Andreas Rohr, Thomas Meigen, André Fischer

SAP NetWeaver™/Microsoft .NET™ Interoperability

Galileo Press
Bonn • Boston
Contents at a Glance

1. **Introduction** ... 13
2. **Basis: Integration Tools** .. 35
3. **User Integration** .. 97
4. **Information Integration** .. 197
5. **Process Integration** ... 243
7. **Future Possibilities** ... 343
Contents

Acknowledgements .. 11

1 Introduction .. 13
 1.1 About This Book ... 14
 1.2 Integration History .. 15
 1.2.1 SAP R/3 on Windows Server ... 16
 1.2.2 SAP R/3 on Microsoft SQL Server 19
 1.2.3 From SAP RFC via COM Connector to .NET Connector 20
 1.2.4 Integration with Microsoft Office ... 22
 1.3 Platforms for a Service-Oriented Architecture 25
 1.3.1 SAP NetWeaver ... 25
 1.3.2 Microsoft .NET .. 26
 1.3.3 A New Level of Partnership Using Web Services 28
 1.4 A Living Partnership ... 31
 1.4.1 Cooperation of Engineering Departments 31
 1.4.2 The SAP Microsoft Alliance Team 32
 1.4.3 Collaboration Technology Support Center (CTSC) 32

2 Basis: Integration Tools ... 35
 2.1 SAP Legacy Interface Technologies .. 37
 2.1.1 Remote Function Call (RFC) .. 37
 2.1.2 Business Application Programming Interface (BAPI) 45
 2.1.3 DCOM Connector .. 51
 2.1.4 Intermediate Document (IDoc) ... 53
 2.2 Development Tool SAP Connector for Microsoft .NET 55
 2.2.1 Example of a .NET Application .. 58
 2.2.2 Example of an ASP.NET Web Service 67
 2.3 Web Services .. 71
 2.3.1 SAP Business Connector ... 73
 2.3.2 SAP Web Application Server 6.20 75
 2.3.3 SAP NetWeaver Application Server as a Web Service Provider ... 77
5.3 XI Integration Examples—SOAP Adapter 252
 5.3.1 XI as a Web Service Provider 253
 5.3.2 Example: XI as a Web Service Consumer 265
5.4 BizTalk Adapter for mySAP Business Suite 284

6 Identity Management and Single Sign-On 291
 6.1 Identity Management and Single Sign-On as a
 Solution Approach .. 292
 6.2 Centralized Identity Management with
 SAP NetWeaver and Microsoft Active Directory 293
 6.2.1 Active Directory 295
 6.2.2 User Management Engine (UME) 298
 6.2.3 Directory Service Integration of
 ABAP Applications 304
 6.2.4 Central User Administration (CUA) 305
 6.2.5 SAP HR-LDAP Interface 309
 6.3 Identity Management Systems 311
 6.3.1 How Does an Identity Management System
 Work? ... 312
 6.3.2 HiPath Slicurity DirX 312
 6.3.3 Microsoft Identity Integration Server 313
 6.4 How-To Guides ... 314
 6.4.1 Configuring the LDAP Connector 315
 6.4.2 Configuring the SAP HR-LDAP Interface 320
 6.4.3 Setting up the CUA-LDAP Connection 324
 6.5 Single Sign-On .. 328
 6.5.1 SAP GUI for Windows 331
 6.5.2 SAP Logon Tickets 332
 6.5.3 Single Sign-On to the SAP NetWeaver Portal
 with Integrated Windows Authentication 333
 6.5.4 Single Sign-On to SAP Backend Systems 336
 6.5.5 Single Sign-On to Non-SAP Backend
 Systems ... 336
 6.5.6 SAML .. 340

7 Future Possibilities ... 343
 7.1 SAP and Microsoft in Today's Software Market 344
 7.2 The Future of Interoperability 345
Acknowledgements

Even though there are only three authors mentioned on the book cover, this book could not have been finished without the support of and the discussion with colleagues, partners, and friends who participated directly or indirectly in creating and correcting the manuscript. Unfortunately, we can’t mention everyone who contributed to the successful completion of this book, but would like to mention the following people.

We would like to thank the following SAP AG and SAP AG Germany employees for proofreading sections in their area of expertise and for taking time to answer our questions despite time constraints: Claudia Bossong-Iselborn, Rainer Ehre, Thomas Grassl, Martin Guthier, Chris Hearn, Reiner Hille-Doering, Christopher Kästner, Jens Koster, Jürgen Kremp, Guangwei Li, Wulf-Heinrich Knapp, Razi Mateen, Rolf Müller, Marc Noe, Udo Paltzer, Susanne Rothaug, Michael Sambeth, Eric Schemer, Serge Saelens, and Christian Stadler.

We would like to thank the following Microsoft employees for checking chapters referring to their area of expertise: Jürgen Daiberl, Hermann Däubler, and Jürgen Grebe.

In particular, André Fischer would like to thank the following colleagues for their help in configuring the XI integration scenarios and for their support in creating chapter 5, Process Integration: Matthias Allgaier, Patrick Bollinger, Stefan Grube, Daniel Möllnbeck, and Frank Pfeil.

André Fischer and Thomas Meigen would like to thank Michael Byczkowski for supporting the writing of this manuscript during their work hours.

André Fischer would like to thank his family for their understanding. Several of their evenings and weekends were sacrificed for the sake of this book. A notebook just doesn't belong at the dinner table...

Andreas Rohr would like to thank Anna and Zora for their understanding and support. He promises to be back to his old self again in...
Acknowledgements

the near future. Andreas would also like to thank his friends and colleagues Sebastian Ekat and Jens Oldenburg, whose tips and comments have always been very helpful. Thank you!

Andreas Rohr
Thomas Meigen
André Fischer
Berlin and Walldorf, February 2007
Information is an important commodity for companies. For this reason, providing information plays an important role from the perspective of interoperability and integration. This chapter discusses the options for integrating products with an emphasis on information management of Microsoft and SAP (BI and KM).

4 Information Integration

Microsoft and SAP offer products that can manage or process data and information in both unstructured and structured forms. For SAP, this involves SAP NetWeaver Business Intelligence and the SAP NetWeaver Portal (formerly SAP Enterprise Portal), including knowledge management (KM); for Microsoft, this means the SQL Server, Microsoft Exchange Server 2003, and the SharePoint products.

![Figure 4.1 Information Interoperability between SAP and Microsoft](image-url)
Figure 4.1 shows the many different combinations of interoperability scenarios between Microsoft and SAP products and systems; some will be reviewed in this chapter.

4.1 SAP Business Information Warehouse

The *SAP Business Information Warehouse* (BW) is the central component of *SAP NetWeaver Business Intelligence* (BI). This is SAP’s *data warehouse* solution and its job is to provide company data, the so-called business content, in a processed and structured way. These solutions can include structured data from SAP ERP systems and data from third-party systems.

Figure 4.2 shows the components of SAP BW. It consists of:

- SAP BW Server
- Open Hub Services
- Business Explorer (BEx) Suite
- Administrator Workbench

![Components of SAP BW](image)
Within the SAP BW Server, the following components play a role in the movement of structured data:

- Persistent Staging Area (PSA) with the Staging Engine
- Operational Data Store (ODS) with the ODS objects
- InfoCubes, that is, the OLAP Cubes of SAP BW

Two routes must be considered for integration scenarios, in addition to the display of data via the SAP BW frontend, for the Business Explorer (BEx) Suite: the route of the data into SAP BW, and the route of the data out of SAP BW; in other words, accessing SAP BW data from outside. This will be discussed in Sections 4.1.2 and 4.1.3 respectively.

But first, we will a look at an integrated Microsoft/SAP solution that has existed since the introduction of SAP BW: The SAP BW Business Explorer Suite (BEx Suite).

