
1

1
Architecture

NLIKE ITS PREDECESSOR, ASP.NET 2.0 is not a fundamentally new
way of building Web applications. Instead, ASP.NET 2.0 primarily

adds new features on top of an existing architecture with the goal of sim-
plifying many common tasks. This is not to say that this is a small release—
quite the contrary. With more than double the number of classes and over
40 new controls, there is more than enough “newness” to keep even the
most avid ASP.NET developer busy for quite some time exploring new
features.

The core architecture, however, which consists of pages being parsed
into class definitions and compiled into assemblies remains essentially
unchanged, as does the HTTP pipeline used to process requests. In fact, it
is possible to host most sites built for ASP.NET 1.1 directly in 2.0 without
modification, as all existing features of the 1.1 runtime are completely sup-
ported in this release.

With that in mind, this introductory chapter focuses on the architectural
changes that are made in 2.0 and how these changes affect the way you
build Web applications in ASP.NET. These changes include a new codebe-
hind mechanism, several new Page events, new specially named compila-
tion directories, the new ASP.NET compiler utility that enables static site
compilation, and Web Application Projects.

U

Onion.book Page 1 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture2

Fundamentals
We’ll begin with a brief review of the fundamentals of ASP.NET, leading
directly to a discussion of some of the new features in ASP.NET 2.0. This
section presents the evolution of generating dynamic content, beginning
with traditional classic ASP techniques and culminating in the new declar-
ative data-binding model introduced in ASP.NET 2.0.

Dynamic Content
Writing a page to process a request in ASP.NET 2.0 is very much the same
as it has been for the last few years with ASP.NET 1.1, and in fact for sim-
ple pages, it’s very much the same as its earlier predecessor ASP. The same
in-line evaluation syntax is still supported, as are server-side script blocks
so that someone with a background only in building classic ASP pages
should find this release of ASP.NET very approachable. Listing 1-1 shows
a simple page that uses a server-side script block to define a helper method
(GetDisplayItem) and then uses interspersed script to dynamically render
elements in an unordered list. It also uses the server-side evaluation syntax
(<%= %>) to intersperse dynamic content among static content—all com-
mon techniques dating back to building pages with ASP. The result of
accessing the page through a browser is shown in Figure 1-1.

Listing 1-1: SimplePage.aspx—A simple .aspx file with dynamic content

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

const int _itemCount = 10;

string GetDisplayItem(int n)

{

 return "Item #" + n.ToString();

}

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Simple page</title>

</head>

Onion.book Page 2 Wednesday, October 4, 2006 8:50 AM

Fundamentals 3

<body>

 <h1>Test ASP.NET 2.0 Page</h1>

 <% for (int i=0; i<_itemCount; i++) { %>

 <%=GetDisplayItem(i)%>

 <% } %>

 <%

 Response.Write("<h2>Total number of items = " +

 _itemCount.ToString() + "</h2>");

 %>

</body>

</html>

The difference between this page and a classic ASP page is that in
ASP.NET the entire file’s contents is parsed into a class definition and then
compiled into an assembly. Server-side script blocks are added directly to
the class definition. Interspersed script is merged into a Render method of
the class, which when called writes all of the static and dynamic content to
the response. The class itself inherits from System.Web.UI.Page, which in
turn implements the IHttpHandler interface to become an endpoint in the
request-processing architecture of ASP.NET. This was the primary shift in
the transition from classic ASP to ASP.NET: Instead of using script on your
pages to interact with classes, your page becomes a class, and the interac-
tion with other classes is identical to what it would be from any other class.
Listing 1-2 shows a slightly simplified version of what the page in Listing
1-1 turns into after ASP.NET parses it into a class definition.

Figure 1-1: Rendering of SimplePage.aspx

Onion.book Page 3 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture4

Listing 1-2: Parsed class generated by ASP.NET (simplified)1

namespace ASP

{

 public class simplepage_aspx : Page

 {

 const int _itemCount = 10;

 string GetDisplayItem(int n)

 {

 return "Item #" + n.ToString();

 }

 protected override void Render(HtmlTextWriter writer)

 {

 writer.Write("<!DOCTYPE html PUBLIC \"-//W3C//DTD " +

 "XHTML 1.0 Transitional//EN\" \"http://www.w3" +

 ".org/TR/xhtml1/DTD/xhtml1-transitional.dtd\">");

 writer.Write("\r\n\r\n<html xmlns=\"http://www.w3.org/" +

 "1999/xhtml\" >\r\n<head>\r\n<title>Simple page<" +

 "/title>\r\n</head>\r\n<body>\r\n" +

 "<h1>Test ASP.NET 2.0 Page</h1>\r\n " +

 "\r\n ");

 for (int i = 0; i < _itemCount; i++)

 {

 writer.Write("\r\n ");

 writer.Write(GetDisplayItem(i));

 writer.Write("\r\n ");

 }

 writer.Write("\r\n\r\n");

 Response.Write("<h2>Total number of items = " +

 _itemCount.ToString() + "</h2>");

 writer.Write("\r\n</body>\r\n</html>\r\n");

 base.Render(writer);

 }

 }

}

1. The page shown in this listing is similar to the code that ASP.NET will generate when it parses
your page. Steps have been taken to simplify some of the details for the purpose of presen-
tation, but conceptually it is identical to the code generated by ASP.NET. If you would like
to view the actual code that ASP.NET produces for any given page, do the following:

1. Add Debug="true" to your @Page directive.
2. Place <%= GetType().Assembly.Location %> somewhere on your page.

This will print the location of the assembly generated for your page. If you go to that direc-
tory, you will also see source code files (*.cs or *.vb) that contain the class definitions.

