
Chris Whealy

Inside
Web Dynpro for Java

Out of intense complexities,
intense simplicities emerge.

Sir Winston Churchill

The voice of ignorance speaks loud and long,
But the words of the wise are quiet and few.

Ancient Proverb

7Contents

Contents

Preface 15

Target audience .. 15

Author’s Apology ... 15

Conventions .. 17

Errata .. 17

Acknowledgements ... 17

1 Introduction 19

1.1 What is Web Dynpro? ... 19

1.2 What is the design philosophy behind Web Dynpro? 19

1.3 Improving the user’s experience ... 19

1.4 Building a high-fidelity Web user interface ... 20

1.5 How is Web Dynpro different from other Web development tools? 20

1.6 What is the underlying design concept? ... 21
1.6.1 The roots of Web Dynpro—Model-View-Controller 21
1.6.2 The model .. 21
1.6.3 The view ... 22
1.6.4 The controller ... 22
1.6.5 A more detailed description ... 23

2 Designing a Web Dynpro application 27

2.1 Analysis phase .. 27

2.2 Design phase .. 27
2.2.1 Architecture design ... 29
2.2.2 Detail design .. 30

2.3 Implementation phase .. 31

3 General architecture 33

3.1 Web Dynpro Framework .. 33

3.2 Application .. 33
3.2.1 Definition .. 33

Contents8

3.2.2 Startup ... 34
3.2.3 Properties .. 34
3.2.4 Parameters .. 34
3.2.5 Shutdown ... 36

3.3 Component .. 36
3.3.1 Lifespan ... 37
3.3.2 Interaction .. 37
3.3.3 Reuse ... 38

3.4 Controller ... 38
3.4.1 Controller types ... 38
3.4.2 Interaction .. 40
3.4.3 Structure ... 41

3.5 View .. 43
3.5.1 Lifespan ... 44
3.5.2 Interaction .. 45
3.5.3 Layout ... 45
3.5.4 Navigation .. 46

3.6 Model ... 46

3.7 Event handling .. 46
3.7.1 Actions .. 47
3.7.2 Events .. 48

4 Web Dynpro naming placeholders 49

4.1 Development entities .. 49

4.2 Context entities .. 50

4.3 Generic and composite abbreviations .. 50

4.4 Subscripts for composite placeholders using the SAP recommended suffixes
51

4.5 J2EE Engine placeholders ... 51

5 Naming conventions 53

5.1 General rules for naming ... 53
5.1.1 Permitted characters ... 53
5.1.2 Length of entity names ... 53

5.2 Naming conventions for coding entities .. 56

6 The context 61

6.1 Context structure at design time ... 61
6.1.1 Nodes .. 61
6.1.2 Attributes .. 62

9Contents

6.1.3 Terminology concerning nodes and attributes 62
6.1.4 Relationship between nodes and attributes 62
6.1.5 Calculated attributes ... 63
6.1.6 The element collection ... 64
6.1.7 An element’s selection status .. 65
6.1.8 Summary of the context at design time ... 65

6.2 Context structure at runtime ... 66
6.2.1 The cardinality property ... 66
6.2.2 The singleton property .. 67
6.2.3 Selection cardinality .. 69
6.2.4 Context attributes that can supply data to UI elements 70
6.2.5 Summary of the context at runtime .. 71

6.3 Should node names be singular or plural? .. 72

6.4 General naming standards .. 73
6.4.1 Value nodes: {vn} ... 73
6.4.2 Value attributes: {va} ... 74
6.4.3 Model nodes: {mn} .. 74
6.4.4 Model attributes: {ma} .. 74
6.4.5 Recursive nodes: {rn} .. 75
6.4.6 Supply functions: supply{cn}() ... 75

6.5 Classes generated as a result of design time declarations 76

6.6 What’s the difference between the various types of context nodes? 77
6.6.1 Value nodes .. 77
6.6.2 Model Nodes ... 78
6.6.3 Recursive Nodes .. 80

6.7 Fundamental principles of the context .. 82

6.8 Context mapping .. 84
6.8.1 What is mapping? .. 84
6.8.2 Selection mapping ... 85
6.8.3 Normal mapping .. 85
6.8.4 External mapping ... 86
6.8.5 General points about external mapping ... 89
6.8.6 What impact does context mapping have on my coding? 89

6.9 Accessing the context through the typed API .. 91
6.9.1 Accessing a node element .. 92
6.9.2 Accessing all elements in a node ... 93
6.9.3 Creating a new node element .. 94
6.9.4 Treating node LineItems as a singleton node 96
6.9.5 Treating node LineItems as a non-singleton node 99

6.10 Dynamic context manipulation .. 103
6.10.1 Accessing the context through the generic API 103
6.10.2 Dynamic addition of an unmapped context node 108
6.10.3 Dynamic addition of a mapped context node 113

Contents10

7 Coding principles in Web Dynpro 125

7.1 User-defined code .. 125

7.2 Problems with binding UI elements to context nodes 125

7.3 Building a context node hierarchy suitable for a tree UI element 127

7.4 Parameter mapping .. 131
7.4.1 Basic parameter mapping example .. 133
7.4.2 Action handler generalization .. 133
7.4.3 Further decoupling of the UI ... 135
7.4.4 Advanced parameter mapping example ... 136

7.5 Efficient use of actions to enable and disable UI elements 138

7.6 Layout managers .. 139
7.6.1 Flow layout ... 139
7.6.2 Row layout .. 140
7.6.3 Matrix layout .. 141
7.6.4 Grid layout .. 142
7.6.5 Layout Manager Properties .. 144

7.7 Principles for the efficient use of layout managers 146

7.8 Locale-specific text .. 147
7.8.1 Introduction to multilingual support in software products 147
7.8.2 Internationalization ... 147
7.8.3 Externalization .. 147
7.8.4 Web Dynpro i18n concept ... 148
7.8.5 S2X—SAP’s use of the XLIFF standard .. 149
7.8.6 Storing language specific text in .XLF files 150
7.8.7 Translating XLF files ... 151
7.8.8 Use of the S2X editor within NWDS ... 151
7.8.9 Editing MessagePool XLF files .. 152
7.8.10 Runtime Locale Identification .. 154
7.8.11 Locale-dependent text at runtime ... 155
7.8.12 Defining placeholders within a message text 157

7.9 Accessing any parameter in the query string .. 158

8 Dynamic UI generation 161

8.1 General points about Web Dynpro user interfaces 161

8.2 Background information about the design of UI elements 162

8.3 Accessing existing UI elements in a view layout .. 163
8.3.1 Accessing UI elements by name .. 164
8.3.2 Accessing UI elements generically ... 165

8.4 The principles of dynamic view construction .. 173
8.4.1 Before you start… .. 173
8.4.2 The fundamental principles of dynamic view layout

construction ... 173
8.4.3 Controlling UI element behavior from the context 175

8.5 Dynamic Construction of a UI element hierarchy 176

11Contents

9 The Common Model Interface1 189

9.1 CMI terms and definitions ... 189
9.1.1 Model .. 189
9.1.2 Model class ... 190

9.2 Access from a CMI object to the underlying business logic 191
9.2.1 Typed access .. 191
9.2.2 Generic access .. 191

10 The Adaptive RFC layer 193

10.1 General introduction to BAPIs ... 193
10.1.1 What is a BAPI? ... 193
10.1.2 The interface of an ABAP function module 194

10.2 Custom written RFC modules .. 196

10.3 Background to the adaptive RFC layer ... 198
10.3.1 The Java Connector (JCo) ... 198
10.3.2 The Enterprise Connector .. 199

10.4 Introduction .. 201

10.5 Explanation of Generated Model Classes .. 204
10.5.1 Model object hierarchies .. 206
10.5.2 Executable and non-executable model objects 207

10.6 Using model objects in a Web Dynpro controller 207
10.6.1 Model objects and the context .. 208
10.6.2 The relationship between the contents of a model object

and its corresponding context model node 210

10.7 A simple example using context model nodes at runtime 211
10.7.1 Preparing the context at design time .. 212
10.7.2 View controller coding ... 222
10.7.3 Look at what has not been done ... 229

10.8 Adapting to changes in an RFC interface ... 230

10.9 Connection management .. 238
10.9.1 Language ... 239
10.9.2 Client ... 239
10.9.3 How does a model object know which SAP system

to connect to? .. 240

10.10 Relationship between JCO destinations and ABAP sessions 247
10.10.1 Logging on to an SAP system ... 247
10.10.2 ABAP sessions .. 247
10.10.3 The impact of an ABAP session change on an external

program using the JCo layer ... 249
10.10.4 How do I perform ABAP database updates without causing

a session change? .. 250
10.10.5 Can I use any statements I like in an RFC module? 251

Contents12

10.11 Avoiding the Read-Write-Read problem ... 252

10.12 Why can’t I use two different JCo connections? .. 255

11 Web Dynpro phase model 257

11.1 Transport data to DataContainer .. 258

11.2 Transport modified data into context ... 258

11.3 Validate modified data .. 258

11.4 Call system event handler ... 259

11.5 Call service event handler ... 259

11.6 Application event handler ... 260

11.7 doBeforeNavigation ... 260

11.8 Navigation and view initialization ... 260

11.9 Dynamic UI manipulation ... 261

11.10 doPostProcessing ... 261

11.11 Response rendering ... 262

12 Class and Interface Reference 263

12.1 Controllers, their methods, and self reference .. 263
12.1.1 Controller constructors ... 263
12.1.2 Standard hook methods .. 263
12.1.3 User-defined methods .. 264
12.1.4 Self reference and shortcuts ... 265
12.1.5 User modifications to generated code .. 266

