
Jo Weilbach, Mario Herger

SAP® xApps
and the Composite Application

Framework

5Contents

Contents

Preface 9

Acknowledgements 11

Introduction 13

1 SAP xApps—Basic Principles 17

1.1 Market Situation and Opportunities .. 17

1.2 The Evolution of Business Applications ... 20
1.2.1 Traditional Development and Architecture 21
1.2.2 Web Services, Service Oriented Architecture (SOA) and

Enterprise Services Architecture (ESA) ... 23
1.2.3 Composite Applications .. 30

1.3 Characteristics and Definition of SAP xApps .. 33
1.3.1 Composite Applications from SAP .. 33
1.3.2 SAP xApps .. 35
1.3.3 Properties and Requirements of SAP xApps 36
1.3.4 SAP Composite Application Framework ... 38
1.3.5 Advantages of a Close Integration with SAP NetWeaver 39

1.4 The Developers of SAP xApps .. 40
1.4.1 SAP as a Developer of SAP xApps ... 40
1.4.2 The SAP xApp Partner Program ... 40

1.5 Ideal Procedure for the Creation of an SAP xApp 42

1.6 First Implementation Examples ... 45
1.6.1 SAP xApp Resource and Portfolio Management (SAP xRPM) 46
1.6.2 SAP xApp Emissions Management (SAP xEM) as an Example

of a Partner xApp ... 49

1.7 Possible Decision Criteria for Developing an SAP xApp or a Custom
Composite Application .. 51
1.7.1 Business Criteria ... 51
1.7.2 Criteria Determined by the Characteristics

of the Business Process ... 51
1.7.3 Criteria Determined by the Type and Source of the Information 53

Contents6

2 The Architecture of SAP xApps 55

2.1 SAP NetWeaver Overview .. 55

2.2 SAP NetWeaver Components .. 56
2.2.1 Application Platform ... 57
2.2.2 Process Integration .. 61
2.2.3 Information Integration .. 64
2.2.4 People Integration ... 74
2.2.5 SAP Solution Lifecycle Management ... 80

2.3 SAP Composite Application Framework .. 81
2.3.1 Vision ... 81
2.3.2 Comparison .. 82
2.3.3 SAP Composite Application Framework—Principles 85
2.3.4 General Structure of the CAF ... 86

2.4 Architectural Model of SAP xApps .. 94

3 The SAP Composite Application Framework 97

3.1 Introduction .. 97

3.2 Scenario xFlights .. 98
3.2.1 Scenario .. 98
3.2.2 Modeling ... 99
3.2.3 Building an Application in the Classical Way 102

3.3 Architecture and Tools of the SAP Composite Application
Framework ... 105
3.3.1 General Remarks .. 105
3.3.2 Installation .. 109
3.3.3 Life Cycle of a Composite Application .. 109
3.3.4 Composite Application Project .. 110
3.3.5 CORE ... 112

3.4 External Services ... 114

3.5 Entity Service .. 115
3.5.1 Introduction ... 115
3.5.2 Modeling ... 116
3.5.3 CORE Services .. 122
3.5.4 Persistence .. 126
3.5.5 Generation, Build and Deployment .. 132
3.5.6 Testing ... 134
3.5.7 Authorizations .. 135

3.6 Application Services ... 138
3.6.1 Introduction ... 138
3.6.2 Modeling ... 139
3.6.3 Coding Examples ... 142
3.6.4 CORE Services .. 143
3.6.5 Generation, Build, Deployment and Testing 143

7Contents

3.7 User Interface ... 144
3.7.1 Web Dynpro .. 144
3.7.2 Patterns ... 145
3.7.3 Web Dynpro Foundations .. 155
3.7.4 xFlights Example .. 156
3.7.5 Special UI Elements ... 159

3.8 Process Modeler ... 162
3.8.1 Introduction ... 162
3.8.2 Guided Procedures .. 163

3.9 Business Intelligence Integration .. 166
3.9.1 Types of Integration .. 166
3.9.2 Extraction ... 167
3.9.3 Display .. 172
3.9.4 Retraction ... 173
3.9.5 Navigation .. 173
3.9.6 Guided Procedures .. 175

3.10 Knowledge Management Integration .. 175
3.10.1 TREX .. 176
3.10.2 Discussion ... 177
3.10.3 Notification & Subscription .. 177

3.11 Additional Integrations ... 177
3.11.1 Exchange Infrastructure .. 177
3.11.2 Replication und Synchronization ... 178

3.12 Supply and Maintenance .. 178
3.12.1 Configuration ... 178
3.12.2 Java Development Infrastructure .. 178
3.12.3 Projects ... 180
3.12.4 Testing and Monitoring .. 183
3.12.5 Debugging .. 183
3.12.6 Documentation and Help ... 183
3.12.7 Internationalization ... 184
3.12.8 Upgrade and Versioning ... 184

3.13 Modeling Guidelines ... 185
3.13.1 Data Types .. 186
3.13.2 Entity Services .. 188
3.13.3 Application Services .. 188
3.13.4 User Interface ... 188
3.13.5 Naming and Other Conventions ... 189

4 Implementation Examples 191

4.1 SAP xApp Product Definition (SAP xPD) ... 191
4.1.1 Introduction ... 191
4.1.2 Business Case ... 192
4.1.3 SAP xPD as a Solution ... 200
4.1.4 Summary ... 221

Contents8

4.2 SAP xApp Cost and Quotation Management (SAP xCQM) 222
4.2.1 Introduction ... 222
4.2.2 Business Case ... 223
4.2.3 SAP xCQM as a Solution ... 232
4.2.4 Further Development of SAP xCQM and Outlook 253
4.2.5 Summary ... 254

5 Outlook: Applications and Application
Development 257

5.1 Development ... 257

5.2 Paradigm Shift ... 259

5.3 Facts .. 261

5.4 Overall Picture and Solution .. 264

A Appendix 267

A.1 CORE Objects for CAF 1.0 .. 267

A.2 Operation Types ... 270

A.3 User Interface Links ... 270

A.4 Tables ... 273

A.5 Property Rules for Attributes ... 275

B Glossary 277

C Sources and Further Reading 283

C.1 SAP Sources ... 283

C.2 Books and Articles .. 284

C.3 Internet .. 284

The Authors 287

Index 289

9Preface

Preface

In 2003, SAP introduced a revolutionary vision for the future of business
applications: Enterprise Services Architecture (ESA). Many of the world's
top-performing enterprises adopted ESA in the first year after it was
announced, reducing the cost of IT maintenance, and freeing up
resources for innovation.

ESA is a radical shift in technology architecture. The last decade was dom-
inated by the client/server-and-database approach to systems, an innova-
tion also pioneered by SAP with the introduction of SAP R/3 in the early
1990s. ESA is based on a service-oriented approach to applications. By
eliminating much of the “impedance mismatch” between systems and
business processes, ESA can yield much greater business agility while
simultaneously achieving substantial reductions in total cost of ownership
(TCO).

