
ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:145

CHAPTER
4

Database Tuning:
Making It Sing

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:10:01 AM

Color profile: Generic CMYK printer profile
Composite Default screen

I
f backup and recovery are the most important things a DBA does,
then tuning is the runner-up. Oracle’s database engine is a highly
tunable creature and, metaphorically speaking, you can make it
sing by monitoring how Oracle performs as it runs, and then
adjusting different parameters, increasing (hopefully) its performance.

It’s often the case that the time spent waiting for various computing
functions to finish adversely impacts both a company’s expenses and its
man hours. Time is wasted when users have to wait (sometimes for extended
periods of time) for queries to be returned. Sometimes it’s imperative your
system keeps pace with the speed and ever-increasing needs of the business
community, or perhaps you need to optimize use of your existing hardware
infrastructure particularly at a time when organizations insist on doing more
work, even with less capital invested in hardware. In the words of Gaja
Krishna Vaidyanatha (co-author of Oracle Performance Tuning 101 and
owner of DB Performance Management Consulting), you may be one of the
unfortunate souls suffering from “compulsive tuning disorder,” who spends an
inordinate amount of time tuning the database by looking at irrelevant things.

Whatever your reason for tuning, however, and regardless of the approach
you take, the fact is you’ll often be called upon to spend time in the tuning
arena.

While there are widely differing schools of thought concerning tuning
methodology, what to tune typically falls into six major categories.

Database Design
Optimally, if you can (that is to say if you’re lucky enough to have a say in
the design process), the biggest bang for the tuning buck is typically at
database design time. Knowing the design, being able to put structures in
place from the get-go, and normalizing the design to the extent it is practical
(even third normal form is too normal for some databases) will go a long
way when it comes to tuning. Understanding how users will use the data
also helps, and not being afraid of employing a lot of Oracle’s new features
(new as of Oracle 8, Oracle 8i, Oracle 9i, or even Oracle 10g) even if they
are scary new features like materialized views, dimensions, and partitioning

146 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:146

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:10:18 AM

Color profile: Generic CMYK printer profile
Composite Default screen

can also benefit a design, either from the planning stage or even later, after
the database is in place. Also, a word to the wise: work with your system
administrators to lay the files out on disk as optimally as possible. They
know the disks that will perform better, if your organization segregates job
responsibilities between system administration and database administration,
and you know the tables and tablespaces that are likely to be more active.
Many that don’t know end up putting the most active data on the least well
performing disks.

Application Tuning
If you can’t tune the database design, the next best option is to tune the
application and the application code. In many cases, the 80-20 rule applies.
Eighty percent of all performance problems can be resolved with coding
more optimal SQL or appropriately scheduling batch jobs during off-peak
hours. Of course, if you’re in a global organization, finding an off-peak time
may be next to impossible, but it’s still worth a try. The majority of this chapter
will cover this kind of tuning.

Memory Tuning
Properly sizing the SGA, your database buffers, and pools can go a long way
towards maintaining an efficiently running database. Having sufficient space
to allow you to pin objects into memory, in particular those frequently used
on large objects, can limit the amount of disk access needed. Of course, it’s
difficult by any stretch of the imagination to justify pinning a few billion-row
tables into memory, even if it were possible, but in this, as with all things,
moderation is the key.

Disk I/O Tuning
The proper placing of datafiles and aptly sizing them to provide the maximum
throughput of data from disk to the application can be an important step in
tuning. Again, placing active files on controllers with the best throughput
can mean your users won’t notice the application slowing down. The best
throughput possible can mean your application won’t be noticeably slowed
down.

Chapter 4: Database Tuning: Making It Sing 147

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:147

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:10:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Database Contention
To really tune a database and make it sing well, it is important to have the
best understanding possible of not only all of the components of the database,
but of the way they operate together and interact. Two, often misunderstood,
components are locks and latches.

In order for different users to share and access resources concurrently
(and remember, as far as the database is concerned, a process is nothing
more than a user) and serialize access to the SGA, and in order to protect
the contents of the database while they are being modified and accessed by
users and processes, Oracle employs the use of locks and latches.

Latches provide exclusive access to protect the data structures. With
latches, requests are not queued; if a request fails, it fails, but it may try
again later. They are simple, very efficient data structures whose purpose is
to protect resources that are briefly needed. Latches can be requested in one
of two modes: the patient, willing-to-wait mode that says “It’s okay if you
aren’t available right now, I will just sit around out here waiting for whatever
resource to become available and then try again” or the immediate or no-
wait mode (ever have to deal with a toddler or a teenager?) that says “NOW!
I want it now! Give it to me now!” Sometimes, when more than one latch is
requested on a resource latch, contention can occur and this can affect
performance significantly if enough latches are not available or when a latch
is being held for a relatively long time. Latch contention can be resolved by
upping the init.ora parameters.

Locks provide serialized access to some resources. Requests that fail are
queued and are processed and serviced in order. These are more complex
and less efficient data structures that are often protected themselves by
latches and which protect resources (like tables) that are needed for a longer
time. Locks allow sessions to join a queue for resources that are not readily
available and are used to achieve consistency and data integrity. Locks are
either invoked automatically by Oracle or can be invoked manually by users.

When it comes to database contention, watch locks and latches. Pay
attention to wait events—look at them closely and eliminate as many of
those that are avoidable as you can.

V$SESSION_WAIT dynamic view can be monitored for latch-free waits
(P1 parameters tell you the SGA address and correspond to the V$LATCH_
PARENT and V$LATCH_CHILDREN views, P2 parameters tell you the type
of latch, and P3 parameters tell you the number of times that the process
that is trying to acquire the latch has had to sleep).

148 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:148

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:10:46 AM

Color profile: Generic CMYK printer profile
Composite Default screen

V$RESOURCE provides you a view into locked resources that are causing
lock queues to form. V$ENQUUEU_LOCK tells you the enqueue state
caused by the locks. All locks that are held by Oracle or that are outstanding
requests for locks can be found in the V$LOCK view.

Excessive numbers in any of these V$ views can indicate that you may
have a problem in your system with people having to wait, sometimes
unnecessarily.

Operating System Tuning
Monitor and tune the overall operating system, checking CPU usage, I/O,
and memory utilization. Many tools are available to help you with this.
Several depend on the operating system on which they run, while some are
fairly OS-transparent.

Finding the Trouble
It is difficult, at best, to fix the trouble if you don’t know what’s wrong with
the application or code. Oracle thankfully provides many tools useful to a
DBA in trouble. The majority of this chapter is thus dedicated to these tools,
their use, and how to determine exactly what it is that’s broken.

EXPLAIN Please
The first procedure you should develop when tuning is running (and demanding
that others show you proof of running) an EXPLAIN PLAN for every non–ad hoc
SQL query. While you can’t actually get most of the end users to provide
them, it is always helpful if you can acquire the explains for those ad hoc
and often horribly created queries as well.

Traces
Traces are one of the most useful tools Oracle provides. They’re the base
on which many other tools ride. Oracle background processes, such as log
writer, pmon, smon, or database writer, create many trace files automatically
whenever they encounter an exception. These trace files (often the exception
as well as the trace name) are recorded in the alert log and are created to
provide a dump of the information surrounding the exception. They’re also

Chapter 4: Database Tuning: Making It Sing 149

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:149

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:10:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

150 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:150

frequently used for diagnostic purposes. I’ll discuss them in greater detail in
Chapter 5.

In this chapter, I’ll cover the trace files that are deliberately created when
attempting to fine-tune information.

AUTOTRACE
AUTOTRACE causes Oracle to print out the execution plan for the SQL
statement following the AUTOTRACE command, and details the number of
disk and buffer reads that occurred during the execution. It offers instant
feedback on the execution plan for any successful SELECT, INSERT, UPDATE,
or DELETE statement based on information that it stores in a plan table
(which has to be present) under the user’s schema. It also requires that the
plustrace ($ORACLE_HOME/sqlplus/admin/plustrce.sql) or DBA role be
granted to the user executing the trace. These reports are particularly useful
in monitoring, and are an excellent tool for tuning the performance of any
given statement.

Controlling the report is a simple matter, accomplished by setting the
AUTOTRACE system variable. Table 4-1 shows the different AUTOTRACE
commands along with their descriptions.

It’s important to remember that you can only use AUTOTRACE if you’ve
been granted the PLUSTRACE role and a PLAN_TABLE has been created in
your schema. It’s often not a bad idea to grant the PLUSTRACE role to public
so that anyone wishing to have a better understanding about what his or her
SQL is doing can use the trace function. Couple this with the creation of a
PLAN_TABLE as SYSTEM and creating a public synonym and granting SELECT,
INSERT, UPDATE, and DELETE on the PLAN_TABLE to public to complete the
ability for everyone to do an EXPLAIN or an AUTOTRACE. But you knew that.

Before you can grant the PLUSTRACE role, however, you must first create it.
To create the PLUSTRACE role, use the following commands:

CONNECT / AS SYSDBA
@$ORACLE_HOME/SQLPLUS/ADMIN/PLUSTRCE.SQL

Now, grant it to public.

SQL>GRANT PLUSTRACE to PUBLIC;

Then:

SQL>@$ORACLE_HOME/rdbms/admin/utlxplan

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:11:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

EXPLAIN PLAN
If AUTOTRACE creates a report of what execution path and statistics (and
the statement was successful) did, an EXPLAIN PLAN is what you should
create first (or what would be best for developers to provide you with when
they submit a script for you to install) when you create a SQL statement or
when you embed SQL in a package or procedure. The EXPLAIN PLAN shows
you what Oracle’s optimizer intends to do whenever it tries to run the
statement.

The EXPLAIN PLAN output report is generated using the EXPLAIN PLAN
command.

An EXPLAIN PLAN tells you how Oracle and the Cost-Based Optimizer
(CBO) plan to execute your query. This information is particularly useful in
tuning SQL queries that run against the database (whether stored in the
database or in a third-party tool or as scripts in a file system) in order to
structure either the queries or the data and database objects in order to get
the queries to perform better. Once you have some idea how Oracle thinks

Chapter 4: Database Tuning: Making It Sing 151

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:151

AUTOTRACE Command Description

SET AUTOTRACE OFF No AUTOTRACE report is generated
(default).

SET AUTOTRACE ON EXPLAIN The AUTOTRACE report shows the
optimizer execution path with
executed statements and output.

SET AUTOTRACE ON STATISTICS The AUTOTRACE report shows only
the SQL statement execution
statistics.

SET AUTOTRACE ON The AUTOTRACE report includes
both the optimizer execution path
and the SQL statement execution
statistics.

SET AUTOTRACE TRACEONLY Like SET AUTOTRACE ON, except
that it suppresses the printing of the
user’s query output, if there is any.

TABLE 4-1. AUTOTRACE Commands

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:11:24 AM

Color profile: Generic CMYK printer profile
Composite Default screen

it will execute your query, you can change your environment or the structure
of the query so you can make it run faster.

What are some of the red flags that can be brought to light in an EXPLAIN
PLAN? While the list is not exhaustive, and by no means should constitute
your entire attention when studying the EXPLAIN output, the following list
tells you what you should be searching for.

■ Cartesian products when they aren’t anticipated

■ Table scans, particularly on larger tables

■ Unnecessary sorts

■ Nonselective index scans

The EXPLAIN PLAN can give you the leverage to help convince developers
to look at the code they’re submitting and address inefficiencies. While this
may bring a smile to many DBAs’ lips, it can also point out those places in
the database, design, and inner workings where it is inefficient as well. So
don’t get too puffed up if their code isn’t always optimal. It may come back
to bite you.

Before you can make use of the EXPLAIN PLAN command, you need to
make sure you have a PLAN_TABLE installed and available to everyone
who’ll be running an EXPLAIN PLAN for insert update and delete. You can
build the plan table by running the utlxplan.sql script that’s located in the
$ORACLE_HOME/rdbms/admin/ directory (%ORACLE_HOME%\rdbms\
admin\). After you have the PLAN_TABLE created, issuing the EXPLAIN
PLAN command for the query you are interested in can be accomplished as
follows:

EXPLAIN PLAN SET STATEMENT_ID='somevalue' FOR <your SQL statement>;

You need to provide a STATEMENT_ID so you can retrieve the information
associated with just the given SQL statement. Then, you need a SQL statement
that you’re interested in looking at from a tuning perspective.