12.2 Controller classes ... 266
12.2.1 {nc}—Component controller .. 266
12.2.2 {nc}Interface—Component interface controller 267
12.2.3 {nv}—View controller .. 268
12.2.4 Internal{nctl}, Internal{nc}Interface—Generated controllers 269

12.3 Controller interfaces .. 271
12.3.1 IExternal{nctl}Interface—External public interface controller 271
12.3.2 IPublic{nctl}—Internal public interface controller 272
12.3.3 IPrivate{nctl}—Internal private interface controller 272
12.3.4 IWDComponent—Generic interface for all component

controllers ... 273
12.3.5 IWDComponentUsage—Generic component usage interface 274
12.3.6 IWDController—Generic interface for all controllers 277
12.3.7 IWDView—Generic interface for a view layout 277
12.3.8 IWDViewController—Generic interface for all view

controllers ... 278

12.4 Application interfaces .. 279
12.4.1 IWDApplication—Generic interface for all applications 279

13Contents

12.5 Context interfaces .. 279
12.5.1 I{cn}Element—Node specific extension to IWDNodeElement 279
12.5.2 I{cn}Node—Node specific extension to interface IWDNode 280
12.5.3 IContextElement—Controller specific extension to

IWDNodeElement ... 281
12.5.4 IContextNode—Controller specific extension to IWDNode 282
12.5.5 IWDAttributeInfo—Interface for the metadata of a generic

context attribute .. 283
12.5.6 IWDContext—Base interface for accessing context data in

a controller ... 284
12.5.7 IWDNode—Interface implemented by all context nodes 286
12.5.8 IWDNodeElement—Interface implemented by all context

node elements ... 291
12.5.9 IWDNodeInfo—Interface for the metadata of a generic

context node .. 293

12.6 View layout interfaces ... 299
12.6.1 Generalized management of UI element properties 299
12.6.2 Generalized management of UI element actions 300
12.6.3 Appearance of UI elements .. 301
12.6.4 The UI element source property ... 302
12.6.5 Naming of UI element properties ... 302
12.6.6 IWDAbstractButton—Base interface for a push button 302
12.6.7 IWDAbstractCaption—Base interface for a text caption 303
12.6.8 IWDAbstractDropDown—Base interface for a

drop-down list ... 303
12.6.9 IWDAbstractDropDownByIndex—Base interface for an

index-based drop-down list ... 304
12.6.10 IWDAbstractDropDownByKey—Base interface for a

key-based drop-down list ... 305
12.6.11 IWDAbstractInputField—Base interface for an input field 306
12.6.12 IWDAbstractTreeNodeType—Base interface type for all tree

nodes and items .. 307
12.6.13 IWDButton—Interface for a push button 309
12.6.14 IWDCaption—Base interface for a text caption 309
12.6.15 IWDCheckBox—Interface for a check box 310
12.6.16 IWDCheckBoxGroup—Interface for a multiple checkbox

selection group .. 311
12.6.17 IWDDropDownByIndex—Interface for an index-based

drop-down list ... 312
12.6.18 IWDDropDownByKey—Interface for a key-based

drop-down list ... 312
12.6.19 IWDFlowData—Interface for flow layout data 313
12.6.20 IWDFlowLayout—Interface for the flow layout manager 314
12.6.21 IWDGridData—Interface for grid layout data 314
12.6.22 IWDGridLayout—Interface for the grid layout manager 316
12.6.23 IWDIFrame—Base interface for an HTML IFrame 316
12.6.24 IWDImage—Interface for an image .. 317
12.6.25 IWDInputField—Interface for an input field 318
12.6.26 IWDLabel—Interface for a text label .. 318
12.6.27 IWDLayout—Base interface for all layout managers 319
12.6.28 IWDLayoutData—Base interface for all layout data 319

Contents14

12.6.29 IWDLink—Base interface for a generic hypertext link 320
12.6.30 IWDLinkToAction—Interface for a hypertext link

to a Web Dynpro action ... 321
12.6.31 IWDLinkToURL—Interface for a hypertext link to a URL 321
12.6.32 IWDMatrixData—Interface for matrix layout data 322
12.6.33 IWDMatrixHeadData—Interface for matrix layout head data 323
12.6.34 IWDMatrixLayout—Interface for the matrix layout manager 324
12.6.35 IWDRadioButton—Interface for a radio button 324
12.6.36 IWDTab—Interface for an individual tab page 326
12.6.37 IWDTabStrip—Interface for an aggregation of tab pages 327
12.6.38 IWDTable—Interface for a table .. 328
12.6.39 IWDTableColumn—Interface for a table column 332
12.6.40 IWDTextEdit—Interface for a multi-line text editor 334
12.6.41 IWDTextView—Interface for a read-only text display 335
12.6.42 IWDTree—Interface for the root node of a tree 336
12.6.43 IWDTreeItemType—Interface for a tree item 338
12.6.44 IWDTreeNodeType—Interface for a tree node 338
12.6.45 IWDUIElement—Base interface for UI elements 339
12.6.46 IWDUIElementContainer—Base interface for a container

UI element .. 340
12.6.47 IWDViewElement—Base interface of all UI elements 342

A ABAP coding 343

B Dictionary structures 347

C The Author 349

Index 351

15Preface

Preface

Target audience

This book has been written for those people who have:

� Java programming experience

� Attended the standard SAP training course(s) for Web Dynpro for Java
programming

This book is not a tutorial of “how to” style exercises and answers, but
rather it discusses the design and coding principles required for the devel-
opment of successful Web Dynpro applications. The focus of this book is
the core of Web Dynpro technology.

Certain Web Dynpro related subjects are not covered in this edition
because they are not fundamental to your understanding of the subject.
This book is designed to lay a foundation upon which other publications
can then build.

Knowledge of SAP’s ABAP programming language would be beneficial
(particularly when reading Chapter 10), but is not essential.

Author’s Apology

Having been a technical SAP consultant since 1993, and a professional
software developer since 1986, I have learned1 that forming a rigid set of
rules about how problems should be solved has a fundamental weakness.
That is, the rules formed for solving problem A often cannot be applied to
solving problem B, even though problems A and B are similar.

Instead, I have found that many diverse and seemingly unrelated prob-
lems can be solved using a common set of problem-solving principles. The
problem-solving process then starts with an analysis of the particular situ-
ation to identify which of these principles are applicable.

This process of problem-solving is much like the process of abstraction
that takes place during the design of an object-oriented program—that of
condensing a problem down to its most fundamental, often abstract, ele-
ments—and I have spent much of my professional career developing
these principles.

1 By attending the school of hard knocks!

Preface16

In writing this book, I do not wish to lay down an inflexible set of rules to
which all developers should conform. Instead, I aim to equip the reader
with an understanding of the fundamental principles that must be under-
stood in order to build powerful and efficient Web Dynpro applications.

Since Web Dynpro is a programming toolset, it is not immune from
abuse; in the areas in which problems could arise, it may appear that I am
laboring the point. If I have described the same concept in several dif-
ferent ways, it is because I am stressing its importance. I trust that this
approach will serve to communicate the necessary understanding to all
readers, and not be too tedious for those people who “always grasp
things the first time.”

As with any set of tools, the results obtained from the use of Web Dynpro
are determined by the skill of the operator, not the brand name on the
handle! Therefore, to achieve the best results from the Web Dynpro
toolset, each developer must have a thorough grasp of the principles that
underpin its design and operation.

I leave it to each developer to apply these principles to his or her own
specific situation. Using this approach, no two solutions will ever be the
same, yet all will be derived from a common set of fundamental princi-
ples.

It is these principles that I aim to communicate in this book.

Note to readers with ABAP development experience
For those experienced with classical SAP software design, the design con-
cepts used by Web Dynpro represent an entirely new way of thinking, the
mastery of which will require a significant shift in your thinking. For this
category of reader,2 it is even more important that these principles are
fully grasped and understood.

Please allow this book to alter and expand your thinking, and guide you
through the mental transition that is required to move from classical R/3
design to Web Dynpro design. Failure to realize that such a transition is
required will cause you to become frustrated by the fact that Web Dyn-
pro does not meet your established expectations. This, in turn, can lead
to all sorts of erroneous conclusions about the quality of the product!

2 In which I include myself.

17Conventions

Conventions

Use of terminology
Certain words such as “component,” “element,” “context,” and “inter-
face” have specific meanings within the Web Dynpro context (sic!).
Therefore, to avoid ambiguity, such words will be used only when their
Web Dynpro meaning is intended.

Screenshots
For the sake of brevity, various graphical figures in this book have been
cropped or resized. Therefore, when you look at the corresponding
screen in your installation of the SAP NetWeaver Development Studio
(NWDS), it may be larger than the image displayed in this book.

Errata

For those readers with access to SAP’s Online Support System (OSS),
please check note number 699531 for any corrections to errors or omis-
sions discovered after publication.

For readers who do not have access to the OSS system, please check the
SAP PRESS Web sites www.sap-press.com and www.sap-press.de for
corrections, omissions, or additional content that may be delivered after
the publication of this book.

Acknowledgements

The author would like to thank everyone on the SAP Web Dynpro devel-
opment team for their enthusiastic help and support while this document
was being written. They all managed to find a few spare clock cycles in
their very busy schedules to proofread and correct the many iterations
through which this document passed before finally ending up on the
printed page.

These are Björn Goerke, Stephan Ritter, Johannes Knöppler, Markus
Cherdron, Jens Ittel, Uwe Reeder, Harry Hawk, Thomas Chadzelek, Ber-
tram Ganz, Arnold Klingert, Joseph Brown, Stephan Dahl, Werner Bächle,
Harry Hawk, Malte Wedel, Timo Lakner, Jörg Singler, Thorsten Dencker,
Stefan Beck, Reiner Hammerich, Armin Reichert and Harry Hawk.