4.1.1 Business Explorer Suite (BEx Suite)

The Business Explorer Suite is the first point of contact for SAP BW users. It offers a range of tools for SAP BW data consumers to define and compile queries, reports, and analyses (see Figure 4.3).

![Figure 4.3 Elements of the Business Explorer Suite](image)

The following BEx components will be discussed in further detail:

- BEx Analyzer
- BEx Query Designer
- BEx Report Designer
- BEx Web Application Designer

While the BEx Analyzer is an add-in for Microsoft Excel, the last three components mentioned are particularly interesting because they are applications that were recently developed for the current version of Visual Basic .NET and are based on the Microsoft .NET Framework.

The BEx Query Designer (see Figure 4.4) is a stand-alone desktop application for defining multidimensional data queries from SAP BW. Here it provides functions for selecting the data basis (InfoCubes), defining the key figures and dimensions of the query and storing the defined query both in an Excel workbook and on the SAP BW system.

![Figure 4.4 BEx Query Designer](image)

The BEx Report Designer is the BEx Suite tool for creating reports. It draws on the queries that were previously created with the BEx Query Designer (see Figure 4.5).

The reports created with the BEx Report Designer control the drill-down and drill-up functions, which navigate within multidimensional data structures, as well as the slice and dice function. These functions support the possibility of individual views. Here, slice describes the possibility of cutting individual slices from the OLAP Cube, while dice describes a view shift or a “tipping” of this view.
The BEx Web Application Designer is a desktop application for creating Web applications that contain or show SAP BW-specific content. SAP describes the elements of such a Web application as Web Items, which may be tables, queries, diagrams, reports or cards, which create a HTML page with BW-specific content. Furthermore, the BEx Web Application Designer can also create these Web Items as iViews directly in the portal (Figure 4.6).

The BEx Analyzer is different from the tools previously described because it is an add-in for Microsoft Excel. It both enhances Microsoft Excel with SAP BW functions and uses the full range of Excel functions. It offers a possible frontend next to Web applications created by the BEx Web Application Designer and the SAP NetWeaver Portal (see Figure 4.7). Like the other BEx components, the BEx Analyzer has been considerably reworked and is available in a new version for Microsoft Excel 2003 and SAP NetWeaver BI.

The current version of Bex Analyzer differs from its predecessors in a number of ways.
Design mode Design mode is the most outstanding new feature. It supports the creation of BI applications directly in Excel and its operation is similar to that of the BEx Web Application Designer. Figure 4.8 provides...
a primary insight into design mode. Each BI InfoProvider can be integrated into Microsoft Excel here. SAP delivers a range of design items for creating Excel-based applications, which are objects that call data from data providers. The two most important ones are the analysis table, which displays the results of a query, and the navigation area, which provides access to all the characteristics and structures in the query that can be used for navigation and analysis.

Additional design items include, among others, a dropdown box, a checkbox group and a radiobutton group, which allow you to set a filter through a dropdown box, a check box or a selection button.

The integration with Microsoft Excel has been further improved. In analysis mode you can run OLAP analyses on queries that have been created with the BEx Query Designer. The results of the query are shown in the design item analysis table. In this table, together with the design item navigation area and other design items, you can navigate through the context menu by a simple drag and drop or using symbols, such as sorting, opening or closing hierarchies.

Furthermore, it is now possible to activate each InfoProvider from Excel; in earlier versions it was only possible to access InfoCubes or the corresponding queries or query views.
Local calculations can easily be inserted by the user through the context menu into the Excel Workbook, which will present a subset of the options available in the Query Designer. The formulas are created using an intuitive dialog box with simple buttons. The calculations created in this way can be stored together with the Excel Workbook.

If a query has been defined as ready for input in BEx Query Designer, you can insert data into the cells that are ready for input. Planning functions are executed in this way.

BEx Analyzer also offers a new function that allows the native formatting possibilities that Excel provides to be fully used for BEx Workbooks. This includes, among other things, the use of blank rows and different fonts. Each cell in the result set is described by the Excel function \texttt{BexGetData}. The combination of Excel formatting and formulas allows high-quality formatted workbooks to be created. These functions can be used for every query, and every query view or Info Provider (see Figure 4.9).

![Figure 4.9 Formatted Excel Workbook with Additional Local Excel Authorizations (Created in Formula Mode)](image)
4.1.2 Uploading Data in SAP BW

There is no point in having a data warehouse without data—it must be filled with data uploaded from different source systems. And you can’t talk about the data warehouse area without discussing extraction, transformation and loading (ETL). With SAP BW, this is done in the first stage in the Persistent Staging Area (PSA). Here, the data is first stored unchanged using different tools. So, we are already in the SAP BW data loading process, which we will look at more closely.

Generally, the data loading process is always controlled from SAP BW. It is the active system. This means that the data loading process must be defined and saved in SAP BW but is also executed by SAP BW by using the “Pull” procedure.

The data loading process is defined by:

- a source system
- an InfoSource as the target
- one or several DataSource(s) from the source system
- the assignment of the DataSource and InfoSource
- the update rules
- the transfer rules

Figure 4.10 shows an example of the source system selecting data. Figure 4.11 shows the application of the update and transfer rules.
Data that has been uploaded into the SAP BW staging area is consolidated in the next step and written in cleaned-up form either to InfoCubes or the Operational Data Store (ODS) objects, as illustrated in Figure 4.12.
There are various ways to upload external data into the PSA of the SAP BW Server. Often a flat-file import is used. However, the corresponding data can also be uploaded using the Staging BAPIs (BW-STA) (see Figure 4.13). These business object methods play a decisive role in the data loading process.

Their methods are described as Staging BAPIs:

- Business Object InfoObject
- Business Object SourceSystem
- Business Object DataProvider
- Business Object InfoSourceTrans
- Business Object InfoSourceTransXfer
- Business Object InfoSourceMaster
- Business Object InfoSourceMasterXfer
- Business Object InfoSourceHirchyXfer

All of these objects can be accessed and used using the BAPI interface previously discussed in Chapter 2 with Microsoft Visual Studio 2003 and the SAP Connector for Microsoft .NET 2.0. Figure 4.14 shows the objects in the Visual Studio 2003 server explorer. By doing this,
an application based on the .NET Framework could externally define and manage the data loading process.

Figure 4.14 Staging BAPI in the Server Explorer

SOAP transfer

In the age of XML, SOAP and Web services there is yet another variant for uploading the data into SAP BW—SOAP-based transfer of data. Unlike the Pull method, which is the primary data loading function for SAP BW (in which the data loading process is controlled from SAP BW), in this variant the data is delivered from outside into an inbound queue in SAP BW. This inbound queue is the Delta queue of the Service API for SAP BW, which means that the data is loaded using the Delta process. This variant is only an addition to the actual uploading of (mass) data, which runs in the file transfer, for example. You must take this into account accordingly (see Figure 4.15).

The starting point in this variant is a DataSource file. When you define the transfer rules you have the option of specifying that it is a DataSource with a SOAP connection. An XML DataSource is then generated in the Workbench. This is required for the Delta queue and is intended for loading the Delta data records. For this XML DataSource, a function module (RFC) is also generated that posts the incoming data. This RFC is created in the function group /BIO/QI<xml-datasource> and has the name /BIO/QI<xml-datasource>_RFC, where <xml-datasource> is the name of the XML DataSource. This DataSource is also the import parameter of the RFC.
This RFC can now be activated from outside after the activation of the data transfer, e.g., via a web service. From the Delta queue, the data is processed further with the staging methods already described. However, you must be aware of the following restriction: only flat structures can be used during this SOAP-based transfer. In particular, hierarchy data cannot be transferred by this means.

