\runtime\SAXMarshaller.java

Application Code

Application

Interfaces and
Object Factory

package
javax.xml.blind

Implementation
Classes

Implementation
of javax.xml.bind

unmarshal

marshal

XML
Input

Document

XML
Output

Document

Binding
Compiler

Binding
Customizations

(optional)

XML
Schema

04 0672326418 CH02 6/4/04 9:48 AM Page 97

98 Chapter 2 XML Primer

com\skatestown\ns\invoice\impl\runtime\NamespaceContextImpl.java

com\skatestown\ns\invoice\impl\runtime\Util.java

com\skatestown\ns\invoice\impl\runtime\XMLSerializable.java

com\skatestown\ns\invoice\impl\runtime\ValidatableObject.java

com\skatestown\ns\invoice\impl\runtime\AbstractGrammarInfoImpl.java

com\skatestown\ns\invoice\impl\runtime\ValidationContext.java

com\skatestown\ns\invoice\impl\runtime\UnmarshallingEventHandler.java

com\skatestown\ns\po\impl\AddressTypeImpl.java

com\skatestown\ns\po\impl\ItemTypeImpl.java

com\skatestown\ns\po\impl\JAXBVersion.java

com\skatestown\ns\po\impl\PoImpl.java

com\skatestown\ns\po\impl\PoTypeImpl.java

com\skatestown\ns\invoice\Invoice.java

com\skatestown\ns\invoice\InvoiceType.java

com\skatestown\ns\invoice\ItemType.java

com\skatestown\ns\invoice\ObjectFactory.java

com\skatestown\ns\invoice\bgm.ser

com\skatestown\ns\invoice\jaxb.properties

com\skatestown\ns\po\AddressType.java

com\skatestown\ns\po\ItemType.java

com\skatestown\ns\po\ObjectFactory.java

com\skatestown\ns\po\Po.java

com\skatestown\ns\po\PoType.java

com\skatestown\ns\po\bgm.ser

com\skatestown\ns\po\jaxb.properties

After parsing, analyzing, and processing the invoice schema (and the PO schema on
which it depends), the compiler outputs 50 (!) files that fall into three categories: inter-
face files, implementation files, and supporting files.

Note that the namespace URIs for the invoice and PO schemas are mapped to the
Java package names com.skatestown.ns.po and com.skatestown.ns.invoice. Inside
these two packages are the interfaces generated for the schema types.A Java interface is
generated for every type and element in the schema. For example, invoiceType in the
schema is mapped to InvoiceType.java.The compiler also generates three supporting
files:

n ObjectFactory.java—Contains factory methods for each generated Java inter-
face. It allows you to programmatically construct new instances of Java objects rep-
resenting XML content.

n jaxb.properties—Provides information about the specific JAXB implementation
provider.

n bgm.ser—Contains a serialized representation of the schema information that can
be used for efficient on-the-fly validation during XML-to-Java and Java-to-XML
mapping.

Listing 2.33 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 98

99Processing XML

All the files in the ...\impl packages are specific to the Sun JAXB implementation and
can be ignored.

Generated Interfaces

Let’s look more closely at the interfaces generated by xjc, in particular the invoice and
invoice item types we’ll need to work with to check the invoice totals (Listing 2.34). For
convenience purposes, we’ve reformatted the code and removed comments.

Listing 2.34 Example Generated Interfaces

package com.skatestown.ns.invoice;

public interface InvoiceType {

java.math.BigDecimal getTotalCost();

void setTotalCost(java.math.BigDecimal value);

com.skatestown.ns.invoice.InvoiceType.OrderType getOrder();

void setOrder(com.skatestown.ns.invoice.InvoiceType.OrderType value);

java.math.BigInteger getCustomerId();

void setCustomerId(java.math.BigInteger value);

java.math.BigDecimal getShippingAndHandling();

void setShippingAndHandling(java.math.BigDecimal value);

com.skatestown.ns.po.AddressType getShipTo();

void setShipTo(com.skatestown.ns.po.AddressType value);

com.skatestown.ns.po.AddressType getBillTo();

void setBillTo(com.skatestown.ns.po.AddressType value);

java.util.Calendar getSubmitted();

void setSubmitted(java.util.Calendar value);

java.math.BigInteger getId();

void setId(java.math.BigInteger value);

java.math.BigDecimal getTax();

void setTax(java.math.BigDecimal value);

public interface OrderType {

java.util.List getItem();