Preface18

I would also like to thank Simon Harbour, Karl Kessler, Masoud Agha-
davoodi Jolfaei, Markus Tolksdorf, Peter Tillert, Carsten Brandt, Marco
Ertel, Karin Schattka, and Peter Barker for their input and support during
the writing of this book.

Chris Whealy,
November 2004

125Coding principles in Web Dynpro

7 Coding principles in Web Dynpro

7.1 User-defined code

Within each controller, you are free to add any code you require as long
as it lies between a pair of //@@begin and //@@end comment markers.
These markers are created automatically by the code generator within the
NWDS and their locations cannot be changed.

Any user-defined code placed outside these special comment markers
will be lost during code regeneration.

7.2 Problems with binding UI elements to
context nodes

When a view layout is being designed, every interactive UI element must
have a context binding of some sort. There are certain runtime situations
that may occur in which your input fields may appear in a disabled state
or you get a runtime error in the context, such as Node(<some_node_
name>): no active node to map to or Mapping reference not found.

All three situations are caused by the fact that, somewhere in the context,
there is either a non-existent node element or a non-existent node.

� The simplest situation is the one in which a UI element, such as an
input field, is bound to an attribute of a value node of cardinality 0..n.
The first part of the cardinality1 immediately tells you that when your
application first starts, this node will contain zero elements.

If, prior to displaying this screen, you forget to create element zero in
the context node, then any input fields bound to attributes in this
node will be disabled. This is simply because the node to which the UI
element is bound contains no elements; therefore, there is no storage
area to receive the user’s input. Consequently, the input field will be
disabled.

� The next situation is slightly more detailed. Imagine your view control-
ler context has an unmapped value node of cardinality 0..n called
SalesOrders. This node also has a child node called LineItems (also of
cardinality 0..n). Remember that the cardinality of node SalesOrders
will cause it to start life as an empty collection; i.e., the child node

1 Call method node{cn}.getNodeInfo().isMandatory() to obtain this value.

Coding principles in Web Dynpro126

LineItems will not even exist until such time as element zero of its par-
ent node (SalesOrders) is created.2

At design time, it is perfectly valid to create UI elements in the view
layout that are bound to attributes of the child node LineItems. How-
ever, at runtime, you must ensure that node SalesOrders contains at
least one element. This element can then act as the parent for the child
node lineItems.

If you forget to do these data-creation steps yourself, you will end up
trying to display the value of a non-existent attribute, belonging to a
non-existent element of a non-existent child node! Hence the error,
Node(…): no active node to map to.

� The last situation involves mapping context nodes between different
controllers. Imagine that the value nodes for SalesOrders and
LineItems now live in the context of a custom controller (such as your
component controller) and not the view controller. Your view control-
ler can gain access to this data by declaring a mapping relationship
between its own value node3 and the corresponding value nodes in
the component controller.4

If you now create UI elements in the view layout that are bound to the
view controller’s SalesOrders node, the following situation could
cause an error to occur:

Again, in the component controller, you forget to add any elements to
the SalesOrders value node and you completely forget to create the
value node LineItems. The difference now is that processing to add
the data to these node elements is the responsibility of the component
controller. The view controller is simply referencing the element
collection that exists in the component controller. Mapped nodes do
not maintain their own element collections.

Therefore, in order to find the correct value to display in the UI ele-
ment, a mapping reference from the view controller to the component
controller must be traversed. The mapping reference to the child node

2 This is a slight oversimplification. If a child node {chn} is a singleton with respect
to its parent node {cn}, then {chn} can be created, but cannot be populated until
{cn} has at least one element. If, however, the child node {chn} is a non-singleton
with respect to its parent node {cn}, then {chn} cannot even be created until {cn}
contains at least one element.

3 The value node in the view controller does not need to have the same name as the
value node in the custom controller to which it is mapped. However, it helps
greatly with code legibility if the two names are the same.

4 This type of mapping is possible only after you have explicitly stated that the
component controller is a required controller for the view controller.

127Building a context node hierarchy suitable for a tree UI element

LineItems will return a null pointer exception, and this in turn is inter-
preted as the error Mapping reference not found.

See Section 6.8 for more details.

7.3 Building a context node hierarchy suitable
for a tree UI element

To make correct use of the tree UI element, it is most important to under-
stand the requirements this UI element imposes on the view controller’s
context. As has been stated earlier, the structure of data supplied by a
model object is rarely suitable for immediate display on the user inter-
face. This is particularly true when using the tree UI element, which
requires the context data to be structured in a very particular way. It is
almost a certainty that a model object will not supply data in this special-
ized structure!

Here is a perfect example of where a custom controller (such as the
component controller) should perform a structural data transformation
on the context data to make it suitable for requirements of the UI ele-
ments on a view layout.5

The properties of trees and tree nodes can be found in classes IWD-
AbstractTreeNodeType, IWDTreeNodeType, and IWDTree.

The following tree and tree node properties can be bound to context
attributes:

5 It can also be argued that a view controller should receive the raw data supplied by
a model object and then perform its own transformation, thus relieving the custom
controller of the need to know anything about the requirements of any particular
view layout. Both approaches are plausible, and the decision to use one method
over another should be judged both on the complexity of the transformation pro-
cess and the number of views that require the same restructured model data.

Tree TreeNode

defaultItemIconAlt iconAlt

defaultItemIconSource iconSource

defaultNodeIconAlt ignoreAction

defaultNodeIconSource Tooltip

minHeight Text

Table 7.1 Bindable Properties of Tree UI Elements

Coding principles in Web Dynpro128

Depending on your business requirements, it may not be necessary to
bind all the properties listed in Figure 7.1, but for the purposes of this

rootText Design

rootVisible dataSource

title expanded

defaultNodeIconSource tooltip

minHeight text

rootText design

rootVisible dataSource

title expanded

titleVisible hasChildren

width

dataSource

Figure 7.1 A Context Structure Suitable for a Tree UI Element

Tree TreeNode

Table 7.1 Bindable Properties of Tree UI Elements (cont.)

129Building a context node hierarchy suitable for a tree UI element

illustration, it has been assumed that you want to have full, programmatic
control over every aspect of the tree’s appearance.

If we assume that we want to display a list of sales orders as a tree, the
view controller’s context will look something like Figure 7.1.

We start with the independent node (SalesOrdersForTree) to represent
the tree UI element for sales orders. Under this, there is a dependent
node (LineItemsForTree) to represent the tree UI element for line items.

In this example, the properties belonging to the entire tree UI element
have been created as independent attributes because there is only one
tree in this view.6

The properties belonging to the tree node UI elements have been created
as dependent attributes of node SalesOrdersForTree and LineItemsFor-
Tree.

It is vitally important that the singleton property of node LineItemsFor-
Tree is set to false! Think about how a tree UI element is capable of
displaying its information, and then think about the implications of hav-
ing the child node LineItemsForTree as a singleton node.

If you haven’t figured it out, let me explain. First, consider the data held
in the element collection of node SalesOrdersForTree. In business terms,
it is a collection of sales order headers. Under this is the node LineItems-
ForTree. This node holds the line items for each sales order. In other
words, there must be a whole new instance of child node LineItemsFor-
Tree for each element of node SalesOrdersForTree.

Now consider how information can be presented through a tree struc-
ture. The parent node of a tree may have, let’s say, five children. This
corresponds to the node SalesOrdersForTree having five elements in its
element collection. A tree UI element allows you to expand each one of

Important: Notice that the names of the node attributes in the con-
text reflect the properties of the tree UI elements, not the attributes
found in a sales order. In fact, the only attributes that have anything to
do with the business data being displayed are Text and Tooltip. All
the other attributes control the appearance and behavior of the tree
itself.

6 If you have multiple tree UI elements in the same view layout, then you would
need to create a parent node (of cardinality 1..1) for each tree.

Coding principles in Web Dynpro130

these five child nodes and see all their children simultaneously. This
immediately implies that each element of node SalesOrdersForTree
must have its own distinct instance of child node LineItemsForTree in
existence simultaneously.

Therefore, node LineItemsForTree must be a non-singleton with respect
to SalesOrdersForTree; otherwise, you would only ever be able to see the
children of the one element at the lead selection of node SalesOrders-
ForTree.

As you should now be able to appreciate, this very small configuration
step has an enormous impact on the behavior of a context node. This, in
turn, can make or break your view layout!

To create the corresponding tree UI elements in a view layout, proceed as
follows:

1. Create the context structure shown above in Figure 7.1—not forgetting
to set the singleton flag of node LineItemsForTree to false.

2. Create a Tree UI element in your layout with a name such as Sales-
OrderTree.

3. Bind the various properties of the UI element SalesOrderTree to the
appropriate independent attributes.

4. Bind the dataSource property of UI element SalesOrderTree to the
context node SalesOrdersForTree.

5. Add two TreeNodeType elements as children of SalesOrderTree, calling
them something like SalesOrders and LineItems.

6. Bind the dataSource property of the TreeNodeType SalesOrders to
context node SalesOrdersForTree.

7. Bind the dataSource property of TreeNodeType LineItems to the con-
text node LineItemsForTree.

8. Bind the required properties of each TreeNodeType UI element to the
appropriate context attributes.

A common mistake is to think that the structure of the TreeNodeType UI
elements under the tree UI element should reflect the structure of the
data being displayed. No! This is not necessary. All you need to do is
declare that various nodes will exist somewhere in the tree hierarchy. The
response rendering stage of the phase model (see Section 11.11) will then
automatically determine the hierarchical position of any given node on
the basis of its dataSource binding.

131Parameter mapping

All that is required now is that functionality exists7 that can transform the
business data into the structure required by the tree UI element.