4.1.3 Open Analysis Interfaces

Now, since SAP BW is an open architecture, there are a number of possibilities to access the SAP BW data for reporting purposes through an alternative frontend tool.

SAP BW Open Analysis Interfaces play the most important role here. They provide a group of interface technologies that allow external applications to address queries to the SAP BW system MDX processor. MDX stands for *MultiDimensional Expression* and is a query language for multidimensional data similar to the SQL syntax. An MDX query always returns a multidimensional result set (see Figure 4.16).
The SAP BW Open Analysis Interfaces include:

- OLAP-BAPI
- XML for Analysis (XMLA)
- OLE DB for OLAP (ODBO)

Figure 4.16 Overview of SAP BW Open Analysis Interfaces

OLAP-BAPI

Let’s first look at the OLAP-BAPIs. As in the Staging area, SAP has also provided business objects and methods in the OLAP area. Specifically, there are two OLAP Business Objects:

- **MDDataProviderBW**
 The Business Object **MDDataProviderBW** provides a multidimensional provider for BW metadata and master data.

- **MDDataSetBW**
 The Business Object **MDDataSetBW** returns a result set for multidimensional queries.

Figure 4.17 shows the relevant methods of the two OLAP Business Objects. These objects and BAPIs, like the other BAPIs previously mentioned, can be accessed via Microsoft Visual Studio 2003 and the SAP Connector for Microsoft .NET 2.0.

Sample application

In a VB .NET sample application we want to use the Business Object **MDDataProviderBW.Get_Cubes** to list all SAP BW InfoCubes and their metadata. In the VS project, the Business Object **MDDataProviderBW.Get_Cubes** is added to the SAP proxy through the Server...
Explorer. A WindowsForm must then be drafted. Figure 4.18 shows this sample form.

![Figure 4.17 The OLAP-BAPI Methods](image1)

![Figure 4.18 OLAP Sample Cube MiniBrowser](image2)

By clicking on the button **Show SAP BW Cubes** we execute the following VB .NET function:

```vbnet
Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click

' BAPI parameters
Dim ds_cubtab As BAPI6110CUBTable = New BAPI6110CUBTable
Dim ds_ret2 As BAPIRET2

'SAP BW connection data
Dim bw_system As New SAP.Connector.Destination
bw_system.AppServerHost = "sapwebas640"
```

bw_system.Username = "BCUSER"
bw_system.Password = "MINISAP"
bw_system.Client = 400
bw_system.SystemNumber = 0

'Establish connection to BW
Dim sap_bw_proxy As New SAPProxy1(bw_system.Connection-String)

'BAPI call

'Display result in DataGrid
DataGrid1.DataSource = ds_cubtab
DataGrid1.Refresh()
End Sub

The BAPI call sap_bw_proxy.Bapi_Mdprovider_Get_Cubes returns the SAP table ds_cubtab based on the BAPI610CUBTable definition, which contains all the InfoCubes in the SAP BW system that are activated. The SAP table is assigned to the DataGrid as a data source, and after a refresh it displays the results in Figure 4.19.

XML for analysis

A further variant for small datasets is the specification XML for Analysis (XMLA), which also belongs to the group of SAP BW Open Analysis Interfaces and allows web-service-based access to SAP BW data.

XML for Analysis is a protocol specified by Microsoft and is now supported both by Microsoft and by SAP in version BW 3.0. It is automatically available as a web service after the SAP BW system is installed.

Figure 4.19 Result of the OLAP-BAPI Call
XMLA does not require any local client components. It allows platform-independent access to the SAP BW system using Internet technologies. Specifically, this means that a web service activates the XMLA interface, which transfers the query to the MDX processor (see Figure 4.20).

![Figure 4.20 XMLA and the MDX Processor](image)

The URL of the web service is formatted as follows:

http://[host]:8000/sap/bw/xml/soap/xmla

You can call up a description of the web service using the corresponding URL of the WSDL file:

http://[host]:8000/sap/bw/xml/soap/xmla?wsdl

The following SAP BW XMLA methods can be accessed, as shown in Figure 4.21:

- **Discover**
 This method is used to query metadata and master data. It corresponds to the BAPI `MDDataProviderBW`.

- **Execute**
 This method is used to execute MDX commands and obtain the corresponding result set. It corresponds to the BAPI `MDDataSetBW`.

The third variant is a fat-client variant that is based on the COM protocol and can only be used on a Windows platform. It uses the SAP BW OLE DB Provider, which must first be installed on the Windows system. This can be done by installing the SAP BW frontend.
The corresponding setup installs the following components of the SAP BW frontend, which are required by the SAP BW OLE DB Provider:

- **Mdrmsap.dll**: SAP BW OLE DB for OLAP Provider library
- **Mdrmdlg.dll**: Service library for establishing a link to the SAP server
- **Scerrlkp.dll**: Error processing library
- **Mdxpars.dll**: MDX parser library
- **Librfc32.dll**: SAP-RFC library
- **Wdtlog.ocx**: SAP-RFC logon dialog component
- **Saplogon.ini**: SAP connection parameter file

The last three components should be familiar after reading Chapter 2, but the key role here is **Mdrmsap.dll** as the provider library. This provider library establishes a connection from the consumer client to the OLAP BAPIs (previously described) and their methods on the BW server, and allows online access to the desired InfoCubes.

For example, we can use the SAP BW OLE DB for OLAP Providers from the Office application Excel 2003, as shown in Figure 4.22.

1 The setup is located, among other places, on the SAP-GUI installation CD. It is installed with the SAP BW frontend.
The result can then be evaluated in a pivot table, as you can see in Figure 4.23.

Figure 4.22 Excel and SAP OLE DB Providers

Figure 4.23 SAP OLE DB—Data in a Pivot Table
ODS-BAPI Another variant for accessing SAP BW system data does not belong to the SAP BW Open Analysis Interfaces, nor is it based on the multidimensional MDX processor, because it will not access multidimensional data. This variant involves using the *ODS Read BAPI*. As described in Section 4.1.4, data management is relational in the ODS and is not multidimensional.

SAP’s ODS methods allow data to be read from these ODS objects and used further, including the following methods and function modules:

- **ODSObject.GetList**
 Returns a list of the ODS objects
- **ODSObject.ReadData**
 Reads the data from the selected ODS object
- **ODSObject.ReadDataUC**
 The corresponding Unicode variant

Just like the previously described BAPIs, the ODS-BAPIs can also be accessed through Microsoft Visual Studio 2003 and the SAP Connector for Microsoft .NET 2.0 and integrated in a Windows application on a Microsoft .NET framework.

Example In the following example we will create a simple ODS browser in the form of a Microsoft .NET-based Windows application. The application will show the ODS objects from the SAP BW system that are currently active. The SAP Connector for .NET activates the function **BAPI_ODSO_GETLIST**. This is the ABAP function of the **ODSOObject.GetList** BAPI (see Figure 4.24).
Figure 4.24 ODS-BAPI in the Server Explorer

Click on the button to call the ODS-BAPI to trigger the event.

Private Sub Button1_Click(ByVal sender As System.Object, ByVal e As System.EventArgs) Handles Button1.Click
' BAPI call parameters
Dim ods_ret2 As BAPIRET2
Dim ods_ltab As New BAPI6116LTable
Dim ods_sl16tab As New BAPI6116SLTable
Dim ods_sl00tab As New BAPI6100SLTable

'SAP BW connection data
Dim bw_system As New SAP.Connector.Destination
bw_system.AppServerHost = "sapwebas640"
bw_system.Username = "BCUSER"
bw_system.Password = "MINISAP"
bw_system.Client = 400
The primary function of this example is that the BAPI call `sap_bw_proxy.Bapi_Odso_Getlist` returns the SAP table `ods_ltab` based on the BAPI6116Ltable definition, which contains all of the active ODS objects of the SAP BW system that is activated. The SAP table is assigned to the DataGrid as a data source, and after a refresh it displays the results in Figure 4.25.