Onion.book Page 4 Wednesday, October 4, 2006 8:50 AM

Fundamentals 5

Server-Side Controls
Of course, most ASP.NET pages do not use interspersed script to inject
dynamic content at all. Instead, they rely on the server-side control archi-
tecture introduced with ASP.NET. Server-side controls look much like the
rest of the HTML elements in an .aspx page, but are marked with the
runat="server" attribute and are typically prefixed with the “asp” name-
space. When ASP.NET parses the page, these controls are added to the
generated class definition not as methods or code, but as member variables
representing the specific element (or collection of elements) they are
designed to render. As an example, Listing 1-3 shows the same page we’ve
been using rewritten to use server-side controls instead of interspersed
script to render the list and H2 elements.

Listing 1-3: SimplePageWithControls.aspx—A simple .aspx file using server-side controls

<%@ Page Language="C#" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

const int _itemCount = 10;

string GetDisplayItem(int n)

{

 return "Item #" + n.ToString();

}

protected override void OnLoad(EventArgs e)

{

 // Clear out items populated by static declaration

 _displayList.Items.Clear();

 for (int i=0; i<_itemCount; i++)

 _displayList.Items.Add(new ListItem(GetDisplayItem(i)));

 _messageH2.InnerText = "Total number of items = " +

 _itemCount.ToString();

 base.OnLoad(e);

}

</script>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Simple page with controls</title>

continues

Onion.book Page 5 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture6

</head>

<body>

 <form runat="server" id="_form" >

 <h1>Test ASP.NET 2.0 Page with controls</h1>

 <asp:BulletedList runat="server" ID="_displayList">

 <asp:ListItem>Sample Item 1</asp:ListItem>

 <asp:ListItem>Sample Item 2 ...</asp:ListItem>

 </asp:BulletedList>

 <h2 runat="server" id="_messageH2">Total number of items = xx</h2>

 </form>

</body>

</html>

One of the primary advantages of using server-side controls is the com-
plete separation of layout from programmatic logic. Note that instead of
adding script elements to generate the dynamic portions of the page, we
used the object model of the BulletedList control and the HtmlGenericControl
(representing the H2 element) to populate their contents. This example
also uses the fairly common technique of populating the static declarations
of the server-side controls with sample content so that it is somewhat rep-
resentative of what it will look like at runtime and will display properly in
the designer for layout purposes.

The code generated by ASP.NET is actually a bit cleaner as well. No
longer does the runtime have to create a special Render method to inter-
weave interspersed script with static HTML strings. Instead, all static con-
tent on the page is represented using LiteralControls, which act like
placeholders in the rendering process and return their associated strings
when requested to render. Listing 1-4 shows the parsed class definition cre-
ated by ASP.NET for the page shown in Listing 1-3 (the code has been sim-
plified somewhat for clarity).

Listing 1-4: Parsed class generated by ASP.NET with server-side controls (simplified)

namespace ASP

{

 class SimplePageWithControls_aspx : Page

 {

 const int _itemCount = 10;

 // Control declarations

 protected BulletedList _displayList;

 protected HtmlGenericControl _messageH2;

 protected HtmlForm _form;

Onion.book Page 6 Wednesday, October 4, 2006 8:50 AM

Fundamentals 7

 string GetDisplayItem(int n)

 {

 return "Item #" + n.ToString();

 }

 protected override void OnLoad(EventArgs e)

 {

 // Clear out items populated by control initialization

 _displayList.Items.Clear();

 for (int i = 0; i < _itemCount; i++)

 _displayList.Items.Add(new ListItem(GetDisplayItem(i)));

 _messageH2.InnerText = "Total number of items = " +

 _itemCount.ToString();

 base.OnLoad(e);

 }

 protected override void FrameworkInitialize()

 {

 Controls.Add(new LiteralControl("<!DOCTYPE html " +

 "PUBLIC \"-//W3C//DTD " +

 "XHTML 1.0 Transitional//EN\" \"http://www.w3" +

 ".org/TR/xhtml1/DTD/xhtml1-transitional.dtd\"> "));

 Controls.Add(new LiteralControl("<html xmlns=\"http://" +

 "www.w3.org/1999/xhtml\" >" +

 "\r\n<head>\r\n <title>Simple page " +

 "with controls</title>\r\n</head>\r\n<body>\r\n"));

 _form = new HtmlForm();

 _form.Controls.Add(new LiteralControl("<h1>Test ASP.NET 2.0 " +

 "Page with controls</h1>\r\n "));

 _displayList = new BulletedList();

 _displayList.ID = "_displayList";

 _displayList.Items.Add(new ListItem("Sample Item 1"));

 _displayList.Items.Add(new ListItem("Sample Item 2"));

 _displayList.Items.Add(new ListItem("Sample Item 3"));

 _form.Controls.Add(_displayList);

 _messageH2 = new HtmlGenericControl("h2");

 _messageH2.ID = "_messageH2";

 _messageH2.Controls.Add(new LiteralControl("Total number " +

 "of items = xx"));

 _form.Controls.Add(_messageH2);

 Controls.Add(_form);

continues

Onion.book Page 7 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture8

 Controls.Add(

 new LiteralControl("\r\n\r\n</body>\r\n</html>\r\n"));

 base.OnPreInit(e);

 }

 }

}

Data Binding
Most of the time you won’t even have to go through the trouble of pro-
grammatically populating the elements of a list control like we did in List-
ing 1-3, as all list controls (as well as others) in ASP.NET support data
binding. We will cover the details of data binding in Chapter 3, but suffice
it to say that you can take any enumerable collection of items and bind it to
a server-side control (like the BulletedList control) and it will autocreate
the items for you at runtime. Listing 1-5 shows an example of binding an
array of strings to the BulletedList control. The process of binding a collec-
tion of data to a control consists of setting the DataSource property to an
enumerable collection (like the array in our case or, in general, any type
that implements the IEnumerable interface). You can also set up data bind-
ing completely declaratively, as we will discuss in Chapter 3.