Once the explain is finished, you need to find out what Oracle is planning
to do. This can be done by getting the information back out of the plan table.

SELECT LPAD(' ',2*(level-1)) || operation
|| ' ' || options ||' ' || object_name || ' ' ||

152 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:152

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:11:39 AM

Color profile: Generic CMYK printer profile
Composite Default screen

DECODE(id,0,'Cost = ' || position) QUERY_OUTPUT
FROM plan_table
START WITH id = 0
AND statement_id = 'my_statement'
CONNECT BY PRIOR id = parent_id
AND statement_id = 'my_statement';

Now, want to look at the information a little more elegantly, and
understand what’s going on more easily? Try using DBMS_XPLAN. Starting
in Oracle 9i, provided in the package was something that could not only
make things easier to run, but easier to read as well. The format of the
command follows:

DBMS_XPLAN.DISPLAY(
table_name IN VARCHAR2,
statement_id IN VARCHAR2,
format IN VARCHAR2);

The table name is the name of the table you’re using to store your
EXPLAIN PLAN. By default, it looks for a table called PLAN_TABLE if you
don’t pass it this parameter. statement_id is what you named the statement
when you explained it to make it unique, and if not passed, it will assume
you want to see everything. Format is how you want the output formatted,
and assumes typical is the way you want it formatted. Yes, you do have
choices in the way your output is formatted. The following is an explained
list of formatting choices:

■ BASIC Displays the minimum information

■ TYPICAL Displays what is considered to be the most relevant
information

■ SERIAL Provides the same information as TYPICAL but without
parallel information

■ ALL Displays all available information

You can use DBMS_XPLAN in a variety of ways. It’s best to set your line
and page size up early when you’re running your queries. This will save you
aggravation later if you find you have to set them again after running a couple
queries and discovering you’re having trouble reading things.

Chapter 4: Database Tuning: Making It Sing 153

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:153

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:11:51 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SET LINESIZE 130
SET PAGESIZE 0

If you just want to display the last plan explained, the following will
accomplish this:

SELECT * FROM table(DBMS_XPLAN.DISPLAY);

If you’ve named your plan something relevant (as is good practice), you
can retrieve information on the named plan:

SELECT * FROM table
(DBMS_XPLAN.DISPLAY('PLAN_TABLE','my_plan','TYPICAL'));

Another handy way to use DBMS_XPLAN is to set up a view that shows
the last plan created. You can then simply query this view whenever you
want to format the output of a plan. This is handy, too, when you don’t want
to give everyone access to the plan table, but you want everyone to be able
to quickly see what’s going on with their statement. Someone trusted can
create the plan and then give select rights to that view to everyone.

CREATE OR REPLACE VIEW plan_view AS
SELECT * FROM table(DBMS_XPLAN.DISPLAY);
SELECT * FROM plan_view;

To read the output of either method, look at the indention caused by the
query. The further indented the statement, the earlier in the process it’s
executed. Equally indented statements under the same parent are executed
at the same time or one following the other, and then the combined total of
the indented statement (or statements) is fed to the parent operation.

Keep in mind that full table scans can mean missing or inefficient indexes,
statistics that are particularly outdated, or data used in unanticipated ways.
They can also mean that the code is doing exactly what it should do. You
need to understand the code and data to truly conclude whether the code is
as inefficient as it may appear. A lot of what comes back from an explain
may reflect badly on you, too, so cut everyone a little slack.

If you’re lucky, you’ll have your own developers and designers who are
willing to embrace the idea of running EXPLAIN PLANs before they run their
complex queries against a production database, or who are willing to wait
to move up new code until the anticipated performance of the code is
examined. This is not a replacement for testing and retesting against

154 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:154

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:12:06 AM

Color profile: Generic CMYK printer profile
Composite Default screen

realistically sized data, but it does give you a place to start looking at what
might happen with the data and the code.

Granted, it’s often because of management pushing that you don’t have
the time to address code inefficiencies upfront, but if you can show them
that procedures like these are frequently a case of “pay me now or pay me
later,” and that paying later often is much more expensive in terms of time,
effort, and lost efficiency, many of them may come around.

Running an explain is an inexpensive way to determine what the anticipated
performance is of the new code and what effect the design of the database
will have on it.

Want to go a step further? Let’s look at the bigger picture. You can gather
a set of baseline statistics (or what we’ll call baseline statistics even if you
don’t take them at the beginning when the code first goes into the system) in
an application, regardless of whether it’s done at design time (although this
would be the ideal) or when you start your tuning efforts, and you can
amass the information and use it as a guide to measure changes against.
Whenever there are any changes to the code, the structure of the data,
database objects, or anything associated with the application, you can re-
explain the changes and, based on the baseline, show how the code will
affect the application, or how overall performance is likely to increase or
decrease (yes, explains can point out good things as well as bad) as a result
of the changes. By showing management how you can use this information
to proactively tune both SQL and the database, you can prove your worth as
a tuning DBA and provide convenient proof that may help you justify asking
for training or books to help in further endeavors.

Keep in mind, however, that an EXPLAIN PLAN’s results alone cannot
unequivocally tell you which statements will perform well, and which will
perform badly. An explain may show that a statement will do a full table
scan. But this does not really mean anything by itself. A full table scan on a
100-row table (or other small table) may be far more efficient than using an
index. The results of an explain may, on the other hand, show that a statement
may be using an index, but if it’s a pathetically inefficient index, then the
fact it’s actually being used is a trifle misleading. It may not run as quickly as
it may appear. An EXPLAIN PLAN is only a tool. Use it to determine where to
look and where to make changes. Use it to find out what a statement is doing
before you make any changes, and then compare it with an EXPLAIN PLAN
taken after any changes to see what those changes have done. It’s nothing
magic—no silver bullet for the database werewolf—it’s just a tool to use.

Chapter 4: Database Tuning: Making It Sing 155

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:155

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:12:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

NOTE
The EXPLAIN PLAN simply tells you what
execution plan the optimizer would choose
under the specific set of initialization parameters.
It is not necessarily what would be used if the
statement were actually executed. It may be
interesting to see an explain of what Oracle
chooses to do with a real execution of the
statement.

V$SQL_PLAN
An advance in DBA tools came with Oracle 9.2. Now, Oracle gives you the
following newer views to help you identify spots where your users’ SQL is
performing below par, information which is available simply by running
queries at the SQL prompt. You should keep an eye on these views, and
check them periodically to see statistics associated with the SQL or to
uncover full table scans that aren’t expected in the database. They can be
a very useful tool for gathering information required in planning corrective
actions. Freely use the tools Oracle gives you. They’re a wonderful place
to start.

■ V$SQL_PLAN Shows the same kind of information seen in an
EXPLAIN PLAN. The only difference? EXPLAIN PLAN shows the
predicted execution plan, while V$SQL_PLAN shows the one that
was actually executed.

■ V$SQL_PLAN_STATISTICS Contains the execution statistics for
each step in the V$SQL_PLAN. Check this view to find poorly
performing SQL operations. In order for this view to be populated,
the initialization parameter STATISTICS_LEVEL must be set to ALL.

■ V$SQL_PLAN_STATISTICS_ALL Combines the information from
VSQL_PLAN, VSQL_PLAN_STATISTICS, and V$SQL_WORK_
AREA. In order for this view to be populated, you must set the
initialization parameter STATISTICS_LEVEL to ALL.

It is sometimes an interesting exercise to compare the EXPLAIN PLAN of
a SQL statement with the real execution plan for the same statement from

156 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:156

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:12:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

V$SQL_PLAN and see if what the CBO thought it might do is actually what
happened when the statement executed.

Personally, I like to request an EXPLAIN PLAN from my developers to see
if they have thought about what the statement should do and what the new
code is likely to do. Then, after the code is run in the target environment, I
query the V$SQL_PLAN view to see if that’s really what happened.

You yourself can look to the V$SQL_PLAN view to see those pieces of
code that are run by the users, either through a tool like Business Objects or
freehand through SQL*Plus or Toad. Not that user-created SQL is ever
anything but terribly efficient, but sometimes it’s worth the effort to see if
they really are running as well as they can. Plus, it can open up avenues of
discussion with users and may give you the opportunity to educate some of
them on how to better construct some of the statements—things like an IN
list with two values may be more efficient than a NOT IN list with 50 values,
or that EQUALS usually performs better than LIKE if you can use it. Again, it
isn’t necessary to try and remove all the things we think of as “bad” SQL
(like those performing full table scans), just look at the statement, think
through the logic of what it’s really trying to do, and decide if it should be
reworked or not.

10046 Trace
One of the most popular trace events is the 10046 trace, which can tell you
where a session is spending most of its time waiting and (depending on the
settings you use) the bind variables and values employed in each instance.
Enabling a 10046 event trace in a session creates a file that includes the
details of all of the SQL statements and optionally the wait events and bind
variables that occur in a session while the event trace is enabled (depending
on the trace level you choose). It’s one of the best tools to find out why a
session is experiencing performance problems, and exactly what the session
is spending its time waiting on.

So just what is a wait event (or timed event, depending on the version of
Oracle you’re using and the information you’re viewing)? Well, at any given
CPU cycle, Oracle is either busy doing something productive that serves a
request, or it’s waiting for something, some resource, that allows it to
continue doing something productive. Often it is simply waiting for something
to do, while occasionally it’s waiting on database resources. Sometimes it’s
waiting for the I/O subsystem to be available in order to provide Oracle with
information.

Chapter 4: Database Tuning: Making It Sing 157

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:157

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:12:49 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Using these wait events lets you see what Oracle is spending its time on.
Is it wasting many cycles waiting for disk reads? Is it performing an inordinate
number of full table scans just so it can get the information? Or, shudder, is
it doing Cartesian joins to provide everything but the information the user
ought to be getting?

You get data that touches upon so many different areas of your database,
such as disk I/O, latches, parallel processing, network traffic, checkpoints,
and blocking. Using this method, you can easily get at data showing you
many different areas of your database, areas you might not otherwise have
access to. Through the resulting trace, you can see information on disk I/Os,
latches and locks, parallel processing, network traffic, and checkpoints.
Furthermore, you’ll get detailed information on such things as the file number
and block number of a block being read from disk, or the name of a latch
being waited on along with the number of retries.

In Oracle 8.1 and later, enabling tracing for the session can be accomplished
as follows:

execute dbms_system.set_ev(sid, serial#, 10046, 8, '');

It’s important to note, however, that you need to replace the “sid” and
“serial#” in the preceding command with the real sid (or session ID) and
serial number of the session you want to trace.

The “8” in the statement tells you the level of information you’re gathering
about the event. There are several different, and useful, levels of information
you can gather. Table 4-2 displays what the useful levels are, and the
meaning of each. The higher numbers include all the information of the
lower numbers, and add their own details to those lower levels.

158 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:158

Level Description

1 SQL statements

4 Includes details of bind variables as well as information from level 1

8 Includes wait events as well as information from level 4

12 Includes both bind variables and wait events as well as all lower
levels

TABLE 4-2. 10046 Trace Levels

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:13:03 AM

Color profile: Generic CMYK printer profile
Composite Default screen

This provides you with a trace file. Looking at the trace file, you can see
that reading the raw trace is not for the faint of heart. It takes real dedication
to wade through the trace file to get at what’s really going on. Fortunately,
running TKPROF on the file allows you to easily see in English (instead of
computerese) what’s going on.

One of the things a 10046 trace can’t show you, however, is the time
Oracle spends waiting on the CPU to become available or the time it spends
waiting on requested memory that may have been swapped out to then later
be swapped back in. This means that, if you’re working on trying to figure
out why a SELECT statement is taking so long to process, you may find your
10046 trace shows you nothing in the way of wait events. This may lull
you into a false sense of well-being that the SELECT is as efficient as it can
possibly be. But if memory is an issue on the server, and the query is doing a
very large number of logical reads, you may well be able to reduce the time
the query takes by reducing the number of buffer gets through a rewrite of
the query.