![Figure 4.25 Result of the ODS-BAPI](image)

4.1.4 Open Hub Service

While the previously discussed interfaces of the SAP BW Open Analysis Interfaces and the ODS-BAPI can be used to connect frontend
tools for the reporting, SAP offers the interface *Open Hub Service* for exporting data from BW. The Open Hub Service allows data to be distributed from a SAP BW system into non-SAP data-marts, analytical applications and other applications (see Figure 4.26).

Open Hub Services are components that must be specially licensed by SAP customers.

![Figure 4.26 Classifying the Open Hub Service](image)

The Open Hub Service can be called in the SAP BW Administrator Workbench (Transaction RSA1), as shown in Figure 4.27.

When you use the Open Hub Service, its primary task is to define an *InfoSpoke* (see Figure 4.28). Within the InfoSpoke we define the:

- Open Hub datasource
- Extraction mode
- Objective—the Open Hub destination

As the Open Hub datasource we can use both ODS objects and InfoCubes, but also BW metadata.
Figure 4.27 Calling the Open Hub Service

![Open Hub Service](image1)

Figure 4.28 Defining the InfoSpoke

<table>
<thead>
<tr>
<th>InfoSpoke</th>
<th>NEWINFOSPKKE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Short description</td>
<td></td>
</tr>
<tr>
<td>Version</td>
<td>△ New □ Not Saved</td>
</tr>
<tr>
<td>Obj. Status</td>
<td>□ Inactive, not executable</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>General</th>
<th>Destination</th>
<th>InfoObjects</th>
<th>Selection</th>
<th>Transformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Source</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Destination</td>
<td>NEWINFOSPK</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extraction Mode</td>
<td>Full</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lines per Data Package</td>
<td>10250</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Last changed by</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed On</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Changed at</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
With extraction you have the option of either full mode or delta mode. In delta mode, the system only copies the data that has been newly added since the last extraction, while in full mode all data is copied from the defined data source.

As possible Open Hub destinations, an InfoSpoke can either use relational database tables with the prefix /BIC/OHxxx (xxx is the technical name of the destination) or flat CSV files.

If the data is unloaded into flat SQL server tables, they can be loaded with little effort into the corresponding Microsoft Analysis Services MOLAP Cube using the Microsoft OLE DB Provider for SQL Server for example.

Figures 4.29 and 4.30 show such an example for the Microsoft SQL Server 2000 Analysis Services.

Starting with version SAP BW 3.5, an API is offered for the Open Hub Service that helps automate the exchange of data with external programs.

Here, the data is first extracted into a database table in the BW system (destination type DB table). Once the extraction process has finished, the third-party tool (RFC destination and Open Hub destination) receives a notification. This extraction process can be started both by the SAP system and the external system.
The following Open Hub Service APIs are available in the form of RFCs and could be activated using the SAP Connector for .NET (see Chapter 2), as illustrated in Figure 4.31:

- **RSB_API_OHS_3RDPARTY_NOTIFY**
 This API sends a notification after the extraction to the third-party tool. It transfers the Open Hub destination, Request ID, name of...
the database table, number of extracted data records and time stamp. Furthermore, a parameter table can also be provided containing parameters that are only relevant for the third-party tool.

- **RSB_API_OHS_REQUEST_SETSTATUS**
 This API sets the status of the extraction into the third-party tool in the Open Hub Monitor. If the status is red, it means that the existing table was not overwritten; if the status is green, the request was processed.

- **RSB_API_OHS_DEST_GETLIST**
 This API returns a list of all Open Hub destinations.

- **RSB_API_OHS_DEST_GETDETAIL**
 This API determines the details of an Open Hub destination.

- **RSB_API_OHS_DEST_READ_DATA**
 This API reads the data from the database table in the BW system.

Optionally:

- **RSB_API_OHS_SPOKE_GETLIST**
 This API returns a list of all InfoSpokes.

- **RSB_API_OHS_SPOKE_GETDETAIL**
 This API determines the details of an InfoSpoke.

The data extraction process can also be started from the third-party tool using the process chain API **RSPC_API_CHAIN_START**. The notification to the external system is sent via **RSB_API_OHS_3RDPARTY_NOTIFY**.

The external system now reads the data from the BW table and finally copies the status of the extraction with the API **RSB_API_OHS_DEST_SETSTATUS** to the monitor.

4.1.5 Microsoft SQL Server 2000 and 2005

Another option is to use Microsoft SQL Server as a database for the SAP system and also for an SAP BW system. For Information Integration, the additional SQL Server components of Microsoft SQL Server Analysis Services and, more recently, the Microsoft SQL Server Reporting Services are also important.

2 In the forthcoming BW version, the architecture will be changed in such a way that it will no longer be possible to use InfoSpokes. However, the option of the Open Hub Destination will remain.
Analysis Services, which have been available since SQL Server 2000, are data warehouse enhancements that can be installed if required. Analysis Services for OLAP and data mining functions offer an intermediate layer between the relational database and report applications, such as Microsoft Excel. Reporting Services complement the SQL Server with sophisticated (Web) reporting functions based on ASP.NET and have been offered for download by Microsoft only to SQL Server customers since 2004 as an addition to Microsoft SQL Server 2000.

At the time of publication, Microsoft SQL Server 2005 is available. In general terms, this version offers improved functions compared with its previous version; however, it would go beyond the scope of this chapter to attempt to list all of these improvements. Nevertheless, a number of new developments are interesting in the area of SAP Information Integration.

First, the **SQL Server Enterprise Manager** was replaced with the **SQL Server Management Studio**, which will be the primary tool for SQL Server 2005 administration. Furthermore, SQL Server Management Studio also replaces the functions of the previous **SQL Query Analyzer**. Figure 4.32 shows the user interface of the new SQL Server Management Studio.

![Figure 4.32 User Interface of the SQL Server Management Studio](image-url)
Even more important for our topic of SAP integration is the fact that application development has been strengthened with Microsoft SQL Server 2005. It is separate from the database administration and has a separate development environment with the Business Intelligence Development Studio. This studio is in Visual Studio 2005 with SQL Server-specific add-ins and corresponding project templates.

SQL Server Integration Services are also newly added and they replace the previous DTS jobs. Integration Services provide data procurement and are developed in the Business Intelligence Development Studio. These services offer developers of ETL solutions additional controls and new functions. What DTS developers will like is the fact that the days of Visual Basic ActiveX-Script are over, as it is now possible to work with VB .NET. Figure 4.33 shows the user interface of Business Intelligence Development Studio for creating an Integration Services solution.

The Microsoft SQL Server Integration Services can also be used as an ETL tool for SAP BI if the data from the external sources is first imported into an SQL Server database through the standard interface
SAP BW DB Connect. However, customers must have a suitable SQL Server license to do this. If the SAP BW system is based on the SQL Server and the SQL Server Runtime license has been obtained by SAP, this SQL Server license may not be used, because it does not allow any access to data outside the SAP system.

SAP integration

There is a new version of SAP integration in addition to the SQL Server 2000 possibilities. Microsoft has made a Data Provider available, that you can use to locally access the data of the relevant system. It is roughly comparable to a driver for an ODBC data source.

In March 2006, an SAP-related Data Provider was delivered by Microsoft together with the SQL Server 2005 SP1 CTP. The full name is Microsoft .NET Data Provider 1.0 for SAP NetWeaver Business Intelligence, the shortened form is Microsoft .NET Data Provider 1.0.

This Data Provider was certified by SAP in June 2006. It uses the XMLA interface to access SAP BI data. So, it is possible to use the reporting services as a client for SAP BI. Figures 4.34 and 4.35 show examples of the steps required in the report assistant of SQL Server 2005.

