
Valentin Nicolescu, Burkhardt Funk, Peter Niemeyer,
Matthias Heiler, Holger Wittges, Thomas Morandell,
Florian Visintin, Benedikt Kleine Stegemann, and
Harald Kienegger

Practical Guide to SAP NetWeaver®
PI – Development

Bonn � Boston

334 Book.indb 3 3/31/10 1:17:43 PM

http://www.sap-press.com

Contents at a Glance

PART I  Basic Principles

1	 Integrating Enterprise Information Systems  	 25

2	 SAP NetWeaver PI  ... 	 57

PART II  Basic System Configuration 

3	 Basic System Configuration  .. 	 129

4	 Technical Exercises   ... 	 183

5	 SARIDIS Case Study in Sales and Distribution (SD)  	 311

6	 Enhancements and Outlook  ... 	 423

Appendices

A	 Exercise Materials  .. 	 459

B	 Bibliography  .. 	 479

C	 The Authors  ... 	 483

334 Book.indb 5 3/31/10 1:17:43 PM

www.sap-press.com

7

Contents

Foreword  ..	 13
Preface  ..	 17

PART I  Basic Principles

1	 Integrating Enterprise Information Systems 	 25

1.1	 Basic Principles  ..	 25
1.1.1	 Historical Development 	 26
1.1.2	 Reasons for and Goals of Integrating IT

Systems  ...	 28
1.1.3	 Characteristics of Integration 	 29

1.2	 Practical Integration Example  ...	 31
1.3	 Integration Concepts and Technologies 	 35

1.3.1	 Architectures  ...	 35
1.3.2	 Integration Approaches 	 37
1.3.3	 Technologies  ...	 41

1.4	 EAI Platforms and Their Significance in Enterprises 	 44
1.5	 Basics of BPM   ...	 46
1.6	 Use of ARIS Business Architect and SAP Solution

Manager  ..	 50
1.6.1	 Concept  ..	 51
1.6.2	 Bidirectional Integration 	 54

2	 SAP NetWeaver PI  ..	 57

2.1	 SAP NetWeaver PI as Part of SAP NetWeaver 	 57
2.1.1	 Challenges of PI  ..	 58
2.1.2	 SAP NetWeaver  ...	 63
2.1.3	 SAP NetWeaver PI as a Central Infrastructure

of SOAs  ...	 64
2.1.4	 IT Practices  ..	 65

2.2	 Functionality of SAP NetWeaver PI  	 68
2.2.1	 Address Example  ...	 69

334 Book.indb 7 3/31/10 1:17:43 PM

www.sap-press.com

8

Contents

2.2.2	 Classification of Messages 	 70
2.2.3	 Steps for Implementing a Message Flow 	 75

2.3	 Components  ..	 76
2.3.1	 SLD  ...	 77
2.3.2	 Enterprise Services Repository and Services

Registry  ...	 79
2.3.3	 Integration Directory  ...	 81
2.3.4	 Runtime Workbench  ...	 83
2.3.5	 SAP NetWeaver Administrator (NWA) 	 84
2.3.6	 IS  ..	 85

2.4	 Objects  ..	 93
2.4.1	 Software Products in the Enterprise Services

Repository  ...	 93
2.4.2	 Service Interfaces and Mapping Objects in the

Enterprise Services Repository 	 94
2.4.3	 Configuration Objects in the Integration

Directory  ...	 97
2.5	 Advanced Concepts  ...	 99

2.5.1	 Outside-In vs. Inside-Out 	 99
2.5.2	 Communication Components 	 101
2.5.3	 SAP NetWeaver PI Connectivity 	 102
2.5.4	 Adapter  ...	 104
2.5.5	 Quality of Service (QoS) 	 108
2.5.6	 Message Queues  ...	 109
2.5.7	 Mappings  ..	 111

2.6	 New Concepts in SAP NetWeaver PI 7.1 	 113
2.6.1	 Local Processing on the AAE 	 113
2.6.2	 Integrated Configuration  	 115
2.6.3	 Enhanced (Dynamic) Receiver Determination 	 116
2.6.4	 XML Validation  ...	 116
2.6.5	 Interface Pattern: Communication Patterns

between Sender and Receiver 	 119
2.6.6	 Direct Communication 	 120
2.6.7	 Web Service Reliable Messaging 	 122
2.6.8	 Message Packaging  ..	 123
2.6.9	 Mapping Lookups  ...	 125

334 Book.indb 8 3/31/10 1:17:43 PM

www.sap-press.com

9

Contents

PART II  Basic System Configuration

3	 Basic System Configuration  ..	129

3.1	 Prerequisites  ..	 129
3.2	 Defining the Connected Systems in the SLD 	 131

3.2.1	 Creating the Systems: Technical Systems 	 132
3.2.2	 Creating the Systems: Business Systems 	 137

3.3	 Integrating the SAP Systems with the SLD 	 140
3.3.1	 Creating the RFC Connections 	 140
3.3.2	 Configuring the SLD Integration 	 143

3.4	 Configuring the Local IE  ...	 146
3.4.1	 Defining the Role of the Business System 	 147
3.4.2	 Defining and Activating Message Queues 	 150
3.4.3	 Activating the XI Service 	 150
3.4.4	 Establishing the Connection to the Integration

Builder and the Runtime Workbench 	 152
3.5	 Adapter-Specific System Settings 	 157

3.5.1	 Checking the ABAP-Proxy Integration 	 158
3.5.2	 Settings for Using the RFC Adapter 	 158
3.5.3	 Settings for Using the IDoc Adapter 	 160
3.5.4	 Adding ABAP Mappings to the Available

Mappings (Optional)  ...	 164
3.5.5	 Preparations for Using Alert Monitoring

(Optional)  ...	 166
3.6	 Course-Specific Preparations  ..	 168

3.6.1	 Creating and Assigning the Software Product 	 170
3.6.2	 Importing the Software Product in the

Enterprise Services Repository and Setting
it Up  ...	 175

4	 Technical Exercises   ..	183

4.1	 Exercise 1: RFC-to-File  ...	 185
4.1.1	 Basic Principles  ..	 185
4.1.2	 Design  ...	 187
4.1.3	 Configuration  ..	 201