Do you see a large disparity between ela (elapsed time) and cpu (CPU
time) without any apparent waits associated with those disparities? These
disparities can be caused by waiting on the CPU, so indirectly you can infer
waits associated to these as well. This takes inference, however. It isn’t
provided directly.

But this information is typically only used for SQL statements, or for
tracing the path of a PL/SQL package to see what it’s doing. Ever want to
know the same kind of information from an export? While import and export
aren’t really the kinds of things people tend to trace, you can find some
interesting information if you run a 10046 trace on an export or import
“session.”

You start out, naturally, by running the export session.

Exp system/manager full=y file=myfile.dmp

Keep in mind this is just an example. You can use whatever parameters
you would ordinarily use in your export.

Once you’ve started your export running, log in to the database as a user
with dba privileges and run the following statement.

Select sid, program from v$session where username = ‘SYSTEM’

Chapter 4: Database Tuning: Making It Sing 159

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:159

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:13:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

A list of all the sessions running as the SYSTEM user is then returned. The
one that has the program exp@mydatabase.com associated with it is the
export session you’re looking for. Make note of the sid connected with this
session and run the following statement:

Select s.sid, p.pid, p.spid
from v$session s, v$process p
Where s.paddr = p.addr
and s.sid = <the sid from the above statement>;

The sid and the pid from this command are used to generate the trace file
for the process. spid is equivalent to the operating system ID of the export
running.

Sqlplus ‘/ as sysdba’
oradebug setospid <p.spid>
oradebug event 10046 trace name context forever, level 12;
…
oradebug event 10046 trace name context off;

This will generate the trace file in the udump directory with the operating
system process ID appended to the name.

10053 Trace
If you want to know why the Cost-Based Optimizer makes the decisions it
does, use a 10053 trace. While the output of setting the trace to look at this
is rather cryptic and difficult to wade through, you can make it less tortuous
by searching in the output file (with find or grep or some other string-locating
tool) for either the phrase “Join order” or “Best so far” to see why it made the
choice it did.

The text associated with “Join order” can tell you the tables by name and
the order the optimizer chose to join them. This may not be of much help to
you if you’ve deliberately tried to get Oracle to join in an order that you
would like to see, but you can at least view what order it’s decided on as the
most efficient. You can then check if there’s anything you can do to influence
the optimizer’s decision.

“Best so far” is associated with what the optimizer has decided should be
the most optimal plan and join order. By looking for this phrase in the trace
file, you can start to see what the optimizer is thinking would be best, even
if you have other thoughts on the matter.

160 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:160

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:13:29 AM

Color profile: Generic CMYK printer profile
Composite Default screen

10032 Trace
10032 trace checks what happens during sorts. This can be useful for many
ad hoc queries seen in your system, particularly those that you may notice
are doing several different sorts, or which seem to be spending a poor amount
of time in any given sort.

alter session set events '10032 trace name context forever, level 1';

So why is this in any way useful?
While we all know it isn’t possible to eliminate every single disk sort, it is

possible to minimize these. You can tinker with the SORT_AREA_SIZE
parameter and the SORT_MULTIBLOCK_READ_COUNT parameter to make
a big difference in the way these sorts perform.

Understand that a great part of the performance of a disk sort has to do
with the number of merge passes required for the sort to occur (this dictates
the amount of temporary tablespace I/O that occurs in the sort).

You may be running a SELECT statement that retrieves rows from several
different tables. The results are retrieved separately, but are then merged.
The number of these sets you can merge simultaneously is called the merge
width. This merge width is directly related to the combination of SORT_
AREA_SIZE and SORT_MULTIBLOCK_READ_COUNT. If the number of sets
of rows returned by the statement is larger than the merge width, then
multiple passes will be needed for the merge to complete.

The SORT_AREA_SIZE is made up of read buffers and write buffers. The
size of each buffer is SORT_MULTIBLOCK_READ_COUNT * DB_BLOCK_
SIZE, and two read buffers are needed for each set of returned rows. The
same write buffer configuration is used all the time during the sort. Consider
a query that returns ten sets of rows—that’s 20 read buffers. This means that
up to 90 percent of the SORT_AREA_SIZE is allocated to read buffers.

If there are too many sets to be run through the merge width, then secondary
passes will have to be made and more I/Os will occur. These secondary passes
are what make the disk sorts particularly inefficient from a performance
perspective. That’s why the information retrieved from the 10032 trace can
be particularly important in tuning, allowing you to more effectively set the
SORT_AREA_SIZE so that secondary passes don’t occur.

If you know you have a batch process (your most robust and data-intensive
batch process, so you size for the biggest knowing that everything else will
comfortably fit) that processes and sorts 12GB of data and you currently

Chapter 4: Database Tuning: Making It Sing 161

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:161

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:13:44 AM

Color profile: Generic CMYK printer profile
Composite Default screen

have your SORT_MULTIBLOCK_READ_COUNT using eight blocks (with
each block being 8KB), this means that the number of initial sets that can be
run through your SORT_AREA_SIZE will need to be

12GB/.9 * SORT_AREA_SIZE

Thus, your merge width is

round(.9 * SORT_AREA_SIZE / (8KB * 8)/2

Therefore, to ensure that the sets that fit are no greater than the merge
width, you have to have a SORT_AREA_SIZE of at least

SQRT(12GB * 64KB * 2/.81)

This is 43.6MB.
There is virtually no benefit to having a SORT_AREA_SIZE of greater than

45MB.
So you see, you can use the output of this trace to help you determine if

you have sufficient space allocated to SORT_AREA_SIZE, and thus limit the
disk sorts that occur in your system. Every trace fill provides you with
information on your system’s SORT_AREA_SIZE, SORT_AREA_RETAINED_
SIZE, SORT_MULTIBLOCK_READ_COUNT, and the MAX INTERMEDIATE
MERGE WIDTH. There are three additional pieces of information you can
get from the resulting trace file: initial runs, intermediate runs, and number
of merges.

10033 Trace
If you want to see the same kind of information found in a 10032 trace
generated for particularly large sorts, you can get that information by setting
the event trace to 10033.

alter session set events '10033 trace name context forever level 4';

While most intensive sorts occur with batch processing, every once in
a while a truly huge sort is needed. Setting the parameters to allow for
these unusual sorts of circumstances can be assisted with the 10033 trace.
Particularly with the combination of a 10032 and 10033 trace.

162 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:162

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:13:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

In a 10033 trace, Oracle lists each section of sorted data it’s writing to
disc. Then it describes, in database-ese, how it’s re-reading each of these
sections back so it can merge them into sorted order. Whenever a sort gets
very large, the time it takes to perform the sort is to a very great extent based
on the number of merge passes that have to take place. So taking the
information from a 10033 trace combined with the 10032 trace may give
you the information you need to add that extra oomph, allowing as much
sorting to occur in memory as possible.

10104 Trace
While it’s often true that hash joins are more efficient than sort merges, it’s
sometimes difficult to get statistics on hash joins to tell you if they’re as
efficient as they can be. While this won’t tell you overall what’s going on
with all hash joins in your system, you can look at what’s going on with any
given query, and the hash joins that are occurring within it. To look at what’s
going on during a hash join, use the 10104 event trace.

In the resulting trace file, look for the line that provides you with the line
Memory After Hash Table Overhead and the line with the information on
Estimated Input Size. If the Estimated Input Size is larger than the value
associated with Memory After Hash Table Overhead, then Oracle estimates
your hash area is likely too small. It’s as true here as anywhere that poor
statistics will result in poor estimates on the required sizes because Oracle
won’t be sure how many rows it should expect.

You can also find in the trace file the total number of partitions and the
number of partitions that fit in memory. If the number of partitions that will
fit in memory is smaller than the total number of partitions, then your hash
area will likely be too small and should at least be multiplied by the ratio of

Total number of partitions/number of partitions that will fit in memory

Now that you’ve created a bunch of trace files, how do you find them so
you can do your analysis?

Finding Your Trace File
Looking at these last several ways of gathering tuning information, you can
see that the trace events all produce trace files, which are all written to the
udump directory (since they’re associated with user processes). The trace

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:163

Chapter 4: Database Tuning: Making It Sing 163

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:14:07 AM

Color profile: Generic CMYK printer profile
Composite Default screen

files end up in the udump directory and, unless you make some minor
adjustments, will look disturbingly like any other trace files that might be in
the directory. How on earth can you distinguish your trace file from all of
the other trace files in the directories? The best way is to use the following
code as an example to set your file apart by linking it to something of
significance.

Alter session set tracefile_identifier = ‘something significant to you’;

Now you should be able to find the files associated with your trace session.

NOTE
It’s important to remember that when you’re tracing
statements you need to make sure you’ve informed
the database that you want to see as much
information that it will generate as possible. To this
end, you must make sure you’ve set the maximum
dump file size (which is really what these trace files
are: dump files) to a size sufficient to hold all that
information. The parameter you’re concerned with
is MAX_DUMP_FILE_SIZE and you must make it
large enough to hold what you need. Valid settings
are simply numbers (indicating the number of
physical operating system blocks), a number
followed by an M or a K (indicating megabytes or
kilobytes), and unlimited. For the duration of the
information gathering session, it would be wise to
alter the session or alter the database so that MAX_
DUMP_FILE_SIZE is set to unlimited. However,
make sure that when you’re done you turn the
feature off or else you’ll find your user dump
destination filling up with huge trace files for things
you didn’t realize were being generated.

TKPROF
The TKPROF program converts your trace files (both those you create
deliberately and those created by the background processes if you like) into

164 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:164

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:14:20 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Database Tuning: Making It Sing 165

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:165

a more readable form. You can use TKPROF to see the contents of the trace
file created in order to view what a problem query is doing.

It’s important to note, however, that in order to get the most out of either
the trace file you create or the TKPROF utility, you must have enabled timed
statistics either by setting the initialization parameter in the init.ora or the
spfile, or by running the following command:

ALTER SYSTEM SET TIMED_STATISTICS = TRUE;

A plan table can be used with TKPROF. If you do use it, the plan table
must already be present for it to run successfully. If one isn’t present, it can
be created by the SYSTEM user and granted access and synonyms to public.

@ORACLE_HOME\rdbms\admin\utlxplan.sql
CREATE PUBLIC SYNONYM PLAN_TABLE FOR SYSTEM.PLAN_TABLE;
GRANT SELECT, INSERT, UPDATE, DELETE ON SYSTEM.PLAN_TABLE TO PUBLIC;

Including the explain is particularly helpful when the SQL statement
you’re examining has a cursor that isn’t closed by the end of the trace file. In
this case, the TKPROF output does not automatically include the plan of the
SQL statement. TKPROF also doesn’t report on commits and rollbacks that
might be in the trace file.

Now, you can create a trace file either by setting SQL_TRACE to true in a
session or by setting the event you want to analyze and running the queries
of interest. Remember that the resulting file will be in the UDUMP directory
for your instance (USER_DUMP_DEST from either the PFILE or the SPFILE)
and you can now run TKPROF at the command prompt with the following:

TKPROF <your trace file> <your output file> explain=query_user/pass@db

It will assume you want to use the table you created called plan_table
unless you tell it otherwise (this is one of the benefits of creating the public
synonym for the table). If the table doesn’t exist, it creates its own table and
then drops it when it’s done. The resulting sorted and explained file contains
the following kinds of information for all SQL statements executed and
found within the trace file (this includes the ALTER SESSION commands
used to get the trace file). See Table 4-3.

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:14:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Things to watch for in the trace include

■ When tracing lots of statements at once, such as batch processes,
you can quickly discard those statements which have unacceptable
CPU times. It’s often better to focus on those statements that take
most of the CPU’s time.

■ Inefficient statements are mostly associated with a high number of
block visits.

■ High CPU values or high elapsed-time values may indicate you have
latching problems and inefficient PL/SQL loops. Multiple parse calls
for a single statement imply you may have an issue with your library
cache

■ Highly inefficient coding

■ Always check the execution plan to see why the statement is
performing badly.