Figure 4.34 Creating an SAP NetWeaver BI Data Source (1)

3 See http:\www.sap.com\partners\directories\searchsolution.ep.
4.2 SAP Knowledge Management

While structured data is handled with a Data Warehouse solution such as SAP BW, other tools are used for unstructured data and documents.

Within SAP NetWeaver, SAP Knowledge Management (KM) as a component of the SAP NetWeaver Portal, supports the user in managing unstructured data, by finding it and incorporating it into the company’s work processes. These unstructured data stocks, such as Office and PDF documents contain corporate knowledge that must be organized transparently and in an easy to access way. Retrievability and re-usage are very important here, regardless of whether the documents are stored in the KM itself or in another document management system, since this will determine whether you achieve a goal-oriented handling of this knowledge.

Figure 4.35 Creating an SAP NetWeaver BI Data Source (2)
The SAP KM therefore has the following tasks and functions:

- Data integration
- Data processing
- Data access

First, we must clarify in general terms how the data integration of external data runs into the SAP KM.

As is illustrated in Figure 4.36, the *SAP KM Repository Framework* is responsible for the data integration of SAP KM. This forms an abstraction layer between the KM and different manufacturers' document storage systems. As well as offering functions for storing and editing documents, it provides the so called *Repository Managers*. A Repository Manager is used to access relevant data sources and integrate the data in the Portal—ideally through open protocols such as the WebDAV protocol, the most common open standard for exchanging documents. These protocols look after basic operations such as reading, copying or deleting files or data. A Repository Manager must be configured for each data source being incorporated.

Figure 4.36 Classification of the KM Repository Framework

4 WebDAV stands for *Web-based Distributed Authoring and Versioning* and is an enhancement of HTTP-1.1. As an open standard, it supports the provision of files on the Internet or intranet.
In the standard version, SAP delivers the following Repository Managers for accessing Microsoft-based repositories:

1. **File system Repository Manager**
 The file system Repository Manager allows you to access Windows-based file servers. Here, the file system Repository Manager allows both read and write access to Windows file systems.

2. **WebDAV Repository Manager**
 The WebDAV Repository Manager allows read and write access to repositories that support the WebDAV protocol. You can add the following repositories using the WebDAV Repository Manager:
 - Microsoft Exchange Server (public folders)
 - Microsoft Internet Information Server (Windows file systems published via WebDAV)
 - Microsoft Windows SharePoint Services 2.0 with Microsoft’s Windows SharePoint Services (WSS) Connector for WebDAV

3. **Web Repository Manager**
 The Web Repository Manager allows read access to documents that are saved on a Web server such as an Internet Information Server (IIS).

When you access the documents through the Portal, the same authorizations should apply for users as those in the Windows operating system whose documents you want to integrate into the KM (e.g., read, write or delete authorizations). If the SAP NetWeaver Portal is being run on a Unix platform, note the functional restrictions for the file system Repository Manager listed in Table 4.1.

Figure 4.37 shows examples of the parameters that must be entered for a Repository Manager. Required parameters are the name of the Repository Manager and the prefix used to identify the Repository Manager responsible for a data source. Requirements to use additional parameters will depend on the type of relevant Repository Manager. For example, for a Repository Manager for a WebDAV access, an HTTP system must first be created in the Portal System Landscape with the corresponding system ID and cache. These details must then be given to the WebDAV Repository Manager as parameters.
The user accesses the data that has been integrated with the KM Repository Framework through the SAP NetWeaver Portal's interface. Here, users can access the folders of the KM Repository according to their user authorizations (see Figure 4.38).

SAP KM provides a flexible user interface for navigating in the system. While a standard layout is stored in the profile, the Explorer for end users is flexible in that it changes the layout within the iView from folder to folder when the user navigates in the repositories being used.
4.2.1 File System Repository Manager

To integrate documents into a NetWeaver Portal on the Unix operating system platform with the File System Repository Manager, Active Directory must be running in the function level Windows 2000 Mixed Mode. If you are using Windows as the operating system platform for your NetWeaver Portal, as well as the function level Windows 2000 Mixed Mode, you can use the function modes Windows 2000 native and Windows Server 2003. The last two modes mentioned are also referred to as Windows Server 2000 and 2003 Native Mode.

If the File System Repository Manager is used in the Portal, a Windows system must be configured to allow the Portal users to maintain the user mapping. Table 4.1 shows an overview of the availability of the File System Repository Manager, depending on the function mode of the Active Directory.

<table>
<thead>
<tr>
<th>SAP NetWeaver Portal operating system</th>
<th>Windows</th>
<th>Unix</th>
</tr>
</thead>
<tbody>
<tr>
<td>File system mount service with Windows 2000 security manager</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Microsoft IIS through the WebDAV Repository Manager</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

Table 4.1 Accessing Windows File Systems Taking Windows Access Authorizations into Account

For SAP Portals running on a Unix-based operating system that integrate the Windows file systems, instead of the File System Repository Manager you can connect the file systems through the IIS and the WebDAV Repository Manager, if the file systems are published through the IIS with WebDAV.

5 The current release restrictions for NetWeaver 2004 and NetWeaver 2004s can be found in SAP Notes 709354 and 853509.
4.2.2 WebDAV Repository Manager

The configuration of the WebDAV Repository Manager is identical for all repositories, except for the URL included. All repositories are based on IIS, but have different WebDAV implementations. Since all repositories are technically based on the IIS, a user assignment can be used for authenticating the access. If the Active Directory has been upgraded to the Windows Server 2003 function level, you can use single sign-on (SSO) with the SSO22KerbMap module. Once the authentication is successful, it uses a SAP Logon Ticket to create corresponding Kerberos tickets based on the mechanism specified by Kerberos Constrained Delegation using Protocol Transition.

Configuring the HTTP System and the WebDAV Repository Manager

First, we must define an HTTP system in the portal system landscape before configuring the WebDAV Repository Manager, as shown in Figure 4.39. The system landscape is edited with the System Landscape Editor. Go to System Administration • System Configuration • System Landscape to reach the area for administering the portal’s system landscape. In the detailed navigation, select Knowledge Management • Content Management and in the subareas Global Services • System Landscape Definitions • Systems • HTTP System.

![Figure 4.39](http://example.com/image.png)

Figure 4.39 Editing an HTTP System

Ensure that the option Same User Domain is activated for the single sign-on with SAP Logon Tickets. The various options for authenticating against the WebDAV repositories will be outlined next.
Three options are available for specifying the authentication information (credentials) for the WebDAV Repository Manager and Web Repository Manager:

1. The authentication information is given statically in the underlying HTTP system with the parameters **User** and **Password**.
2. The credentials stored in the user mapping used.
3. Single sign-on is used, based on SAP Logon Tickets.

If a central user is maintained in the HTTP system, you can access the system with the credentials of this central user; that is, all portal users will access the repository with the same access rights. If a user name and password are maintained in the HTTP system, these details will have the highest priority and any other user assignments will be disregarded.

If the user assignment is used, each user must maintain his or her own authentication information (user name and password) for this system. For service users, such as the user `index_service`, the user assignment must be performed by the system administrator.

To use a user assignment, a **WebDAV Repository Manager System Template** must be created and a WebDAV system must be set up in the portal's system landscape based on this template.

If you use the single sign-on option **Same User Domain**, with each WebDAV request, a SAP Logon Ticket will be sent to the WebDAV repository. Systems that accept SAP Logon Tickets can be integrated for the authentication of users, such as other SAP portals. With the SSO22KerbMap Module, we also can use SAP Logon Tickets for SSO to an IIS.

Since all three of Microsoft's WebDAV repositories are based on IIS, we can use SAP Logon Tickets for SSO when accessing them, and users don’t have to maintain any user assignments (see Figure 4.40).