At the heart of ESA is a new platform. The platform of the 1990s was the
client operating system, server operating system, and relational database.
Applications were each designed around their own information needs,
often with complicated and expensive point-to-point integration across
databases. This approach to application integration resulted in integration
costs that consumed between 70 % and 90 % of the IT budget of typical
enterprises, according to leading analysts such as Gartner Group.

Client/server applications are designed with a dedicated client and server,
each server used by a single application, and with integration performed
by point-to-point data synchronization. ESA applications are designed
with shared servers (called “components”) used by many applications
(called “composites”). The components expose a standard set of services,
understandable to enterprise business processes. These standard services,
such as “create purchase requisition” or “order goods from inventory,” are
called enterprise services.

To realize this ESA vision, SAP introduced SAP NetWeaver in 2003. A
breakthrough platform based around the concept of integration, SAP
NetWeaver has had the fastest ramp-up of any platform in history, having
been adopted by well over 1,500 of the world's leading enterprises by the
time this book went to press. By building integration capabilities into
each component of the SAP NetWeaver platform, SAP can dramatically
reduce TCO. The resources saved can be invested in innovation, used to
catch up on the application backlog, or returned to the business. Adopt-

Preface10

ing SAP NetWeaver was the first step on the road to ESA for many SAP
customers.

One of the most unique capabilities of SAP NetWeaver is called “Com-
posite Application Framework” (CAF), designed to reduce the cost of
developing and deploying composite applications. CAF is the basis on
which SAP develops and delivers composite applications, including SAP
xApps™. SAP xApps are “packaged-innovation” solutions that deliver
next-generation business practices with rapid implementation, very low
TCO, and competitive differentiation. SAP xApps are all designed using
ESA, and are all “powered by SAP NetWeaver.”

This book captures SAP's experiences in developing both composite-
application products and custom composite-application projects. The
authors designed, developed, and implemented these applications at
customer sites. You'll learn everything you need to know about compos-
ite applications and SAP xApps in this book, from the greatest experts in
the field.

We hope you will enjoy reading this book as much as we enjoyed creating
this technology and writing this book. If you'd like to learn more about
the topics covered in this book, please visit SAP Developer Network at
http://sdn.sap.com/ you'll have access to the latest information, technol-
ogies, and special offers to help you on your journey to composite appli-
cations.

Dennis Moore
Senior Vice President, xApps
SAP Labs LLC

11Acknowledgements

Acknowledgements

Although only two people are named on the cover of this book as its
authors, it would never have been possible for us to write it without sup-
port from and many discussions with our colleagues, partners, customers,
and friends. This support went far above and beyond the call of duty,
especially since the long distances between the people involved (Palo
Alto in California, Sofia in Bulgaria, and Walldorf in Germany) and the
resulting time-zone differences meant that telephone conversations had
to be held either very early in the morning or very late at night.

It would be impossible to name everybody who contributed to the suc-
cess of this book. Therefore, we would like to mention just a few individ-
uals and to acknowledge them in gratitude and respect. They are:

Rituparna Reddi, who, despite her already tight schedule, spent many
long nights in Walldorf describing user interfaces, helped us to under-
stand the material, and thus regularly missed her last bus home.

Malte Kaufmann, who, without grumbling, provided detailed answers to
dozens of e-mails containing modeling questions, and, in several tele-
phone conversations, supplied information and answers to questions
regarding functionality, technology, and application.

Jörg Schleiwies, who, without blinking, answered our toughest questions
about integrating unstructured information in CAF, and explained all the
relevant aspects in detail.

Frank Rakowitz, master of services.

Kalin Komitski, who answered and commented on our modeling ques-
tions promptly, in detail, and with Bulgarian flair.

Tim Bussiek, Steffen Kübler, Thomas Anton, Jürgen Kremer and Werner
Aigner, who gave up some of their scarce free time to proofread this book
and give extensive, valuable feedback, and in particular, helped us to see
the CAF tree in the SAP NetWeaver forest.

Jürgen Hagedorn and Katharina Rock, who gave us the freedom to write
this book and were always ready with help and advice.

Gunther Piller and Andreas Henke, who always knew the answers to our
SAP xPD questions.

Acknowledgements12

Martin Botschek: a quick code example? Martin was always ready. Need
a quick test environment? He just seemed to pull it out of a hat.

Stephan Böcker, who was always there for us with answers to our ques-
tions about the SAP xApps Partner Program.

Yury Golovenchik, Alexander Efimchik, Alayxey Palayzhay and Ihar
Lakhadynau, who fell in love with the xFlights demo.

Natasha and Katrin, who kept us motivated, and always provided com-
fort and encouraging words when writer’s block set in.

… And of course, everyone else from the world of CAF and xApps, with-
out whom we would have had nothing to write about.

Mario Herger and Jo Weilbach

115Entity Service

Remote Function Calls

RFCs represent the most frequently used method to communicate with
an ABAP-based SAP system. RFCs are interfaces that enable a communi-
cation with programs (so-called function modules) of an SAP system from
outside.

Metadata importThe metadata of RFCs can be imported with the CAF and are then made
available to the entity and application services. During import, all meth-
ods and their input and output parameters are notified to the CAF and are
made available for the CAF services.

tRFCABAP systems also use transactional RFCs. These run asynchronously. That
means that although data which this RFC receives are written in a data-
base table the transaction can only be completed by an explicit COMMIT
WORK.

Web Services

Web services have become widely accepted in recent times as the inter-
face standard for communication on the World Wide Web across appli-
cation and system boundaries. Independent of platform, program lan-
guage, and technology, Web services enable systems and applications to
exchange data and to start actions of any type. For the Web services,
WSDL (Web Service Description Language) files are imported that can be
retrieved from a directory or a UDDI4 server.

External services (and entity and application services that we will describe
in further details later on) are the cornerstone of an Enterprise Service
Architecture and are used to flexibly create business applications.

3.5 Entity Service

3.5.1 Introduction

The Entity Service Modeler is a tool that can be used to model Entity Ser-
vices, their attributes, methods, relationships with other Entity Services as
well as their general properties and behavior. The task of an Entity Service
is to save and access application data. The data can be made accessible in
a local storage in a backend such as an R/3 system or a Web service. You
will find more information on the different persistences in Section 3.5.3.