334 Book.indb 9 3/31/10 1:17:43 PM

www.sap-press.com

10

Contents

4.1.4	 Process and Monitoring 	 210
4.1.5	 Alternative Mapping: ABAP Mapping

(Optional)  ...	 215
4.2	 Exercise 2: File-to-IDoc  ..	 220

4.2.1	 Basics  ..	 220
4.2.2	 Design  ...	 223
4.2.3	 Configuration  ..	 228
4.2.4	 Process and Monitoring 	 235

4.3	 Exercise 3: ABAP-Proxy-to- Simple Object Access
Protocol (SOAP)  ...	 238
4.3.1	 Basics  ..	 239
4.3.2	 Design  ...	 240
4.3.3	 Configuration  ..	 250
4.3.4	 Process and Monitoring  	 253

4.4	 Exercise 4: Business Process Management (BPM) 	 254
4.4.1	 Basics  ..	 255
4.4.2	 Design  ...	 256
4.4.3	 Configuration  ..	 274
4.4.4	 Process and Monitoring 	 280
4.4.5	 Extending the Exercise by Alert Monitoring

(Optional)  ...	 284
4.5	 Exercise 5: File-to-JDBC  ...	 290

4.5.1	 Basics  ..	 290
4.5.2	 Design  ...	 291
4.5.3	 Configuration  ..	 295
4.5.4	 Process and Monitoring 	 300
4.5.5	 Alternative Java Mapping (Optional) 	 300

4.6	 More Adapters  ..	 307
4.6.1	 Java Message Service (JMS) Adapter 	 307
4.6.2	 SAP Business Connector (BC) Adapter 	 308
4.6.3	 Plain HTTP Adapter  ...	 308
4.6.4	 Java Proxy Generation 	 309
4.6.5	 RosettaNet Implementation Framework (RNIF)

Adapter  ...	 309
4.6.6	 CIDX Adapter  ..	 310

334 Book.indb 10 3/31/10 1:17:43 PM

www.sap-press.com

11

Contents

5	 SARIDIS Case Study in Sales and Distribution (SD) 	311

5.1	 Creating the Query  ..	 314
5.1.1	 Basic Principles  ..	 314
5.1.2	 Design  ...	 317
5.1.3	 Configuration  ..	 327
5.1.4	 Process and Monitoring 	 332

5.2	 Submitting the Quotations  ...	 333
5.2.1	 Basic Principles  ..	 334
5.2.2	 Design  ...	 337
5.2.3	 Configuration  ..	 358
5.2.4	 Process and Monitoring 	 367

5.3	 Entering a Sales Order  ...	 371
5.3.1	 Basic Principles  ..	 372
5.3.2	 Design  ...	 373
5.3.3	 Configuration  ..	 384
5.3.4	 Process and Monitoring 	 388

5.4	 Delivering the Invoice  ..	 392
5.4.1	 Basic Principles  ..	 392
5.4.2	 Design  ...	 394
5.4.3	 Configuration  ..	 397
5.4.4	 Process and Monitoring 	 401

5.5	 Manual Decision on Queries  ..	 405
5.5.1	 Basic Principles  ..	 406
5.5.2	 Design  ...	 407
5.5.3	 Configuration  ..	 414
5.5.4	 Process and Monitoring 	 419

6	 Enhancements and Outlook  ...	423

6.1	 Possible Enhancements to the Case Study 	 423
6.1.1	 Extending the Breadth of the Case Study 	 423
6.1.2	 Extending the Depth of the Case Study 	 428

6.2	 Beer Distribution Game  ...	 429
6.2.1	 Predefined Software Components 	 431
6.2.2	 Design and Implementation 	 433
6.2.3	 Options for Enhancement 	 434

334 Book.indb 11 3/31/10 1:17:43 PM

www.sap-press.com

12

Contents

6.3	 SAP NetWeaver PI and SOA  ...	 435
6.4	 Further Development of SAP NetWeaver PI 	 436

6.4.1	 Development of SAP NetWeaver PI 	 437
6.4.2	 Roadmap of the SOA Middleware 	 439

6.5	 Summary  ...	 456

Appendices  ...  	 457

A	 Exercise Materials  ...	 459
B	 Bibliography  ..	 479
C	 The Authors  ..	 483

Index  ..  	 487

334 Book.indb 12 3/31/10 1:17:44 PM

www.sap-press.com

183

The exercises in this chapter show you how to use SAP NetWeaver
Process Integration (PI) components by presenting scenarios that
are linked in content, but technically independent, to prepare you
for the case study in the following chapter.

Technical Exercises 4	

Using the available concepts and adapters of SAP NetWeaver PI is the
basis for implementing complex integration scenarios. This chapter
shows you how to configure adapters, create mappings, and monitor
scenarios. The individual exercises build on each other and get more
complex to help you gain the knowledge necessary to implement the
case study presented in Chapter 5, SARDIS Case Study in Sales and
Distribution.

Although the individual exercises depend on each other, you can use the
lists of every exercise to track which objects are reused so you can start
with a more advanced lesson. Predefined objects aren’t used in the exer-
cises, so you can reproduce all of the steps for completing the integration
scenario at any time.

All of the exercises are designed in such a way that they can be per-
formed by members of a class at the same time. Still, some steps can only
be carried out once. Any steps that must be performed by the instructor
either prior to or during the course will be noted.

Note

Although the exercises are appropriate for workgroups, you can also com-
plete them on your own. If you do, you should also perform the steps that
would be implemented by the instructor.

Even if you are going to complete the exercises alone, we recommend using
a user number, as this simplifies comparisons between your work and the
described procedure. In this case, you should use the instructor’s number —
00.

Appropriate for
several participants

334 Book.indb 183 3/31/10 1:18:34 PM

www.sap-press.com

184

4      Technical Exercises

Most exercises are completed as a development consultant, and, par-
ticularly in the beginning of the exercise block, you will assume the role
of the system administrator or lead developer. In some places, you will
have the opportunity to develop your own small applications in ABAP
or Java. You hardly need any prerequisites for this, because the sample
listings can be found in Appendix A, Exercise Materials, and in digital
form on the website for this book (http://www.sap-press.com).

The exercises deal with selected adapters and aspects of the PI environ-
ment. Various elements played a role in selecting the integration sce-
narios. On one hand, we present adapters that enable the presentation of
reproducible exercises. On the other, we identify aspects that are neces-
sary to implement the case study.

Even though the individual exercises do not have to be completed in
the given order, we did choose their order for a reason. In this chapter,
you will implement integration scenarios that will prepare you for the
case study in Chapter 5. Using PI messages, you will create material in
another system and verify its success. In the final step, the creation of
material master data is reported to the person responsible for all materi-
als. A business process ensures that these reports are delivered in bun-
dles per agent.