If the SSO option was chosen using SAP Logon Tickets, service users must be created in Active Directory, for example the `index_service` user. Note that the attribute used for identifying the user in Active Directory and specified in the configuration file `SSO22KerbMap.ini` of the SSO22KerbMap module is maintained for Active Directory users. If such a user does not yet exist, it must be created.
For example, if the attribute *userprincipalname* is used as the user name for the SAP Portal, a user must be created in Active Directory whose *userprincipalname* has the value *index_service*, or the *userprincipalname* of an existing user must be changed in the Active Directory to the value *index_service*.

Configuring the WebDAV Repository Manager

The configuration of the WebDAV Repository Manager then takes place. In the portal’s System Landscape Editor, choose Knowledge Management • Content Management in the detailed navigation. In the subareas, choose the option Repository Managers and under Topics choose WebDAV Repository. Figure 4.41 shows the parameters of a WebDAV Repository Manager to access a Windows file system published by an IIS.
WebDAV is an optional component that is not automatically installed with IIS 6.0. If WebDAV was not installed during the installation of IIS 6.0, it must be added after the IIS installation. Finally, we must create a virtual directory on an IIS website. Through this virtual directory we can either publish a local directory or share on another server through the UNC name. Let's look at accessing the directory `C:\inetpub\WebDAVTest` (see Figure 4.42).

The directory `C:\inetpub\WebDAVTest` is published through IIS on the server `msctscowa3.msctsc.sap.corp` by the virtual directory `WebDAVTest`. The directory can be accessed through the following URL via WebDAV:

```
http://msctscowa3.msctsc.sap.corp/WebDAVTest
```

The WebDAVTest directory contains two subdirectories—All Users and Management. The security settings are chosen so that only members of the Management group have access to the Management directory, while all users can access the All Users subdirectory. Windows Integrated Authentication was configured for virtual directory WebDAVTest in the IIS. Figure 4.43 shows the result for a user who is a member of the Management group, and for a normal user. As you can see, the Management directory is not shown to the normal user.

Figure 4.43 Accessing the Windows Repository with Windows Authorizations

KM Integration of Microsoft Windows SharePoint Services

KM SharePoint integration is becoming more popular. This is due to the increasing prevalence of Microsoft Windows SharePoint Services in real or virtual teams, as well as the installation of a company-wide portal based on the SAP NetWeaver Portal. Often, SharePoint Ser-
vices have replaced the previous departmental directories (file shares) and contain, among other things, the corresponding Office documents that were previously stored on Windows file servers. To allow this unstructured data to also be available as content in the portal, you can incorporate it into the SAP NetWeaver Portal using the SAP-KM functionality.

To now access the content of the SharePoint Services, it is important to know how the data is stored in SharePoint Services and how "external" access is possible. SharePoint Services work with the WebDAV protocol; this standard was implemented by Microsoft for SharePoint Services, however not completely.

To offer WebDAV in the same scope as SAP KM, Microsoft announced the Windows SharePoint Services Connector for WebDAV. We had access to a beta version of this connector while writing this book. Using the Windows SharePoint Services Connector for WebDAV by Microsoft, it is possible to integrate Windows SharePoint Services by setting up a WebDAV Repository Manager in the SAP KM Repository Framework (as shown in Figure 4.36 above).

Figure 4.44 shows the result of this integration.

Running the Windows SharePoint Services Connector for WebDAV with the Microsoft Windows SharePoint Services Connector for WebDAV.

Figure 4.44 Displaying SPS Documents in the SAP NetWeaver Portal
Here you can see two views of the data stored in SharePoint, which illustrate how Microsoft SharePoint Services documents are shown within the KM user interface and how they are available to the user when accessed through Windows SharePoint Services.

KM Integration of Microsoft Exchange

In Chapter 3 we discussed the integration possibilities of Microsoft Exchange Server 2003 elements in relation to *Portal Integration, Collaboration* and the Exchange Server’s email and calendar functions.

However, if we now want to integrate additional elements, such as public folders as content, it is also possible to set up a WebDAV Repository Manager here because Microsoft Exchange Server 2003 already fully supports WebDAV technology in the standard system. This option is particularly interesting for companies that distribute information internally through public folders. It must be stressed that the idea is not to integrate individual mailboxes using SAP KM.

The procedure to incorporate this is similar to the previously described SharePoint variant. First, we must set up a new HTTP system; specify the Exchange Server URL here. To use the public folders, the following notation must be used for Microsoft Exchange Server 2003:

```
http://[Exchange Server]:[Port]/public/
```

The WebDAV Repository Manager is then configured for accessing the Microsoft Exchange Server. Figure 4.45 shows the result.

![Figure 4.45 Displaying the Public Folders of Exchange in the Portal](image-url)
Index

.NET Connector 20, 21, 29, 36, 53, 55, 107, 207, 216
64-bit Architecture 18

A
ABAP Client Proxy 85
ABAP Proxy Class 85
ABAP Web Dynpro 101
ABAP Workbench 76, 153
ABAP, Directory Service Integration 304
Action 273
 Connect 274
ActionPane 123, 127
Active Directory 293, 295
 Function Modes 231
Active Directory Application Mode (ADAM) 297
ActiveX Controls 42, 44, 105
ADAM 297, 303
Adapter Configuration Page 286
Add-In Express 112
Administrator Workbench 198, 219
ADSI Edit 297, 301, 307, 317
Advanced Web Services Protocols 29
AMD 18
Analysis Table, Design Item 203
Application Adapter 285
Application Component 273
 Assigning a Web Service 276
 Create 274
Application Link Enabling (ALE) 54
Application Object 104
Application Sharing 189
Applistructure 26, 344
ASP.NET User Control 154, 159
ASP.NET Web Service (ASMX) 67, 83, 108
Assembly Loader 113

B
BAPI 45, 207, 285
BAPI Components 36, 50
BAPI Explorer 47, 78
Basic Web Services 72
BC-SAP-USR Interface 305
BEA 243
Best Effort (BE) 245
BEx 198, 199
BEx Analyzer 199, 201
 Analysis Mode 203
 Design Mode 202
BEx Query Designer 200
BEx Report Designer 200
BEx Web Application Designer 201
BI 243
Bind Method 282
Bind Redirection 297, 303
BizTalk Adapter for mySAP Business Suite 284
BizTalk Explorer 286
BizTalk Framework Disassembler 249
BizTalk Mapper 280
BizTalk Orchestration Designer 280
BizTalk Server 278
 Architecture 249
 CIDX 252
 Orchestration 278
 Reliable Messaging 251
 Request Schema 280
 RosettaNet 252
BizTalk Server Framework 2.0 247
BizTalk Web Services Publishing Wizard 282, 283
Brokered Web Services 73
Business Application Programming Interface (BAPI) 36, 37, 45
Business Content 198
Business Explorer Suite (BEx) 198, 199
Business Intelligence Development Studio 225
Business Object Builder 48
Business Object Repository (BOR) 46
Business Process Engine (BPE) 251
Business Process Platform (BPP) 25, 344
Business Server Pages 153
BW-STA 207
Index

C

C# 27, 56
C++ 27
Calendar Reconciliation 190
Central User Administration (CUA) 294,
 305, 314
Changing Parameter 38
CIDX 252
Client/Server Architecture 16
Collaboration 188
 With SharePoint 190
Collaboration Groupware Framework 190
Collaboration Launch Pad (CLP) 188
Collaboration Technology Support Center
 (CTSC) 29, 32
 Process 33
COM 213
COM Add-Ins 128
COM Connector 20
COM Interop level 128
COM+ 51
Common Name 322
Common Programming Interface for
 Communications (CPI-C) 37
Communication Channel 255
 Create 275
Communication Channel Template 272
Component Object Model (COM) 21,
 128
Configuration Object 274
Configuration Scenario 253, 273, 274
Connection Pooling 65
Constrained Delegation Managed by ADS
 339
Construct Message Shape 280
Content Catalog 162
CPI/C 20
Create 315
Creating a Web Service in SAP XI 261
CTSC Process 33
CustomerFind Portal Component 175
CustomTaskPane 127