Listing 1-5: SimplePageWithDataBinding.aspx

<%@ Page Language="C#" Debug="true" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://

www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<script runat="server">

string[] _displayItemData = {"Item #1", "Item #2", "Item #3", "Item #4",

 "Item #5", "Item #6", "Item #7", "Item #8", "Item #9", "Item #10"};

protected override void OnLoad(EventArgs e)

{

 _messageH2.InnerText = "Total number of items = " +

 _displayItemData.Length.ToString();

 _displayItems.DataSource = _displayItemData;

 _displayItems.DataBind();

 base.OnLoad(e);

}

</script>

Onion.book Page 8 Wednesday, October 4, 2006 8:50 AM

Codebehind 9

<html xmlns="http://www.w3.org/1999/xhtml" >

<head>

 <title>Simple page with controls</title>

</head>

<body>

 <form runat="server" id="_form">

 <h1>Test ASP.NET 2.0 Page with data binding</h1>

 <asp:BulletedList runat="server" ID="_displayItems">

 <asp:ListItem>Sample item 1</asp:ListItem>

 <asp:ListItem>Sample item 2 ...</asp:ListItem>

 </asp:BulletedList>

 <h2 runat="server" id="_messageH2">

 Total number of items = xx</h2>

 </form>

</body>

</html>

The trio of parsing pages into class declarations, server-side controls,
and a generic data-binding architecture are really the three pillars of Web
development with ASP.NET. With these three core features and the .NET
runtime environment to build on, developers have created many well-
designed, scalable Web applications that are in use today. ASP.NET 2.0
builds on these pillars to give developers a more productive set of tools to
work from, as we will see over the next several chapters.

Codebehind
One of the big changes in this release of ASP.NET 2.0 is the way you specify
a codebehind class for a page. We’ll start with a review of how codebehind
classes work in ASP.NET 1.x (which is still supported), and then introduce
the new codebehind model introduced in ASP.NET 2.0.

Codebehind Basics
ASP.NET 1.0 introduced a new mechanism for separating programmatic
logic from static page layout called codebehind. This technique involves
creating an intermediate base class that sits between the Page base class
and the machine-generated class from the .aspx file. The intermediate base
class derives directly from Page, and the class generated from the .aspx file
derives from the intermediate base class instead of directly from Page.

Onion.book Page 9 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture10

With this technique, you can add fields, methods, and event handlers in
your codebehind class and have these features inherited by the class cre-
ated from the .aspx file, eliminating the need to sprinkle code throughout
the .aspx file.

Listings 1-6 and 1-7 show a sample .aspx file and its corresponding
codebehind file using the 1.0 inheritance model. Note the use of the Src
attribute in the Page directive that tells ASP.NET which file to compile to
create the base class for this page. You can also leave off the Src attribute
altogether and compile the codebehind file yourself, placing the resulting
assembly in the /bin directory of your application (this is, in fact, the most
common deployment model with Visual Studio .NET 2003).

Listing 1-6: SimplePageWithCodeBehindV1.aspx

<%@ Page Language="C#" AutoEventWireup="true"

 Src="SimplePageWithCodeBehind.aspx.cs"

 Inherits="EssentialAspDotNet.SimplePageWithCodeBehindV1" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Simple page with codebehind V1</title>

</head>

<body>

 <form id="form1" runat="server">

 <h1>Test ASP.NET 2.0 Page with codebehind V1</h1>

 <asp:BulletedList runat="server" ID="_displayList">

 <asp:ListItem>Sample Item 1</asp:ListItem>

 <asp:ListItem>Sample Item 2 ...</asp:ListItem>

 </asp:BulletedList>

 <h2 runat="server" id="_messageH2">Total number of items = xx</h2>

 </form>

</body>

</html>

Listing 1-7: SimplePageWithCodeBehindV1.aspx.cs

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Web.UI.HtmlControls;

Onion.book Page 10 Wednesday, October 4, 2006 8:50 AM

Codebehind 11

namespace EssentialAspDotNet

{

 public class SimplePageWithCodeBehindV1 : Page

 {

 protected BulletedList _displayList;

 protected HtmlGenericControl _messageH2;

 string[] _displayItemData =

 {"Item #1", "Item #2", "Item #3", "Item #4",

 "Item #5", "Item #6", "Item #7", "Item #8",

 "Item #9", "Item #10"};

 protected override void OnLoad(EventArgs e)

 {

 _messageH2.InnerText = "Total number of items = " +

 _displayItemData.Length.ToString();

 _displayList.DataSource = _displayItemData;

 _displayList.DataBind();

 base.OnLoad(e);

 }

 }

}

Codebehind 2.0
In this release of ASP.NET, the codebehind mechanism has changed
slightly (although the existing 1.0 syntax is still completely supported).
The change is so subtle that you may not even notice that it has changed
unless you look really closely. Listings 1-8 and 1-9 show the new syntax
using the same page as the previous example.