166 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:166

Command Description

COUNT The number of times something occurs during the run of the
statement (fetches, parses, executions, and so on)

CPU The CPU time in seconds that elapsed during the statement’s
execution

Elapsed The elapsed time in seconds that occurred during the
execution of the statement

Disk The number of physical reads from the disk

Query The number of buffers acquired for a consistent read

Current The number of buffers acquired in the current mode (usually
found in update, insert, or delete statements)

Rows The number of rows processed by the fetch in the statement
(implicit or explicit fetches) or the execute call

TABLE 4-3. Types of Information Obtained from SQL Statements

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:14:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ Also, you should compare the autotrace traceonly explain to a
TKPROF output so you can compare what the autotrace’s explain
thought would happen with what actually occurred. The TKPROF
with its counts should be very similar to the autotrace’s explain. If
there are significant differences, then the optimizer is making bad
assumptions likely based on stale, missing, or invalid statistics. Step
one in correcting this is to figure out why the optimizer is making
bad assumptions.

Trace Analyzer
Trace Analyzer is a lesser-known tool (available for download from Oracle)
that acts as a substitute for the TKPROF utility, which is used in analyzing
trace files.

The latest version of Trace Analyzer can be acquired from Metalink by
clicking the link in text note number 224270.1 on the Oracle web site. It
also includes excellent information on the utility itself.

Trace Analyzer goes TKPROF a step further, however. It provides
information on more wait events than TKPROF does, offers actual values of
bind variables used when each included SQL statement was executed, and
shows information on the hottest blocks, CBO stats for tables, and indexes
included in the statements and execution order (things that TKPROF isn’t
always able to provide).

Trace Analyzer can be used on any database (OLTP, DSS, or Oracle
E-Business Suite), but it does require that a one-time configuration be
performed. This installation puts into place many database objects that are
used as a tracing repository.

Once the utility has been downloaded from Metalink and the setup steps
have been followed, you can execute a SQL statement and then the name of
the resulting trace file can be passed to Trace Analyzer, which then provides
you with the tuning information. The scripts involved in the installation are
as follows:

■ TRCACREA.sql Creates all of the objects needed by Trace
Analyzer. It calls the following scripts:

■ TRCADROP.sql Drops all schema objects

■ TRCAPKGB.sql Creates the package body

Chapter 4: Database Tuning: Making It Sing 167

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:167

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:15:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ TRCAPKGS.sql Creates the package specification

■ TRCAREPO.sql Creates the staging repository

■ TRCADIRA.sql Creates the directory object that points to the place
where the given trace file lives. This is really only useful when using
a destination other than that pointed to by user_dump_dest.

■ TRCAGRNT.sql Grants privileges needed to use Trace Analyzer

■ TRCAREVK.sql Revokes privileges granted by TRCAGRNT (this
runs first to remove the privileges before the grants coming from
TRCAGRNT.sql)

■ TRCAPURG.sql Purges old SQL traces from the repository

■ TRCATRNC.sql Truncates the staging repository

■ TRCANLZR.sql Script that generates the report

■ TRCACRSR.sql Generates report for one cursor

■ TRCAEXEC.sql Generates report for one cursor execution

TRCSESS
What, there’s more? Hey, Oracle is nothing if not prolific when it comes to
providing tuning tools. For those of you who are using, or who are considering
using, Oracle 10g, this one’s for you! Though available for use, it doesn’t
work with earlier releases.

Need to find out what’s going on in the database across several different
trace files, and you know you generated these trace files for a given user on
a given database? Don’t want to struggle with figuring out how to analyze
each trace file individually and then try to pull together the information from
each file into a whole application situation analysis? The answer: TRCSESS.

If you know which trace files you’re dealing with (the set of trace files
containing the right combination of SID, CLIENT_IDENTIFIER, SERVICE_NAME,
ACTION_NAM, and/or MODULE_NAME variables) in order to pull all the
information together for a given analysis, you can use TRCSESS to do it for
you. This can be very beneficial if you’re trying to tune out the bottlenecks
in the database or in an application that’s consuming large amounts of

168 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:168

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:15:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

resources. TRCSESS is particularly useful in shared server environments
where several processes are each running and writing trace files.

TRCSESS is a Java application executed from the command line that
consolidates trace information from multiple trace files. Oracle provides a
shell script which you can execute rather than call Java directly. The output
of the TRCSESS utility can then be used as the input to TKPROF or Trace
Analyzer.

Statspack
There are some very good books out there about the care and feeding of your
database using Statspack, but no tuning chapter would be worth its salt if it
didn’t cover the use of Statspack as a way to determine where performance
is an issue.

Before you rely too heavily on Ststspack reports, make sure they provide
you with database-wide information and aren’t looked at as a tool simply for
tuning individual SQL statements.

One of the most useful things you can do with Statspack is find out your
top five wait events and determine which ones you can actually do something
about. To this end, Statspack provides a report called “Top 5 Timed Events.”
While this report can be minimally useful even if TIMED_STATISTICS is set
to false, setting it to true can provide you with a list ordered by time waited
rather than just the number of times waited. This can be more valuable because
you may not care that the event that waited the longest was SQLNET Message
From Client, but you indeed might care that you waited 874 seconds for a DB
file scattered read.

Table 4-4 provides you with a general overview of what the most common
“Top 5 Timed Events” mean to you and what you can do to fix them.

Chapter 4: Database Tuning: Making It Sing 169

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:169

Event Meaning Potential Fix

DB File
Scattered
Read

Generally indicates waits related
to full table scans.

Find where you may be missing
indexes or where indexes may be
advantageous.

TABLE 4-4. Wait Events Prevalent in Statspack Reports

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:15:47 AM

Color profile: Generic CMYK printer profile
Composite Default screen

170 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:170

Event Meaning Potential Fix

DB File
Sequential
Read

Generally means you’re doing an
index read. A lot of waits attributed
to this can mean that join orders
are less than optimal or that you
have unselective indexing.

Check joins on tables to see if you
can make them more efficient.

Free
Buffer

Your system is probably waiting
for a free buffer in memory. There
probably aren’t any currently
available. This is usually indicative
of a need to increase the DB_
BUFFER_CACHE or to tune your
SQL statements to be as efficient
as possible (do this first, before
changing database parameters).

To fix this (remember, one at a
time), tune the SQL, increase DB_
BUFFER_CACHE, increase the
amount of checkpointing you’re
doing, use more Database Writer
processes, or increase the number
of physical disks over which your
data is spread.

Buffer
Busy

You are waiting for a buffer that is
already being used and is currently
unsharable, or that is currently
being read into cache. Waits for
this are expected, but should not
be excessive.

If you’re seeing an excessive
amount of waits for this, you may
want to increase DB_CACHE_
SIZE, or migrate to ASSM.

Latch Free Latches protect shared memory
structures and are usually very
rapidly obtained and released.
They prevent the concurrent
alteration of shared memory
structures. Concurrent select is not
only okay, it is often a way of life
in a busy database, but Oracle
protects data from concurrent
updates. Typically, when you see
many of these, it indicates that you
aren’t using bind variables, buffer
cache contention, or hot blocks in
the buffer cache… or that you may
be running into a latch-related bug
(remember, Metalink can be your
friend).

Further investigation is usually
needed. Because there are so
many causes, you can look at
Statspack reports to see if the top
latch waits, allowing you to start
working through the issues with
your database.

TABLE 4-4. Wait Events Prevalent in Statspack Reports (continued)

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:16:04 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Chapter 4: Database Tuning: Making It Sing 171

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:171

Event Meaning Potential Fix

Enqueue Enqueue is a lock that protects
shared resources. It takes care of
queuing (first in, first out) requests
so that resources are allocated
equitably. Common events that
cause these waits are space
management and the allocation of
dictionary-managed tablespaces,
attempts to duplicate unique
indexes, multiple concurrent
attempts to update the same bitmap
index fragment, and multiple users
updating the same row.

Setting Inittrans or Maxtrans to a
higher number, thereby allowing
more concurrent access to any
given block is one place you can
look to get around this problem in
pre-Oracle 10g versions. With the
advent of Oracle 10g, maxtrans
became 255 regardless. You can
also make sure you have indexes
on foreign keys as a means to avoid
enqueue waits. It’s important to
note, however, that one of the
major problems that contributes
to this being an issue is poor
application design.

Log Buffer
Space

You are filling log buffers faster
than log writer can write them out
to redo.

Putting your redo logs on faster
disks so that writes to them can
occur as quickly as possible will
ease this problem. You need to
empty the log buffers as quickly as
possible.

Log File
Switch

Caused by commits waiting for
a log file switch (particularly
if archiving is needed or
checkpointing is incomplete).

Make sure your disk isn’t full. Look
for I/O contention. Add more or
increase the size of the redo logs.
As a last resort, try adding more
database writers.

Log File
Sync

Log writer isn’t flushing the session
redo information from the buffer to
the redo logs rapidly enough.

Commit more records simultaneously
(50 or 100 at a time rather than
one at a time). You could try to
move your redo log files to faster
disks, but if it comes at the
expense of hot data files, you may
end up robbing Peter to pay Paul,
as they say. Avoiding RAID 5 may
help, but then you probably
already knew that.

TABLE 4-4. Wait Events Prevalent in Statspack Reports (continued)

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:16:23 AM

Color profile: Generic CMYK printer profile
Composite Default screen

So you see, Statspack can be very useful when looking at tuning the
overall database. It can give you yet another useful tool, a means to come
at the problem from another avenue, and some extra ideas on why your
applications aren’t performing the way users anticipate.

Since users typically have preconceived notions about how a database
should perform, let’s look at them next.

Users
While it’s true that without users the database would absolutely fly, it’s also
true that without users you’d probably be out of a job (after all, what good is
a database—and by extension a DBA—if there aren’t users using the data?).
Given that users happen, what is the best thing we can do to tune the users?

It may not be high on your list, but teaching users, training them, and/or
creating a series of presentations or conversations to help them learn is your
best asset from a database tuning perspective.

Training doesn’t always have to be formal. Lunch with the DBA in a
meeting room where you just sit around and talk about SQL and PL/SQL and
the wonders of Triggers is a great idea. One of the best Oracle University
classes I ever attended was the PL/SQL class in Minneapolis where I learned
that a Trigger’s a Wonderful Thing (thank you very much, Winnie the Pooh).
It may be a somewhat long process, but it will be well worth the effort in the
long run, and you might just find out that developers, and users, are real
people, too. Plus, it will impress everyone that you’re trying to foster a team
atmosphere.

172 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:172

Event Meaning Potential Fix

Idle Event The ever-popular System Idle
Events. While it’s typically okay to
ignore most of these, you may
want to note if they suddenly start
happening. It could indicate
you’ve moved your bottleneck and
may need to revisit some of your
other tuning tools.

TABLE 4-4. Wait Events Prevalent in Statspack Reports (continued)

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:16:38 AM

Color profile: Generic CMYK printer profile
Composite Default screen

I don’t know about you, but I’ve never been all that much of a people
person; it is, after all, mostly why I got into computers. You don’t have to
deal with people all that much. But if you can get an idea of what the users
(the developers, the designers, the end users) are trying to do, you can do a
better job at tuning the database from the outside, and you can give the
users information that will help make your life a whole lot easier. It really is
a win-win situation.

Fixing the Trouble
Once you’ve gathered the information needed using your arsenal of tools,
you can set about fixing the trouble, or at least addressing the issues that
were uncovered as a result of the tuning efforts to this point.

There is something of an art to tuning SQL statements. It’s important to
remember (and I can’t stress this enough) that you should only change one
thing at a time and then see what effect that change has on the performance
of a statement.

Tuning Database Parameters
You can make some inferences on database parameters that need to be tuned
based on a lot of the V$ views (the dynamic performance views, wink wink)
available in the database. These views are built with you in mind. Make use
of them wisely and you can have your database humming in no time.

V$FILESTAT
V$FILESTAT provides you with information on activity relating to each file
in the database. Interesting columns include PHYRDS (physical reads),
PHYWRTS (physical writes), SINGLEBLKRDS (random I/O that’s occurred
with the file), AVGIOTIM (the average time, to the hundredth of a second,
that has been spent on I/O), READTIM (the time spent, in hundredths of
seconds, doing reads), WRITETIM (the time spent, in hundredths of seconds,
doing writes), and LSTIOTIM (the time spent, in hundredths of seconds, doing
the last I/O operation). This view is typically joined to V$DATAFILE and
V$TABLESPACE to provide really relevant information. It is important to
note, however, that if you are using async io, you should not set too much
store in the write time. In fact, in that particular circumstance WRITETIM is
meaningless.