D

Data Adapter Wizard 176
Data Loading Process, BW 205
Data Types 268
Data-Flow-Editor 270
DataProvider 207
dataSourceConfiguration.xml 194
DCOM Connector 21, 36, 42, 51
 Components 52
DCOM Object Builder 52
Deep Hierarchy 300
Delta Queue 208
Deployment, PDK for .NET 166
Desktop Integration 97, 99
Desktop Office Integration (DOI) 23, 99
 Visual Studio Tools for Office 112
 With VBA 103
Destination Control 63
Digital Signature 333
Directory Information Tree 300
Discover, XMLA 213
Distinguished Name 301, 304, 317
Distributed Component Object Model
 (DCOM) 21
Document Management System 227
Domain 295
Drill-Down 200
Drill-Up 200
Dual-Vendor Strategy 345
Duet 24, 30, 97, 138, 142, 343, 347
 Functionality 145
 Schedule 149
 Technology 143
Duet Client 144
Duet Server 144
Duet-SAP Add-Ons 144

E

EDIFACT 54
Electronic Data Interchange (EDI) 54
Employee Self-Service (ESS) 310
Enhanced Web Services 246
Enlist Method 282
Enterprise Service-Oriented Architecture
 (Enterprise SOA) 22, 36, 93, 142, 346
Enterprise Services Repository (ESR) 49,
 93, 143, 346
epmmc 158, 164
ESA Preview System 93
ETL 205
Index

European Computer Manufacturers Association (ECMA) 28
Exactly Once (EO) 245, 251
Excel 23, 100
 In SAP GUI 101
 In VSTO 2005 121
Excel Workbook 200
Exception Handler 290
Exchange 190
Exchange Alias 193
Exchange Integration 192
Exchange Message Formatter 144
Exchange Server 191
Exchange Server 2003 197
Execute, XMLA 213
Export Parameter 38
Extraction, Transformation and Loading (ETL) 205

F

Fault Message 268
File System Repository Manager 229, 231
Find Nearby Portal Component 178
Flat Hierarchy 300
Forest 296, 304
Frontend Integration 97
Function Builder 39, 78

G

Global Assembly Cache (GAC) 121
Global Catalog 296
Groupware Integration with MS Exchange 190
GUI Machine 152

H

HiPath Security DirX 312
HTML 152
HTTP Adapter 245
HTTP(S) 244
Hypertext Transfer Protocol (over Secure Sockets Layer) 244

I

IBF Client Component 139
IBF Client Engine 139
IBF Server Component 139
IBM 243
Identity Integration Feature Pack (IIFP) 297
Identity Management 291, 292
Centralized 293
Identity Management System (IMS) 311, 312
IDoc 53, 285
Data Structure 54
IDTExtensibility2 Interface 130
IIS Manager 282
IIS Proxy Module 334
Impersonation 339
Import Parameter 38
Inbound Interface 258, 268, 269
Inbound Queue 42
Industry Standards 252
InfoCubes 199, 200
InfoObject 207
InfoPath 121, 132
InfoSourceHierarchyXfer 207
InfoSourceMasterXfer 207
InfoSourceMastr 207
InfoSourceTrans 207
InfoSourceTransXfer 207
InfoSpoke 219
Input Message 269
Instant Messaging 189
Integration 13
Integration Directory 266, 270, 274
Integration Engine, Monitoring 264
Integration Repository 262, 265, 270
Integration Scenario 273
Integration Scenario Configurator 274
Integration Server 73, 88
Intel 18
Intel Processor 17
Interface Determination 257, 259, 270
Interface Mapping 258
Create 270
Interface Repository 48
Intermediate Document (IDoc) 36, 37, 53
Index

Microsoft Identity Integration Server
2003 (MIIS) 297
Microsoft Management Console (MMC)
164, 297
Microsoft Office 22, 98, 99
 Integration in Web Dynpro 100
Microsoft Office 2003 Web Services Tool-
kit 2.01 106
Microsoft Office 2007 113
Microsoft SAP Global Alliance Team 32
Microsoft Smart Client Technology 29
Microsoft SOAP Type Library v3.0 109
Microsoft Transaction Server (MTS)51
MS SQL Server Analysis Services 223
MS SQL Server Reporting Services 223
msaddndr.dll 130
mssoap30.dll 109
MultiDimensional Expression 209
mySAP Business Suite 344
mySAP CRM 243
mySAP SCM 243
mySAP SRM 243

N

Namespace 266
Navigation Area, Design Item 203
Negative User Filter 301
Nested Groups 300
NTFS 17

O

OASIS Web Services Reliable Exchange
(WS-RX) TC 246
Object Linking and Embedding see
OLE 23
Object Navigator 38, 84
Object-Based Navigation (OBN) 165
OBNAdapter 165
OBNView-Control 165
ODS Read BAPI 216
ODS-BAPI 216
ODSObject.GetList 216
ODSObject.ReadData 216
ODSObject.ReadDataUC 216
Office 2003 Add-In 129
Office Information Bridge Framework
(IBF) 138
OLAP Analysis 203
OLAP Cubes 199
OLAP-BAPI 210
OLE 23
OLE DB for OLAP (ODBO) 210, 213
OLE2 Integration 99
Open Analysis Interfaces 209
Open Hub Destination 221
Open Hub Service 198, 218
Open Hub Service API 221
Operational Data Store (ODS) 199, 206
Oracle 17
Orchestration as a Web Service 282
Organization for the Advancement of
Structured Information Standards
(OASIS) 311, 341
Organizational Units 295, 300
Outbound Interface 258
Outlook 121, 128
Outlook Add-In Project Templates 129
Outlook Calendar 195
Outlook COM Add-Ins 131
Outlook Web Access 192
Output Message 269
OWA Calendar 194