To begin, you will use an ABAP program in system A, which records the
data of a material to be created and transfers this data to the PI system
using the remote function call (RFC) adapter (see Section 4.1, Exercise
1: RFC-to-File). There, the material master record is converted to a file
in PI format via the file adapter. In the next exercise, this file is read by
the file adapter and converted into an intermediate document (IDoc),
which is transferred to and directly processed on system B (see Section
4.2, Exercise 2: File-to-IDoc).

In the third example, you will check to ensure that the material has been
created successfully. Based on an ABAP proxy, you will send a call to
the PI system. This request is converted to a Web service call provided
by system B. The response of this control is synchronously returned to
calling system A (see Section 4.3, Exercise 3: ABAP-Proxy-to-SOAP). The
agent uses an ABAP program to report the successful creation of the
material master records using a business process (see Section 4.4, Exer-

Develop your own
applications

Exercises to
prepare for the

case study

Exercise
procedures

334 Book.indb 184 3/31/10 1:18:35 PM

www.sap-press.com

185

Exercise 1: RFC-to-File      4.1

cise 4: Business Process Management). As an alternative to the design of
the second exercise, the example from the second scenario will be read-
dressed in a fifth scenario, replacing the receiving IDoc adapter through
a Java database connectivity (JDBC) database (see Section 4.5, Exercise
5: File-to-JDBC).

Even though the contents of the individual exercises are based on one
another, you can start with any of the exercises by using the appropriate
templates.

Exercise 1: RFC-to-File4.1	

In the first exercise, you will use your own ABAP program to call a
remote-enabled function module that transfers material master data via
the RFC adapter to the PI system. Once there, the data is converted to PI
XML format and stored as a file. To keep things simple, the file is created
directly on the PI server’s file system.

Although the file technically remains on the PI system, from a logical
viewpoint you will configure the receiving file adapter for system B. The
communication in this integration scenario is asynchronous, because no
business response is returned after sending the material data. The roles
of systems A and B, and the adapters used in this exercise, are illustrated
in Figure 4.1.

PI System

System A
RFC

Adapter
File

Adapter System B

Scheme of Exercise 1: RFC-to-FileFigure 4.1 

Basic Principles4.1.1	

Because this book does not focus on the development of ABAP programs
and remote-enabled function modules, we will only give you a basic
explanation of the program and function module used. You can get an

Course of the
first exercise

New ABAP
components

334 Book.indb 185 3/31/10 1:18:36 PM

www.sap-press.com

186

4      Technical Exercises

appropriate transport with the function module and the program for
20 participants and 1 instructor from the book’s web page (http://www.
sap-press.com) and implement it in your system A. For implementing the
transport, consult your landscape administrator, if necessary.

If you want to create the program and the function module yourself, you
will find the corresponding sample source code in Appendix A.

First, log on to the client of system A as the user SYS_A-##. There, you can
view the remote-enabled function module using the Function Builder in
Transaction SE37. Select the function module Z_RFM_MATERIALINPUT_##,
where ## is your participant number.

You will see that from the function module’s point of view the param-
eters are only imported and no value is returned. This is one of the
two prerequisites for asynchronous communication from a sending RFC
adapter.

Except for the interface definition, the function module does not contain
any ABAP code. This means that the function module is used as a kind
of dummy that forwards the transferred data to SAP NetWeaver PI and
serves as an interface. The information about where to forward the data
transferred to the function module is contained in the calling program.

The program Z_PROG_MATERIALINPUT_##, which you can find with the
function module in the same transport request, and that you can view in
Transaction SE38, has two functions: First, it accepts the basic material
master data that will be used to create a new material in system B. Sec-
ond, it calls the function module (described earlier) with the parameters
listed in Table 4.1. The naming of these parameters is explained in the
second exercise, in Section 4.2.

In this call, two things need to be mentioned: The remote-enabled func-
tion module is called to a specific destination (i.e., in the system behind
this RFC connection). In the case of destination SystemA_Sender-##, this
is the PI system, so the values transferred to the function module are for-
warded to the PI system. The second aspect is the call in the background
that makes the communication asynchronous.

Structure of the
function module

Function of the
ABAP program

334 Book.indb 186 3/31/10 1:18:36 PM

www.sap-press.com

187

Exercise 1: RFC-to-File      4.1

Transferred Data Description

MATNR Material number

MAKTX Material description

ERSDA Creation Date (will be added automatically)

ERNAM User name of creator (will be added automatically)

MTART Material type

MBRSH Industry sector

MATKL Material group

MEINS Quantity unit

BRGEW Gross weight

GEWEI Weight unit

MTPOS_MARA General item category group

Data Transferred to the Function Module Z_RFM_MATERIALINPUT_##Table 4.1 

Design4.1.2	

At first, you need to create the various data and message types, and the
service interfaces, with the required mappings in the Enterprise Services
Repository. In a later phase of the configuration, these elements will be
linked to the connected business systems (system A and system B).

First, call Transaction SXMB_IFR from one of the connected systems or
from the PI system itself. This opens the PI tools menu in your web
browser, which should look familiar to you if you prepared for the exer-
cises (see Chapter 3, Basic System Configuration). At the top-left, select
the entry to the Enterprise Services Repository.

After the Java Web Start application has been updated and you have
logged into the PI system as the appropriate user, the user interface of
the Enterprise Services Repository is displayed. Make sure that you do
not log on using the initial password; instead, change it during the logon
to the SAP GUI.

Creating the
design objects in
the Enterprise
Services Repository

First steps

334 Book.indb 187 3/31/10 1:18:36 PM

www.sap-press.com

188

4 Technical Exercises

On the left side, you will fi nd the software components that have
already been declared. This includes the software component
SC_Training _PI_## with the namespace http://www.sap-press.com/pi/
training/##, which is where you will store your elements in the Enter-
prise Services Repository.

For a better overview, restrict the view to your software component. In
the tree structure, click on your software component, and, above the
tree, click the Only display selected subtree icon. The Enterprise Ser-
vices Repository should then look like Figure 4.2.