Listing 1-8: SimplePageWithCodeBehind.aspx using new 2.0 model

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="SimplePageWithCodeBehind.aspx.cs"

 Inherits="EssentialAspDotNet.SimplePageWithCodeBehind" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Simple page with codebehind</title>

</head>

continues

Onion.book Page 11 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture12

<body>

 <form id="form1" runat="server">

 <h1>Test ASP.NET 2.0 Page with codebehind</h1>

 <asp:BulletedList runat="server" ID="_displayList">

 <asp:ListItem>Sample Item 1</asp:ListItem>

 <asp:ListItem>Sample Item 2 ...</asp:ListItem>

 </asp:BulletedList>

 <h2 runat="server" id="_messageH2">Total number of items = xx</h2>

 </form>

</body>

</html>

Listing 1-9: SimplePageWithCodeBehind.aspx.cs using new 2.0 model

using System;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace EssentialAspDotNet

{

 public partial class SimplePageWithCodeBehind : Page

 {

 string[] _displayItemData =

 {"Item #1", "Item #2", "Item #3", "Item #4",

 "Item #5", "Item #6", "Item #7", "Item #8",

 "Item #9", "Item #10"};

 protected override void OnLoad(EventArgs e)

 {

 _messageH2.InnerText = "Total number of items = " +

 _displayItemData.Length.ToString();

 _displayList.DataSource = _displayItemData;

 _displayList.DataBind();

 base.OnLoad(e);

 }

 }

}

There are two significant differences between this model and the stan-
dard 1.x model: the introduction of the CodeFile attribute in the @Page
directive and the declaration of the codebehind class as a partial class. As
you start building the page, you will notice another difference: server-side

Onion.book Page 12 Wednesday, October 4, 2006 8:50 AM

Codebehind 13

controls no longer need to be explicitly declared in your codebehind class,
but you still have complete access to them programmatically, as shown in
Listing 1-9.

The reason this works has to do with the partial keyword applied to
your codebehind class. In addition to turning your .aspx file into a class
definition with methods for rendering the page, as it has always done,
ASP.NET now will also generate a sibling partial class for your codebehind
class that contains protected control member variable declarations. Your
class is then compiled together with this generated class definition,
merged together, and then it becomes the base class for the class generated
for the .aspx file. The end result is that you essentially write codebehind
classes the way you always have, but you no longer have to declare (or let
the designer declare for you) member variable declarations of server-side
controls. This was always a somewhat fragile relationship in 1.x, since if
you ever accidentally modified one of the control declarations so that it no
longer matched the ID of the control declared on the form, things suddenly
stopped working. Now the member variables are declared implicitly and
will always be correct. Listings 1-10, 1-11, and 1-12 show the relationship
between your codebehind class and the ASP.NET-generated classes.

Listing 1-10: Class for .aspx file generated by ASP.NET

namespace ASP

{

 public class samplepagewithcodebehind_aspx :

 EssentialAspDotNet.SamplePageWithCodeBehind

 {

 ...

 }

}

Listing 1-11: Sibling partial class generated by ASP.NET

namespace EssentialAspDotNet

{

 public partial class SamplePageWithCodeBehind

 {

 protected BulletedList _displayList;

 protected HtmlGenericControl _messageH2;

 protected HtmlForm _form1;

 ...

 }

}

Onion.book Page 13 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture14

Listing 1-12: Codebehind partial class that you write

namespace EssentialAspDotNet

{

 public partial class SamplePageWithCodeBehind : Page

 {

 string[] _displayItemData =

 {"Item #1", "Item #2", "Item #3", "Item #4",

 "Item #5", "Item #6", "Item #7", "Item #8",

 "Item #9", "Item #10"};

 protected override void OnLoad(EventArgs e)

 {

 _messageH2.InnerText = "Total number of items = " +

 _displayItemData.Length.ToString();

 _displayList.DataSource = _displayItemData;

 _displayList.DataBind();

 base.OnLoad(e);

 }

 }

}

 Note that this partial class model is only used if you use the CodeFile
keyword in your @Page directive. If you use the Inherits keyword without
CodeFile (or with the Src attribute instead), ASP.NET reverts to the 1.1
codebehind style and simply places your class as the sole base class for the
.aspx file. Also, if you have no codebehind at all, the class generation acts
very much the same as it does in 1.1. Since ASP.NET 2.0 is backward com-
patible with 1.1, we now have a range of codebehind options at our dis-
posal as Web developers. Visual Studio 2005 uses the new partial class
codebehind model for any WebForms, and it will also happily convert
Visual Studio .NET 2003 projects to using the new model as well if you use
the Conversion wizard. It is best, if possible, to convert all files to the new
codebehind model, since some of the new features of ASP.NET 2.0 depend
on it.2

2. As an example, strongly typed access to the Profile property bag is added to the sibling par-
tial class for codebehind classes in 2.0, but if you use the 1.1 codebehind model, that
strongly typed accessor is added directly to the .aspx-generated class definition, and it will
be unavailable to your codebehind class. This is also true for strongly typed master page
and previous page access.

Onion.book Page 14 Wednesday, October 4, 2006 8:50 AM

Page Lifecycle 15

Page Lifecycle
One of the most important things to understand when building Web appli-
cations with ASP.NET is the sequence of events during the processing of a
page. If you’re not careful, you can make changes to a control that are then
overwritten, which can result in unexpected behavior. As you build a
page, you must take care that the code you write is called at the right time
during the request processing to have the impact you expect. Fortunately,
there are many events at your disposal in the Page base class. You can usu-
ally find the correct point in time to populate controls with default values,
dynamically alter the control hierarchy, harvest POST data from the client,
or whatever else you are trying to accomplish.

Common Events
The most common events to handle in ASP.NET are the Init and Load
events. The Load event is issued prior to the rendering of a page, and it is
the ideal location to initialize control state. It is also called after the state in
a POST request has been processed and used to populate the control hier-
archy, and so it can be used to inspect the contents of data sent by the cli-
ent. The Init event, on the other hand, is called before any state restoration
occurs and is commonly used to prepare the Page for processing a request.
You can even do things like modify the control hierarchy in the Init event if
there are dynamic changes you would like to make to a page. Most
ASP.NET applications use a fairly standard event scheme in their interac-
tive pages.

1. They initialize the state of controls for the first time in the Load event
if it is the initial GET request to a page (the IsPostBack property of the
page is set to false).