}

}

public interface ItemType

extends com.skatestown.ns.po.ItemType

04 0672326418 CH02 6/4/04 9:48 AM Page 99

100 Chapter 2 XML Primer

{

java.math.BigDecimal getUnitPrice();

void setUnitPrice(java.math.BigDecimal value);

}

package com.skatestown.ns.po;

public interface ItemType {

java.lang.String getSku();

void setSku(java.lang.String value);

java.lang.String getDescription();

void setDescription(java.lang.String value);

java.math.BigInteger getQuantity();

void setQuantity(java.math.BigInteger value);

}

As you can see, the structure of the schema types is directly expressed in the Java classes
with the appropriate type information.There is no sign of elements and attributes at the
XML syntax level—they become properties of the Java classes.Working with repeated
types maps well to Java programming patterns. For example, order items are accessed via
java.util.List.We don’t need to parse numbers; this is done by the JAXB implemen-
tation. It’s easy to see why the JAXB implementation of checkInvoice() is likely to be
the simplest and most resilient to potential future changes in the XML schema, com-
pared to the SAX and DOM implementations.

JAXB Binding Customization

Only one thing about the default mapping generated by xjc doesn’t seem quite right.
All numeric values in the schema are mapped to BigInteger and BigDecimal types.The
default rules of type mapping are meant to preserve as much information as possible.
Therefore, schema types with unbounded precision such as xsd:decimal and
xsd:positiveInteger are mapped to BigDecimal and BigInteger.The rules of JAXB
name and type mapping are complex, and unfortunately we don’t have space to discuss
them here. However, we can address the number-mapping issue.

It would be nice to map to int and double in this example, because they’re more
convenient and efficient to use.To do so, we need to provide a binding customization to
the schema compiler (Listing 2.35).

Listing 2.35 Binding Customization for xjc (binding.xjb)

<jxb:bindings version=”1.0”
xmlns:jxb=”http://java.sun.com/xml/ns/jaxb”
xmlns:xsd=”http://www.w3.org/2001/XMLSchema”>

Listing 2.34 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 100

101Processing XML

<jxb:bindings schemaLocation=”po.xsd” node=”/xsd:schema”>
<jxb:bindings node=”//xsd:complexType[@name=’poType’]/

➥xsd:attribute[@name=’id’]”>
<jxb:javaType name=”int”

parseMethod=”javax.xml.bind.DatatypeConverter.parseInt”
printMethod=”javax.xml.bind.DatatypeConverter.printInt”/>

</jxb:bindings>

<jxb:bindings node=”//xsd:attribute[@name=’customerId’]”>
<jxb:javaType name=”int”

parseMethod=”javax.xml.bind.DatatypeConverter.parseInt”
printMethod=”javax.xml.bind.DatatypeConverter.printInt”/>

</jxb:bindings>

<jxb:bindings node=”//xsd:attribute[@name=’quantity’]”>
<jxb:javaType name=”int”

parseMethod=”javax.xml.bind.DatatypeConverter.parseInt”
printMethod=”javax.xml.bind.DatatypeConverter.printInt”/>

</jxb:bindings>

</jxb:bindings> <!-- schemaLocation=”po.xsd” node=”/xsd:schema” -->

<jxb:bindings schemaLocation=”invoice.xsd” node=”/xsd:schema”>
<jxb:bindings node=”//xsd:complexType[@name=’invoiceType’]/

➥xsd:attribute[@name=’id’]”>
<jxb:javaType name=”int”

parseMethod=”javax.xml.bind.DatatypeConverter.parseInt”
printMethod=”javax.xml.bind.DatatypeConverter.printInt”/>

</jxb:bindings>

<jxb:bindings node=”//xsd:attribute[@name=’customerId’]”>
<jxb:javaType name=”int”

parseMethod=”javax.xml.bind.DatatypeConverter.parseInt”
printMethod=”javax.xml.bind.DatatypeConverter.printInt”/>