Entry to the Enterprise Services RepositoryFigure	4.2	

Folders have been introduced with SAP NetWeaver PI 7.1. Their use
is optional, and serves the organizational division of design and con-
fi guration elements. Folders can be used in both the Enterprise Services
Repository and the Integration Builder; the Enterprise Services Reposi-
tory folder is created via the context menu of a namespace. It is possible
to assign design elements directly to a folder when they are created.
Folders are logically associated with a namespace. Figure 4.3 shows the
namespace http://www.sap-press.com/pi/training/00 in the selection
window and the folder testfolder directly underneath. This folder is in

334 Book.indb 188 3/31/10 1:18:37 PM

www.sap-press.com

189

Exercise 1: RFC-to-File 4.1

turn associated with the sub subfolder. In the selection window, you
can choose either the superordinate or the subordinate folder.

Creation of Folders in the Enterprise Services RepositoryFigure	4.3	

If you decide to detail the development structure beyond the presented
structure, you can assign already-existing elements to a folder via drag
and drop. For each of the folders, you can create a substructure in the
form of subfolders. These are not limited by their number.

Another advantage of this concept is the authorization administration.
You can assign authorizations to the folders on the group, role, and user
levels. However, because authorization management is not the focus of
this book, we won’t discuss it here in detail.

An overview of the elements required for this exercise is given in Table
4.2. The roles of individual elements and their connections have already
been explained in Chapter 2, SAP NetWeaver PI.

334 Book.indb 189 3/31/10 1:18:37 PM

www.sap-press.com

190

4      Technical Exercises

Object Type Sender Side Receiver Side

Service interface Z_RFM_
MATERIALINPUT_##

SI_Material_Asnyc_
In

Message type MT_Material

Data type DT_Material

Operation mapping OM_Z_RFM_MATERIALINPUT_##_to_SI_Material_
Async_Out

Message mapping MM_Z_RFM_MATERIALINPUT_##_to_MT_Material

Elements in the Enterprise Services Repository for the First ExerciseTable 4.2 

Note

If the connection to the Enterprise Services Repository is interrupted while
an object is being edited, you can click on the Administration option in the
Process Infrastructure (PI) tools and release the locked object for editing in
the Lock Overview area.

Creating Elements for the Sending System

By using an RFC adapter, this scenario has a particular aspect: all ele-
ments on the sender side are replaced with the interface definition of
the RFC module. The interface is imported from system A and not cre-
ated in the Enterprise Services Repository to accelerate work and reduce
the error rate.

To import the RFC interface, expand the bottom directory, Imported
Objects, right-click to open the context menu, and find the Import of
SAP Objects function. In the following window, select the According
to Software Component Version option in the Connection Data area,
because the system data has already been stored (see Figure 4.4). If this
option is not available, enter the host name and the system number (sys-
tem A). Next, enter your user SYS_A-## and the appropriate password
before continuing.

The next step lets you choose between RFC and IDoc interfaces. Expand
the RFC option, and all remote-enabled function modules in system A
are determined and displayed. Because this data collection can take a

Solutions to
interrupted

connections

Design objects on
the sender side

Import the RFC
interface

334 Book.indb 190 3/31/10 1:18:37 PM

www.sap-press.com

191

Exercise 1: RFC-to-File 4.1

while, when you perform these steps in a group you can import all of
the interfaces before starting the exercise. From the list, select function
module Z_RFM_MATERIALINPUT_## (see Figure 4.5) and continue with the
import .

Import of RFC Interfaces — LoginFigure	4.4	

Import of RFC Interfaces — SelectionFigure	4.5	

334 Book.indb 191 3/31/10 1:18:38 PM

www.sap-press.com

192

4 Technical Exercises

In the fi nal step of the import process, check your selection and fi nish
the import. After the import has completed, you can see your newly
imported interface for your software component version in the Imported
Objects • RFC directory. It is marked with a separate icon that indicates
that this element has not been activated yet.

Creating Elements for the Receiving System

While all of the elements are created on the side of the sending system
by importing the RFC interface, you will create a data type, a message
type, and a service interface for the receiving system. We recommend
beginning with the independent elements (i.e., with those on the lowest
hierarchy level), which, in this case, is the data type.

Within your namespace , expand the Data Type directory and open the
creation dialog via the New entry of the context menu. In this window,
you can enter the name of the new object, along with a description (see
Figure 4.6).

The namespace and the software component version are automatically
completed because you called the dialog in the appropriate context. Also,
it is important to note the left area of this screen, which lists the ele-
ments that can be created within the Enterprise Services Repository. You
can change what kind of element you want to create at any time. You will
see a similar structure later when working in the Integration Directory.

Dialog for Creating an Object in the Enterprise Services RepositoryFigure	4.6	

Design objects on
the receiver side

Creating a
data type

334 Book.indb 192 3/31/10 1:18:39 PM

www.sap-press.com

193

Exercise 1: RFC-to-File 4.1

Name the new data type DT_Material and click on Create. The details
window of a new data type is displayed on the right side. Because the
structure of this window is typical of all detail views in the Integration
Builder, it is used to explain some functions.

Next to the menu line of the Enterprise Services Repository is a separate
details menu; the most important functions of which are also displayed
as icons to its right. In addition to the icons for switching between the
display and changing mode, and for creating a copy, you will also fi nd
an icon for the where-used list of this element (for example) . The icon
group to the right allows you to control the view; for example, you
can hide header data or detach the details window as an independent
element.

In the case of your data type, the lower area of the details window con-
tains a list of all data type elements. Using the relevant icons, you can
add new rows to the top of the table and enter the elements from Figure
4.7. Please note that this is the type xsd:string. Only the BRGEW ele-
ment has the type xsd:decimal; you will perform a calculation using
this value later. In addition, add the missing element NTGEW of the type
xsd:decimal. You will use this element to calculate the net weight of the
material (based on the gross weight) in the message mapping. Save the
data type after all of the elements have been inserted.

Editing a Data TypeFigure	4.7	

Structure of the
DT_Material data
type

334 Book.indb 193 3/31/10 1:18:39 PM

www.sap-press.com

194

4      Technical Exercises

Because data types in the PI environment are used exclusively for modu-
larizing data formats, and cannot appear in a mapping or interface them-
selves, they are embedded in message types. While data types can only
be assigned to message types in a 1:1 ratio, data types can be combined
in any ratio.

To create a message type, open the appropriate context menu by right-
clicking on the Message Types directory. Select the New option. The
familiar creation dialog box is displayed, this time for a message type.
Name the new object MT_Material and enter a description. Continue
with the detail view by clicking Create. Pay attention to the Data Type
Used area in the middle; this is where you should insert the data type
you just created. You have three ways of doing so:

EE The most obvious method is typing the name and the namespace;
however, this involves the risk of typos.