4 You can find information on Universal Description, Discovery and Integration
(UDDI) at http://www.uddi.org/.

The SAP Composite Application Framework116

Creating and
changing

You can call the Entity Service Modeler in SAP NetWeaver Developer Stu-
dio by creating a new or changing an existing Entity Service. Both actions
open an editor that provides all properties that can be modeled, as well
as attributes and relationships of the Entity Service, in several tabs as well
as in the Properties window. In addition, this editor enables you to make
changes depending on your selections. The (technical) name of an Entity
Service can also be changed at a later stage and it will be registered on the
name server during the check-in phase into the Design Time Repository
(DTR, see also description of DTR in later chapters) provided the develop-
ment takes place in the Java Development Infrastructure (JDI).5

Comparison to
ABAP

In the ABAP world, the name server corresponds to the catalog of repos-
itory objects (incl. Table TADIR) and the global TADIR (for cross-system
and cross-release developments in ABAP systems).

3.5.2 Modeling

Attributes The first general properties of a new Entity Service are the name, the
package, and a short descriptive text. The Entity Service is automatically
assigned a unique number (“GUID”) and creation and change dates as

Figure 3.8 Entity Service Modeler

5 If the name already exists, the check-in is canceled and an error message occurs.

117Entity Service

well as creation and change users are logged simultaneously. Thus the
Entity Service is uniquely described.

The attributes and properties affect both the number of tables generated
and the scope of the coding which is generated as an Enterprise JavaBean
(EJB).

Several entities have already been identified for our xFlights scenario, and
Table 3.1 shows a list of selected entities.

Characteristics of
attributes

As already mentioned the entity Person is described by last name, first
name, title, address, telephone numbers(s) and other attributes. On
closer consideration it becomes apparent that these attributes have dif-
ferent characteristics. The person has only one last name but can have
several first names. The person can also have several addresses and tele-
phone numbers.

Addresses and telephone numbers can also be divided into several differ-
ent attributes. Thus the address consists of country, region, city, zip code,
street, and street number. The telephone number can be broken down
into country code, area code and extension.

This requires different types of modeling for which it is important to know
which options are available to map this data. The CAF provides three
additional types of attributes here in addition to the standard attributes
which cannot be changed: simple, complex and entity-service attributes.

Entity Selected attributes of the entity

Person LastName, FirstName, Address

Flight CarrierID, FlightNumber

Airport Name, Altitude, Latitude

Plane PlaneType, MaxSeats, FuelUsage

Address Streetname, ZIPCode, City, Country

FlightSchedule DepartureTime, ArrivalTime, FlightNumber

Booking Person, Flight, Date

Business Partner lastName

Table 3.1 Selected Entities for xFlights

The SAP Composite Application Framework118

Standard attributes

When creating an Entity Service five attributes are automatically created.
These attributes are: “key,” “createdAt,” “createdBy,” “lastChangedAt”
and “lastChangedBy.” The attributes cannot be changed or deleted and
possess the cardinality 1..1 for “key” and 0..1 for the remaining four. Every
Entity Service thus contains a main table with at least five of these
attributes, regardless of whether it is locally or remotely persisted.

Meaning The meaning of these fields becomes clear when you consider the names.
“Key” which is defined as GUID, is the unique primary key for this Entity
Service, “createdAt” and “lastChangedAt” provide the change history of
the data records in date fields, and “createdBy” and “lastChangedBy” are
used to store the change user as a 255-digit key of the UME.

The “lastChangedAt” attribute is also important because it is used for the
delta extraction of data into the BW. You will find a more precise descrip-
tion of the BW extraction in Section 3.9.

Rules for attribute
properties

The appendix of this book contains a tabular overview of all rules which
itemize the property changes to all attribute types and describe the
dependencies.

Simple Attributes

Simple attributes are generally simple data fields. In a table they would
correspond to a column. In the Person example the attribute “last name”
would be a simple attribute.

Language and
time dependency

In the CAF world, a simple attribute can also be identified as language or
time dependent which entails the creation of an additional language or
time-dependency table. However, such an attribute can only be identi-

Figure 3.9 Simple Attributes and their Mapping in the Database

Person

LastName

FirstName

Telephone

Document

Address

Description

Simple attribute

Other attribute types

E
nt

it
y

S
er

vi
ce

Person-key

119Entity Service

fied as language dependent if it is of the basic type “string” and has the
cardinality 0..1.

Only one language table is created per Entity Service. In the language
table, an additional field is used for every language-dependent attribute.
This field is no longer available in the main table. In Figure 3.10 this
aspect is illustrated using the field “Description.”

Simple attributes can possess the cardinality 0..1 and 0..n or 1..1 and 1..n
respectively if they were entered as mandatory attributes at the same
time (the “mandatory” property is set to “true”). Regarding the database,
the cardinality 0..n and 1..n means that an additional table is created with
a primary key and an attribute. For this and all additional tables which are
created for an Entity Service for the persistence, the name can be
changed in the Persistency tab. In the main table itself a foreign key is
then created which is a GUID for the CAF. In Figure 3.11 this is illustrated
using the field “FirstName.”

Figure 3.10 Language-Dependent Simple Attributes and their Mapping in the Data-
base

Figure 3.11 Simple Attributes with Cardinality 0..n or 1..n and their Mapping in the
Database

Simple attribute

Person

LastName

FirstName

Telephone

Document

Address

Language

Person-Key

Langu

Description

Other attribute types

E
nt

it
y

S
er

vi
ce

Person-key

Simple attribute

Person

LastName

FirstName-key

Telephone

Document

Address

Description

Firstname

Firstname-Key

Firstname

Other attribute types

E
nt

it
y

S
er

vi
ce

Person-key

The SAP Composite Application Framework120

Simple attributes can also be defined as keys by selecting the “key” prop-
erty. This makes them automatically mandatory input fields and the car-
dinality is set to 1..1. This cannot be changed subsequently. However, in
the database these attributes are not key fields but rather receive a
unique index. The standard attribute “key” is created as the only key field
in the database itself.

Attributes which were defined as mandatory input fields or as keys are
automatically transferred as arguments into the CREATE method of the
Entity Service.

Modeling tip As a rule of thumb, simple attributes are used if the attribute should not
be divided into additional sub-attributes and cannot exist independently
from the referenced master data record. It should only be identified as
language dependent if the values entered have a commentary or descrip-
tion field character. Reusable language-dependent texts such as “color”
should be modeled as separate Entity Services.

Specific data types for attributes as are required for using currencies and
units will be described in Section 3.13.1.

This attribute type and all other types can be sorted in any way in the
Attributes tab of the Entity Service Modeler.

Complex Attributes

Complex attributes have several data fields. The data is stored in an addi-
tional table in the database. In the Person example, the “Telephone”
attribute is a complex attribute which consists of the fields “Country
code,” “Region code,” and “Extension.”

A complex attribute can also be created with the cardinality 0..n (one
person has several telephone numbers). The sub-attributes themselves
can only be simple attributes and can have a cardinality of 0..1. A sub-
attribute cannot be a mandatory attribute (i.e. the “Mandatory” property
cannot be set to “true”). Complex attributes can neither be language-
dependent nor defined as mandatory input fields.