Chapter 4: Database Tuning: Making It Sing 173

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:173

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:16:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

select d.name as file, t.name as tablespace,
f.phyblkrd, f.phyblkwrt, f.readtim, f.writetim

from v$filestat f, v$datafile d, v$tablespace t
where f.file# = d.file#
and d.ts# = t.ts#
NAME

NAME PHYBLKRD PHYBLKWRT READTIM WRITETIM
-------_------------- ---------- ---------- ---------- ----------
D:\ORACLE\ORADATA\10G\TEST10\SYSTEM01.DBF
SYSTEM 5308 351 2409 457
D:\ORACLE\PRODUCT\10.1.0\ORADATA\TEST10\SYSTEM02.DBF
SYSTEM 4241 132 1788 194
D:\ORACLE\ORADATA\10G\TEST10\UNDOTBS01.DBF
UNDOTBS1 36 3989 253 6472
D:\ORACLE\ORADATA\10G\TEST10\SYSAUX01.DBF
SYSAUX 2573 1473 897 2879
D:\ORACLE\PRODUCT\10.1.0\ORADATA\TEST10\SYSAUX02.DBF
SYSAUX 1488 1190 1713 2206
D:\ORACLE\ORADATA\10G\TEST10\USERS01.DBF
USERS 13 7 26 8

It’s important to note that V$ views are cumulative. They are virtually
empty when you start up the instance and they accumulate data while your
database is open. Though this means you don’t see what’s happening at
exactly the time when the query is run, the way you would with, say, a
10046 trace, it does mean you can run a query now, run it again in 15 minutes
(or set it to run every 15 minutes for a couple of hours), and then write the
results out to a file. Look at the files when you’re done (diff them in Unix…
heck, download and run CYGWIN on Windows and diff the files) and see
what I/Os have been happening during the time. Yeah, yeah, I know,
Statspack will give you the same thing, but sometimes I like to have ultimate
control of what I’m looking at. Frequently I know that my developers are
testing and yet I want to be able to granularly run the queries on that
environment every five or ten minutes. Though I already have Statspack set
up to run every hour, I may just want to do something quick and dirty. I
have this scripted so I can simply run it whenever I want and spool the output
to flat files. The same information will end up aggregated in Statspack, but
I can send the files to the project manager who just doesn’t get that whole
SQL stuff but who does really understand file processing (or just feels more
comfortable with files that he/she can touch and feel), and it gives them a
warm fuzzy feeling without changing my Statspack reporting. Sometimes it’s

174 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:174

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:17:13 AM

Color profile: Generic CMYK printer profile
Composite Default screen

as important to be flexible and to know your users (know your audience) as
it is to know your database, the data, and the application. Have as many
tools as you can in your toolbox so you can meet any need.

V$LATCH
When I was growing up, there was an interesting latch on my bedroom door.
It was metal and ornate and had a lever that swung across and clasped
another metal piece on the other side of the door. This latch was designed
to keep people out and protect the privacy of the people in the bedroom.
There was no way to swing the latch to lock the door from the outside, or to
unlock it from the outside. Its purpose was to temporarily block access to
the room.

Database latches are pretty much the same, although way less decorative.
They temporarily prevent access to the inside of Oracle (its memory structures
primarily) while the inside process is already accessing them. When that
process completes, it opens the latch and leaves, allowing the next process
to make use of the memory. Some processes (like your parents) are willing
to wait outside the door for you to come and open the latch. Others, like
your little brother, will stay there until they get tired of waiting, and then
finally give up.

V$LATCH tells you about the latches, the address of the latch object,
its level and name, the number of times it obtained a wait (GETS) and
the number of times it obtained a wait but failed on the first try (MISSES), the
number of times it got tired and decided to nap while waiting (SLEEPS),
the number of times it was obtained without a wait (IMMEDIATE_GETS),
and the number of times it failed to be obtained without a wait (IMMEDIATE_
MISSES). If you’re seeing an inordinate number of latches in your wait events,
this view may be one you’ll want to investigate further.

V$LIBRARYCACHE
Just like when you go to the library (you DO go to the library, right?), the
first time you try to find a book, you usually have to go look it up in the
online catalog or the card catalog (yes, there are still libraries that use them).
Once you find the call number, you then search the stacks till you find the
book (if it’s not checked out or misshelved, that is). If you find you like the
book, or similar books, or books by the same author, you may not have to

Chapter 4: Database Tuning: Making It Sing 175

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:175

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:17:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

go back to the card catalog to find the books. You may just decide to return
to the stacks where you found this book and dig up others that are similar.

Oracle kind of works the same way. Once a SQL statement is presented
to Oracle for processing, Oracle goes to its card catalog to find where the
information can be found and gets it for you. The first time the information
has to be read into memory (like reading the Dewey Decimal number of the
book into your own memory). Every time after that (well, okay, every time
after that until you shut down the database or until it gets aged out of memory)
that you want to find the same piece of information (as long as you want the
same information the same way), Oracle will remember the statement and
won’t need to look up the information again. If Oracle can use something
stored in active memory (like you using what’s in your short-term memory
rather than having to dredge it up from your long-term memory banks), it
will be much faster. That’s why cursor sharing, set correctly, can be critical—
so that the more Oracle can use what it knows and make as many inferences
(okay, you want blue sneakers and then next time the only difference is that
the bind variable says you want red sneakers) as it can and reuse as much of
what it has in its memory, the faster the queries will run. And that’s what
we’re after here, right? So let’s talk about that next.

Cursor Sharing
So what is cursor sharing exactly? Well, sometimes you may have SQL
statements that you run over and over again where the only difference
between them is what kind of information you want to bring back. This is
often particularly true when using forms to allow input from the user into the
statement. But if you let Oracle make some inferences, and set cursor sharing
up so it can leverage those inferences, your queries will run faster.

CURSOR_SHARING is a parameter that Oracle 8i brought with it that
allows developers to make liberal use of bind variables and then let Oracle
use those bind variables (rather than their literal values) to imply how to
predict selectivity of the statement. In Oracle 8i, you could set the initialization
parameter up so that Oracle would re-use the bind variable–laden cursor
(cursor_sharing = force) for subsequent runs. Historically, it’s proven difficult
for the optimizer to guess accurately on the selectivity of what might be
coming in buried in the bind variables. Originally, the functionality was
limited. In Oracle 8i, it meant that if the first time the statement was parsed
it used an index, every time it was rerun it used an index even if other times
it might have been more efficient to use a full table scan and vice versa.

176 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:176

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:17:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Oracle 9i brought added functionality (cursor_sharing = similar) that allowed
the optimizer to examine histograms associated with the columns connected
with the bind variables every time the statement was run, and then determine
if a full table scan or an index scan would be more efficient when reusing
the same statement. This means that code in memory is reused (pinned maybe)
and that the optimizer can creatively change its mind based on the values in
the bind variables, making cursor sharing the best of both worlds.

Unlike the inferences you can make about book topics or authors, Oracle
can’t make inferences about similar information possibly being in similar
locations. It has to rely on what it really knows for sure.

If you see waits associated with the library cache, you can use the
V$LIBRARYCACHE view to see what might be going on. GETHITS means
that the object was in memory when Oracle tried to find it. GETS is the
number of times Oracle tried to find the objects it needed in memory.
GETHITRATIO is the number of GETHITS compared to the number of GETS.
PINS is the number of times a PIN was requested for objects in memory
(pinning an object in memory means you can usually rely on it being there
the next time that you want it). PINHITS is the number of times all the pieces
for a request were found already in memory. RELOADS happens the first
time a pinned object is requested, and is the effort it takes Oracle to read
that piece of data into short-term memory (like when you look up a phone
number the first time, 555-1212… 555-1212… 555-1212; after that, when
you have it all nice and recalled, it’s just a matter of hitting redial).

V$LOCK
As you go through your day, take notice of how many locks you see or use.
Think back to when you were a kid and try to figure out how many locks
you use now as compared to back then.

Looking around me right now, I can see the lock on my office door, the
lock on the roll top of my roll top desk, the one on the drawers of the desk,
the one on the door of the desk, the two on the window, the one on each
file cabinet, the lock on the administrator account of the computer, and the
one on my PDA. I can infer that, across the street, there’s one or more locks
on the front door of the house opposite me, one on the garage door, one on
the gate of the fence, one on the car parked under the street light, one on
the electric meter, one on the gas meter, one on the telephone junction box,
and a lock on the utility box on the corner. I have a lock on my desk at
work, one connecting my laptop to my desk, I have to go through two to

Chapter 4: Database Tuning: Making It Sing 177

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:177

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:18:17 AM

Color profile: Generic CMYK printer profile
Composite Default screen

enter the gate at work, and navigate at least four (and as many as seven) just
to get to my desk in the office. There is a lock on the doors at the grocery
store, at the drug store, and on the construction machinery lining the highway
on my drive to work.

There are locks everywhere.
Just like how latches and locks in real life serve different purposes (latches

usually keep you from accidentally getting into somewhere unless you really
mean to, and locks keep honest people out of places where they might
stray), they serve different purposes in Oracle, too. Latches are constructs
that control accesses to memory structures, while locks protect storage
structures and the data residing within them.

Oracle is a lot like your daily life. There are locks, or the potential for
locks, almost everywhere. There are different kinds of locks, too. Oracle
may use one kind of lock on a structure when you just want to go poking
around looking at data but don’t want the data to change while you’re
looking at it. If you want to change the data, however, Oracle will use a
different lock so you, and only you, can change that data at a given time.

If you’re seeing excessive waits associated with locks, there may not be
anything you can do directly, but you can go and look at what’s being
locked, and why. With this information, you can then possibly make
alterations to the application or the structures. V$LOCK view gives you
some vital information on the locks currently held in your database. The view
provides you with the following columns:

■ SID The session ID of the locking session

■ TYPE The type of lock being held (TM for table level, TX for row
transactions, ST for space transaction locks)

■ LMODE The lock mode in which the session holds the lock

■ BLOCK Here, a value of 0 means this given lock isn’t locking another
transaction’s lock. A value of 1 means it’s blocking another lock.

You can use V$LOCK to find out what session is holding the lock,
V$SESSION to find out what SQL statement is being executed by the sessions
holding the lock and waiting on the locked resource, and the program and
user holding the lock. You can also use V$SESSION_WAIT to find out what
the session holding the lock is being blocked on.

178 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:178

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:18:40 AM

Color profile: Generic CMYK printer profile
Composite Default screen

SELECT LPAD(‘’, DECODE(REQUEST, 0, 0, 1)))||SID,
id1, id2, lmode, request, type
FROM V$LOCK
WHERE id1 IN (SELECT id1 FROM V$LOCK WHERE lmode = 0));

This leads to the following SQL hash:

SELECT sid, sql_hash_value
FROM V$SESSION
WHERE SID IN (<the sid list from the previous query>);

And now the SQL statement:

SELECT sql_text
FROM V$SQL_TEXT
WHERE hash_value in (<hash value from the last query>);

Okay, so now we’ve looked at the internals that can be used to fix the
performance of the overall database, but isn’t there something more that can
be done?

Tuning the Database Structure
This is where I think being a DBA becomes fun… where you get to play
with the art, not just the math. Even in the art, there is math, like the art of
nature and the relationship of the spirals in a pinecone or the arrangements
of leaves on a plant or Fibonacci numbers. But tuning the structure can
bring out the creativity of a DBA.

While I’ve done some formal design study, and I know there’s a time and
place for a third normal form (although anything over that is questionable to
me), there’s also a time and place for a denormalized model, and not just in
a decision support system. I’ve made some very unpopular suggestions that
have met with much resistance because they’re different than the way things
are normally done. But it doesn’t mean that the current way is the best one,
or that it’s particularly efficient.