The second option is to select the object in an ABAP-based SAP sys-EE

tem, such as in the input help. To do this, click on the hand and ques-
tion mark icon to the right of the namespace field. A window opens,
containing all of the data types created in your software component
version for selection. The Name and Namespace fields are then popu-
lated.

The third option is to drag and dropEE the selection. This is particularly
suitable if your software component version contains a lot of data
types, but there are only a few in your namespace. You can also pick
the data type from the directory structure to the left and drop it on
the hand next to the namespace field. Only by dropping it over the
hand can you ensure a correct data transfer.

As you can see, all three ways work, even without activating the data
type.

After selecting the appropriate data type, the lower area of the details
window shows the structure of the used data type (see Figure 4.8). Check
the structure and save the message type.

Creating a
message type

Methods for
selecting the

data type

334 Book.indb 194 3/31/10 1:18:39 PM

www.sap-press.com

195

Exercise 1: RFC-to-File 4.1

Editing a Message TypeFigure	4.8	

The last object on the receiver side is the service interface, which deter-
mines if a message can be received or sent, and whether the message is
sent synchronously or asynchronously.

To create this service interface, open the context menu of the correspond-
ing directory. Enter the name SI_Material_Async_In and an appropriate
description, and then click Create to get to the details window. You can
choose from the Inbound, Outbound, and Abstract options for the inter-
face category; the individual categories were discussed in Chapter 2.

Because we are dealing with the interface on the receiver side, select
Inbound . The communication mode determines whether a response
regarding the contents is expected or not. Because this is a one-way sce-
nario, select the Asynchronous mode.

You probably noticed that the input options for message types change
every time the attributes are modifi ed. You should now see the fi elds for
the Request Message Type and the Fault Message Type . However, you
will only use the former (see Figure 4.9). Using one of the three methods
discussed earlier, select the message type MT_Material as the input mes-
sage, and then save your service interface.

Creating a service
interface

334 Book.indb 195 3/31/10 1:18:40 PM

www.sap-press.com

196

4 Technical Exercises

Editing a Service InterfaceFigure	4.9	

Creating the Mapping Objects

The connection between the elements of the sending and the receiving
side is established via mapping. The contents conversion of the data
formats in the form of message mapping is embedded in the operation
mapping that connects a pair of inbound and outbound interfaces.

To begin, create the message mapping . In your namespace, open the
context menu of the Message Mappings directory. In the creation dialog,
enter the name MM_Z_RFM_MATERIALINPUT_##_to_MT_Material, where ##
represents your participant number. Choose a description and create the
object.

The center area of the details window is divided into two parts, allowing
you to select the sending message type on the left side and the receiving
message type on the right side. First, start with the message type on the
sending side: You can either use the input help, or drag the appropri-
ate message type to the Enter a source message label. In this exercise,
there is no explicit message type on the sender side, so use the RFC
interface .

Regardless of the selection method, you must choose which RFC mes-
sage you would like to use. This is because synchronous communication
is expected for an RFC interface. Therefore, you can choose between

Creating the
message mapping

Selecting the
outbound and the

target message

334 Book.indb 196 3/31/10 1:18:40 PM

www.sap-press.com

197

Exercise 1: RFC-to-File      4.1

Z_RFM_MATERIALINPUT_## and Z_RFM_MATERIALINPUT_##.Response. Select
the former because no response is expected.

The left part of the center area now lists the elements of the RFC inter-
face. For the receiving part, select your MT_Material message type.

If you look at the elements on the right side, you’ll find a red mark next
to every entry. This indicates an incomplete mapping for the respective
target element. Because we didn’t change anything in the Occurrence
column when creating a data type, the default value of 1..1 is applied.
This means that this element is mandatory. If one of the target fields does
not receive a value from the mapping, an error occurs. The connection
between the elements of the two message types can also be established
via three different methods:

The most obvious methodEE is connecting via drag and drop, where it
isn’t important which side is dragged to the other. The two elements
are displayed in the lower screen area and connected automatically.

The second option is to double-click on the source and target element EE

to move them to the lower screen area, where they are displayed as
rectangles. There you can connect the two rectangles by dragging the
white area of the sending element to the corresponding area of the
receiving element. This method should be used if the mapping is
extended by predefined functions.

The third method is suitable for connecting a large number of ele-EE

ments of the same name. To do this, parent elements must be selected
on both sides. In this mapping, these are Z_RFM_MATERIALINPUT_## on
the sender side, and MT_Material on the receiver side. Then, above
the sending message type, select the Map selected Fields and Sub-
structures if Names are Identical icon. An alert dialog box appears,
asking you to confirm the action. After dismissing the dialog, all of
the elements on the sender side are connected to those on the receiver
side. It’s important to note that mapping of element names is case
sensitive.

Perform a mapping using the third method, and have the result displayed
in the overview by clicking on the Dependencies icon. The two message
types then move apart and give way to the display of connection lines.

Methods for
mapping elements

Graphical function
for calculating the
net weight

334 Book.indb 197 3/31/10 1:18:41 PM

www.sap-press.com

198

4      Technical Exercises

You will also notice that the marks next to the receiver elements have
now turned green. Only the NTGEW element is still red, because it was not
automatically provided with a value.

For demonstrating the integrated mapping functions, we assume that
the net weight of the material is 90% of the gross weight. To map this,
first select the NTGEW element on the receiver side, and then the BRGEW
element on the sender side, by double-clicking on these items so both
are displayed in the bottom area. To make this calculation, you first need
a multiplication function that calculates the net weight from the gross
weight with a constant of 0.9.

In the toolbar at the bottom of the screen, select the functions for Con-
stants and click on the Constant function to the right, which is then
displayed as a rectangle in the work area of the mapping. The cog wheel
means that you can maintain parameters within this function. Double-
click on the constant rectangle and change its value to 0.9 for the 90%
of the net weight.

Now change to the Arithmetic area in the toolbar to insert the multiply
function in the work area. Connect the BRGEW and Constant 0.9 ele-
ments to the multiply function by dragging the white subareas. In fact,
these functions would be sufficient for calculating the correct net weight.
However, the three decimal places permitted for the xsd:decimal type
might be exceeded. If this message mapping were tested, it would result
in an error.

Before the result of the calculation can be mapped to the NTGEW element,
it must be formatted using the FormatNumber function from the Arith-
metic functional area. Configure the internal parameter Number Format
of the function so that the result matches the scheme 000.000. Insert the
FormatNumber function between the multiply function and the target
element NTGEW (see Figure 4.10). All rectangles and the mark next to the
NTGEW target element should now be colored green. Save the message
mapping.