Regarding the database, this means that an additional table with several
attributes is created. In the attribute of the main table, a foreign key is
then stored which is a GUID for the CAF.

Modeling tip As a rule of thumb, complex attributes are used if the attribute is to be
divided into additional sub-attributes and cannot exist independently
from the referenced master data record. This means that, for instance, a

121Entity Service

telephone number makes no sense in most cases without the corre-
sponding person.

Entity Service Attributes

Entity Services can have other Entity Services as attributes. To create such
an attribute a user can simply drag an Entity Service from the “Entity cat-
alog” to the attributes in the “Attributes” tab. Technically speaking, this
results in a foreign-key relationship. In the Person example the “Address”
attribute would be defined as a separate Entity Service that can in turn
have simple (“Street”), complex (“Geographical coordinates“), and Entity
Service (“City,” “Country”) attributes. This means that one and the same
address can therefore be used both separately and in other Entity Ser-
vices, for instance as a company address and as an address for several
employees.

CardinalityEntity-service attributes have a cardinality of 0..1 or 0..n. They cannot be
set as language dependent at this point. This must be defined in an Entity
Service, which is used as an attribute. Entity-service attributes cannot also
be defined as keys in this Entity Service.

In the database, an additional join table is created as a result. Thus
another table is implemented between the main table of the Entity Ser-
vice and the Entity Services used as attributes. This join table contains
three fields: a separate primary key, the foreign key for the Entity Service,
and the foreign key for the Entity Service attribute. Although both of the
foreign keys alone would be sufficient for uniqueness, it was decided to
create an additional key.

Modeling tipAs a rule of thumb, entity-service attributes are used if the attribute is to
be divided into additional sub-attributes and can exist independently
from the referencing master data record.

Figure 3.12 Complex Attributes and their Mapping in the Database

Person

LastName

FirstName

Telephone-key

Document

Address

Description

Telephone

Telephone-key

Country code

Region code

Complex attribute

Other attribute types

Number

Extension

E
nt

it
y

S
er

vi
ce

Person-key

The SAP Composite Application Framework122

Cascading
deletion

Although an instance of an Entity Service attribute can exist indepen-
dently of the referencing master data record, a cascading deletion is
sometimes necessary. Therefore it is possible to define the Entity Service
attribute as an association or composition in the properties section. If you
select Composition, referenced data records in the Entity Service
attribute are also deleted when carrying out deletions in the referencing
Entity Service.

Figure 3.13 shows that when modeling with the CAF, extensive database
structures are created very quickly.

Custom Appends

Enhancement
project

In the current version of CAF SAP, xApps are supplied as Java archives but
not as Java projects with the metadata. In order to be able to perform
changes to the application that go beyond the configuration, an enhance-
ment project can be created. In such an enhancement, project, custom
appends can be created that enable customers to model additional
attributes for the Entity Services supplied.

3.5.3 CORE Services

As already mentioned, with CAF some CORE Entity Services are supplied
in the CORE project by default. These services are frequently used and
they are cross-application entities that can in general only be changed to
a limited extent by application developers. SAP is planning to add an
entire range of Entity Services to this project in future versions of CAF.

As a matter of fact, there are already more Entity Services supplied with
CAF than those described in this chapter. These mainly involve persis-

Figure 3.13 Entity Service Attributes and their Mapping in the Database

Join Table

Key

Person-key

Address-key

Person

LastName

FirstName

Telephone

Document

Description

Entity attribute

Other attribute types

E
nt

it
y

S
er

vi
ce

Address

Address-key

Street

Region

City

Country

ZIP-Code

E
nt

it
y

S
er

vi
cePerson-key

123Entity Service

tence for business rules, permissions, object metadata etc. required dur-
ing runtime. These Entity Services are available to the CAF only internally
and during runtime. They are installed with the CAF library.

CORE services
supplied

Along with CAF the following additional CORE Entity Services are pro-
vided:

� Category

� CategoryValueSet

� Document

� Discussion

� DiscussionRoom

� Principal

� Topic

Category

Instances of entities can be categorized using the Entity Service Category.
For example, the passengers can be divided into different categories
according to “menu requirements,” “smokers/non-smokers,” “frequent
flyers,” etc. Several values can exist for each category, and these can be
selected via the Entity Service attribute “CategoryValueSet.” The category
itself is modeled as language dependent.

Assignment to
data records

The assignment of categories to data records is carried out via the UI pat-
tern Classification Assignment. Maintaining the value list is carried out
either through the KMIndex UI or the values are uploaded from SAP
Knowledge Management. In either case, the values are stored in the local
persistence. You can find the link for this UI in the appendix.

CategoryValueSet

This Entity Service is an attribute of Category and contains the value list
for different categories. If, for example, a category is called “Menu
requirements,” the lists of values can contain “Vegetarian,” “Kosher,”
“Meat,” and “Pasta.” The list of values is also modeled as language depen-
dent.

Maintaining the list of values is also carried out through the KMIndex-UI.
The values are stored in the local persistence. By using this UI, existing
taxonomies can also be loaded from SAP Knowledge Management into
the local persistence for further use.

The SAP Composite Application Framework124

Category and CategoryValueSet together form a two-level hierarchy that
can be used to categorize data records.

Modeling tip In contrast to the CustomEnumType (see also Section 3.7.5), which is dis-
played as a dropdown field in the UI, a UI pattern must be used to cate-
gorize a data record. To do this, a more flexible two-level hierarchy is pro-
vided.

CategoryService

As one of the last changes, the hierarchy functionality has been added to
the CAF support packages. This functionality enables you to create hier-
archies with as many levels as you wish. In addition, several hierarchies
can also be created for the same values. The assignment to the object
instances is carried out in the UI pattern Classification.

Document

By using the Document, any file types can be checked in to SAP Knowl-
edge Management, where they can be requested from and edited. Typi-
cally, these file types are Word documents, text files, PowerPoint files,
PDFs, and so forth. If this CORE Entity Service is used as an attribute for
another Entity Service, a field of the data type rid is created in the main
table for the Entity Service. This data type then has a foreign key relation-
ship with the document.

The Entity Service Document has the following attributes:

� Key (String)

� parentFolder (String; 0..1; key attribute)

� parentFolder (String; 0..1; key attribute)

� title (String; 0..1)

� description (String; 0..1)

� link (String; 0..1)

� contentLength (long; 0..1)

� contentType (String; 0..1; contains the MIME type information)

� relatedObjectRids (String; 0..n)

In the application the UI pattern Attachment is used as the user interface.

125Entity Service

Discussion

If Discussion is used as an attribute of an Entity Service discussions, users
will be able to discuss individual instances. These postings are stored in
KM.