P

Page-Level Locking 19
Passwords 291
People Integration 97
Persistent Staging Area (PSA) 199, 205
Pivot Table 215
PNegoLoginModule 333
Point2Point Web Services 72
Portal Add-In for Visual Studio 2003 155
Portal Archive (PAR) 156
Portal Business Package 153
Portal Content Portfolio 153
Portal Content Studio 152
Portal Content Tools 152
Portal Development Kit 153
Portal Development Kit for .NET 154
Components 154
Installation 155
iView Creation 159
Portal Development Kit for Microsoft
150
Portal Drive 239
Portal Drive Service 240
Portal Integration 98, 149
Portal Page Designer 164, 184
Portal Runtime for Microsoft .NET 155
Portal Style Designer 165
Portal System Landscape 229
Portal System Profile 170
Portal System Wizard 172
PowerPoint 127
Primary Interop Assemblies (PIAs) 128
Proxy-to-Proxy Communication 252
Proxy-to-RFC Communication 252
Public Key Certificate 333
Pull Procedure 205
QoS 246
QoS 246
Quality of Service 245
Q
QoS 246
qRFC 42
Quality of Service 245
R
R/3 Enterprise 243
Receive Shape 280
Receiver 290
Receiver Agreement 260
Receiver Determination 256, 258, 276
Relative Distinguished Name 322
Reliable Messaging 245, 246
Remote Function Call 247, 251
Repository Manager 228
Request Message 268
Request Schema 279
Resend Mechanism 270
Response Message 268, 270
Response Schema 279
RFC 20, 36, 37, 285
Queue 42
S
sAMAccountName 322
SAP BAPI ActiveX control 50
SAP Business Connector 72, 73
SAP Business Framework 46
SAP Business Information Warehouse (BW) → see SAP BW 198
SAP Business Object 46
SAP BW 198
Components 198
Data Upload 205
Open Analysis Interfaces 209
Upload via SOAP 208
SAP BW Frontend 199
SAP BW Open Analysis Interfaces 218
SAP BW Server 198, 199
SAP Connector for Microsoft .NET → see .NET Connector 36, 53
SAP Connector Proxy 58
SAP Developer Network 30, 34, 155
SAP Document Container Control 99
SAP Enterprise Portal Development Kit for Microsoft .NET 29
SAP Function Control 44, 105
SAP GUI for Windows 331
SAP HR-LDAP Interface 294, 304, 309, 314
Architecture 309
Configuration 320
SAP Interface Technologies 36
SAP KM Repository Framework 228, 237
SAP Knowledge Management → see Knowledge Management (KM) 227
SAP Logon Control 45
SAP Logon Ticket 233, 329, 332
SAP Management Agent 313
SAP Microsoft Competence Center 32
SAP NetWeaver 25, 35, 243
SAP NetWeaver .NET Controls 156
SAP NetWeaver Application Server
 As a Web Service Client 83
 Web Service Provider 77
SAP NetWeaver Application Server 6.40 77
SAP NetWeaver AS Web Services 36
SAP NetWeaver Business Intelligence (BI) 197, 198
SAP NetWeaver Controls 164
SAP NetWeaver Developer Studio 153
SAP NetWeaver Exchange Infrastructure 243
SAP NetWeaver Portal 24, 97, 98, 149, 227
 Components 151
SAP Portal Application 159
 Deployment 163
SAP Portal Component 159
SAP Portal Page 184
SAP Portal System Template 169
SAP R/2 16, 20, 37
SAP R/3 16
 Porting to SQL Server 19
 Porting to Windows 17
SAP Table View Control 45
SAP TableFactory Control 45
SAP Web Application Server 6.20 75
SAP Web Server Filter 337
SAP XI 75, 87, 243
 As a Web Service Consumer 265
 CIDX 252
 Creating a Web Service 261
 HTTP Adapter 245
 Integration Engine 264
 Message Processing 247
 Protocol 247
 Reliable Messaging 247, 251
 RosettaNet 252
 SOAP Adapter 245, 252
SAP XI as a Web Service Provider 253
SAP XI Web Services 36
 sapevt.exe 307
 Saplogon.ini 214
 Sarbanes-Oxley 312
 Scerrlkp.dll 214
 Scheduling 190
 Schema 296
 Schema Extension 306, 326
 Schema Generation Wizard 286
 Schema Mapping 280
 Scripting Functoid 280
 SD Benchmark 18
 Secure Network Communications (SNC) 329, 331
 Secure Sockets Layer (SSL) 299
 Secure Store 317
 Security Assertion Markup Language (SAML) 340
 SeeBeyond 243
 Send Shape 280
 Server Explorer 156
 Service Provisioning Markup Language (SPML) 298, 311
 Service-Oriented Architecture (SOA) 25, 346
 SharePoint 150, 166, 190, 197
 SharePoint Services, KM Integration 236
 ShowDirections Portal Component 186
 Simple Object Access Protocol 244
 Single Sign-On 291, 292, 293, 328
 WebDAV Repository Manager 234
 Slice&Dice 200
 SmartDataSet 67
 SmartCard 331
 SmartTag Recognizer 123
 SOAP 26, 244, 346
 SOAP Adapter 87, 252
 SOAP Header
 BizTalk 250
 XI 248
 SOAP Message Format 247
 SOAP Runtime 76
 Software Component Version 265
 Software Delivery Archive 156
 Software Deployment Manager (SDM) 157
 SourceSystem 207
 SPLDAP_RECEIVE_ATTRIBUTES 320, 322
 SPNegoLoginModule 334, 336
Index

SQL Connection String 173
SQL Query Analyzer 224
SQL Server 19, 197
SQL Server 2000 223
SQL Server 2005 224
SQL Server Enterprise Manager 224
SQL Server Integration Services 225
SQL Server Management Studio 224
SqlDataAdapter 177
SSO22KerbMap Module 233, 302, 338
Staging BAPI 47
Standard Adapter 244
Strong Name 121, 282
Support Tools 297, 301
Swimlanes 273
System Alias 174
System Landscape Directory 266
System Landscape Editor 232, 234
System User 317

T

Table Parameter 38
TaskPane 123, 139
Technical System 266
TIBCO 243
Total Cost of Ownership (TCO) 19

Transaction
BAPI 47
LPCONFIG 85
RSA1 219
SE37 38
SE80 78, 84
SE84 38
SICF 77
SMQ2 42
WSADMIN 80

Transaction LDAP 315
Transaction LDAPMAP 306, 321, 324
Transaction SXIDEMO 277
Transform Shape 280
Transmitter 290
Transports, API-Set 191
tRFC 41

U

UDDI 26, 346
Unicode 53

Unique ID 303
Universal Groups 302
Unix 18
User Credentials 233
User Management Configuration Tool 299
User Management Core Layer 298
User Management Engine
Configuration 299
User Management Engine (UME) 294, 298, 305
User Mapping 173, 174, 336
User Persistence Stores 298
Users and Computers 323

V

VBA Editor 103
Visual Basic 103
Visual Basic .NET 27, 56
Visual Basic for Applications (VBA) 103
Visual Composer 152
Visual Studio 20
Web Service Wizard 116
Visual Studio .NET 29
Visual Studio 2005 121
Visual Studio Tools for Office (VSTO)
104, 112
Versions 112
Vitria 243
VS Toolbox 156
VSTO 112
VSTO 2.0 123
TaskPane 124
VSTO 2005, Integration with SAP 124
VSTO Assembly 119
VSTO Loader 119
VSTO Roadmap 128
VSTO V3 127
Action Pane 127

W

WDOBAPLOCX 50
WDTAOCLX.OCX 45
WDTFUNCS.OCX 44, 105
WDTLOG.OCX 45, 214
WDTVOC.OCX 45
Web Dynpro 153
Index

Web Item 201
Web Repository Manager 229
Web Server Filter 333, 337
Web Service
Adding to .NET-Client 81
Calling in Excel 117
MapPoint 167
Publish 278
XI 88
Web Service Browsers 76
Web Service Consumer, SAP XI 265
Web Service Creation Wizard 73, 77
Steps 79
Web Service Declaration 69
Web Service Framework 77
Web Service Provider, XI 253
Web Services 28, 71, 243
Launching from BAPI Explorer 78
Launching from Function Builder 78
Web Services Toolkit 104
And SAP Web Services 107
And VBA 106
WebDAV 228
WebDAV Repository 231
WebDAV Repository Manager 229, 232, 237
Configuration 234
Single Sign-On 234
WebDAV Repository Manager System Template 233
Webfolder 239
Webparts 98, 150
Windows File Explorer, KM Integration 239
Windows File System
KM Integration 235
Windows File Systems
Accessing Through the Portal 231
Windows for Workgroups 16
Windows Integrated Authentication 236, 333, 338
Windows Server 16
Windows Server 2000 Native Mode 231
Windows SharePoint Services 24, 29, 236
Windows SharePoint Services Connector for WebDAV 237
Windows 2000 Mixed Mode 231
Windows 2000 Native 231
Windows NT 16
Windows Forms 58, 67
wldap32.dll 305
Word 100
WSDL 26, 346
WSDL File 83
Import as an External Definition 267
XI Web Service 89
WSDL File, Generating 80

X
X Terminal 16
X.509 Certificate 333
xApps 243
XI Protocol 247
XML 26, 346
XML for Analysis (XMLA) 210, 212
XML Messaging 243
XMLA Methods 213
XPATH 256
xRPM 243