Look at the data you’re storing. If you have a date field, which is broken
into month and year, ask yourself why. Advanced ideas in database design
can mean you can build function-based indexes to do date manipulation
more efficiently. So, you can get the month out of a date that contains day,
month, and year. You can also get the year out of that same date. Thus,
you’ve saved 15 bytes on every row, meaning there’s less chance for row

Chapter 4: Database Tuning: Making It Sing 179

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:179

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:18:57 AM

Color profile: Generic CMYK printer profile
Composite Default screen

chaining, and less chance for error. While this is not (in the grand scheme of
Oracle) really considered to be one of the more advanced concepts, if you
work at an organization that balks at using stored procedures or changing
the way an index is constructed because they’ve always done it a certain
way, advanced design can take on an entirely new meaning.

Row chaining occurs when the process of updating a row makes it long
enough that it no longer fits within the block in which it started. Why is
there less chance of row chaining in this instance? Well, the smaller your
row size, the less chance there is it will be forced into another block.
Planning will also help you design block and row sizes that make optimal
use of data blocks and which likely won’t end up chained to other blocks.

Do you have a string of characters you’re storing in a VARCHAR2(60),
but you always use the first 15 bytes to mean one thing and the next ten to
mean something else, and the next 25 to mean something else, while the
last ten are always blank? And every query you run substrings out those
chunks into their real meaning? The substringing probably means you aren’t
using the index you’ve built on the column. Instead, it means you may be
performing the same function repeatedly on the same column so you can
get each different chunk into its own variable in your code.

Do you have a primary key on the first and second column of a table? If
so, do you have a unique index on the first, second, and 15th column on that
same table? Why? If the primary key is unique, anything you put with it will
be unique. Why not? The definition can allow the optimizer to make some
intelligent inferences on the uniqueness of the combination that our “logic”
tells us but that can only be built into the optimizer with enough information.
The more information you can give the optimizer, the better. And as long
as the index is used, the trade-off of space for speed will likely be to your
advantage.

Are you storing a set of lookup values on every record of a hundred
million–row table (for example, city, state, and ZIP code) just because you
don’t want to have to join by ZIP code to another table (everyone knows
that if you can avoid a join, the queries will be performed faster), yet you
only actually go after the details (city and state) 1 percent of the time a query
is run on the table? The chances of data error are far greater than the price of
a well-created join (a join, I might add, that could be precomputed with a
materialized view).

And, no, there is no earthly reason to ask Oracle to come up with a
database model that allows you to have a table with 2500 columns in it. No

180 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:180

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:19:16 AM

Color profile: Generic CMYK printer profile
Composite Default screen

one will ever remember what is in half of those columns. Plus, joins are
becoming more and more efficient over time.

Think through your ideas. Present them logically (maybe even hide a small
database somewhere and do a small proof of concept using production
statistics to bear out your ideas) and then see how it goes. Even a re-design
of a database may be optimal in some cases.

What, More?
Want to see Import/Export run a little faster? Typically, Import/Export runs in
two_task mode. To make it run faster, you can relink the programs in single-
task mode. This can display significant speed improvements, but it does
come with a cost. It can require significantly more memory to run these
relinked programs. You may need to weigh the trade-offs when using this
speed before you wholeheartedly give your faith to the added speed.

The following code can be used to perform this relinking.

cd $ORACLE_HOME/rdbms/lib
make -f ins_rdbms.mk singletask
make -f ins_rdbms.mk expst
make -f ins_rdbms.mk impst
make -f ins_rdbms.mk sqlldrst
mv expst $ORACLE_HOME/bin/
mv impst $ORACLE_HOME/bin/
mv sqlldrst $ORACLE_HOME/bin/

Now you can use expst (export_singletask) and impst (import_singletask)
instead of imp or exp.

Want Import/Export to run even faster? Why not try using Data Pump? In
Oracle 10g, Oracle redesigned Import/Export as Oracle Data Pump. While
Import/Export are still included with the shipment of Oracle 10g, Data Pump
is usually more efficient. Where Import/Export can both run as client server
applications, Data Pump acts as a job inside the database, using command-
line syntax very much like its client server predecessors. Anyone who’s ever
run and needed to monitor an Export/Import operation knows that, unless
you’re actually watching from the machine where the operation started, the
best you can do is send the output to a log file so you can watch the process
indirectly. With Data Pump, it doesn’t matter where you start the job. Because
it’s running in the database, you can log on and check the process from any
other computer that has access to the database.

Chapter 4: Database Tuning: Making It Sing 181

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:181

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:19:34 AM

Color profile: Generic CMYK printer profile
Composite Default screen

But think about it. Client server architecture is inherently less efficient
than something that runs directly within the database without having to
make external connections in any way except for the connection that has to
exist to the DIRECTORY housing the output files. Another reason it runs
faster is because it can be run in a parallel fashion. If you specify the Parallel
option, you allow Oracle to dump data into four different parallel threads,
which is much faster than single threading.

As for the directory, since the job runs inside the database, if you want
the export to go to the file system, the first thing you have to do is create a
database DIRECTORY object into which you can output the file, afterward
granting access to the user or whomever will be doing these exports and
imports.

CREATE OR REPLACE DIRECTORY myexport ‘d:\’;
GRANT READ, WRITE ON DIRECTORY myexport to larry;

Once you’ve created the directory and granted read and write privileges
to it to the export user, you can use the following export commands:

expdp larry/angel directory=myexport dumpfile=larry.dmp

As you can see, it’s very similar to an export command.
You don’t have to write the export out to a file, however, and honestly

Data Pump is just as happy to export the database objects directly into a
remote database over a SQL Net connection. Simply specify the option
REMOTE with the connection string to the remote database and the process
ends up like a once-and-it’s-done replication job.

You can force the running Data Pump Export job into the background,
and the messages will stop being sent to the screen, but the job will remain
running inside the database. If you want to reattach to a job you forced into
the background, you can do so with the command:

Expdpattac=<jobname>

As if using a stored procedure over a client server application isn’t enough
to get your performance appetite sated, you can make this run even better.
While Data Pump leverages parallelism (inter table, and both intra- and
inter-partition) to run load and unload processes, and also build and load
package bodies, fully utilizing all available resources to maximize the
throughput and thereby minimize the elapsed time of a job, for all of this to

182 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:182

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:19:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

take place efficiently the system must be well balanced with respect to CPU,
memory, and I/O distribution. Any tuning you can do to the overall system,
database, and server will help Data Pump perform more efficiently.

Want to make Data Pump as efficient as possible? Allow it to create
multiple dump files when it exports or reads from multiple dump files, and
when it imports and distributes those files over separate disks, letting the I/O
be distributed. This allows the parallelism to occur in as rapid a manner as
possible. The disks on which these files are located should also not be the
same disks on which the target tablespaces for the import, nor the source
tablespaces for the export, reside.

Setting the degree of parallelism at the database level to no more than 2X
the CPU count will allow you to maximize the way that Data Pump spawns
its jobs to distribute them across the system. Keep in mind, though, that as
you increase the degree of parallelism that a job is allowed to make use of,
you also increase the CPU usage memory consumption and I/O bandwidth
necessary for the jobs to run. It’s important when setting up jobs that whoever
is setting the parameters on the import and export jobs not only makes sure
there are sufficient resources available for the job but that regular operations
be allowed to occur on the database. One caveat here though: the PARALLEL
parameter is only available in the Enterprise Edition of Oracle 10g.

You can set the following initialization parameters to help the performance
of your Data Pump export and import processes:

■ DISK_ASYNCH_IO = TRUE

■ DB_BLOCK_CHECKING = FALSE

■ DB_BLOCK_CHECKSUM = FALSE

■ PROCESSES (high enough for maximum parallelism)

■ SESSIONS (high enough for maximum parallelism)

■ PARALLEL_MAX_SERVERS (high enough for maximum parallelism)

Keep in mind that setting these parameters will have ramifications on the
overall system. Also remember that you’ll get different results when setting
these parameters on different operating systems.

Chapter 4: Database Tuning: Making It Sing 183

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:183

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:20:09 AM

Color profile: Generic CMYK printer profile
Composite Default screen

All Operating Systems

■ Use proper file placement so I/O is spread evenly across disks. If
possible, use RAID devices.

■ A good design is key. Index appropriately and watch row chaining.
Row chaining occurs whenever a user updates a row in a table in
such a way that it can no longer completely fit in the original data
block. The migration of part of the row from the original block to
another block is called row chaining, and it can, if allowed to become
excessive, cause a great deal of additional I/O (first, Oracle has to
find the block where the row starts, then it has to find and retrieve
the block where the chain continues).

■ Monitor V$SESSION_WAIT regularly to identify wait conditions. If
the SEQ# column stops changing, the event is stuck.

■ Monitor locking and latching (V$LOCK, V$LATCH,
V$LATCHHOLDER, and so on).

■ If you’re trying to implement distributed or federated databases, keep
in mind that two phase commits are slower than a single instance
commit.

Need to Speed Up Oracle on Windows?
When Windows is the operating system on which both the database and
application are running, it’s often necessary to speed up the way Oracle and
Windows play together. Possible steps to achieve this include the following:

■ If you have the authority, remove any protocols you know you don’t
use from the installed network software list, and then move those
used most frequently to the top.

■ Stop all unnecessary services on your machine. Do this one at a time
and make sure you test so you’re sure they’re really unnecessary.

■ Windows NT and Windows 2000 support asynchronous I/O, so use
it. This not only optimizes your I/O operations, it spares you having
to configure multiple database writers.

184 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:184

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:20:22 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ In Windows, it’s important to note that the default DB_BLOCK_SIZE
is still 2K. Rarely does an application perform optimally with this
setting. Fortunately, if you use the Database Configuration Assistant,
Oracle will help you choose more optimal block sizes. If you don’t
use DBCA, check before you create your database and increase this
setting to 4K or 8K (or even 16K) if required.

■ If you have to use a screensaver, choose something simple. While
the really cool high-resolution ones are neat, and the 3-D ones are
entertaining to watch, it makes your database very uncomfortable if
it has to share this much of the resources with something so
unproductive.

Oracle 10g
The highly-touted Oracle 10g database that tunes itself brings with it some
truly impressive tuning enhancements. I’m not sure this means that DBAs
are irrelevant, but it does mean we have yet more impressive tools to help
us be more effective and efficient.

Tracing Enhancements
One interesting enhancement to tracing that was brought to the table with
Oracle 10g is less of a revolution than it is an evolution in tracing. It’s
now possible to turn on tracing for one or more sessions at a time, and
simultaneously watch sessions as they are connected in order to help you
follow their progress through the database.

This means you can more accurately pinpoint exactly where the session
is at any given time and during any process, the amount of resources being
consumed at that specific point in time (and by extension what the process
in question is consuming), and where the session is having difficulty and
needs tuning. This feature is particularly important if you’re trying to tune in
a multitier and/or multiuser environment (and honestly, a single-user database
isn’t much more useful than one without users… plus, a single-user database
may not be a good application for Oracle) with an application where
connection pooling is taking place. In these instances, depending on the
application, it might be difficult, if not impossible, to find some of this
information.

Chapter 4: Database Tuning: Making It Sing 185

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:185

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:20:41 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Automatic Performance Diagnostic and Tuning Features
While in the past it’s been possible to automatically schedule statistics
collection in Oracle 8i and Oracle 9i (this was true even when using CRON,
AT, or DBMS_JOB), Oracle 10g brings with it not only the ability to
automatically gather statistics but also its recommendation that you let
Oracle automatically gather and maintain them for you. Oracle thus gathers
statistics on all database objects in a maintenance job that you schedule to
have run automatically. This “frees” you from having to worry about gathering
these statistics on your own. In theory, this allows you the assurance of
always having a reliable execution plan because you will never again have
stale or missing statistics.

GATHER_STATS_JOB is the job that runs in order to automatically
gather statistics on all objects in the database, which have either missing or
stale statistics. The job is created automatically at database creation time
and is managed by Scheduler. Scheduler (the free new Oracle 10g
feature that enables you to schedule jobs from inside the database) runs
GATHER_STATS_JOB during the maintenance window, which by default it
assumes to be between 10 p.m. and 6 a.m. every day and all day on the
weekends. These defaults, fortunately, can be changed.

While you can’t change the schedule of GATHER_STATS_JOB by passing
the job a parameter of when to run, you can change the window in which
the job runs either by altering the Scheduler window, or by defining your
own custom window in which you want it to run.