To make the tree interactive, it will be necessary to implement the
onAction event, and possibly also the onLoadChildren event.8

7.4 Parameter mapping

To ensure that server-side controllers can react intelligently to user
actions on the client, it is often necessary to associate parameters with
certain client-side events. For instance, when the user selects an item
from a dropdown list, the server-side controller needs to know more than
just the fact that an item has been selected; it needs to know exactly
which item has been selected. Therefore, when a dropdown list fires its
client-side onSelect event, the index of the selected item can be received
by the server-side action handler.

If an event has an associated event parameter, the UI element will auto-
matically place a value into the event parameter. This part of the coding is
done for you automatically; however, you must ensure that the value of
the client-side event parameter is received by the server-side action han-
dler.

In the case of the DropDownByIndex UI element, the hard-coded param-
eter is called index. You must now add the coding that retrieves the event
parameter and passes it to your action handler. This is known as param-
eter mapping, and is done as follows:

� Obtain the name of the parameter associated with the client-side
event. This can be found by looking in the javadoc of the relevant UI
element. The parameter can be found in the comment above method
mappingOf{uievt}();

i.e., method IWDCheckBox.mappingOfOnToggle() has a boolean param-
eter called checked.

� Create an action {act} in the view controller.

7 Either in the view controller itself, or the custom (component) controller.
8 The onLoadChildren event allows you to calculate what the children of a specific

node will be at the time the user first expands the node.

Important: Event parameter names are hard coded within each UI ele-
ment.

Coding principles in Web Dynpro132

� Define a parameter for the action handler of the same data type as the
event parameter.9 You will often find it helpful to make the server-side
action parameter name the same as the client-side event parameter
name, though this is not mandatory.

� Associate the event parameter with the action parameter.

The UI element shown in Figure 7.2 is a DropDownByIndex, but the princi-
ples remain the same for all other UI elements:

1. User selection raises the client-side onSelect event belonging to
IWDDropDownByIndex.

2. An HTTP round trip is invoked to process the associated action handler.
All available UI parameter values are passed back to the WDF.

3. On the basis of the source mapping declarations, the WDF matches UI
parameters with action event handler parameters.

4. The action handler is invoked using any available parameters that
match the source mapping declarations.

5. The action handler reacts to the event in an appropriate manner.

6. Control is passed back to the WDF which builds the HTTP response.

7. The client (in this case, a browser) receives the response and renders
the processed screen.

9 All event parameter output from the client will be of type String. Parameters on
action handlers can also be declared to be of type String, but if you want to use
the data type specific to the event parameter (typically boolean or int), then you
can declare the action parameter to be of the same type as the event parameter,
and the WDF will make the conversion automatically.

Figure 7.2 How a UI element parameter is passed back to an action handler

133Parameter mapping

7.4.1 Basic parameter mapping example

In this example, the checked parameter of the onToggle event of a check-
box UI element will be associated with a parameter called checkBoxState
in the corresponding action handler.

� Create an action in a view controller to handle the change of state in a
checkbox UI element. The checkbox is called myCheckBox and will be
associated with an action called HandleCheckBox.

� Define a boolean parameter called checkBoxState for the action han-
dler onActionHandleCheckBox().

� Place the following coding in the wdDoModifyView() method of the
view controller. This coding must be executed only once during the
view controller’s lifecycle; therefore, it is imperative that we first check
the firstTime flag.

if (firstTime) {
 // Get a reference to the checkbox UI element
 IWDCheckBox cb = (IWDCheckBox)view.getElement("myCheckBox");

 // Link the client-side event parameter "checked"
 // to the server-side action parameter "checkBoxState"
 cb.mappingOfOnToggle().
 addSourceMapping("checked", "checkBoxState");
}

Listing 7.1 Basic Parameter Mapping

Now, whenever this particular checkbox is toggled, the client-side event
parameter checked that belongs to the onToggle event will be passed
through to the server-side action handler HandleCheckBox as the boolean
variable checkBoxState.

7.4.2 Action handler generalization

Since the event-to-action parameter mapping is specific to the UI ele-
ment and not the action, it is perfectly possible to generalize the use of an
action handler so that it can respond to events from multiple UI ele-
ments. You can extend the first example so that the action handler
HandleCheckBox can process any onToggle event from any checkbox on
the current view.

Coding principles in Web Dynpro134

In order to make an action handler work in this generic manner, you must
define an extra parameter for HandleCheckBox that identifies which check-
box raised the onToggle event.

This extra parameter has nothing to do with the client-side event itself;
therefore, it is completely independent from the client layer. The fol-
lowing code extends the above coding example.

� Against the action handler HandleCheckBox, define a new parameter
called checkBoxName of type String.

� The HandleCheckBox action handler will now process the onToggle
events from three different checkboxes.

� For each checkbox UI element, you must now define a fixed value for
the checkBoxName parameter. In the following example, we will use
three checkboxes that all trigger the same server-side event handler.
The coding is as follows:

if (firstTime) {
 // Get references to all three checkbox UI elements
 IWDCheckBox cb1 = (IWDCheckBox)view.getElement("checkBox1");
 IWDCheckBox cb2 = (IWDCheckBox)view.getElement("checkBox2");
 IWDCheckBox cb3 = (IWDCheckBox)view.getElement("checkBox3");

 // Link the client-side event parameter "checked" to the
 // server-side action parameter "checkBoxState"
 // This parameter is UI-element specific, and therefore
 // identical for all three checkboxes.
 cb1.mappingOfOnToggle().
 addSourceMapping("checked", "checkBoxState");
 cb2.mappingOfOnToggle().
 addSourceMapping("checked", "checkBoxState");
 cb3.mappingOfOnToggle().
 addSourceMapping("checked", "checkBoxState");

 // Now hard code the checkbox names that enable the server-
 // side event to distinguish between each checkbox.
 cb1.mappingOfOnToggle().
 addParameter("checkBoxName", cb1.getId());
 cb2.mappingOfOnToggle().
 addParameter("checkBoxName", cb2.getId());
 cb3.mappingOfOnToggle().
 addParameter("checkBoxName", cb3.getId());
}

Listing 7.2 Generalized Action Handler

135Parameter mapping

7.4.3 Further decoupling of the UI

The degree of abstraction between the event parameter and action
parameter can be taken a degree further if desired. Rather than hard cod-
ing the specific UI element name into a custom action parameter, you
could use a reference to a context attribute.

For instance, consider the following situation. You want to display the
contents of a context node as a table, but the number of columns to be
displayed is unknown until runtime. You also want to give the user the
ability to sort the table simply by clicking on a column header. This type
of situation calls for a generic action handler that can sort the table based,
not on the name of the table column UI element, but on the name of the
context attribute being visualized by that table column. In other words,
the information provided to the sort algorithm needs to be the name of
the context attribute that will act as the sort key, not the name of the
table column UI element that is visualizing the information.

This level of disassociation between the table UI element and the sort
algorithm allows you to put any table on the screen, made up of any
number of columns of any name, and the sort logic will still function.

In this scenario, the standard client-side event parameter col (provided
by the onAction event of IWDTableColumn) is ignored because this con-
tains the name of the UI element on which the user clicked. Instead, the
name of the context attribute to which the UI element is bound will be
used as the parameter value.

The following example describes a situation in which a table of sales
orders is displayed, but the number of columns is configurable and there-
fore not known until runtime. The user can sort the table by clicking on
the header of the column he or she wishes to use as the sort key. The
name of the action handler that performs the sort is HandleSortRequest,
and it receives a single String parameter called colAttrib.

� The standard parameter col for the table column’s onAction event
must be ignored. This is easy to achieve—do nothing!

� Create a new parameter called colAttrib of type String on the action
handler HandleSortRequest.

� The attributes that will be displayed as table columns live in a context
node called SalesOrders. In this rather simplistic example, let’s say
that the attributes of this node are called CustId, CustName, and Date.

Coding principles in Web Dynpro136

� In the wdDoModifyView() method of the view controller, the following
code should be added. In this example, the coding to create the table
column UI elements has been omitted, but they are called tabCol1,
tabCol2, and tabCol3.

You should associate the context attribute supplying data to the table col-
umn with the static parameter colAttrib.

// Obtain references to the table column UI elements
IWDTableColumn tc1 = (IWDTableColumn)view.getElement("tabCol1");
IWDTableColumn tc2 = (IWDTableColumn)view.getElement("tabCol2");
IWDTableColumn tc3 = (IWDTableColumn)view.getElement("tabCol3");

// Hard code the value of the "colAttrib" parameter to be the dot
// delimited name of the context attribute.
// Notice this is a string value, not an object reference!
tc1.mappingOfOnAction().
 addParameter("colAttrib", "SalesOrders.CustId");
tc2.mappingOfOnAction().
 addParameter("colAttrib", "SalesOrders.CustName");
tc3.mappingOfOnAction().
 addParameter("colAttrib", "SalesOrders.Date");

Listing 7.3 Action Handler Using a Context Attribute Name

� Now when the action handler HandleSortRequest is called, it will
receive a String containing the name of the context attribute that is to
be used as the sort key in the string parameter colAttrib.

� The action handler must now use the value of the string parameter
colAttrib to create a reference to the relevant context attribute. The
sort algorithm should then be passed this context attribute reference
as its sort key.

7.4.4 Advanced parameter mapping example

When processing the events raised by tree nodes, it is vitally important that
the action handler know not only the name of the node on which the user
clicked, but also the exact element within that node. Therefore, the event-
to-action parameter mapping must be done in the following manner.

� As with the previous examples, the name of the event parameter raised
by the IWDTreeNodeType needs to be known. (In the case of this partic-
ular interface, the onAction event is not defined in IWDTreeNodeType,
but in the base class IWDAbstractTreeNodeType.)