334 Book.indb 198 3/31/10 1:18:41 PM

www.sap-press.com

199

Exercise 1: RFC-to-File 4.1

Message Mapping of the RFC-to-File ExerciseFigure	4.10	

To ensure that the new mapping works, a test function is added to the
Enterprise Services Repository, which you can select via the Test tab in
the top area of the details window. The left side of the test area displays
the structure of the sending message type whose elements are populated
with test values. Be sure to use a decimal point as the decimal character
for the BRGEW element.

The test itself is started with the Start the Transformation icon (indi-
cated by a vise) at the bottom-left of the test area. If the test program
does not fi nd any errors, the structure of the receiving message type with
its respective values is displayed on the right. In particular, you should
verify whether the NTGEW element has been populated correctly.

The operation mapping is the last object of the integration scenario you
are creating in the Enterprise Services Repository . Start the creation dia-
log by opening the context menu of the Operation Mappings directory
in your namespace. Name the operation mapping OM_Z_RFM_MATERIALIN-
PUT_##_to_SI_Material_Async_In, and then enter a description for the
object. Create it by clicking the Create button.

Testing the
mapping

Creating the
operation mapping

334 Book.indb 199 3/31/10 1:18:41 PM

www.sap-press.com

200

4 Technical Exercises

This object’s detailed view is divided into an upper interface area and a
lower mapping area. In the upper interface area, select the sender inter-
face; this is the RFC interface Z_RFM_MATERIALINPUT_##. Note that the
RFC interface is not stored in your namespace; instead, you will fi nd it
via the Imported Objects • RFC menu path. Perform the same steps for
the SI_Material_Async_In target interface.

By selecting the two interfaces, you have now specifi ed which interfaces
will communicate with each other and which message types are used.
However, you still need to determine how the two data formats are con-
verted to each other, because there might be different message mappings
for the same message pair.

In the lower mapping area, click the Read Operations button to display
the message types of the used interfaces (see Figure 4.11). After the
Source and Target Operation fi elds have been fi lled, click on the Name
fi eld located between the source and target message fi elds and select the
input help that appears . A list is displayed, which contains all message
mappings that exist between the interfaces in this sender and receiver
scenario; you should only see mappings of the scheme MM_Z_RFM_MATE-
RIALINPUT_##_to_MT_Material. Select the mapping with your member
number.

Operation Mapping of the RFC-to-File ExerciseFigure	4.11	

If you take a closer look at the Mapping Program area, you will notice
that the tabular structure allows you to select several mappings. All
selected message mappings are processed sequentially according to their

334 Book.indb 200 3/31/10 1:18:42 PM

www.sap-press.com

201

Exercise 1: RFC-to-File      4.1

order in the table. When creating the message mapping, for example,
you can use the Test tab to perform a test which, in addition to the mes-
sage mapping, also checks interface compatibility. Save your operation
mapping after it has been successfully tested.

As you can see, all newly created objects were usable throughout the
entire Enterprise Services Repository, even though they were not acti-
vated. However, you can’t access all of these objects in the Integration
Directory in this state, so the next step is to activate your change.

To do this, go to the directory structure on the left and select the Change
Lists tab. The tree structure is hidden, and your software component
version is displayed, which you should fully expand. Beneath that list,
you will find a Standard Change List containing all newly created objects.
Verify that all elements presented in Table 4.2 are included in the change
list.

Select the Activate option from the change list’s context menu. A win-
dow containing all of the objects of the list is displayed. You have the
option of excluding specific objects from the activation, but activate the
entire list and return to the Objects tab. Notice that the icons indicating
that the new objects are not yet activated have disappeared.

Note

You can also activate individual items via their context menu.

Configuration4.1.3	

Based on the objects created in the Enterprise Services Repository, you
can now set up communication between systems A and B in the Integra-
tion Directory. The Integration Directory can be called by Transaction
SXMB_IFR, by a direct link in the web browser, or by following the
Environment • Integration Builder menu path in the Enterprise Ser-
vices Repository.

As with the Enterprise Services Repository, the interface is divided into
two parts; however, the objects are no longer arranged according to soft-
ware component versions. Instead, they are arranged according to object
types. Above the directory structure, you’ll see three tabs: Change Lists,

Activating the new
design objects

First steps in the
Integration
Directory

334 Book.indb 201 3/31/10 1:18:42 PM

www.sap-press.com

202

4      Technical Exercises

Objects, and Scenarios. The Change Lists tab serves the same function
as in the Repository. The Objects tab lists all objects of the Directory by
their type. Except for the scenario, which you will create for all of your
objects in the Integration Directory; this exercise uses all of the elements
listed in Table 4.3.

Object Type Sender Side:
System A

Receiver Side:
System B

Communication
channel 1

RFC_
Senderchannel_##

File_
Receiverchannel_##

Sender agreement | SystemA | Z_RFM_
MATERIALINPUT_##
| |

Receiver agreement | SystemA | |
SystemB | MI_
Material_Async_In

Receiver determination | SystemA | Z_RFM_MATERIALINPUT_##

Interface
determination

| SystemA | Z_RFM_MATERIALINPUT_## | |
SystemB

Elements in the Integration Directory for the RFC-to-File ExerciseTable 4.3 

Setting Up the Business Systems and Their Communication Channels

To create the PI_Training_## scenario, use the context menu of an exist-
ing scenario, or click the Create Object icon on the bottom left of the
menu bar. Save the object so the scenario is displayed in the listing on
the left side, select the new scenario, and then restrict the view by click-
ing on the Only Display Selected Subtree icon above the list. Creating
a configuration scenario serves the organizational division of configura-
tion objects.

Follow the Communication Component • Business System menu path.
Below the branch, you will see at least two business systems, SystemA
and SystemB, which were declared in the System Landscape Directory
(SLD) during the preparations for the exercises. Click the Assign Configu-
ration Scenarios option in the context menu of system A, and select the
scenario you just created.

Creating a
configuration

scenario

334 Book.indb 202 3/31/10 1:18:42 PM

www.sap-press.com

203

Exercise 1: RFC-to-File      4.1

Due to this mapping, this business system and its communication chan-
nels are displayed in your scenario. Repeat this step for business sys-
tem B. You need to configure a sending RFC adapter for system A and a
receiving file adapter for system B.