Scheduler comes with its own predefined windows (one for weeknights,
and one for weekends). If these windows don’t fit your needs, you can create
your own windows instead. Windows have three attributes. Schedules controls
when the window is in effect. Durations controls how long the window is
open. Resource plans control the resource priorities among different job
classes.

NOTE
It’s important to remember that only one
window can be used at any given time.

You can manipulate maintenance windows, adjusting their timing and
attributes, as detailed in Table 4-5.

186 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:186

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:21:00 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:187

Chapter 4: Database Tuning: Making It Sing 187

When you create a new window, you can specify the schedule for that
window or you can create a window that points to a schedule that has been
predefined and saved. The following code defines a window that is enabled
at midnight, runs for five hours, and repeats every day. You can use your
own defined resource plan with this window to handle the resource distribution
during the maintenance window duration. Not specifying the resource plan
means that the default plan will be used.

BEGIN
DBMS_SCHEDULE.CREATE_WINDOW (
WINDOW_NAME => ‘nightly_window’,
START_DATE => ’01-JAN-05 12:00:00 AM’,
REPEATE_INTERVAL => ‘FREQ=DAILY’,
RESOURCE_PLAN => ‘my_maint_plan’,
DURATION => interval ‘300’ minute,
COMMENTS => ‘nightly maintenance window’);
END;
/

NOTE
Windows are created in the SYS schema.
Scheduler doesn’t check to see if there is
something already defined for the given period
of time. If it results in windows that overlap, the
situation must be rectified.

Task Procedure

Create a Window CREATE_WINDOW

Open the Window OPEN_WINDOW

Close the Window CLOSE_WINDOW

Alter the Window SET_ATTRIBUTE

Drop the Window DROP_WINDOW

Disable the Window DISABLE

Enable the Window ENABLE

TABLE 4-5. DBMS_SCHEDULER Procedures

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:21:14 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can disable the default windows, but it would be better not to drop
them, because if there are maintenance jobs that rely on that window, you
will disable those jobs as well, and it’s never a good idea to delete or alter
the default operators provided by Oracle. Plus, it’s far quicker to re-enable
any default windows than it is to re-create them.

Once the window is created, it has to be opened to be used. It can be
opened automatically using the schedule that was defined when it was
created, or it can be opened manually using DBMS_SCHEDULE.OPEN_
WINDOW.

NOTE
Only an enabled window can be opened.

GATHER_STATS_JOB, once started, runs till completion even if it
overruns the maintenance window. Stale statistics are those on objects which
have had more than 10 percent of their rows modified.

GATHER_STATS_JOB calls the GATHER_DATABASE_STATS_JOB_PROC
of the DBMS_STATS package, which operates the same way as the DBMS_
STATS.GATHER_DATABASE_STATS procedure if you use the GATHER
AUTO option. The primary difference between the two jobs is that the
GATHER_DATABASE_STATS_JOB_PROC procedure can prioritize rather
than serialize, so those objects that will benefit most from the procedure (in
its opinion) will have their stats gathered first before the maintenance window
closes. I haven’t yet noticed places where its assumptions are wrong, thereby
impacting the performance of queries against very large tables (that it’s
analyzing), so for now I’ll assume its assumptions are valid.

In order to verify that automatic statistics gathering has been enabled,
you can query the DBA_SCHEDULER_JOBS view as follows:

SELECT *
FROM DBA_SCHEDULER_JOBS
WHERE JOB_NAME = GATHER_STATS_JOB;

In order to disable automatic statistics gathering, simply run the Scheduler
package as follows:

BEGIN
DMBS_SCHEDULER.DISABLE(‘GATHER_STATS_JOB’);
END;
/

188 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:188

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:21:32 AM

Color profile: Generic CMYK printer profile
Composite Default screen

While it may be that automatic statistics gathering is the next best thing
since sliced bread, there are cases where automatic statistics gathering
routinely overruns the overnight-defined batch window and thus highly
volatile tables become stale during the day. This is most applicable to tables
that are truncated and repopulated or that are deleted and then rebuilt
during the course of the day or to objects which are the target of large bulk
loads that add upwards of 10 percent or more of the object’s total size in
a given day.

You can, of course, still gather statistics for these and other kinds of objects
using either the GATHER_SCHEMA_STATS or the GATHER_DATABASE_
STATS procedures in the DBMS_STATS package.

It’s important to note here, however, that none of these methods, GATHER_
SCHEMA_STATS, GATHER_DATABASE_STATS, or automatic statistics
gathering, collects statistics on external tables. To get statistics on these
objects, you need to manually run or manually schedule GATHER_TABLE_
STATS with the ESTIMATE_PERCENT option set explicitly to NULL (since
sampling on external tables is not supported). Because data manipulation on
external tables also isn’t supported, it’s sufficient to analyze external tables
whenever the underlying OS file changes.

Need to find a way to restore previous versions of statistics? It’s simpler
now than ever before. Whenever statistics in a dictionary are modified, the
older version is now automatically saved for the purpose of future restoring.
Do you get the impression that automatic stats generation is sometimes not
as optimal as it could be? These older versions of the statistics can be restored
using RESTORE procedures from the DBMS_STATS package.

Want to prevent any new statistics from being gathered on a given object
or set of objects but still want the ability to run automatic statistics gathering?
You can lock the statistics on a table or schema using the DBMS_STATS
package, too.

The DBMS_STATS package in Oracle 10g lets you lock your statistics on
tables or on indexes, even if the data in the table changes. If you discover
you have an efficient set of statistics that allows your application to perform
well, you can use these packages to lock the statistics. It’s important to note,
however, that if you lock the statistics you cannot recalculate them until
they’re unlocked. DBMS_STATS employs four commands that allow it to
lock and unlock statistics at a table or schema level: LOCK_TABLE_STATS,
LOCK_SCHEMA_STATS, UNLOCK_TABLE_STATS, and UNLOCK_SCHEMA_
STATS. Passing these procedures, the parameters that allow you to set and

Chapter 4: Database Tuning: Making It Sing 189

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:189

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:21:54 AM

Color profile: Generic CMYK printer profile
Composite Default screen

unset locking at the level desired can ease a great deal of headaches caused
when a set of statistics that allows an application to perform its best is
overwritten by automatic statistics gathering.

Automatic SQL Tuning Automatic SQL tuning? Simply wave a magic wand
and developers and end users don’t have to think, the SQL just tunes itself?
Now that would be an awesome new feature. Unfortunately, this feature is
really just an advisor (the SQL Tuning Advisor) that takes one or more SQL
statements as input parameters and then turns them around, telling you how
it would create changes to make the SQL more optimal. Its output is simply
advice and recommendations along with the rationale it used for each
suggestion. It also tells you what it expects the benefit of its recommended
changes to be. It may recommend collecting statistics on objects, creating
new indexes, or even creating a new SQL Profile to be used when running
the given statement or statements. The user can then choose to use the
recommendations or not. While it isn’t likely to tell you to gather better
statistics or use a materialized view, it can tell you whether you should
restructure your SQL statement.

A new database object called a SQL Tuning Set (STS) comes with the
SQL Tuning Advisor. These new structures can be created manually at the
command line or by using OEM. An STS stores the SQL statement along
with the execution context surrounding that SQL statement.

The inputs for the SQL Tuning Advisor can come from the Automatic
Database Diagnostic Monitor (ADDM), which is often its primary source.
ADDM is the Oracle-provided (for an extra license fee) utility that analyzes
the data in the Automatic Workload Repository (AWR, also available for the
same additional license fee). AWR is a repository for raw system statistics
and object data. ADDM runs, by default, once every hour to search through
the repository to find particularly high resource-intensive SQL. If it finds one,
it will recommend you run the SQL Tuning Advisor. This is, however, a
somewhat less proactive approach since it has to wait till the statement has
already been run before it can suggest tuning.

Alternatively, you can provide it with your own SQL statements. If you
choose this proactive approach, you can include any not-yet-implemented
statements, but you also have to manually create an STS so the SQL Tuning
Advisor has input on which to work. This is, honestly, the option that I prefer
to use. Proactive rather than reactive. Tuning before users have a chance to
get angry over poorly running code.

190 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:190

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:22:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

You can control the scope and durations of any given SQL Tuning Advisor
task. If you choose the limited option, the advisor provides recommendations
based on statistics checks, access path analysis, and SQL structure analysis,
and no SQL Profile recommendations are generated. If you choose the
comprehensive option, the advisor carries out all of the analysis available to
it under the limited option, adding any SQL Profile recommendations. You
can limit the duration of the advisor run by giving it a set time. The default
time limit is 30 minutes.

The output of the advisor is advice on optimizing the execution plan, the
advisor’s rationale for the proposed optimization, the estimated performance
benefit, and the command to implement the advice given. When it’s finished,
all you have to do is decide whether or not to implement the recommendations.

End to End Application Tracing End to End Application Tracing is a tool
that helps simplify the inherently complex process of performance problem
diagnosis, particularly in multitier environments. When user requests are
routed to different database sessions by a middle-tier environment, it can
mean that you lose the ability to directly attribute a session, definitively, to a
given user. This can make using tools like 10046 trace difficult to use. End
to End Application Tracing makes use of a unique client identifier to help
trace a specific end-client’s session and show what it’s doing through all of
the tiers to the database server.

Just like the other tools in your toolbox, this feature can help you determine
where there is excessive workload, where SQL statements are performing
less than optimally, and can provide you with information you can then use
to contact the appropriate user to help determine what issues he or she is
having. This can mean proactive tuning rather than reactive, and thus turn
you in the eyes of users from a troll into a wizard. Even if you don’t have
time to sit around poking about your database checking if there’s anything
less than optimal happening, you can still use this feature as a means to
troubleshoot an end user’s issue when that user calls with a problem.

Issues can be identified by client identifier (the end user’s ID), service (a
group of applications with common attributes or a single application), module
(a functional block of application programs within an application), or even
the action being performed (INSERT, UPDATE, or DELETE within a module).

After tracing information is written to the trace files by End to End Application
Tracing, you can use TRCSESS to help you diagnose the problem, and then
hand off that file to TKPROF.

Chapter 4: Database Tuning: Making It Sing 191

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:191

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:22:36 AM

Color profile: Generic CMYK printer profile
Composite Default screen

When I wear the hat of an APPS DBA, I can see many uses for End to
End Application Tracing. While Oracle’s E-Business Suite 11i actually has its
own 10046 trace interface built in (which can become a pain when users
“forget” to turn it off after they’ve traced what they’re having issues with), it
can sometimes be more bothersome than trying to enable tracing on a
session-by-session basis because it’s often the case that users will turn on
tracing with binds and waits and then forget to turn them off. If this happens,
you can find yourself overrun with trace files for sessions you have no need
or desire to trace.

Automatic SGA Memory Management Automatic SGA Memory Management
(ASMM) was created as a means to help simplify configuration of the database’s
System Global Area (SGA) and its parameters. It does this through the use of
self-tuning algorithms. It’s a really interesting concept that works the majority
of the time, but somehow it still makes me feel like maybe my database is
starting to think it knows more than I do. This utility helps you simplify most
database configurations by helping you make the most efficient utilization
decisions regarding the available memory on your system. It goes a step further
than a lot of the advisors from Oracle 9i and allows them to dynamically
make many of the decisions on their own. In order for ASMM to work correctly,
you have to have some initialization parameters set correctly. SGA_TARGET
must be changed to a nonzero value and should be set to the amount of
memory you want to have dedicated to the SGA (see, you still have a say in
the matter). STATISTICS_LEVEL has to be set to either TYPICAL or ALL.
Once these are set up, the automatic SGA management makes decisions on
how best to allocate that memory across the following pools (yeah, you
guessed it, the ones we tinker with the most anyway):

■ DATABASE BUFFER CACHE (the default cache, not the nondefault
sized caches, the recycle, or the keep caches)

■ SHARED POOL

■ LARGE POOL

■ JAVA POOL

If you’ve already tinkered with any of these, and they were set to non-
zero values, those values are used as the minimum levels on which the

192 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:192

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:22:55 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ASMM bases its decisions (again, you still have a say in the matter). It’s
important to keep in mind with this utility that if you know you have an
application that has a minimum requirement for any of these parameters in
order for it to function properly, set them upfront so ASMM doesn’t make
decisions that will end up shooting you in the foot.