137Parameter mapping

The required event parameter is called path and is of type String.

� Before creating the action parameter, you must identify the name of
the generated node element class that the TreeNodeType UI element
represents.

For instance, the element of context node WBSElements in view
controller ShowProjectAsTreeView will be called IPrivateShow-
ProjectAsTreeView.IWBSElementsElement.

In general, for any element of node {cn} belonging to the context of
view controller {nv}, the generated class name will always be IPri-
vate{nv}.I{cn}Element.

� Assuming that the action handler is called HandleNodeClick, create a
parameter called something like selectedNodeElement.

It is most important that the data type of this parameter is not String!
It must be of the data type of the generated node element class iden-
tified in the previous step.

� As in the previous examples, the event parameter must be associated
with the action parameter using the following code:

IWDTreeNodeType tn = (IWDTreeNodeType)view.
 getElement("WBSElements");
tn.mappingOfOnAction().
 addSourceMapping("path", "selectedNodeElement");

Listing 7.4 Action Handler Using a Context Node Reference

� Now when the user clicks on the displayed node, the client will pass
the path name to the context element as a String value in the event
parameter path. Before the value of path is transferred to the server-
side action parameter selectedNodeElement, the WDF recognizes that
the parameter to the action event handler is declared as a node ele-
ment class, and will automatically convert the String value held in the
event parameter path into the object reference required by the action
handler.

� The action handler method now has an object reference to the exact
node element on which the user clicked.

Coding principles in Web Dynpro138

7.5 Efficient use of actions to enable and
disable UI elements

Certain UI elements trigger client-side events. In order for these events to
be processed on the server, there must be an association between the cli-
ent-side event and an event handler on the server. This association is per-
formed by instances of class IWDAction.

Instances of the class are known as actions, and these can be enabled and
disabled at runtime as required by the functionality of your application.
As you have seen in the previous section, it is possible to have many dif-
ferent client-side events all associated with the same action; thus, they
will all trigger the same generic event handler method. At this point, it
would be worthwhile to ensure that you fully understand the difference
between a primary and secondary event. If you can’t remember, go back
and reread Section 3.7.1.

If you wish to stop a user from triggering a particular action (for instance,
the user has insufficient authorization), the simplest way to achieve this is
to disable the action. This is done by calling the action’s setEnabled()
method and passing it the boolean value false.

Now the WDF runtime automatically disables or adapts all UI elements
using this action. If the action is associated with a primary event, the
entire UI element is disabled for user input. If it is associated with a sec-
ondary event, the UI element remains enabled for user interaction. Either
way, though, if an action has been disabled, it is impossible for it to be
triggered by a UI element.

As you will probably appreciate, this allows you to enable or disable all
the UI elements on the screen using a single call to the setEnabled()
method of the relevant action. Don’t fall into the trap of thinking that, to
disable a Button or a LinkToAction UI element, you have to access the UI
element object directly within method wdDoModifyView() and then dis-
able it explicitly. All UI elements using an action can be enabled or dis-
abled automatically via their associated action object.

Important: If you disable an action associated with a secondary event,
the UI element will remain enabled for user interaction. An example of
this is the table UI element. If you have disabled the action associated
with the secondary event onSelect, the table can still be scrolled, but
now the action associated with the onSelect event will never be
raised.

139Layout managers

7.6 Layout managers

The purpose of a layout manager is to provide a structure within which UI
elements can be presented. All Web Dynpro UI element containers must
implement a layout manager of some sort.

Every Web Dynpro view is represented as a hierarchy of UI elements. This
hierarchy is created automatically whenever a view controller is declared,
and the view’s root UI element has the following properties:

� It is always of type TransparentContainer.

� It is always called RootUIElementContainer.

� By default, the RootUIElementContainer always has the FlowLayout
layout manager assigned to it.

� All UI elements subsequently added to the view become children of
RootUIElementContainer.

When a layout manager is assigned to a UI element container, at design
time a set of property values must be specified for each child UI element
that is specific to the layout manager. It is within the layout data object
that you specify how that child UI element should appear when rendered
with the given layout manager.

7.6.1 Flow layout

The FlowLayout is the simplest of the layout managers in that it renders its
child UI elements in a simple left-to-right horizontal sequence. If more UI
elements have been defined than will fit horizontally across the screen, a
new row is created.

As you resize the window within which the FlowLayout container lives,
you will see the UI elements wrap automatically within the available
screen space.

It is not possible to define any form of vertical alignment within a Flow-
Layout container.

Coding principles in Web Dynpro140

7.6.2 Row layout

The RowLayout layout manager has been implemented primarily to over-
come performance overhead incurred by browsers having to render
multiple levels of nested HTML <tables>.

If you wish to subdivide some area of the view into horizontal rows, but
you do not require any vertical alignment between the resulting columns,
then you should use a RowLayout layout manager. This layout manager
should be thought of as an enhanced form of FlowLayout.

Within a row of a RowLayout container, each child UI element will either
contain a RowHeadData object or a RowData object. These objects are
stored in the aggregation layoutdata and determine whether the UI ele-
ment will start a new row or just be a row member. The default is that all
child UI elements contain RowData objects.

Should you change a child element to contain a RowHeadData object, then
you are telling the RowLayout layout manager that this particular element
will forcibly start a new row. UI elements nominated to contain RowHead-
Data objects will always occupy the left-most position in a row.

Figure 7.3 UI elements arranged in a container using a Flow layout manager; narrow
screen

Figure 7.4 UI elements arranged in a container using a Flow layout manager; wide
screen

141Layout managers

A RowHeadData object has a set of general properties that apply to all UI
elements in the row, that is, all UI elements up until the next RowHeadData
object.

Once you have specified which UI elements will be that row’s RowHead-
Data objects, the other UI elements in the row are free to rearrange them-
selves as if they lived in a FlowLayout container. Depending on the avail-
able screen width, you may very well see the contents of a RowLayout
container wrapping around to form a new row. As with a FlowLayout con-
tainer, the minimum width at which wrapping stops is imposed by the
widest single UI element on the screen.

In Figure 7.5, the outlined UI elements are the ones with a layout data of
RowHeadData. Notice that there is no vertical alignment of UI elements in
corresponding columns.

7.6.3 Matrix layout

The MatrixLayout layout manager is a further enhancement of the
capabilities of the RowLayout layout manager.10

A RowLayout layout manager allows you to specify when new rows should
start, but provides no facility for the vertical alignment of elements within
the row. This capability is provided by the MatrixLayout layout manager.

The MatrixLayout layout manager creates a tabular grid on the screen in
which the cells are aligned both horizontally and vertically. As with the
RowLayout layout manager, you still have to specify which child UI ele-

Figure 7.5 UI elements arranged in a container using a Row layout manager

10 UI elements arranged in a MatrixLayout or GridLayout are implemented in a
browser using an HTML <table>.

Coding principles in Web Dynpro142

ments will be at the start of a new row, but now all the row elements will
be vertically aligned into columns.

Using a MatrixLayout layout manager, you can produce a grid with a vari-
able number of columns per row.

As with RowLayout managed UI containers, each child UI element
assigned to a MatrixLayout container will contain either a MatrixData
object or MatrixHeadData object. Again, these objects are stored in lay-
outdata aggregation. The default object type is MatrixData, but if you
wish to start a new row, you must change this to MatrixHeadData.

In Figure 7.6, the outlined UI elements are the ones with a layout data of
MatrixHeadData. Notice that there is now a tabular arrangement of the UI
elements.

7.6.4 Grid layout

The GridLayout layout manager divides the view area into a tabular grid
with a fixed number of columns. As UI elements are added to a GridLay-
out container, they are positioned within the grid in a left-to-right, top-
to-bottom manner.

The number of columns in the grid is determined by the value of the col-
Count property, and the number of rows is dependent upon the number
of UI elements added to the container.

To achieve a uniform look and feel across all of your Web Dynpro applica-
tions, SAP recommends that the MatrixLayout be used in preference to
the GridLayout.

Figure 7.6 UI elements arranged in a container using a Matrix layout manager

143Layout managers

A better approach when designing a screen layout is to divide the screen
into horizontal areas as early as possible. The horizontal subdivisions can
be implemented using a RowLayout layout manager, and each child added
to the row could then be some sort of container such as a Transparent-
Container. This will avoid the drop in browser rendering performance
because you will not be using an HTML <table> to provide the major
structural subdivisions of the screen.

The view shown in Figure 7.7 is the same layout as seen in the previous
figures, but now that the view container is using a Grid layout manager
with the colCount parameter set to 2, all the UI elements have assigned
an arbitrary position in the table, on a left-to-right, top-to-bottom basis.
The table UI element has had its colSpan parameter set to 2.

This layout is obviously not satisfactory because we want some rows to
have only one UI element in them. If you are using a Grid layout manager,
then you will need to pad the empty grid cells with invisible UI elements.
These can be seen Figure 7.8.

If you require a tabular layout for your UI elements, then SAP recom-
mends that the Matrix layout manager should be used in preference to
the Grid layout manager.

Important: The time taken for browsers to render a screen can rise if
the HTML contains multiple levels of nested <table> tags. Since the
GridLayout and MatrixLayout layout managers are implemented in a
browser using an HTML <table>, if possible you should try to avoid
nesting these layout managers within each other.