2. Next, they process user responses inside the server-side event of the
control that generates the subsequent POST request.

Listings 1-13 and 1-14 show an example of this common practice with a
page and its codebehind class.

Onion.book Page 15 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture16

Listing 1-13: CommonEvents.aspx

<%@ Page Language="C#" AutoEventWireup="true"

 CodeFile="CommonEvents.aspx.cs"

 Inherits="EssentialAspDotNet.CommonEvents" %>

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Common Events Page</title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

 <h3>Enter name: </h3>

 <asp:TextBox id="_nameTextBox" runat="server"/>

 <h3>Personality: </h3>

 <asp:DropDownList id="_personalityDropDownList" runat="server" />

 <asp:Button id="_enterButton" Text="Enter" runat="server"

 OnClick="_enterButton_Click" />

 <asp:Label runat="server" id="_messageLabel" />

 </div>

 </form>

</body>

</html>

Listing 1-14: CommonEvents.aspx.cs

namespace EssentialAspDotNet

{

 public partial class CommonEvents : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 if (!IsPostBack)

 {

 _personalityDropDownList.Items.Add(new ListItem("extraverted"));

 _personalityDropDownList.Items.Add(new ListItem("introverted"));

 _personalityDropDownList.Items.Add(new ListItem("in-between"));

 }

 }

 protected void _enterButton_Click(object sender, EventArgs e)

 {

 _messageLabel.Text = "Hi " + _nameTextBox.Text +

 ", you selected " +

 _personalityDropDownList.SelectedItem.Text;

 }

 }

}

Onion.book Page 16 Wednesday, October 4, 2006 8:50 AM

Page Lifecycle 17

New Events
This release of ASP.NET introduces even more events in the Page class,
increasing the number of options you have for how to interact with the
request processing of the Page. For the most part, the new events are “pre”
and “complete” events that wrap one of the existing events. For example,
there is now both a PreLoad event as well as a LoadComplete event in
addition to the standard Load event. Figure 1-2 shows the updated
sequence of events as well as the activities that occur during the processing
of the page between the events.

Most notable among these new events are the PreInit and LoadComplete
events. PreInit is important because, as you will see in Chapter 2, themes
and master pages are applied between PreInit and Init. This means that
PreInit is your only opportunity to make programmatic modifications to
the selected theme or associated master page of a page. The LoadComplete

Figure 1-2: Events in the page lifecycle

PreInit

Themes initialized, master pages
applied, control skins applied

Init

InitComplete

CreateChildControls (if IsPostBack)
Control/View state loaded (if IsPostBack)

PreLoad

Load

Server-side events fired (if IsPostBack)

LoadComplete

CreateChildControls (if !IsPostBack)

PreRender

PreRenderComplete

Control/View state saved

SaveStateComplete

Render

2.0

2.0

2.0

2.0

2.0

2.0

Unload

Onion.book Page 17 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture18

event is also potentially quite useful as it is fired after the server-side
events have fired but before the PreRender event takes place. Many appli-
cations written in ASP.NET today resort to using the PreRender event to
make last-minute changes to control contents after server-side events fire.
LoadComplete is now the proper place to make post-event modifications
to a control, leaving PreRender as a hook for other activities.

Note that the PreInit, InitComplete, PreLoad, LoadComplete, PreRender-
Complete, and SaveStateComplete are brand new events, and that they are
only available in the Page class but not in individual controls as the other
events are.

Implicit Event Subscription
One of the first things you will notice that is different in ASP.NET 2.0 is
that Visual Studio 2005 creates event handlers for page events by enabling
AutoEventWireUp and using specially named methods that are implicitly
registered as event handlers—instead of explicitly registering delegates as
the previous release did.3 For example, to add a handler for the Load event
of the Page class, Visual Studio 2005 adds a method to your codebehind
class (or inline in a server-side script block) named Page_Load. Table 1-1
shows the complete list of method names that will be implicitly subscribed
to events if they are added to your Page class.

Implicit delegate wireup occurs when a page has the Auto-
EventWireUp attribute set to true (which is the default), and one or more of
the page’s methods matches one of the names shown in Table 1-1. The
method must also have the correct signature expected by the delegate
defining the event (typically just EventHandler). At the beginning of the
request cycle, the Page class invokes its SetIntrinsics method, which in
addition to setting the intrinsics (meaning the Response, Request, Session,
Application, and so on) calls the TemplateControl base class’ HookUp-
AutomaticHandlers method. This method walks through the list of method
names shown in Table 1-1 and uses reflection to identify methods with the
same name and proper signature defined in your class. If it finds a match,
it creates a new delegate of the appropriate type, initializes it with your
method, and adds it to the list of delegates to fire when that event occurs.

3. This is only true for Web applications written in C#, as VB.NET still uses its “Handles” syn-
tax to wire up control events.

Onion.book Page 18 Wednesday, October 4, 2006 8:50 AM

Page Lifecycle 19

Each of these events is fired by a virtual method defined in the Page
base class (or a virtual method in the Control base class and inherited by
Page). This means that it is technically possible to register for any of these
events in three different ways. For example, to handle the Load event, you
can do any of the following:

• Wire up a delegate explicitly to the event yourself (typically in your
Page’s Init handler).

TABLE 1-1: Method names and the events they bind to in ASP.NET 2.0

Method Name Event

Page_PreInit Page.PreInit

Page_Init Control.Init

Page_InitComplete Page.InitComplete

Page_PreLoad Page.PreLoad

Page_Load Control.Load

Page_LoadComplete Page.LoadComplete

Page_PreRender Control.PreRender

Page_DataBind Control.DataBinding

Page_PreRenderComplete Page.PreRenderComplete

Page_SaveStateComplete Page.SaveStateComplete

Page_Unload Control.Unload

Page_Error TemplateControl.Error

Page_AbortTransaction TemplateControl.AbortTransaction

OnTransactionAbort TemplateControl.AbortTransaction

Page_CommitTransaction TemplateControl.CommitTransaction

OnTransactionCommit TemplateControl.CommitTransaction

Onion.book Page 19 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture20

• Write a method named Page_Load with the event signature.