DiscussionRoom

In contrast to the Entity Service Discussion, DiscussionRoom enables
you to restrict the access to a discussion. You can grant authorizations to
those who are permitted to take part in the discussion. This Entity Service
also provides the functionality to send invitations to users to participate
in a discussion.

Principal

Principals are used in the Entity Service DiscussionRoom and represent
the individuals invited, i.e. the users authorized for this DiscussionRoom.

Topic

This service is used by the Entity Service Discussion. Each discussion can
have one or several topics.

Currency

This service is used internally in order to attach currencies to numerical
attributes.

ExchangeRate

This service is used internally in order to execute conversions into other
currencies on attributes with attached currencies.

UnitOfMeasurement

This service is used internally in order to attach units of measurement to
numeric attributes.

UnitConversionSimple

This service is used internally in order to be able to perform simple con-
versions on attributes with units of measurement.

The SAP Composite Application Framework126

3.5.4 Persistence

Naming
conventions

As already seen the modeling of an Entity Service has major effects on the
persistence. Deciding on a specific attribute type can be critical for addi-
tional tables in the local database. The created tables follow a naming
convention, which has the prefix XAP_ and has a generated key as its
actual name. Due to length restrictions for databases supported by SAP,
the table names cannot be longer than 18 characters. For this and other
reasons, a decision was made to assign the name of tables in this form
instead of generating any “meaningful” names. Other reasons were the
potential conflicts between attribute tables with the same names in dif-
ferent Entity Services, conflicts when installing several xApps with the
Entity Services bearing the same names, and also the ever-present temp-
tation among application developers to directly access the tables. Instead
of this direct access, the corresponding APIs of the Entity Services should
be used.

The tables with the rather cryptic names of XAP_<14-digit ID> can be
renamed in the modeler by the developer. The names are registered on
the name server during check-in to the DTR. If the name already exists,
the check-in procedure cancels with an error.

Other factors affect the table structure. In addition to the attribute type,
its data type and the key property, these factors are the language depen-
dency, time dependency, the cardinality, and the decision concerning the
use of a local or a remote persistence. A precise explanation of these fac-
tors follows.

Language Dependency

Language table If an attribute is referred to as language dependent, a language table is
created that contains the foreign key of the data record, the language,
and the corresponding text as fields. For each language-dependent
attribute, an additional field is created in this language table. Depending
on the user log-on language, the text is selected and displayed in the cor-
responding language during the application runtime.

An attribute which was identified as language dependent cannot have a
cardinality of 0..n or 1..n.

Time Dependency

Information as to when a value was valid can be mapped through the
time dependency of attributes. The “last name” or the “address” of a per-

127Entity Service

son can be time dependent. This property is stored in an additional table
that contains the fields “Key,” “Value,” “Valid from,” and “Valid until.”
Depending on the period of validity of the request, the corresponding
value is selected from the time-dependency table and then displayed.

Cardinality

If there is a 0..n or 1..n relationship between the Entity Service and the
attribute, additional tables will only be created in cases where this mod-
eling cannot be mapped by the existing table structures. An attribute that
was identified as mandatory (“Mandatory” property is set to “true”) can
only have cardinalities of 1..1 or 1..n.

Remote and Local Persistence

Subsequent
changes

In an Entity Service with local persistence, at least one table is always cre-
ated. As already mentioned, the number of tables can vary according to
the type of modeling. If the Entity Service was already deployed once on
the J2EE server (which means that tables were created in the database)
and if subsequent changes are then made to the attributes affecting the
persistence (i.e. the tables), the following cases can be differentiated:

� Positive changes
Attributes are added. In a new deployment these attributes are gener-
ated as additions to the existing tables. The data remains in the tables.

� Negative changes
Attributes are removed. This is not permitted. During deployment at
the latest, the J2EE server sends error messages and the deployment
cancels.

Subsequent changes that have an impact on the language and time
dependencies and the cardinality are only possible to a limited extent.
The installation must previously be “undeployed,”or deleted on the J2EE
server.

Remote
persistence

So far only the local persistence was taken into consideration. In addition
to saving data in the local database on the J2EE server, the CAF also pro-
vides the option to “remotely” read the data, to change it, save it, and to
delete it. In this context “remote” means that data is stored in a back-end
system, i.e. a downstream system. Back-end systems in CAF are all those
systems whose data, is separated from the local CAF database, no matter
how it is stored.

The SAP Composite Application Framework128

Mixed persistence In an Entity Service, a “mixed” persistence, i.e. a local one as well as a
remote one can be set as an attribute by using other Entity Services. For
example, a Person Entity Service can be made completely locally persis-
tent with its simple and complex attributes. On the other hand, the
“address” attribute, which is an Entity Service itself, can be made persis-
tent in a remote form in a back-end system. The same applies in reverse:
Both the data of the Entity Service and all its attributes can either be
stored completely locally or remotely.

In fact, an Entity Service which is identified as remote always has just one
local table in which the standard attributes and the information on rela-
tionships with other Entity Services are stored. This means no changes
have to be performed on the backend systems.

Modeling tip The use of a remote persistence from an Entity Service requires mapping
to an external service. For each method (create, read, update, delete
and the arbitrarily definable findBy-methods), an individual external ser-
vice can be referred to. The methods of the external service are then
mapped to the methods and fields of the Entity Service. In the current
version of the CAF, there are still some functional limitations. For exam-
ple, the developer has to ensure that the data types match.

In general, it doesn’t make sense to use transactional RFCs in the Entity
Service. It is better to use these in the application service, as otherwise
another COMMIT command (in our specific case the ABAP command is
COMMIT WORK) must be released.

Distributed
commits

If you take a closer look at “mixed” persistences, the problem of a “dis-
tributed commit” emerges. By this we mean that the data to be written
into distributed systems actually arrives there without any interruption.
Nothing is worse for data consistency than having the write access to a
system canceled due to concurrent accesses, locks set, unavailable sys-
tems, or inconsistencies while the relevant data was updated in the other
system. If persistence exists in one single system only, you have more or
less complete control and therefore always have the option of a rollback.
However, to ensure a clean update in distributed systems, all participating
systems have to permit a two-phase commit. An example would be to
first check in the course of a test update if the data can be written so that
it can be actually written in a subsequent update. Unfortunately, most
systems do not offer any two-phase commit, and some of the external
services used do not even provide rollback functionality.

129Entity Service

The CAF, or to be more precise SAP NetWeaver, for these reasons cur-
rently provides no options for using generic functionality during a distrib-
uted commit. This should not be a reason for ruling out the creation of
composite applications with SAP xApps, as in many cases either no dis-
tributed commit is required or it can be bypassed by taking other actions.