</jxb:bindings>

<jxb:bindings node=”//xsd:simpleType[@name=’priceType’]”>
<jxb:javaType name=”double”

parseMethod=”javax.xml.bind.DatatypeConverter.parseDouble”
printMethod=”javax.xml.bind.DatatypeConverter.printDouble”/>

</jxb:bindings>

</jxb:bindings> <!-- schemaLocation=”invoice.xsd” node=”/xsd:schema” -->

</jxb:bindings>

In JAXB’s case, you can insert binding customizations directly in the XML schema using
schema extensibility mechanisms or provide them in a separate XML document.The lat-
ter is a better practice in that the XML schema is a programming-language-independent
representation of data that shouldn’t be encumbered by this information.

The basic mechanism of binding customizations involves two parts: identifying the
part of the schema where the mapping should be modified and specifying the binding

Listing 2.35 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 101

102 Chapter 2 XML Primer

modification.All the customizations in this example are simple type mappings to int
and double performed via the element jxb:javaType.The Java type to map to is speci-
fied via the name attribute.Two other attributes, parseMethod and printMethod, provide
the unmarshalling and marshalling operations. JAXB provides convenience methods in
the javax.xml.bind.DatatypeConverter class, which we use here.

Identifying the part of the schema to modify is more complicated.We need a mecha-
nism to point to a part of the schema document.This mechanism is a language called
XPath g. XPath is one the XML standards developed by W3C.Think about the direc-
tory structure of your computer:The file path mechanism (for example, C:\dev\
projects\jaxb) gives you a way to navigate that structure. Now think about the struc-
ture described by the DOM representation of XML documents: XPath lets you navigate
that structure quickly and efficiently.We don’t have the space to get into XPath, but here
are a few examples taken from the binding customization file:

n /xsd:schema—The top-level element in the XML document called xsd:schema.
The / syntax defines a level in the document element hierarchy, beginning from
the current node. Initially, the current node is the root of the DOM.

n //xsd:attribute[@name=’quantity’]—An element called xsd:attribute
(occurring anywhere in the document) whose name attribute value is quantity.
The // syntax covers all descendants from the current node.

n //xsd:complexType[@name=’poType’]/xsd:attribute[@name=’id’]—An
xsd:complexType element called poType (anywhere in the document) that has an
xsd:attribute child with the name id. Note that we can’t use the simpler XPath
expression //xsd:attribute[@name=’id’] because AddressType in the schema
also has an id attribute.The XPath expression would result in more than one
DOM node, and the schema compiler would be unsure where to apply the bind-
ing customization.

In the binding customization, these XPath expressions are used within the context of
nested jxb:bindings elements.The top-level element lets us change global binding
rules. It has two children: one for the PO schema and one for the invoice schema.
Within those, we modify each attribute with a numeric type. In the invoice schema, we
modify the binding of priceType, and that modification automatically applies to all uses
of that type in unitPrice, tax, and other attributes.

For xjc to take advantage of the binding customization, we need to modify the com-
mand line slightly to xjc –b bindings.xjb invoice.xsd.The same number of files are
generated.This time, however, the BigInteger and BigDecimal types in Listing 2.34 are
replaced with int and double types.

JAXB Processing Model

Now that the schema compiler is generating the correct Java classes, it’s time to look at
the JAXB processing model.Working with JAXB involves one main Java package:
javax.xml.bind.This package provides abstract classes and interfaces for working with

04 0672326418 CH02 6/4/04 9:48 AM Page 102

103Processing XML

the JAXB framework’s three operations: marshalling, unmarshalling, and validation.You
access these operations via the Marshaller, Unmarshaller, and Validator classes in the
package.

The JAXBContext class is the entry point into the JAXB framework. It provides sup-
port for multiple JAXB implementations, and it also manages the connection between
XML elements and the Java classes that represent them.The package also has a rich set
of exception classes for marshalling, unmarshalling, and validation events that make
working with JAXB much easier and more natural than working with SAX or DOM.

With this information in mind, building a class to check invoice totals becomes rela-
tively simple.The JAXB implementation of InvoiceChecker is shown in Listing 2.36.