• Override the virtual OnLoad method.

Each of these techniques essentially accomplishes the same task, and in
the end it doesn’t matter which way you do it. The virtual method override
is going to be marginally faster than the explicitly or implicitly wired dele-
gate approaches, but in general the difference in overhead will typically be
dwarfed by other activities in your page (like data access). If you are using
Visual Studio 2005, the technique it uses for you by default is the implicit
delegate wireup based on the method’s name.

Compilation
The number of ways you can compile your code increases many times over
with the release of ASP.NET 2.0. In addition to the precompiled bin direc-
tory and the delay-compiled Src attribute deployment options in ASP.NET
1.x, you can now deploy raw source files to specially named directories
(like /App_Code). There is a new utility, aspnet_compiler.exe, which will
precompile an entire virtual directory to create a zero-source deployment
(including .aspx file content). Web Deployment Projects also has a supple-
mental addition to Visual Studio 2005, which provides even more alterna-
tives for compilation and deployment. We will cover each of these new
compilation features in this section.

Compilation Directories
In ASP.NET 1.0, the only way to deploy supplemental classes with your
Web application locally is to compile them into an assembly and place
them in the /bin directory under the virtual application root. Any assem-
bly placed in the /bin directory of an application is shadow copied to a pri-
vate directory during site compilation, and every compile that ASP.NET
issues for that site includes a reference to the shadow-copied assembly.
This ensures that you can replace the assembly in the /bin directory with
an updated one without having to shut down the Web server. When the
timestamp on a particular assembly in the /bin directory is updated (typi-
cally by replacing it with a new version), the contents of the site is recom-
piled with references to the new assembly (which is again shadow copied
prior to reference).

Onion.book Page 20 Wednesday, October 4, 2006 8:50 AM

Compilation 21

This technique of deploying precompiled assemblies is still supported
in ASP.NET 2.0, and depending on how you structure your site and your
build process, this may still be your best option going forward. There is
another option in this release, however, which is to place any source code
files that you would like to have compiled and referenced by your site’s
other elements in the new top-level App_Code directory. In fact, there are
seven new top-level folders that have special meaning in ASP.NET 2.0, as
shown in Table 1-2.

TABLE 1-2: Special compilation folders in ASP.NET 2.0

Directory Name Contents Compilation

App_Browsers .browser files (XML for-
mat files used to describe
browser capabilities)

Each .browser file is com-
piled into a method in the
local ApplicationBrowser-
CapabilitiesFactory class
that is used to populate an
instance of HttpBrowser-
Capabilities when needed.

App_Code Source code files (.cs, .vb,
etc.), .wsdl files, .xsd files
(extensible)

Source code files are com-
piled into an assembly for
use in your application.
.wsdl files are parsed into
Web service proxies and
then compiled. .xsd files
are parsed into strongly
typed DataSet classes and
then compiled.

App_Data Database files, xml data
sources, other data
source files

No compilation takes
place.

App_GlobalResources Resource files (.resx and
.resources)

Compiled into a resource-
only assembly with global
scope.

App_LocalResources Resource files (.resx and
.resources) that are asso-
ciated with a particular
page or user control

Compiled into a resource-
only assembly for access
by the associated page or
user control.

continues

Onion.book Page 21 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture22

Any source files placed in the App_Code folder will be compiled along
with all of your pages and their codebehind files when ASP.NET processes
requests for your site (or during site precompilation). This means that you
now have a complete range of deployment options, ranging from placing
all of your source code on the server (including utility classes, business lay-
ers, data access layers, etc.) to precompiling any subset and placing the
resulting assemblies in the /bin directory (or even deploying machine-
wide in the global assembly cache (GAC)). Note that the decision of where
to place your code files is purely a matter of convenience and organization.
There is no difference in performance between a precompiled assembly
and code that is placed in the App_Code folder and compiled at request
time once the compilation has taken place.4

As an example of using the App_Code folder, consider the class in List-
ing 1-15 that we intend to use as a data source for various pages in our site.

App_Themes .skin, .css, images, and
other resources

Compiled into a separate
assembly containing
resources for a particular
theme.

App_WebReferences .wsdl, .xsd, .disco,

.discomap

Generates a Web service
proxy for each endpoint
described.

Bin .dll assembly files No compilation takes
place. Assemblies placed
in this directory are
shadow copied and refer-
enced during all other com-
pilations associated with
the site.

4. There can be additional overhead the first time a request is made to a site using the
App_Code folder, but even this can be eliminated by precompiling the site (which we will
discuss shortly).

TABLE 1-2: Special compilation folders in ASP.NET 2.0 (continued)

Directory Name Contents Compilation

Onion.book Page 22 Wednesday, October 4, 2006 8:50 AM

Compilation 23

Listing 1-15: Custom data source class for deployment in the App_Code directory

// File: MyDataSource.cs

namespace EssentialAspDotNet.Architecture

{

 public static class MyDataSource

 {

 static string[] _items =

 {"Item #1", "Item #2", "Item #3", "Item #4",

 "Item #5", "Item #6", "Item #7", "Item #8",

 "Item #9", "Item #10"};

 public static string[] GetItems()

 {

 return _items;

 }

 }

}

To deploy this file, you would manually create a directory at the root of
your Web application named App_Code and place MyDataSource.cs in it.
All pages (and other generated types) in your site would then have access
to the compiled class implicitly. The class will be compiled as part of the
request sequence in much the same way .aspx files and their codebehind
files are compiled. For example, we could now rewrite our earlier data-
binding example using the ObjectDataSource control to declaratively asso-
ciate the GetItems method as the data source for our BulletedList as shown
in Listing 1-16. Chapter 3 covers the details of the ObjectDataSource; for
now, note that it can be initialized with a type name and a method name,
and when associated with the DataSourceID of a data-bound control, it
will bind the results of invoking the method on the object to the control
prior to rendering.