Access to the Local Persistence

JDOBut how do the operations access the local database? This occurs “indi-
rectly” using Java Data Objects (JDO). JDO is an API developed by Sun in
order to be able to access data from any data sources through Java. JDO
makes access to the data sources transparent for the developers and
requires no SQL knowledge.

JDO is not used directly in the Entity Services but via the CAF-specific
DataAccessService. During creation, two additional files with the end-
ings .jdo and .map are created. The .jdo file contains the relationships
between the Java class and the database table and is required when the
CAF project is being built. During the build, the PersistenceCapable
interface is implemented in the Entity Services on the basis of the .jdo file
in order to enable the JDO use.6 The .map file can then read out these
relationships during runtime.

Access to the Remote Persistence

External ServicesIn order to receive data from a back-end system or to save it there, exter-
nal services are used and mapped to the operations. By mapping we
mean the assignment of methods and parameters of the Entity Service to
methods and parameters of the external services.

Not all operations of an Entity Service must be mapped to the same one,
to a different one, or to any external services. It is conceivable that the
read method READ is mapped to an external service A, the FINDBY-
method XY to an external service B, and the write method CREATE to no
external service at all, but that it stores the data locally. A practical exam-
ple illustrates the mapping of the FINDBY methods to the BI-SDK7 Web
service in order to search purchase order data and line items from SAP
Business Intelligence. If this required data is found, it is once again read
from the R/3 system and the changes are saved there. The reason for

6 If the class is decompiled, you can see this extension in the code. In the original
project code the extension is not available at this point in time.

7 Business Intelligence Software Development Kit. This SDK enables you to access
data from SAP NetWeaver Business Intelligence via Web services.

The SAP Composite Application Framework130

using this solution can be an already heavy load on the R/3 system. Due
to the previous filtering performed by BW this load does not increase
excessively.

Changes Similar to the local persistence, in a remote persistence the operations
can only be changed in so far as the mappings are adaptable to the meth-
ods and parameters. If more transformations or adaptations are to be exe-
cuted, then either the external service itself must be changed corre-
spondingly, or it must be carried out in the application service that is
located at the next higher level.

Operations

Operation types The query and storage of data from the persistence in the Entity Services
is enabled by five operation types:

1. CREATE

2. READ

3. UPDATE

4. DELETE

5. FINDBY

Figure 3.14 Mapping an External Service to an Entity Service

131Entity Service

If the Entity Service is defined with local persistence, the first four opera-
tion types (the CRUD operations) cannot be changed. In the generated
coding, these four methods8 are created. For local persistence, adjust-
ments and transformations in the coding can only be executed in the
application service.

AttributesThe arguments of the CREATE method can be set in the Attribute tabstrip
of the Entity Service Modeler. When creating attributes that were defined
either as keys or mandatory input fields, the CREATE method is also
enhanced by the corresponding arguments. When calling the CREATE
method in order to create a data record, these arguments must be trans-
ferred also and cannot be empty.

The FINDBY operations represent a special case. Depending on the num-
ber and type of the attributes, several of these can be created. The search
parameters are selected using a dialog wizard. Possible input parameters
are standard attributes, simple attributes, the sub-attributes of complex
attributes, and attributes of Entity Service attributes. With the exception
of the Entity Service attributes, all other attributes referred to here can
also be used as output parameters for the search. For the Entity Service
attributes, only the respective keys are returned. If attributes of the Entity
Service attributes themselves are required as return values, they must be
queried separately in the application service.

Search with
placeholder

By default, you can carry out a restricted search with a placeholder in the
FINDBY operations in the case of local persistence. The character * (aster-
isk) acts as a placeholder. The restriction given by using JDO means you
can only run queries of type “aa*” or “*zz”, i.e. the placeholder symbol
can only be the first or the last character of the search term. In the case of
a remote persistence, the FINDBY operation supports every type of place-
holder and position which is supported by the remote operation used.

Transfer valueFINDBY operations require an object of the type com.sap.caf.
rt.bol.util.QueryFilter as a transfer value. It is clear from the nine
constructors of this class that several types of query filters are possible,
and these can adopt both individual values and intervals and conditions.

A query filter can look as follows:

QueryFilter filter1 = new QueryFilter("HelloWorld");
QueryFilter filter2 = new QueryFilter("Hello*");

8 The terms “method” and “operation” are used as synonyms.

The SAP Composite Application Framework132

In addition, based on the settings in the Entity Service, operations are cre-
ated such as

searchidxForBOInRelatedDoc

This operation belongs to the Entity Service Document and runs a search
for all data records which contain a reference to a document. The opera-
tion then returns a list of results.

During generation, in the complete coding authorization checks, logging
and tracing and other calls are automatically created as well.

3.5.5 Generation, Build and Deployment

While the services are being created and changed, the metadata also is
being created, links are being created, and coding and interfaces are
being generated. For an executable application, Java dictionary objects
(DDIC) such as tables, data elements, domains, views and metadata, and
program and interface classes are required. During generation, these files
and configuration files are once again regenerated and during the final
build three archives are stored per CAF project. The archives contain the
information on the DDIC objects, the metadata, and the compiled cod-
ing.

Consistency check During the build itself, in addition to compilation, all references are also
checked once again and the consistency of the archive is ensured. If the
consistency and links to references cannot be produced, the build cancels
with an error message.

Subsequent action If the build was successful, the archives can be “deployed” on the J2EE
server. By “deploying,” we mean the process of copying this archive to
the server and the execution of subsequent activities. A subsequent
action is, for instance, the creation of tables and database structures by
calling the information contained in the dictionary archive to execute cor-
responding SQL statements.

During the deployment, a check is run to see if the specified references
are valid. If this is not the case, the deployment is usually canceled with
an error message. However, if the deployment took place without error,
the services are available to the application. The tables are created in the
local database and are waiting to be populated.

The entire process of generation, build, and deployment is executed in
one step and transparently for the user.

133Entity Service

Comparison to
ABAP

The comparable functionality in the ABAP Workbench would involve
generating or activating objects.

Java Dictionary

Tables and their relationships to each other can now be created in the
database by using the information in the Java dictionary project.

Metadata

The metadata is stored in the metadata project. In the more than a dozen
sub-directories of the Meta Model, the definitions of interfaces,
attributes, data objects, fields, mappings, operations, authorizations,
properties and tables are stored in XML files. At least two XML files are
created for each of the definitions referred to, even small application
projects can contain several hundred XML files.

Since these files are regenerated each time you use the CAF Designer to
perform changes to the services, modifications executed on XML files
with non-CAF tools are lost.

Apart from this, changes to the services, depending on the extent of
these changes generally also affect more than half a dozen XML files.