Figure 7.7 UI elements arranged in a container using a Grid layout manager;
colCount = 2

Coding principles in Web Dynpro144

7.6.5 Layout Manager Properties

Figure 7.8 UI elements arranged in a container using a Grid layout manager; invisible
elements used for padding

FlowLayout

Layout Manager Properties Data Type Default Value

defaultPaddingBottom String ""

defaultPaddingLeft String ""

defaultPaddingRight String ""

defaultPaddingTop String ""

wrapping Boolean True

Layout Data Properties Data Type Default Value

paddingBottom String ""

paddingLeft String ""

paddingRight String ""

paddingTop String ""

RowLayout

Layout Head Data Properties Data Type Default Value

hAlign WDCellHAlign LEFT

rowBackgroundDesign WDCellBackgroundDesign TRANSPARENT

rowDesign WDLayoutCellDesign R_PAD

vGutter WDLayoutCellSeparator NONE

Table 7.2 Properties of Layout Manager Classes and Their Associated Data and
HeadData Classes

145Layout managers

MatrixLayout

Layout Manager Properties Data Type Default Value

stretchedHorizontally Boolean True

stretchedVertically Boolean True

Layout Data Properties Data Type Default Value

cellBackgroundDesign WDCellBackgroundDesign TRANSPARENT

cellDesign WDLayoutCellDesign R_PAD

colSpan Integer 1

hAlign WDCellHAlign LEFT

height String ""

vAlign WDCellVAlign BASELINE

vGutter WDLayoutCellSeparator NONE

width String ""

GridLayout

Layout Manager Properties Data Type Default Value

cellPadding Integer 0

cellSpacing Integer 0

colCount Integer 1

stretchedHorizontally Boolean True

stretchedVertically Boolean True

Layout Data Properties Data Type Default Value

colSpan Integer 1

hAlign WDCellHAlign LEFT

height String ""

paddingBottom String ""

paddingLeft String ""

paddingRight String ""

paddingTop String ""

vAlign WDCellVAlign BASELINE

Table 7.2 Properties of Layout Manager Classes and Their Associated Data and
HeadData Classes (cont.)

Coding principles in Web Dynpro146

7.7 Principles for the efficient use of layout
managers

1. Wherever possible, try to avoid complex layouts involving multiple lev-
els of nesting.

When you have the option of nesting UI containers within each other
(each with its own layout manager), always opt for the design that
results in the fewest levels of nesting. From a performance point of
view, it is better to place multiple UI elements directly into one large
UI container using a grid or matrix layout (with columns and rows that
span where necessary) than to nest transparent containers within the
individual cells of the parent container.

2. Only use a transparent container when it is genuinely required. Con-
tainers such as the Group control are composite UI elements based on
a transparent container. Therefore, it makes no sense to embed a trans-
parent container as the top level child into a Group container, because
it already implements one!

3. If vertical alignment is not required, the row layout should be chosen in
preference to the grid or matrix layout.

4. If vertical alignment is required, the matrix layout should be chosen in
preference to the grid layout. This is not a performance consideration
(both layout managers are ultimately implemented using an HTML
<table>), but it is an easier layout manager to work with. You don’t
have to specify a column count and you can put as many controls into
one row as you like.

5. The matrix layout allows some predefined values for cell padding. The
property cellDesign can have the following predefined values. The
Standard option is also referred to as rPad.

Figure 7.9 The Different Adding Options for the cellDesign Property

Standard LR NoPad L Pad LR Pad Padless

147Locale-specific text

7.8 Locale-specific text

7.8.1 Introduction to multilingual support in software
products

One of the age old problems with the distribution of software products
within geographical regions such as Europe has been that of language
support. The French don’t want to speak German, the Italians don’t want
to speak Spanish, and the English (and Americans) can only speak English!

This problem has produced a variety of solutions; some vendors distribute
entirely new versions of their products with the language-specific text
embedded within the executable code, and other vendors have opted to
separate the language-specific content from the executable code.

The requirement for multilingual operation has, from SAP’s earliest days,
been a fundamental design criterion of all its software products. In the
R/3 system (and all of its derivative systems), the data stored in its rela-
tional database tables is organized in third normal form. This has the
direct consequence that business data and the text that describes the
business data are always stored in separate tables related by a foreign key.

7.8.2 Internationalization

The word “internationalization” is used to describe either the design pro-
cess required to make a software product functional in all required lan-
guages, or the modification process by which existing software is adapted
from single language operation to multilingual operation. The result is a
software product in which all language-specific text is external to the
executable code that uses it.

Because the word “internationalization” is so long, it is abbreviated to
i18n—that is, the first letter “i”, the last letter “n”, and don’t bother writ-
ing the other 18 letters in the middle!

From now on, we will talk about the “i18n process” or “Web Dynpro
i18n” rather than using the full word.

7.8.3 Externalization

Externalization is the process by which hard-coded text strings are
removed (i.e., externalized) from a source code file and placed into a
.properties file. The original source code is then modified to access a
generated resource bundle accessor class. Within the NWDS, an Exter-

Coding principles in Web Dynpro148

nalize Strings wizard automates the extraction and code modification
process.

For more information on this process, see the standard SAP documen-
tation “Internationalization in the SAP NetWeaver Developer Studio.”

7.8.4 Web Dynpro i18n concept

In keeping with the R/3 tradition of separating data from the text that
describes the data, the Web Dynpro i18n concept separates text strings
from the programs that manipulate those strings. Therefore, Web Dynpro
Java class files, metadata files, and dictionary simple types do not contain
any language-specific text. The standard Java class java.util.Resource-
Bundle is used for managing language-specific text at runtime. See the
javadoc for more information on the exact details of the operation of this
class.

Figure 7.10 Externalize Strings Wizard for Removing Text Strings from Existing Code

Important: When a Web Dynpro project or DC is created, a language
is required such as British_English or Spanish or Hebrew. This lan-
guage setting serves several purposes:

� To inform a translator of the language in which the developer origi-
nally wrote the Web Dynpro project or DC.

149Locale-specific text

This value is not read at runtime by the WDF when determining the ses-
sion locale of an application.

7.8.5 S2X—SAP’s use of the XLIFF standard

SAP has taken the XML Language Interchange File Format (XLIFF) and
produced a reduced and somewhat modified variant known as “SAP Sup-
ported XLIFF” (S2X). SAP’s S2X compliant files all use the .XLF file name
suffix and differ from standard XLIFF in the following ways:

� S2X imposes the following restrictions upon standard XLIFF:

� XLIFF's mechanism for handling alternate translations from different
sources, such as a Translation Memory System or a Machine Transla-
tion System, has not been implemented.

� Certain textual content will be encoded using only the lower half of
the ASCII character set, i.e., 7-bit ASCII.

� S2X extends standard XLIFF in the following areas:

� Certain XLIFF extensions have been implemented that can accom-
modate the classification of SAP's software according to software
component, development component, and release.

� Certain XLIFF constraints have been made optional.

� To determine the original language of all current and future meta-
data files in this project.

Caveat confector:

The project language cannot be changed after a project has been cre-
ated, and you cannot copy metadata between projects of different lan-
guages!

Not all locales recognised by Java are permissible within a Web Dyn-
pro project or DC. The permissible languages are only those found in
the drop down list seen when a project or DC is created. The reason
for this is that internally, SAP uses an R/3 system to serve as a trans-
lation engine. This immediately reduces the set of permissible Web
Dynpro languages to the subset of languages (or dialects) within which
R/3 operates.

Languages not known to R/3 are not permissible in Web Dynpro.

Coding principles in Web Dynpro150

An S2X file contains two different types of data: header data and content
data.

� Header data describes the properties of all the contents stored in the
file.

� Content data are the text items accompanied by supplementary infor-
mation, such as unique identifiers, that may be used in reuse or update
strategies.

This can be seen in the S2X editor as the tabs Header and Resource Text.
(See Figure 7.13 and Figure 7.14 below.)

7.8.6 Storing language specific text in .XLF files

For each type of entity that can hold language specific content, there will
be a corresponding XLF file created. These XLF files will only be created if
the developer adds some text, e. g. hard coding a value for the text prop-
erty of a Label UI element.

In general, the following XLF files will be created when language specific
content is added:

� {nv}.wdcontroller.xlf
Action texts in a view controller

� {nv}.wdview.xlf
UI element text, tooltip and imageAlt values in a view layout

� {w}.wdwindow.xlf
The value of the window’s title property

� {nc}MessagePool.wdmessagepool.xlf
Component message pool content

� {st}.dtsimpletype.xlf
Enumeration display texts, field labels, column headers and tooltips for
dictionary simple types

Notice that none of the above filenames contains a locale value. During
the development of a Web Dynpro application, the developer will only
be working in a single language—the one specified when the project was
created. Consequently, all XLF files generated during the development of
the application are assumed to belong to this locale.

151Locale-specific text

7.8.7 Translating XLF files

In the SAP NetWeaver ’04 version of the NWDS, there is not yet an IDE
based tool for translating XLF files. The creation of an XLF file for any lan-
guage other than the project default needs to be performed manually.
However, this amounts to nothing more than locating the original XLF file
in your NWDS workspace directory, and then duplicating it.11 The impor-
tant thing to remember is to include the new locale value at the correct
position in the file name.

For any new locale {l}, the original file should be copied and renamed
thus:

� {nv}.wdcontroller.xlf becomes {nv}.wdcontroller_{l}.xlf

� {nv}.wdview.xlf becomes {nv}.wdview_{l}.xlf

� {w}.wdwindow.xlf becomes {w}.wdwindow_{l}.xlf

� {nc}MessagePool.wdmessagepool.xlf becomes
{nc}MessagePool.wdmessagepool_{l}.xlf

� {st}.dtsimpletype.xlf becomes {st}.dtsimpletype_{l}.xlf

Once new locale specific XLF files have been created, the project view in
the Package Explorer should be refreshed, and then the S2X editor can be
used to edit the contents.

7.8.8 Use of the S2X editor within NWDS

SAP has created an editing tool within the NWDS that allows you to edit
.XLF files in SAP’s specific S2X format.

11 In the same directory!

Caveat confector:

The S2X editor is not a Web Dynpro specific tool. It has been provided
only to fill a functional gap in Eclipse.