Listing 1-16: Simple page with declarative data binding using custom data source class

<%@ Page Language="C#" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" >

<head runat="server">

 <title>Simple page with declarative data binding</title>

</head>

<body>

 <form id="form1" runat="server">

continues

Onion.book Page 23 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture24

 <h1>Test ASP.NET 2.0 Page with declarative data binding</h1>

 <asp:BulletedList runat="server" ID="_displayList"

 DataSourceID="_itemsDataSource" >

 <asp:ListItem>Sample Item 1</asp:ListItem>

 <asp:ListItem>Sample Item 2 ...</asp:ListItem>

 </asp:BulletedList>

 <h2 runat="server" id="_messageH2">Total number of items = xx</h2>

 <asp:ObjectDataSource runat="server" ID="_itemsDataSource"

 TypeName="EssentialAspDotNet.Architecture.MyDataSource"

 SelectMethod="GetItems" />

 </form>

</body>

</html>

Site Compilation
Perhaps the most significant addition to the process of compilation in this
release is the introduction of the ASP.NET compiler. The ASP.NET compiler
(aspnet_compiler.exe) gives you the ability to completely precompile an
entire site, making it possible to deploy nothing but binary assemblies
(even .aspx and .ascx files are precompiled). This is compelling because it
eliminates any on-demand compilation when requests are made, eliminat-
ing the first post-deployment hit seen in some sites using ASP.NET 1.0. It
also makes it more difficult for modifications to be made to the deployed
site (since you can’t just open .aspx files and change things), which can be
appealing when deploying applications that you want to be changed only
through a standard deployment process.

Figure 1-3 shows an invocation of the aspnet_compiler.exe utility using
the binary deployment option and the resulting output to a deployment
directory. Note that the .aspx files present in the deployment directory are
just marker files with no content. They are there to ensure that a file with
the endpoint name is present if the “Check that file exists” option for the
.aspx extension in an IIS application is set. The PrecompiledApp.config file
is used to keep track of how the application was deployed and whether
ASP.NET needs to compile any files at request time. Note that this utility is
also accessible graphically through the Build | Publish Web Site menu
item of Visual Studio shown in Figure 1-4.

In addition to the binary-only deployment model, the aspnet_compiler
also supports an “updatable” deployment model, where all source code in

Onion.book Page 24 Wednesday, October 4, 2006 8:50 AM

Compilation 25

a site is precompiled into binary assemblies, but all .aspx, .ascx, .master,
.ashx, and .asax files are left intact so that changes can be made on the
server. This model is possible because of the inheritance in the codebehind
model so that the sibling partial classes containing control declarations can

Figure 1-3: Binary deployment with aspnet_compiler.exe

Figure 1-4: Build | Publish Web Site tool in Visual Studio 2005

Onion.book Page 25 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture26

be generated and compiled independently of the actual .aspx file class def-
initions. To generate the “updatable” site you would use -u with the com-
mand line utility, and the resulting .aspx files would contain their original
content (and not be empty marker files).

With the aspnet_compiler utility in hand, you can work on your appli-
cations without worrying about how your application will be deployed,
for the most part, since any site can now be deployed in any of three ways:
all source, all binary, or updatable (source code in binary and .aspx files in
source), without any modification to page attributes or code files used in
development. This was not possible in previous releases of ASP.NET, since
you had to decide at development time whether to use the Src attribute to
reference codebehind files or to precompile them and deploy the assem-
blies to the /bin directory. Complete binary deployment was not even an
option.

Assembly Generation
Now that compilation into assemblies can happen in one of three places
(explicitly by the developer, using aspnet_compiler.exe, or during request
processing), understanding the mapping of files into assemblies becomes
even more important. In fact, depending on how you write your pages,
you can actually end up with an application that works fine when
deployed as all source or all binary, but which fails to compile when
deployed using the updatable switch.

The general model ASP.NET uses is to create separate assemblies for
the contents of the App_Code directory as well as the global.asax file (if
present), and then to compile all of the .aspx pages in each directory into a
separate assembly. User controls and master pages are also compiled inde-
pendently from .aspx pages. It is also possible to configure the App_Code
directory to create multiple assemblies if, for example, you wanted to
include both VB.NET and C# source code in a project, as you will see
shortly. Table 1-3 describes which of your Web site components compile
into separate assemblies based on the deployment mode you are using
(note that we are ignoring the resource, theme, and browser directories
since they don’t contain code, although they are compiled into separate
assemblies as well).

There is one other twist in the assembly generation picture: You can use
the -fixednames option in the aspnet_compiler to request that each .aspx

Onion.book Page 26 Wednesday, October 4, 2006 8:50 AM

Compilation 27

file be compiled into a separate assembly whose name remains the same
across different invocations of the compiler. This can be useful if you want
to be able to update individual pages without modifying other assemblies
on the deployment site. It can also generate a large number of assemblies
for any site of significant size, so be sure to test this option before depend-
ing on it.

If this is sounding complicated, the good news is that most of the time
you shouldn’t have to think about which files map to separate assemblies.
Your .aspx files are always compiled last, and always include references to
all other assemblies generated, so typically things will just work no matter
which deployment model you choose.