Coding

TemplatesThe generation of the services is based on coding templates and metadata
definitions. The coding templates for external, entity and application ser-
vices and their interfaces can be found in the plug-in directory of the CAF
Designer under com.sap.caf.designer in the sub-directory templa-
tes. More than two dozen templates are available there and can be used
according to the relevant definition.

The coding that is generated in such a way is then stored uncompiled in
the source directory of the EJB module project, the built archive that is
ready for deployment is stored together with the compiled Java classes in
the Deploy directory. Coding for Entity Services (and also application ser-
vices) is generated in the form of sessions beans.

NoteAs the Java classes are regenerated each time you use the CAF Designer
to perform changes to the services, modifications executed on Java
classes with other tools are lost. We would therefore strongly advise you
against making changes directly in the generated coding even if the temp-
tation is great.

The SAP Composite Application Framework134

We would also advise you against making arbitrary changes to the coding
templates in the templates directory. SAP will not provide any support
if these templates are changed by application developers (i.e. developers
who are not part of the CAF team). In addition, a future upgrade to a new
CAF release can be made more difficult or even impossible, as SAP
reserves the right to change these coding templates to make them incom-
patible, if necessary.

Four methods are created by default for an Entity Service, namely the
create, read, update and delete methods. In addition, findBy meth-
ods are generated, provided that these were generated by the developer
on the Operations tabstrip. There are also some attributes and set meth-
ods that are not available for general use. For example, the setKey
method cannot be used in order to set a separate key. This method is only
used internally.

3.5.6 Testing

ServiceBrowser After successful deployment services can be tested on the J2EE server
with the ServiceBrowser by calling them from the context menu of the
service explorer in the CAF design time. In the subsequent screen you can
then see all the services registered on the server.

You can find the link for this and all other tools in the appendix.

Comparison to
ABAP

In the ABAP world the ServiceBrowser corresponds to Transactions SE37
and SE38 for changing and executing reports and function modules.

Excursus: Why Are Session Beans Generated?

The purpose is to provide a standardized service interface. Therefore,
all services are session beans (entity and application services). By using
JDO, the beans are also made persistent and the generation of entity
beans would be too much generated coding. However, the generation
of other types of coding, depending on the task at hand, is not ruled
out for the future.

135Entity Service

3.5.7 Authorizations

The CAF employs the UME supplied with SAP Enterprise Portal to check
user authorizations. In the Entity Service Modeler in the Permissions tab-
strip the authorizations check generally takes place at the object level
(“Should an authorization check be carried out for this Entity Service?”)
and switched on or off at the instance level. The term “instances” refers to
the individual data records in this case.

ACLIf the authorization check was switched on at the instance level, an
access-control list (ACL) is created for each instance. This list contains
information on each data record for which authorizations are permitted
for which users or roles. The corresponding code sequence can then be
executed in the application service. There is an administration interface to
maintain the ACLs (see Figure 3.16).

In addition to maintaining ACLs, you can also create rules (business rules)
and conditions there. The authorizations created can be imported and
exported as well as propagated to referenced Entity Services.

Figure 3.15 ServiceBrowser

The SAP Composite Application Framework136

UME actions UME actions must be available so that the UME can work with the autho-
rizations for operations of the application services. You can create these in
the CAF Designer using the Application Service Modeler.

The administration tool Principal Authorization Report is used in order
to be able to view the rule-based authorizations of a user for an Entity
Service for all instances (see Figure 3.17).

You can use this tool to display the authorizations but not to change
them. The authorization data can also be downloaded locally.

The reverse view of data, namely the display of authorizations for all roles
and users on one instance of an Entity Service occurs with the UI illus-
trated in Figure 3.18.

Calling this UI, does not return any data at first because both the config-
uration (and hence the Entity Service) and the instance are required. The
configuration takes place in the screen displayed in Figure 3.19.

The data cannot be changed here either. In order to transfer the instance,
this UI can—for example—be called from the ObjectSelector (of the
ObjectList).

Figure 3.16 Authorization Maintenance for Users, User Groups and Roles

137Entity Service

Figure 3.17 Principal Authorization Report

Figure 3.18 Authorization Report

The SAP Composite Application Framework138

3.6 Application Services

3.6.1 Introduction

Business process
logic

The Entity Services described up to now primarily deal with generation of
code for the relatively simple and redundant, but—provided they are to
be programmed manually—coding-intensive tasks of data reading and
writing, which are prone to errors. Application services, by contrast, con-
tain the “intelligent” part of the application, namely the business process
logic.

Application services are also the only way for entity or external services to
get in contact with the UI in the CAF architecture, according to the Model
View Controller principle (MVC).

In the xFlights example, the most important application services would
mainly be those for booking flights and all others which execute searches
for data records in the Entity Services. Figure 3.20 provides an overview
of the application services in the sample scenario.

Figure 3.19 Authorization Report Configuration

289Index

Index

A
ABAP 58, 277
ABAP Dictionary 58
ABAP Workbench 58
Abstraction 85
Access Control List 135
Account manager 236
ACL 135
Action 215
Adapter 277
Administrator 238
Advanced Business Application

Programming (ABAP) 277
API 277
Application 277
Application Programming Interface

(API) 277
Application Service 94, 209, 277
Approval procedure 235
Approved Vendor List (AVL) 223
Approver 238
Architectural model 55, 94
Association 122
Asterisk 131
Attributes, transient 83
Authorizations 135

B
Backend system 127
BAPI 277
BEx Information Broadcasting 66
BEx Web 67
BEx Web Analyzer 68
BEx Web Application Designer 67
BI Java SDK 68
BI Meta Model Repository 108
Bid type 224
Business Application Programming

Interface (BAPI) 277
Business benefits 232
Business Content 68
Business Explorer 66
Business Intelligence Platform 66
Business Package 277
Business Process 277

Business process logic 138
Business Scenario 277
Business Server Pages model 59
BW Service API 167

C
CAF 280
CAF Documents Component 251
Cascading deletion 122
Category 123
CategoryService 124
Change Management Service (CMS)

58, 61, 184
ClassificationApplicationService 143
Client/server architecture 21, 277
Code generation 85
Collaboration 277
Commit

distributed 128
two-phase 128

Component 277
Component Build Service (CBS) 61
Composite application 30, 31, 33, 34,

277
Composition 122
Concept 192
Configuration 178
Conflict resolution 244
Content management 231
Context 163
Contracts 241
CORE 112
Cost blocks 234
Cost element 234
CRUD 131
Currency 120, 125, 187
CurrencyConversion 143
Custom appends 122
Custom composite applications 39

D
Dashboard 238
Data cleansing 224
DC 179
Decision criteria 51

Index290

Deploying 132
Design Time Repository (DTR) 61, 179
Development class 110
Development component 179
Discussion 125
DiscussionRoom 125
Dispatch and follow up 235
DocContent 143
Document controller 238
DTR 179
Dynamic attribute 239