The S2X editor should never be used to edit language specific content
in the project’s default language. If you have created your project in
German, then all German text belonging to UI elements, dictionary
simple types and message pools, should be edited using the standard
Web Dynpro tools.

Coding principles in Web Dynpro152

7.8.9 Editing MessagePool XLF files

To edit an XLF file, the SAP NetWeaver ’04 version of the NWDS provides
an S2X editor. If you double-click on the Message Pool belonging to a
Web Dynpro project from the Web Dynpro Explorer menu, you will see a
version of the S2X editor applicable for MessagePools.

To edit the XLF files associated with view controllers, windows, and
dictionary simple types, you should change from the Web Dynpro
Explorer view of the project to either the Package Explorer or Navigator
views. Here you can expand the src directory and locate the XLF files.
These files are marked with an icon.

The Package Explorer provides the most direct route to the XLF files, and
is shown in Figure 7.12.

By double-clicking on the view controller’s XLF file
(I18NView.wdview.xlf) shown above, you will see the editor screens in
Figure 7.13 and Figure 7.14.

Using the S2X editor, it is possible to change the source language of an
XLF file, but this change will not cause the filename to be updated
(remember, all text belonging to languages other than the project lan-
guage must have the locale {l} embedded in the file name); therefore,
such changes will create inconsistencies within your Web Dynpro pro-
ject.

If you use the S2X editor to change the XLF file associated with a Web
Dynpro view (for instance) and you have already opened that view
through the normal Web Dynpro editor, then you will not see your
text changes in the view layout until you reload the project.

Figure 7.11 S2X Editor for a Component MessagePool

153Locale-specific text

Figure 7.12 Navigator View of the XLF Files in a Web Dynpro Project

Figure 7.13 The Header Screen in the S2X Editor for a View Controller’s XLF File

Figure 7.14 The Resource Text Screen in the S2X Editor for a View Controller’s XLF File

Coding principles in Web Dynpro154

The application developer can edit all the text resources for his or her
project using the S2X editor. As was stated earlier, these XLF files are
assumed to contain text that belongs to the language specified when the
project was created.

Notice that the view of the S2X editor shown in Figure 7.11 is slightly
different from the view seen in Figure 7.14. There is a good reason for
this! The view of the S2X editor seen when editing a Message Pool from
the Web Dynpro imposes two restrictions:

� The available message types are limited to Standard, Warning, Error,
and Text because these are the only message types applicable for a
Message Pool.

� The S2X header information has been suppressed.

However, when the S2X editor is started from either Navigator or Package
Explorer views, you will see the full S2X editor, in which both the header
information and the full range of message types are accessible.

7.8.10 Runtime Locale Identification

Within the scope of a project, the locale of a Web Dynpro application can
be defined using the application property DefaultLocale. This hard
coded value will act as the application’s default locale unless it is explicitly
overridden.

Web Dynpro makes use of the standard fallback process within
java.util.ResourceBundle to determine which locale value should be
used for a particular application.

The following table shows how the fall back process works. The first col-
umn indicates the type of user accessing the system. The “Developer”
user is the only user for which the sap.locale URL parameter is consid-
ered legitimate. Once a Web Dynpro application has been developed, the
URL parameter sap.locale should not normally be used.

If a Web Dynpro application’s authentication flag is set to true, then valid
user credentials must first be supplied to the WDF before the application

Caveat confector: Do not use the S2X editor to change any text
belonging to your project’s default language! These changes should be
made through the Web Dynpro tools in order to ensure the consis-
tency of the underlying XLF files.

155Locale-specific text

can be run. If the user credentials are obtained from the User Manage-
ment Engine (UME), then the required locale value will be supplied.

7.8.11 Locale-dependent text at runtime

There are five main categories of language-dependent text that you could
need access to at runtime. The first four categories are the message types
that exist within a Message Pool:

� Error

� Warning

� Standard

� Text

The first three types are the ones used by the IWDMessageManager class
and become runtime constants within a generated class IMes-

sage{nc}.java, each message being of type IWDMessage.

Messages of type Text, however, are not accessible to the IWDMessage-
Manager class; instead, you should use class IWDTextAccessor. Messages
of type text are text strings that either have been created as language-
specific texts or have been extracted from existing code using the NWDS
Externalize Strings wizard.

Locale specified in

User URL User Id Browser DefaultLocale
property

WD
system

VM
default

Final
locale

Developer pr de en fr it ru pr

Authenticated de en fr it ru de

Anonymous en fr it ru en

Anonymous fr it ru fr

Anonymous it ru it

Anonymous ru ru

Table 7.3 Fall back process for locale determination

Important: Only Message Pool messages of type Standard, Warning,
and Error are addressable as constants in the generated class IMes-
sage{nc}. Messages of type text do not appear in this generated class.

Coding principles in Web Dynpro156

The fifth category of locale-dependent texts is those that belong to dictio-
nary simple types. These texts can be accessed through the ISimpleType
interface.

Once the application is deployed, the locale-dependent texts are stored
in standard resource bundle files.

The following example assumes that a message called Message1 of type
text has been defined in a component’s message pool. To access this spe-
cific message, you need to use the following code.

// Get the text accessor from the current component
IWDTextAccessor textAccessor =
 wdComponentAPI().getTextAccessor();

// Get the message by name from the message pool
String msgFromPool = textAccessor.getText("Message1");

Listing 7.5 Code Fragment for Obtaining a Message of Type text from the Message
Pool

Remember that the component’s message manager has no access to mes-
sages of type text, so these types of messages should be used only to
supply UI elements. The purpose of the IWDMessageManager interface is to
supply the user with informative messages about the success or failure of
the application’s functionality.

The code fragment below assumes that there is a message called Message2
of type error in the message pool. This message will be reported to the

Figure 7.15 The Interfaces needed to Access Locale-Specific Text

Deployed Project

Web Dynpro

Controller

IMessage{nc}

IWDTextAccessor

ISimpleType

Property Resource

Bundles for Session

Locale

157Locale-specific text

user with no parameters (null), and navigation will not be canceled as a
result of the error (false).

// Get the message manager from the current component
IWDMessageManager msgMgr = wdComponentAPI().getMessageManager();

// Issue a warning message using a text constant from the
// generated IMessage{nc} class
 msgMgr.reportMessage(IMessage{nc}.MESSAGE2, null, false);

Listing 7.6 Code Fragment for Issuing a Message of Type error from the Message Pool

Within any component {c}, any statically defined text, such as message
pool texts or hard-coded text values for UI elements, will be placed into
a generated resource bundle file called Resource{c}.properties.

This file can be viewed (but must not be edited!) from the Package
Explorer view in the NWDS. The general path name is:

{pr} • gen_wdp/packages • {pkg1} … {pkgn}.{nctl}.wdp •
Resource{c}.properties

7.8.12 Defining placeholders within a message text

There is often the need to be able to substitute a variable value into a
static message string. This can be achieved with numbered placeholders
within the text string. The messages are now known as message text pat-
terns.

For instance, if you are writing an application that creates business docu-
ments, you will probably want to inform the user what number the newly
created document has. Therefore, you would enter the message text into
the Message Pool as shown in Figure 7.16.

If you wish to have more than one placeholder within the text message,
simply increment the placeholder number as shown in Figure 7.17.

Figure 7.16 A Placeholder in a Text Message

Figure 7.17 Multiple Placeholders in a Text Message

Coding principles in Web Dynpro158

Where {0} is the document number, {1} is the time, and {2} is the date.

The code to issue the above documentCreated message must now supply
a parameter value:

// Get the message manager from the current component
IWDMessageManager msgMgr = wdComponentAPI().getMessageManager();

// Get the document number from somewhere...
 String docNo = getDocumentNo();

// Issue a warning message using a text constant from the
// generated IMessage{nc} class
 msgMgr.reportMessage(IMessage{nc}.DOCUMENT_CREATED,
 new Object[] {docNo}, false);

Listing 7.7 Code Fragment for Issuing a Standard Message with Placeholder Parame-
ters

Notice in Listings 7.6 and 7.7 that the class name for the IMessage{nc}
class has been generalized.

7.9 Accessing any parameter in the query string

Normally, any query string parameters will automatically be mapped to
parameters of the same name in the startup plug of the component
controller interface view.12 (Earlier versions of Web Dynpro required that
URL parameters be prefixed with app. This is no longer a requirement, but
the syntax is still supported.)

However, you may find yourself in a situation in which the calling appli-
cation passes a variable set of parameters in the query string. Under these
circumstances, it will probably be easiest to parse the entire query string,
rather than attempt to declare all possible query string names as param-
eters to the startup plug’s event handler.

Caveat confector:

All message placeholders must be sequentially numbered integers.

All placeholder values must be supplied as Java strings.

Message text patterns use java.text.MessageFormat without using
element formats.

12 The startup plug event handler will typically be called onPlugDefault().

159Accessing any parameter in the query string

You can obtain the entire query string as a java.util.Map object using the
following code:

public void onPlugDefault(IWDCustomEvent wdEvent) {
 //@@begin onPlugDefault(ServerEvent)
 // Get the entire query string as a Map object
 Map qsMap = WDWebContextAdapter.
 getWebContextAdapter().getRequestParameterMap();
 //@@end
}

Listing 7.8 Code Fragment for Obtaining a Variable Value from the Query String

This technique is particularly useful when Web Dynpro applications are
called from SAP’s Enterprise Portal.