Using the context menu from the Communication Channel path, open
the creation dialog and enter system A as the Communication Compo-
nent, the name RFC_Senderchannel_##, and an appropriate description.
In the details window, use the input help to set the adapter type to RFC.
Select the Sender direction for this adapter. In the Transport Protocol
field, choose the RFC entry. For the Message Protocol and Adapter
Engine fields in the upper area, just use the default values.

The RFC Server Parameter area establishes a TCP/IP connection to the
RFC destination on the side of system A. During the preparation of the
exercises (in Chapter 3, Section 3.5.2, Settings for the Use of the RFC
Adapter), you created an RFC connection named SystemA_Sender-##.
This RFC connection is registered on the gateway server of the PI system
and is waiting for a corresponding counterpart.

In the Application Server field, enter the host name of the PI system,
and in the Application Server Service field, enter the gateway service
of the PI system according to the scheme sapgwXX, where XX represents
the instance number. The Program ID follows the scheme SystemA_
Sender-## and, like the two values mentioned earlier, exactly matches
the values entered in the corresponding RFC connection in system A.
The SNC option specifies whether communication over an RFC connec-
tion takes place via a secure network connection (SNC). The Unicode
checkbox must be enabled if system A is a Unicode system.

The RFC Metadata Repository Parameter section is used to identify and
log on to the system that provides metadata about the RFC interfaces
used. This integration is required because the metadata is cross-checked
by the PI system when calling the sending RFC adapter. In this example,
the RFC interface is imported from system A during the design phase.
Enter the Application Server and the System Number of system A, and
your user SYS_A-##, your password, and the corresponding client, before
saving the communication channel. If you enable the communication

Creating an RFC
sender channel

Connection to the
existing RFC
connection

Access to RFC
metadata

334 Book.indb 203 3/31/10 1:18:42 PM

www.sap-press.com

204

4 Technical Exercises

channel at a later stage, the connection test for the destination SystemA_
Sender-## is carried out successfully from system A.

Figure 4.12 provides an overview of all of the settings for this commu-
nication channel.

The receiving communication channel for system B is created with the
context menu from the Communication Channel path. The name of the
new channel should be File_Receiverchannel_##. Select system B as the
Communication Component.

In the details window, select the File adapter type using the input help
and specify the Receiver direction. Set the Transport Protocol to the
File System (NFS) parameter, which means that the PI system can use its
own local fi le system to access the directory the fi le is created in.

Setting Up the RFC Sender ChannelFigure	4.12	 for System A

Creating a fi le
receiver channel

334 Book.indb 204 3/31/10 1:18:43 PM

www.sap-press.com

205

Exercise 1: RFC-to-File 4.1

An alternative to the Network File System (NFS) is the File Transfer Proto-
col (FTP), which allows access to the fi le systems of remote computers.
If you select FTP, you can specify the server and user data to log on to
a remote FTP server. The Message Protocol fi eld should be set to the
File value that causes the written fi le to be stored in PI format. The File
Content Conversion characteristic, however, lets you write the fi le as a
list containing several entries.

The File Access Parameters determine the directory to which the fi le is
written, and the scheme for its name. After consulting your landscape
administrator, we recommend using /tmp for Unix installations or C:\
temp for Windows.

You can choose the File Name Scheme . However, you should select the
name xi_output_##.dat for this exercise, where ## represents your partic-
ipant number. We will refer to this fi le during the course of this scenario,
so, if you select a different name, you need to take this into account in
Section 4.1.4, Process and Monitoring (see Figure 4.13).

Setting Up the File Receiver ChannelFigure	4.13	 for System B

The Processing Parameters on the Processing tab specify how to create
the fi le; that is, if the name scheme specifi ed earlier is used as-is, or if,
for example, a time stamp, a counter value, or the message ID should be
included in the fi le name. Select the Directly write mode and the Binary
fi le type. The write mode, Directly, causes data to be written out without

Setting the
source fi le

334 Book.indb 205 3/31/10 1:18:43 PM

www.sap-press.com

206

4      Technical Exercises

using a temporary file. The file type, Binary, makes it so not only text
can be output.

In addition to the basic settings, you can also dynamically specify the
file storage path by using variable replacement or triggering an operat-
ing system command before or after the message processing. Save the
receiver channel.

Creating the Connection Elements

Based on the basics we just created, and the objects in the Enterprise Ser-
vices Repository, the integration scenario can be completed using some
connection elements. The first two missing elements you need to create
are the sender and the receiver agreement. They determine how a mes-
sage is converted from or to the interface of a specific business system so
the PI system or the receiving system can further process the message.
In the case of the incoming RFC communication channel, for example,
the message must be converted from the RFC adapter format to the PI
XML format.

Let’s start with the sender agreement, which you can create using the
context menu of the Sender Agreement directory. In the creation dia-
log, select business system A as the service. The sending interface is
the RFC interface Z_RFM_MATERIALINPUT_##, which you imported to the
Enterprise Services Repository. In the details window of the new object,
you can specify the communication channel of the sender by opening
the input help and selecting the sender channel RFC_Senderchannel_##
(see Figure 4.14). Save the sender agreement.

As you did for the sender agreement, create a receiver agreement for
business system B and the receiving interface SI_Material_Async_In.
Note that you also need to specify the sending business system A. In
the details window, select the channel File_Receiverchannel_## as the
communication channel of the receiver and save the agreement.

For logical routing, messages in the PI system first need a receiver deter-
mination, which specifies available receiver services for a business sys-
tem and interface pair. Create a new receiver determination with the

Connection
elements between

the sender and
the receiver side

Creating a sender
agreement

Creating a receiver
agreement

Creating a receiver
determination

334 Book.indb 206 3/31/10 1:18:43 PM

www.sap-press.com

207

Exercise 1: RFC-to-File 4.1

corresponding context menu for the sending business system A and the
interface Z_RFM_MATERIALINPUT_##.

Creation of the RFC Sender AgreementFigure	4.14	

In the details window, the Confi gured Receivers area allows you to
specify various receivers. If the review result of the relevant condition is
true, the message is delivered to this system (see Figure 4.15).

This can also mean that the message is delivered to several systems. For
example, the condition can check elements of a message for specifi c con-
tent. If none of the confi gured systems is specifi ed as the receiver, you
can specify a default receiver below the receiver table. In the Communi-
cation Component column of the existing row, select business system
B as a potential receiver. Because the message in this exercise should
always be delivered to this receiver, you don’t have to set a condition.