The SGA_TARGET parameter is dynamic and can be changed with the
ALTER SYSTEM command, while appropriate values are less than or equal to
the value set for the SGA_MAX_SIZE parameter. Changes to SGA_TARGET
automatically filter down to the appropriate tuned memory pools. Setting
SGA_TARGET to 0 disables ASMM.

Dynamic Sampling Dynamic Sampling helps improve server performance
by determining if there are (or might be) more accurate estimates for predicate
selectivity and statistics for tables and indexes. The statistics for tables and
indexes, in this brave new world, now include table block counts, applicable
index block counts, table cardinalities, and relevant join column statistics.
The CBO (since the RBO has now gone the way of the Atari and the
Commodore 64) uses these more accurate estimates to better judge what
EXPLAIN PLAN it will use for executing the given SQL.

You can make use of this feature to estimate the selectivity of a given
single table where clause when the collected statistics cannot be used, or if
they are likely to lead to significant errors in CBO estimation. You can allow
it to guesstimate statistics for tables and indexes if there are no statistics
available for those structures. And you can allow it to do the same for
indexes and tables whose statistics are simply too far out of date for you to
be comfortable in trusting.

This feature is controlled by the use of the OPTIMIZER_DYNAMIC_
SAMPLING parameter. The default value for the parameter is 2, which is the
lowest setting that can be used if you want to turn on dynamic automatic
sampling so it can gather the necessary stats. Setting it to level 0 turns off
dynamic sampling altogether.

Making It Sing
There are some interesting things that you can do to the structure of your
data to trick your database into performing far better than it might otherwise.
Setup and maintenance might be something you’re less than enthusiastic
about, but the benefits may well be worth it in the end.

Chapter 4: Database Tuning: Making It Sing 193

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:193

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:23:15 AM

Color profile: Generic CMYK printer profile
Composite Default screen

Materialized Views
Materialized views are schema objects that are typically used for pre-
computing complex formulas and storing the results, for summarizing and
aggregating data, for replicating data, or for distributing copies of the data to
locations other than the primary location in order to allow people to access
the data where it’s being used. All of these are excellent ways to speed up
data access. What’s the difference between a “regular” view and a materialized
view? Good question. Regular views don’t physically hold anything other
than the definition of what is being sought. They are a grouping of complex
queries into a single representation of what appears to be a table but which
in reality contains no data until the view is accessed. Materialized views, on
the other hand, are more like indexes. They take up space, physically hold
data, and are usually used as a way to speed up queries.

How can materialized views assist you with performance? Using the
setting where initialization parameters enable query rewrites, the Cost-Based
Optimizer can be told it has the option of using materialized views to cut
the cost of queries by redirecting certain queries (or even certain parts of
queries) to the materialized view and thus improve query performance. The
optimizer transparently rewrites the request (or even a part of the request) to
use the materialized view instead of the base tables.

If you find out that one of the worst performing queries that runs frequently
has a formula in it, you can materialize that query and allow the formula to
run once, causing the query to run far faster every time it’s run. For example,
every month accounting runs the same query, with the only difference being
the date they run the query for. And they don’t just run it once; half a dozen
people run it over and over during the first week of the month. Therefore,
you could find the query, determine how best to run it for a given date range
(month –1 would give you last month’s data and you could even compute
the previous quarter based on what your company’s quarters are), create a
materialized view on that query, and schedule the materialized view to
refresh on demand, or as scheduled at 5 a.m. on the first day of the month.

Do you have users who only access a given subset of data and have to
pull that subset across a dialup line to a laptop while they’re on the road at a
client site? Let’s say your business distributes packaged foods to convenience
stores. Larry, your candy salesman, is responsible for convenience stores in
a tri-county area. He needs to be able to determine what is in stock, and
figure the lead time on the candy that’s in greatest demand for his area that

194 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:194

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:23:35 AM

Color profile: Generic CMYK printer profile
Composite Default screen

isn’t in stock currently. Why have his queries from his laptop or his mobile
device search the entire database for that kind of information? If you know
you have parts of your business that can be compartmentalized, why not
take advantage of this information? Thus, you should create materialized
views that are customized to each smaller line of business so that queries
can run as rapidly as possible.

One of the most interesting uses of materialized views is their ability to
pre-compute joins. Do you have a set of tables that are joined together all
the time and always joined on the same columns? Are some of the queries
that run with these joins resource hogs? Do users frequently complain
about the query times associated with these table joins? Materialized views
are great ways to free up resources and make users happy. Find tables that
are joined frequently and then pre-compute the joins and store the results in
a materialized view. They are optimal in data warehouses or in reporting
systems. They have the potential to slow down a transactional system,
particularly if you were to build them as “on commit refresh”.

Oh sure, it’s the best thing since sliced bread, but nothing is all good,
right? There has to be something extra you have to do to the database to
make it recognize these things and to know to use them. Well, of course
there is. Oracle is a smart database, but you have to give it a clue that you
want it to use some of its bells and whistles sometimes.

QUERY_REWRITE_ENABLED must be true. You can set this in the
initialization file. This tells Oracle that it is allowed to let the CBO know
about the materialized views and use them to answer queries. In Oracle
10g, the default is true.

QUERY_REWRITE_INTEGRITY is another initialization parameter that’s
used to determine how and when Oracle rewrites the query. You can control
how fresh or stale the data in the materialized view can be in order for it to
be a candidate for query rewrite.

The different kinds of materialized view integrity that you can set for
your query rewrite are as follows:

■ Enforced (this is the default) query rewrite will only be done if the
view contains fresh data.

■ Trusted query rewrite will be done if the view contains current and
correct data.

Chapter 4: Database Tuning: Making It Sing 195

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:195

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:23:53 AM

Color profile: Generic CMYK printer profile
Composite Default screen

■ STALE_TOLERATED tells the CBO that it should trust that the materialized
view is correct even if it isn’t current. Thus, the query is rewritten.

Then you have to deal with the users (this is one of those times when, if
you have a bunch of users, you might see the benefit of using roles so you
can control groups of users). Grant QUERY_REWRITE to users who will be
permitted to have their queries rewritten by the CBO. Or if you want
everyone to be able to use this feature, grant it to public.

Let’s work with the quintessential Scott/Tiger schema since it’s something
most DBAs are at least partly familiar with. Let’s assume we’re trying to
compile a listing every month of the department name, the jobs in that
department, and the sum of its salaries so you can track where money is
going over time.

To accomplish this, you would ordinarily query the table every month
using the following:

SELECT dname, job, sum(sal)
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname, job

Now, with the Scott/Tiger schema, this query won’t really be a big deal
since it runs in seconds at worst. But what if there were more than two
tables, and what if the tables were million- or multimillion row tables?

CREATE MATERIALIZED VIEW emp_dept_sum_mv
TABLESPACE MVTS
ENABLE QUERY REWRITE
AS SELECT dname,job,SUM(sal)

FROM emp e, dept d
WHERE e.deptno = d.deptno

GROUP BY dname,job;

You would need to be granted CREATE MATERIALIZED VIEW to run the
preceding statement successfully. Now that you’ve created it, gather statistics
and refresh the view using the following:

execute dbms_utility.analyze_schema('SCOTT','COMPUTE');
execute dbms_mview.refresh('emp_dept_sum_mv');

Now test it and see what happens when the original query is run.

196 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:196

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:24:11 AM

Color profile: Generic CMYK printer profile
Composite Default screen

set autotrace on explain
SELECT dname,job,SUM(sal)
FROM emp e, dept d

WHERE e.deptno = d.deptno
GROUP BY dname,job;
Execution Pla
--
0 SELECT STATEMENT Optimizer=CHOOSE
1 0 TABLE ACCESS (FULL) OF 'EMP_DEPT_SUM_MV'

There are always trade-offs, just as with anything you use to speed up
performance. Just like ice cream and chocolate really all do have calories
and those are the trade-offs that you have to deal with if you want to enjoy
them, and materialized views are no different. Granted, there are not
calories in materialized views, but they consume space and you do have to
make sure they’re refreshed whenever you want to use them to rewrite queries
and get the most current data.

Clusters
No, not like in Real Application Clusters (RACs) and not like a computer cluster,
but more like the dictionary.com definition (http://dictionary.reference.com/
search?q=cluster): A group of the same or similar elements gathered or
occurring closely together; a bunch.

In Oracle, a cluster is a storage construct that provides you with an
alternative method of storing each block of data in such a way that it can
make some queries run much faster. It’s made up of a group of tables that
are typically queried together and have their data stored in shared data blocks.
The candidate tables are grouped together because they share common
columns on which joins are typically made, and where tables are most often
queried together.

Given earlier releases of Oracle, there’s also the concept of hash clusters,
which allow the database to optimize data retrieval. Hash clusters provide
an alternative to the traditional storage of tables and indexes, and can also
be used when clustering tables together isn’t an option. In a typical single
table storage with an index, Oracle stores rows of data in the table according
to key values contained in a separate index. To retrieve the data, Oracle has
to access the index, determine the location of the data, and then load it. In a
hash table, you define the hash cluster and then load your tables into it. As

Chapter 4: Database Tuning: Making It Sing 197

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:197

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:24:30 AM

Color profile: Generic CMYK printer profile
Composite Default screen

you load the data, resulting hash values correspond to values determined by
the hash function. Oracle uses its own hash function to generate a distribution
of numeric values (hash values) based on the cluster key (which can be a
single column or multiple columns in the hashed table). This can be faster
for retrieval because an index-based retrieval takes at least two I/O operations
(one for the index, one for the data) while a hash table retrieval takes one
I/O operation to retrieve the data and none at all to determine where that
row is located.

Because the data from the included tables are stored in the same data
blocks, disk I/O may be significantly reduced when the clustered tables are
joined in queries. If you know that you have tables that are nearly always
queried together, you can define the cluster key column or group of columns
that the cluster tables have in common. In an insurance company, this might
be a claim number column in the claim table, invoice table, and payment
table. By specifying the cluster key (and adding the tables to the cluster), the
cluster key value is stored once rather than once for each table no matter
how many rows in each table are associated with the cluster key. This means
that not only are the queries quickened, you could also significantly reduce
the storage necessary for related table and index values.

Again, there are trade-offs in clusters just like in ice cream, chocolate,
and materialized views. Tables that are frequently queried independently of
each other may not be as good a candidate for clustering. Also, because the
rows are stored in the same data block, the tables involved in the cluster may
not be good candidates if there are significant amounts of inserts, updates,
and deletes occurring on the individual tables of the cluster.

NOTE
While retrieval is quicker with clusters, inserts
and updates are somewhat more expensive
timewise.

Looking at an insurance company example, it’s important to note that,
unless the claim number is stored in the individual rows in the invoice line
item table—storing line_item with claim—invoice and payment won’t make
sense just because line_item and invoice are queried together most frequently.
Therefore, you need to sit down and consider carefully the table decisions
you should make concerning clusters when you decide to go this route. It
may be more advantageous in this case to create two clusters, one for claim

198 Everyday Oracle DBA

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:198

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:24:50 AM

Color profile: Generic CMYK printer profile
Composite Default screen

and payment and one for invoice and line_item, and then take the I/O hit
during those times when you query both invoice and payment in some
combination. Good design concepts should always be considered when
looking at any of these constructs. The biggest impact will always happen
when good design meshes with cool new features.

Summary
Tuning can become an obsession, so it’s a good idea to have a general goal
in mind when starting out. Without a goal, how will you know when enough
is enough?

There will always be more tuning that can be done; bottlenecks move,
and when you have cleared one, another will raise its ugly head. It is like
the circle of life, always turning, always moving from one place to the next.
You could find yourself enjoying the adventure of tuning, or you could
decide that you’re a victim of obsessive tuning disorder. So buyer beware.

Chapter 4: Database Tuning: Making It Sing 199

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:199

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:24:59 AM

Color profile: Generic CMYK printer profile
Composite Default screen

ORACLE FLUFF / Everyday Oracle DBA / Wells / 6208-7 / Chapter 4
Blind Folio 4:200

P:\010Comp\Oracle8\208-7\ch04.vp
Friday, December 02, 2005 12:25:12 AM

Color profile: Generic CMYK printer profile
Composite Default screen