351Index

Index

{nc} 266
{nc}Interface 267
{nv} 268

A
ABAP database updates 250
ABAP Dictionary 200, 203
ABAP function module 194
ABAP sessions 247
Action handler generalization 133
Adaptive RFC (aRFC) 189, 201
Adaptive RFC layer 198
AdaptiveRFCComp 218
Analysis phase 27
application 33, 279

parameters 34
properties 34
shutdown 36

Application event handler 260
Application interfaces 279
Architecture design 29

B
BAPI 21, 193
Binding 79
binding UI elements 125

C
Calculated attributes 63
cardinality 66
CHANGING parameters 195
check box 310
Coding principles 125
Common Model Interface (CMI) 189
Component 36

interaction 37
Java Classes 41
lifespan 37
reuse 38

Component controller 23, 39, 213, 266,
273

Component Interface controller 267
Component Interface

Java Classes 43
Component usage 274

Connection management 238
container UI element 340
Context 61, 208, 258

Attributes 62
Nodes 61

Context Attribute Name 136
Context interfaces 279
Context manipulation 103
Context mapping 40, 84, 89
Context model nodes 79, 209, 211
Context node hierarchy 127
Context nodes 125
Context structure

at design time 61
at runtime 66

Controller 22, 38, 277
Interaction 40
structure 41
types 38

Controller classes 266
Controller constructors 263
Controller interfaces 271
CPI-C 198
createNewAddress() 220
creating a technical system 243
Custom controller 24, 39, 43
Custom Controller

Java Classes 42

D
Data Modeller 208
DataContainer 258
decoupling of the UI 135
deleteAddress() 221
Design phase 27
Detail design 30
development cycle 27
Dictionary Data Types 70
doBeforeNavigation 260
doErrorMsg() 221
doPostProcessing 261
drop-down list 303

index-based 304, 312
key-based 305, 312

Dynamic context manipulation 103

Index352

Dynamic UI generation 161
Dynamic UI manipulation 261
dynamic view construction 173
dynamic view layout 173

E
element 64

selection status 65
element collection 64
Enterprise Connector 199
entity names 53
Event handling 46

actions 47
events 48

EXCEPTIONS 195
EXPORTING parameters 195
External mapping 86, 89
External public interface controller 271
Externalization 147

F
Flow layout 139
flow layout data 313
flow layout manager 314

G
generated code 266
Generated controllers 269
Generated Model Classes 204
generic API 103
generic context API 105
generic hypertext link 320
getElement(String) 164
Grid layout 142
Grid layout data 314
Grid layout manager 316

H
hook methods 263
HTTP layer 47
HTTP servlet request 33
hypertext link 320, 321

I
I{cn}Element 279
I{cn}Node 280
IContextElement 281
IContextNode 282

IExternal{nctl}Interface 271
IFrame 316
image 317
Implementation phase 31
IMPORTING parameters 195
individual tab page 326
initAddressData() 228
input field 306, 318
Interaction 37
interface controller 23
Internal private interface controller

272
Internal public interface controller 272
Internal{nc}Interface 269
Internal{nctl} 269
Internationalization 147
IPrivate{nctl} 272
IPublic{nctl} 272
items 307
IWDAbstractButton 302
IWDAbstractCaption 303
IWDAbstractDropDown 303
IWDAbstractDropDownByIndex 304
IWDAbstractDropDownByKey 305
IWDAbstractInputField 306
IWDAbstractTreeNodeType 307
IWDAction 138
IWDApplication 279
IWDAttributeInfo 283
IWDButton 309
IWDCaption 309
IWDCheckBox 310
IWDCheckBoxGroup 311
IWDComponent 273
IWDComponentUsage 274
IWDContext 284
IWDController 277
IWDDropDownByIndex 312
IWDDropDownByKey 312
IWDFlowData 313
IWDFlowLayout 314
IWDGridData 314
IWDGridLayout 316
IWDIFrame 316
IWDImage 317
IWDInputField 318
IWDLabel 318
IWDLayout 319

353Index

IWDLayoutData 319
IWDLink 320
IWDLinkToAction 321
IWDLinkToURL 321
IWDMatrixData 322
IWDMatrixHeadData 323
IWDMatrixLayout 324
IWDNode 280, 282, 286
IWDNodeElement 279, 281, 291
IWDNodeInfo 293
IWDRadioButton 324
IWDTab 326
IWDTable 328
IWDTableColumn 332
IWDTabStrip 327
IWDTextEdit 334
IWDTextView 335
IWDTree 336
IWDTreeItemType 338
IWDTreeNodeType 338
IWDUIElement 339
IWDUIElementContainer 340
IWDView 277
IWDViewController 278
IWDViewElement 342

J
Java Connectivity Builder 199
Java Connector (JCo) 198
Java Development Infrastructure (JDI)

29
JCo destination 244

and ABAP sessions 247

L
layout data 319
Layout managers 139, 319

principles for efficient use 146
Layout Managers

properties 144
Lifespan 37
LineItems 96, 99
Locale-dependent text 155
Locale-specific text 147

M
mapped context node 113
mapping 84

Matrix layout 141
matrix layout data 322
matrix layout head data 323
matrix layout manager 324
MessagePool XLF files 152
Model 21, 46, 189
Model attributes 74
Model class 190
Model nodes 74, 78
Model object hierarchies 206
Model objects 79, 207

at runtime 217
Model View Controller (MVC) 19, 21
multi-line text editor 334
multilingual support 147
multiple checkbox selection group 311

N
Naming conventions 53
naming placeholders 49
naming standards 73
Navigation 260
node names 72
Nodes 61
Normal mapping 85

P
Parameter mapping 131, 136
path length problem 54
principles of the context 82
push button 302, 309

Q
query string 158

R
radio button 324
readAddressData() 219
read-only text display 335
readSingleAddress() 220
Read-Write-Read problem 252
Recursive Nodes 75, 80
Remote Function Call 193
replicateNodeInfo() 121
Response rendering 262
response rendering stage 130
Reuse 38
RFC Architecture 199

Index354

RFC module 194
Custom written 196

RFC module interface 200
root node 336
RootUIElementContainer 164
Row layout 140
Runtime Locale Identification 154

S
S2X 149
S2X editor 151
SAP function modules 193
SAP J2EE Engine 33
SAP Supported XLIFF 149
Selection cardinality 69
Selection mapping 85
Self reference 265
service event handler 259
shortcuts 265
showNode() 178, 183
showNodeAsColumns() 185
showNodeAsTable() 187
Simple Value 238
SingleRecordView 225, 233
singleton 67
Supply functions 75
System event handler 259

T
tab page 326

aggregation 327
table 328
table column 332
TableDisplayView 222
TABLES parameters 195
technical system 243
Technical System Browser 245
text caption 303, 309
text display 335
text editor 334
text label 318
this 265
tree 336
tree item 338
tree nodes 307, 338
tree UI element 127
typed API 91

U
UI element actions 300
UI element hierarchy 176, 236
UI element properties 299

naming 302
UI elements 125, 138, 162, 339, 342

accessing 163
Appearance 301
controlling from the context 175
source property 302

UI manipulation 261
unmapped context node 108
URL 321
User modifications 266
User-defined code 125
User-defined methods 264

V
Validate modified data 258
Value attributes 74
Value nodes 73, 77
View 22, 43

Java Classes 42
View controller 24, 39, 43, 222, 268,

278
interaction 45
layout 45
lifespan 44
navigation 46

View initialization 260
View layout 277
View layout interfaces 299
visitElement() 172

W
wdDoBeforeNavigation() 260
wdDoExit() 264
wdDoInit() 264
wdDoModifyView() 164, 173, 232, 261,

262
wdDoPostProcessing() 262
wdThis 265
Web Dynpro

definition 19
design concept 21
philosophy 19

Web Dynpro action 321
Web Dynpro application 33

355Index

Web Dynpro component 23, 30, 36
Web Dynpro controller 24, 38, 207
Web Dynpro development

components 29, 38
Web Dynpro Dictionary 70
Web Dynpro Framework (WDF) 33
Web Dynpro i18n 147
Web Dynpro i18n concept 148
Web Dynpro phase model 75, 257

Web Dynpro project 29, 30
Web Dynpro view 31
Web Dynpro window 31
Web Services 21, 189

X
XLF 150
XML Language Interchange File

Format (XLIFF) 149

	SAP PRESS - Extract
	Inside Web Dynpro for Java
	Chris Whealy
	--
	Contents
	--
	Preface
	Target audience
	Author’s Apology
	Conventions
	Errata
	Acknowledgements

	[...]
	Chapter 7: Coding principles in Web Dynpro
	7.1 User-defined code
	7.2 Problems with binding UI elements to context nodes
	7.3 Building a context node hierarchy suitable for a tree UI element
	7.4 Parameter mapping
	7.4.1 Basic parameter mapping example
	7.4.2 Action handler generalization
	7.4.3 Further decoupling of the UI
	7.4.4 Advanced parameter mapping example

	7.5 Efficient use of actions to enable and disable UI elements
	7.6 Layout managers
	7.6.1 Flow layout
	7.6.2 Row layout
	7.6.3 Matrix layout
	7.6.4 Grid layout
	7.6.5 Layout Manager Properties

	7.7 Principles for the efficient use of layout managers
	7.8 Locale-specific text
	7.8.1 Introduction to multilingual support in software products
	7.8.2 Internationalization
	7.8.3 Externalization
	7.8.4 Web Dynpro i18n concept
	7.8.5 S2X-SAP’s use of the XLIFF standard
	7.8.6 Storing language specific text in .XLF files
	7.8.7 Translating XLF files
	7.8.8 Use of the S2X editor within NWDS
	7.8.9 Editing MessagePool XLF files
	7.8.10 Runtime Locale Identification
	7.8.11 Locale-dependent text at runtime
	7.8.12 Defining placeholders within a message text

	7.9 Accessing any parameter in the query string

	[...]

	Index

	http://www.sap-press.com
	(c) Galileo Press GmbH 2005