TABLE 1-3: Assembly generation

Deployment Mode

All Source All Binary Updatable (Mixed)

What
Compiles
into a
Unique
Assembly

App_Code directory

global.asax

.ascx and associ-
ated codebehind
file (separate
assembly for each
user control)

.master and associ-
ated codebehind
file (separate
assembly for each
master page)

All .aspx files and
their codebehind
files in a given
directory (separate
assembly per
directory)

App_Code directory

global.asax

.ascx and .master
files and their asso-
ciated codebehind
files

All .aspx files and
their codebehind
files in a given
directory (separate
assembly per
directory)

App_Code directory (D)

global.asax (R)

.ascx and .master
files (R)

Codebehind files for
.ascx and .master
files (D)

All .aspx files in a
given directory (sepa-
rate assembly per
directory) (R)

All codebehind files
associated with .aspx
files in a given direc-
tory (separate assem-
bly per directory) (D)

When It's
Compiled

Request time Deployment time (R) = Compiled at
request time

(D) = Compiled at
deployment time

Onion.book Page 27 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture28

Customizing Assembly Generation
You have additional control in how assemblies are generated in the
App_Code directory. You can use the codeSubDirectories element to fur-
ther specify that subdirectories should be compiled into individual assem-
blies. This can be useful if you find the need to house C# and VB.NET
source code in the same project, as usually they could not be placed in the
same App_Code directory. Figure 1-5 shows a sample layout that maps
four distinct directories to different assemblies during compilation.

Web Application Projects
In May of 2006, Microsoft released an addition to Visual Studio 2005 called
Web Application Projects,5 which gives you a completely different model
for building Web applications with ASP.NET 2.0, one much more similar
to the model developers are familiar with using Visual Studio .NET 2003.
As with Web projects in Visual Studio .NET 2003, all code files in the
project are built into a single assembly, which is deployed to the local /bin

5. You can download the Web Application Projects installation from http://msdn.microsoft.com/
asp.net/reference/infrastructure/wap/default.aspx. Note that this project model does not
install with the Express versions of the product.

Figure 1-5: Creating multiple assemblies from the App_Code directory

Onion.book Page 28 Wednesday, October 4, 2006 8:50 AM

Compilation 29

directory. Because Web Application Projects have a project file and are
compiled like any class library project, they have complete support for all
class library project settings. Figure 1-6 shows a sample Solution Explorer
window from a Web Application Project.

Unlike Web projects in Visual Studio .NET 2003, Web Application
Projects do not require a virtual directory to be set up properly before the
project can be opened. By default, they use the same ASP.NET Develop-
ment Server listening on an open port for hosting pages, just as the Web
site model does. They of course support the ability to work directly against
a virtual directory hosted in IIS just as you can with Web sites.

The new partial class codebehind model is used by default with this
model just like the Web site model does; however, it also supports the 1.1
style of codebehind with no issues, which means that migrating a site from
Visual Studio .NET 2003 to Visual Studio 2005 is trivial using the Web
Application Projects model. This makes it very appealing for larger sites
that need to migrate to 2.0 without reworking all of their project settings
and codebehind files. When the partial codebehind class model is used,
there is a new source code file that is added called “xxx.aspx.designer.cs,”
where xxx is the name of the Web form. This file contains the control decla-
rations that are added implicitly by ASP.NET in the Web site model. Many
developers find this approach more compelling because all of the code for
your codebehind classes is in one place and easy to view. It is no longer
necessary to use the App_Code directory, because all source code files are
compiled as part of the project (if they are included).

Figure 1-6: Web Application Projects’ Solution Explorer window

Onion.book Page 29 Wednesday, October 4, 2006 8:50 AM

Chapter 1: Architecture30

The following are some other advantages to using the Web Application
Projects model:

• Faster compile times. Since only the source code for the project is
compiled when a build is performed, build times are faster—some-
times much faster. The drawback is that syntax errors on .as*x files
will not be detected until runtime.

• All code files are compiled into a single assembly deployed in the
local /bin directory, so it is easy to understand the dependencies in
your project.

• The project file lets you easily exclude files (and directories) from the
build process, whereas in the Web site model you must rename a file
with the .exclude extension to exclude it.

• It uses the standard MSBuild compilation process, which can be
extended using the MSBuild extensibility rules.

• All debugging features available for projects are available, including
features like Edit and Continue and pre- and post-processing steps.

Which model you end up using for building ASP.NET 2.0 applications
depends on what environment you are working in and what you are used
to. Web Application Projects were introduced to give enterprise developers
used to working with project files and performing builds a way to incorpo-
rate their Web applications into their standard working environments.
Future releases of Visual Studio will include Web Application Projects as
one of the built-in options for creating Web applications with ASP.NET.

SUMMARY

This release of ASP.NET builds upon the substrate for building Web appli-
cations introduced in version 1.0. All of the architectural features of the
ASP.NET 1.x runtime are still present in 2.0, but elements were added to
make development of Web applications more intuitive and efficient. One
of the most significant additions is the partial class codebehind model, in
which instead of manually declaring control variables in your codebehind
file, ASP.NET generates a sibling class that is merged with your class defi-

Onion.book Page 30 Wednesday, October 4, 2006 8:50 AM

Summary 31

nition to provide control variable declarations. The events in the lifetime of
a Page were augmented as well, to include many pre- and post-events to
give more granular access to points in time during a Page’s lifecycle. The
other major change architecturally is the compilation model. It is now pos-
sible to deploy Web sites as nothing but binary assemblies, as well as all
source, and many gradients in between. Developers now have many more
options for both development and deployment of Web applications with
ASP.NET.

Onion.book Page 31 Wednesday, October 4, 2006 8:50 AM

Onion.book Page 32 Wednesday, October 4, 2006 8:50 AM