E
EDI 278
Electronic Data Interchange (EDI) 278
Encapsulation 26
Enqueue Server 169
Enterprise Portals 280
Enterprise Service Repository 265
Enterprise Services 25, 278
Enterprise Services Architecture (ESA)

27, 278
Entity Relationship Diagram 100
Entity Service 93, 100, 278
ESA 278
ESA platform 27
Excel 162, 216
Excel export components UI 253
Excel parsing API 251
Exchange Infrastructure 177
ExchangeRate 125
Exploded BOM 242
Extensible Markup Language (XML)

278
External Service 94, 278
Extraction templates 241

F
Filtering mechanisms 230
Fuzzy search 176

G
Guided Procedures 87, 163, 213

action 87
Guided Procedures Template 88
phase 87
process template 88
process template design time 89

Guided Procedures Action Interface
164

H
Hierarchical BOM 242
Hypertext Markup Language (HTML)

278
Hypertext Transfer Protocol (HTTP)

278

I
IBM WebSphere 56
IDE (Integrated Development Envi-

ronment) 60
Implementation process 42
Information integration 64
Innovation costs 39
Innovation risiks 39
Integration Directory 63
Integration Repository 63
Integration Server 62
Interactive forms 90, 164
Interface 278
Internationalization 184
Internet standards 279
iView 279

J
J2EE 279
J2EE Engine 59
JARM 183
Java 2 Enterprise Edition (J2EE) 279
Java Application Response Time Moni-

toring 183
Java Community Process 59
Java Database Connectivity 168
Java Development Infrastructure (JDI)

58, 116, 178, 184
Java Dictionary 61
Java Management Extensions (JMX)

279
Java Message Service (JMS) 279
Java Server Pages 279
JavaDoc 141
JDBC 168
JDI 116, 178
JDO 129, 170
JMS 279

291Index

JMX 279
JSP 279

K
KMIndex UI 123

L
Lightweight Directory Access Protocol

(LDAP) 279
Locking mechanism 59

M
Macro 154
Mainframe 21
Manufacturer Part Number (MPN) 224
Market opportunities 18
Market situation 17
Microsoft .NET 56, 279
MMR 106
MMR cache 108
Model View Controller (MVC) 91, 138
Modeling 85
Multi-Channel Access 279
mySAP Business Suite 34, 279

N
Name server 116

O
ODBO 168
OLAP BAPI 172, 173
Online Analytical Processing (OLAP)

279
Open Hub 173
Open SQL 59
Opportunity 239
Original Equipment Manufacturer 223

P
Package 110
Packaged composite applications 35
Pattern 85, 279
People integration 74
People Picker 253
Perspective 97
Placeholder 131
Portal Content Directory (PCD) 77
Portal runtime 77

Price extraction 235
Principal 125
Process Integration 61
Procurement scenarios 235
Product 191
Product definition process 192
Product innovation process 191
Project manager 236
Purchase orders 241
Purchasing info records 241

Q
Query 153
Quotation Worksheet (QWS) 234
Quote package 246
Quote team lead 236
Quote team member 236

R
Release 279
Remote Function Call (RFC) 279
Report-report interface 173
Repository 280
Repository Manager 70, 176
Retraction 172
Reusable components 253
Revenue acquisition 223
Reviewer 238
RFC 279

transactional 115, 128
RFQ 222
Role 280

S
Sales employee 236
SAP Application Server 57
SAP Business Intelligence 65, 280
SAP Business Process Management

63, 280
SAP BW 280
SAP Collaboration 79
SAP Composite Application

Framework 38, 42, 280
SAP Content Management 69
SAP Developer Network 172
SAP Developer Studio 58, 60
SAP Enterprise Portal 280

Index292

SAP Exchange Infrastructure 62, 63,
95, 280

SAP J2EE Engine 60
SAP Java Connector 60
SAP Java Development Infrastructure

(JDI) 60
SAP Java Test Tools 61
SAP Knowledge Management 69, 280
SAP Master Data Management (MDM)

281
Central Master Data Management

73
Consolidation 72
Harmonization 73

SAP Mobile 74
SAP Mobile Client 75
SAP Mobile Infrastructure 75, 76, 281
SAP Mobile Server 76
SAP NetWeaver 35, 38, 55, 280
SAP NetWeaver Portal 76
SAP NetWeaver Solution Life Cycle

Management (SLCM) 80
SAP Query 168
SAP Web Application Server 281
SAP xApp Cost and Quotation Mana-

gement 281
SAP xApp Emissions Management

(SAP xEM) 49
SAP xApp Product Definition 281
SAP xApp Resource and Portfolio

Management (SAP xRPM) 46
expertise 48
Portfolio 47
Program 47
resource 47

SAP xApps 33, 35, 36, 38, 40, 42, 281
SAP xApps partner program 41
SAP xCQM 281
SAP XI 280
SAP xPD 191, 281
SCA, Software Component Archive 111
SDK 168, 172, 173
SDM 108
SDN 172
Search 175

fuzzy search 176
Secure Sockets Layer (SSL) 281
Service modeler 94

Service Oriented Architecture (SOA)
27

ServiceBrowser 134
Sessions bean 133
Simple Mail Transfer Protocol (SMTP)

282
Simple Object Access Protocol (SOAP)

282
Single Sign-on (SSO) 282
Software Deployment Manager (SDM)

61, 108
Software Development Kit 168
Solution validation 45
Sourcing bin 243
Sourcing prep view 243
Standard and moving average price

241
Status 163
Sub-attributes 131

T
Table naming convention 126
Taxonomy 70
Team management 233
Templates, coding 133
Testing, service 134
Topic 125
Transient attributes 83

U
UDDI 115
UI pattern 164, 279
UML 102
Unit 120, 188
UnitConversion 143
UnitConversionSimple 125
UnitOfMeasurement 125
Universal Description, Discovery and

Integration (UDDI) 24, 282

V
Versions 185
Visual Administrator 108, 183

W
Web Dynpro 60, 282

foundation 164
Web dynpro patterns 279

293Index

Web services 23, 282
Web Services Description Language

(WSDL) 115, 282
WSDL 115

X
xCQM

backend integration 250

data model 250
entity services 250
excel download 252
excel upload 251

XI 177
XML 278
XMLA 168

	SAP PRESS – Extract
	SAP® xAppsand the Composite Application Framework
	Jo Weilbach, Mario Herger

	Contents
	Preface
	Acknowledgements

	Chapter 3.5: Entity Service
	3.5.1 Introduction
	3.5.2 Modeling
	3.5.3 CORE Services
	3.5.4 Persistence
	3.5.5 Generation, Build and Deployment
	3.5.6 Testing
	3.5.7 Authorizations

	Index

	http://www.sap-press.com
	(c) Galileo Press GmbH 2005