Listing 2.36 JAXB-Based Invoice Checker (InvoiceCheckerJAXB.java)

package com.skatestown.invoice;

import com.skatestown.ns.invoice.InvoiceType;

import javax.xml.bind.JAXBContext;

import javax.xml.bind.Unmarshaller;

import java.io.InputStream;

import java.util.Iterator;

import java.util.List;

/**

* InvoiceChecker implementation using JAXB

*/

public class InvoiceCheckerJAXB implements InvoiceChecker

{

/**

* Check invoice totals.

*

* @param invoiceXML Invoice XML document

* @exception Exception Any exception returned during checking

*/

public void checkInvoice(InputStream invoiceXML)

throws Exception

{

// Create JAXB context + point it to schema types

JAXBContext jc = JAXBContext.newInstance(

“com.skatestown.ns.po:com.skatestown.ns.invoice”);

// Create an unmarshaller

Unmarshaller u = jc.createUnmarshaller();

// Unmarshall the invoice document

InvoiceType inv = (InvoiceType)u.unmarshal(invoiceXML);

04 0672326418 CH02 6/4/04 9:48 AM Page 103

104 Chapter 2 XML Primer

double runningTotal = 0.0;

// Iterate over order items and update the running total

List items = inv.getOrder().getItem();

for(Iterator iter = items.iterator(); iter.hasNext();) {

com.skatestown.ns.invoice.ItemType item =

(com.skatestown.ns.invoice.ItemType)iter.next();

runningTotal += item.getQuantity() * item.getUnitPrice();

}

// Add tax and shipping and handling

runningTotal += inv.getShippingAndHandling();

runningTotal += inv.getTax();

// Get invoice total

double total = inv.getTotalCost();

// Use delta equality check to prevent cumulative

// binary arithmetic errors. In this case, the delta

// is one half of one cent

if (Math.abs(runningTotal - total) >= 0.005) {

throw new Exception(

“Invoice error: total is “ + Double.toString(total) +

“ while our calculation shows a total of “ +

Double.toString(Math.round(runningTotal * 100) / 100.0));

}

}

}

InvoiceCheckerJAXB must implement the InvoiceChecker interface in order to pro-
vide the checkInvoice() functionality.Apart from this, it’s a standalone class.As with
DOM, note that the class has no member data, because there’s no need to maintain pars-
ing context.The context is implicit in the hierarchy of the Java object tree that will be
generated during the unmarshalling process.

The JAXB context is initialized with the names of the Java packages we want to
work with in the JAXBContext.newInstance factory call.This prepares the JAXB
framework to deal with PO and invoice XML documents.The next factory pattern call
creates an unmarshaller object. Parsing and unmarshalling the invoice document takes
one call to unmarshal().We have to cast to the top-level invoice type because the inter-
face of the Unmarshaller class is generic to JAXB.

The code to recalculate the invoice total is simpler and more Java-friendly than in the
SAX and DOM examples.There is no indication of any XML behind the scenes.This is
what JAXB does best—it allows you to separate the Java data structures you want to
work with from the XML representation of these structures. Just as in the SAX and

Listing 2.36 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 104

105Processing XML

DOM examples, the code has to use a difference check instead of a direct equality check
to guard against inexact decimal-to-binary conversions.

That completes the JAXB implementation of the invoice checker. Of course, JAXB is
much more powerful (and complex), and we don’t have space to dig into it here; but
you’ve gotten an idea of why it’s the preferred method of working with XML from Java.

Testing the Code
The code to test the three different invoice checker implementations is written using
JavaServer Pages (JSP) (Listing 2.37). JSP allows Java code to be mixed with HTML for
building Web applications. JSP builds on the Java Servlet standard for building Web com-
ponents. Java application servers compile JSPs down to servlets.

Listing 2.37 JSP Page for Checking Invoices

<%@ page import=”java.io.*,bws.BookUtil,com.skatestown.invoice.*” %>

<HTML>

<HEAD><TITLE>Invoice Checker</TITLE></HEAD>

<h1>Invoice Checker</h1>

<p>This example implements a web form driver for SkatesTown’s invoice
checker. You can modify the invoice on the form if you wish (the

default one is from Chapter 2), select a DOM or SAX parser and perform

a check on the invoice total.</p>

<FORM action=”index.jsp” method=”POST”>
<%

String xml = request.getParameter(“xml”);
if (xml == null) {

xml = BookUtil.readResource(application,

“/resources/sampleInvoice.xml”);
}

%>

<TEXTAREA NAME=”xml” ROWS=”20” COLS=”90”><%= xml%></TEXTAREA>
<P></P>

Select parser type:

<INPUT type=”RADIO” name=”parserType” value=”SAX” CHECKED> SAX

<INPUT type=”RADIO” name=”parserType” value=”DOM”> DOM
<INPUT type=”RADIO” name=”parserType” value=”JAXB”> JAXB
<P></P>

<INPUT type=”SUBMIT” value=” Check Invoice “>
</FORM>

<%

// Check for form submission

if (request.getParameter(“xml”) != null) {
out.println(“<HR>”);

04 0672326418 CH02 6/4/04 9:48 AM Page 105

106 Chapter 2 XML Primer

// Instantiate appropriate parser type

InvoiceChecker ic;

if (request.getParameter(“parserType”).equals(“SAX”)) {
out.print(“Using SAX parser...
”);
ic = new InvoiceCheckerSAX();

} else if (request.getParameter(“parserType”).equals(“DOM”)) {
out.print(“Using DOM implementation...
”);
ic = new InvoiceCheckerDOM();

} else {

out.print(“Using JAXB implementation...
”);
ic = new InvoiceCheckerJAXB();

}

// Check the invoice

try {

ic.checkInvoice(new StringBufferInputStream(xml));

out.print(“Invoice checks OK.”);
} catch(Exception e) {

out.print(e.getMessage());

}

}

%>

</BODY>

</HTML>

JSP uses the <%@ ... %> syntax for compile-time directives.The page import=”...”
directive accomplishes the equivalent of a Java import statement.

The HTML code sets up a Web form that posts back to the same page.The form
contains a text area with the name xml that contains the XML of the invoice to be
validated.

In JSP, you can use the construct <% ... %> to surround arbitrary Java code embed-
ded in the JSP page.The request object is an implicit object on the page associated with
the Web request. Implicit objects in JSP are set up by the JSP compiler.They can be used
without requiring any type of declaration or setup. One of the most useful methods of
the request object is getParameter(), which retrieves the value of a parameter passed
from the Web such as a form field, or returns null if this parameter didn’t come with the
request.The code uses getParameter(“xml”) to check whether the form is being dis-
played (return is null) versus submitted (return is non-null). If the form is displayed for
the first time, the page loads the invoice XML from a sample file in
/resources/sampleInvoice.xml.

The rest of the Java code runs only if the form has been submitted. It uses the implic-
it out object to send output to the resulting Web page. It uses the value of the
parserType field in the Web page to determine whether to instantiate a SAX, DOM, or

Listing 2.37 Continued

04 0672326418 CH02 6/4/04 9:48 AM Page 106

107Summary

JAXB implementation. It then checks the invoice by passing the value of the xml text
area on the page to the checkInvoice() method. If the call is successful, the invoice
checks out okay, and an appropriate message is displayed. If checkInvoice() throws an
exception, an invoice total discrepancy (or an XML processing error) has been detected,
which is output to the browser.

Figure 2.11 shows the Web test client for the invoice checker, ready for submission.

Figure 2.11 Invoice checker Web page

Summary
This chapter has focused on core features of XML and related technologies.The goal
was to prepare you for the Web service–related material in the rest of the book, which
relies heavily on the concepts presented here.We covered the following topics:

n The origins of XML and the fundamental difference between document- and
data-centric XML applications.Web services are an extreme example of data-
centric XML use.The material in this chapter purposely ignored some aspects of
XML that are more document-oriented.

n The syntax and rules governing the physical structure of XML documents: docu-
ment prologs, elements, attributes, character content, CDATA sections, and so on.
We omitted document-oriented features of XML such as entities and notations

04 0672326418 CH02 6/4/04 9:48 AM Page 107

108 Chapter 2 XML Primer

due to their infrequent use in the context of Web services.The SkatesTown PO
document format made its initial appearance.

n XML Namespaces, the key tool for resolving the problems of name recognition
and name collision in XML applications. Namespaces are fundamental to mixing
information from multiple schemas into a single document, and all core Web serv-
ice technologies rely on them. SkatesTown’s PO inside an XML message wrapper
is an example of a common pattern for XML use; we’ll explore it in depth in the
next chapter.The namespace mechanism is simple; however, people often try to
read more into it than is there, as demonstrated by the debate over whether name-
space URIs should point to meaningful resources. One of the more complex
aspects of the specification is that multiple namespace defaulting mechanisms sim-
plify document markup while preserving namespace information.

n XML Schema, the de facto standard for describing document structure and XML
datatypes for data-oriented applications.Although XML Schema is a recent stan-
dard, the XML community defined specifications based on draft versions for nearly
two years.The flexible content models, the large number of predefined datatypes,
and the powerful extensibility and reuse features make this one of the most impor-
tant developments in the XML space since XML 1.0.All Web service specifications
are described using schemas.Through the definition of SkatesTown’s PO and
invoice schemas, this chapter introduced enough of the key capabilities of the
technology to prepare you for what is to come in the rest of the book.

n The key mechanisms for creating and processing XML with software. Starting with
the basic syntax-oriented XML processing architecture, the chapter progressed to
define a data-oriented XML processing architecture together with the key con-
cepts of XML data mapping and XML parsing. In the context of SkatesTown’s
desire to independently validate invoice totals sent to its customers, we used the
Java APIs for XML Processing (JAXP), the Simple APIs for XML (SAX), the XML
Document Object Model (DOM), and the Java Architecture for XML Binding
(JAXB) to build three separate implementations of an invoice checker.A Web-
based front end served as the test bed for the code.

This chapter didn’t focus on other less relevant XML technologies such as
XPointer/XLink, Resource Definition Framework (RDF), XPath, Extensible Stylesheet
Language Transformations (XSLT), or XQuery.They’re important in their own domains
but not commonly used in the context of Web services. Other more technical XML
specifications, such as XML Digital Signatures, will be introduced later in the book as
part of Web service usage scenarios.

You now know enough about XML to go deep into the world of Web services.
Chapter 3 introduces the core Web service messaging technology: SOAP.

04 0672326418 CH02 6/4/04 9:48 AM Page 108

109Resources

Resources
n DOM Level 1—“Document Object Model (DOM) Level 1 Specification” (W3C,

October 1998), http://www.w3.org/TR/REC-DOM-Level-1
n DOM Level 2 Core—“Document Object Model (DOM) Level 2 Core

Specification” (W3C, November 2000), http://www.w3.org/TR/DOM-Level-2-
Core/

n JAXB—“Java Technology and XML Downloads—Java Architecture for XML
Binding” (Sun Microsystems, Inc., January 2003),
http://java.sun.com/xml/downloads/jaxb.html

n JAXP 1.2—“Java API for XML Processing (JAXP)” (Sun Microsystems, Inc.,
August 2003), http://java.sun.com/xml/xml_jaxp.html

n JDOM—http://www.jdom.org/docs/apidocs

n JSP 1.2—“JavaServer Pages Technology” (Sun Microsystems, Inc.,April 2001),
http://java.sun.com/products/jsp

n RFC 2396,“Uniform Resource Identifiers (URI): Generic Syntax” (IETF,August
1998), http://www.ietf.org/rfc/rfc2396.txt

n SAX—“Simple API for XML (SAX) 2.0.1” (January 2002), http://www.
saxproject.org/

n Unicode—“Forms of Unicode” (Mark Davis, September 1999), http://www-
106.ibm.com/developerworks/library/utfencodingforms/

n XML—“Extensible Markup Language (XML) 1.0 (Second Edition)” (W3C,
October 2000), http://www.w3.org/TR/REC-xml

n XML Namespaces—“Namespaces in XML” (W3C, January 1999),
http://www.w3.org/TR/REC-xml-names/

n XML Schema—“XML Schema Part 0: Primer,”
http://www.w3.org/TR/xmlschema-0/;“XML Schema Part 1: Structures,”
http://www.w3.org/TR/xmlschema-1/;“XML Schema Part 2: Datatypes,”
http://www.w3.org/TR/xmlschema-2/ (all W3C, May 2001)

04 0672326418 CH02 6/4/04 9:48 AM Page 109