Save the receiver determination and then look at the lower area, Con-
fi guration Overview , which now includes the SystemB entry. Expand
the entry. As you can see, no matching interface determination and no

Creating the
interface
determination

334 Book.indb 207 3/31/10 1:18:44 PM

www.sap-press.com

208

4 Technical Exercises

appropriate operation mapping could be determined. Above this listing,
click on the New icon to create a new interface determination .

Creation of the Receiver DeterminationFigure	4.15	

By calling the creation dialog from this context, all mandatory fi elds can
be populated; you only need to enter a description. In the details win-
dow of the Receiver Interfaces area, use the input help to select your
service interface SI_Material_Async_In from the namespace. To the left
of it, specify the only operation mapping available for the combination
of the sending and receiving interfaces (see Figure 4.16). Save and close
the interface determination and return to the receiver determination.

334 Book.indb 208 3/31/10 1:18:45 PM

www.sap-press.com

209

Exercise 1: RFC-to-File 4.1

Editing the Interface Determination for the RFC-to-File ExerciseFigure	4.16	

In the lower area, click the Refresh icon so that the receiver agreement
for receiving system B is also displayed with the target interface and the
matching operation mapping (see Figure 4.17).

Editing the Receiver Determination for the RFC-to-File ExerciseFigure	4.17	

Activating the new
confi guration
objects

334 Book.indb 209 3/31/10 1:18:46 PM

www.sap-press.com

210

4 Technical Exercises

Save the receiver determination and activate all newly created objects
using the Standard Change List in the Change Lists tab. You have now
created and activated all objects for this integration scenario.

The folder functionality from the Enterprise Services Repository is also
available in the Integration Builder. Here, you create folders by follow-
ing the Objects • New menu path. In the tree on the left, the last point,
Administration, contains the Folder element . Here, it is possible to
create a root folder or assign the new folder to an existing folder as
a subfolder (see Figure 4.18). Working with folders in the Integration
Directory is the same as in the Enterprise Services Repository.

Creating a Folder in the Integration BuilderFigure	4.18	

Process and Monitoring4.1.4	

Now that you have created all of the design and confi guration objects,
you’ve prepared the integration scenario for the course. Next, you will
monitor the process and examine any possible errors.

Course of the Scenario

Start the confi gured integration scenario by calling the program Z_PROG_
MATERIALINPUT_##. Log in to the client of system A using your user and
call Transaction SA38; type the name of the program and execute it.

An input mask for basic material master data is displayed. Enter the data
for creating the PI developer manual as a material master record in sys-
tem B. This material is just used for test purposes; you won’t use it to
create a production or sales order, for example.

Calling the ABAP
program in

system A

334 Book.indb 210 3/31/10 1:18:46 PM

www.sap-press.com

211

Exercise 1: RFC-to-File      4.1

The data corresponds to the mandatory fields of the two views, Basic
Data 1 and 2, from Materials Management (MM) in SAP R/3 or SAP ERP
Central Component (ECC), respectively. Because this data is used in the
second exercise to actually create a material using an IDoc, we recom-
mend using the data from Table 4.4.

Field Recommended Value

Material PI_BOOK-##

Material description arbitrary (for example, »SAP PI developer
book ##«)

Material type FERT (Finished product)

Industry sector 1 (Retail)

Material group 030 (Documentation)

Quantity unit ST (Piece)

Gross weight arbitrary (for example, 1.2)

Weight unit KGM (kilogram)

General item category group NORM (Normal item)

Recommended Values for Creating a Test MaterialTable 4.4 

This data works in an Internet Demonstration and Evaluation System
(IDES) R/3 or ECC system without further adaptation. For the second
exercise, you can use the appropriate template files later.

Enter the data in the individual fields and note that the input help dis-
played for some fields only returns values of the sending system that
might not exist in the receiving system (see Figure 4.19).

After you follow the Program • Execute menu path, or click the corre-
sponding Execute icon, you will receive a success message. This message
only notifies you that the function module belonging to the program has
been called successfully. However, it does not confirm that the message
has been successfully delivered.

Entering the
recommended
values

334 Book.indb 211 3/31/10 1:18:46 PM

www.sap-press.com

212

4 Technical Exercises

Calling the Program Z_PROG_MATERIALINPUT_##Figure	4.19	

Correct delivery and processing of the message can be verifi ed in the
PI system . Log on to the appropriate client and call Transaction SXMB_
MONI . Follow the menu path: Integration Engine • Monitoring •
Monitor for Processed XML Messages. This opens a selection mask
that lets you select all processed messages. If the PI system is used only
for training or testing purposes, a restriction is hardly necessary. Other-
wise, you could restrict the selection to messages with the sending server
SystemA, for example.

Execute the message query via the Program • Execute menu path or
the corresponding Execute icon. If your message was successfully deliv-
ered and processed, you should see an entry showing a black-and-white
checkered fl ag in the Status column (see Figure 4.20).

Display of the First Message in Transaction SXMB_MONIFigure	4.20	

A green fl ag means that the message is currently being processed, while
a black-and-white checkered fl ag means the message processed success-

Monitoring
the process

334 Book.indb 212 3/31/10 1:18:47 PM

www.sap-press.com

213

Exercise 1: RFC-to-File 4.1

fully. Most other icons represent an error in our case. You can display
the legend of all possible icons via the Goto • Legend menu path, or the
corresponding Legend icon.

To get the ultimate proof that the message was successfully processed,
look at the created fi le. You can do this using Transaction AL11 in the PI
system, by clicking on the row of the directory alias DIR_TEMP. In the fi le
list, search for a fi le matching the scheme pi_output_##.dat. Double-click
on the fi le to open it. Because the display is limited to a specifi c width
and the lines are not wrapped automatically, we recommend using Trans-
action ZAPCMD or the fi le tools provided on the book’s website (fi nd it
at http://www.sap-press.com).

Troubleshooting in Monitoring

To fi nd the cause of an error in the message display of Transaction SXMB_
MONI, double-click in any fi eld of the corresponding row. This brings
you to the Display XML Message Versions view (see Figure 4.21).

Detail View of a MessageFigure	4.21	

In the case of an asynchronous message, you will see the different sta-
tuses of the message on its way through the central Integration Engine

Viewing the
created fi le

Process analysis

334 Book.indb 213 3/31/10 1:18:48 PM

www.sap-press.com

214

4      Technical Exercises

(IE). In the directory structure to the left, navigate to the place that has an
error icon. In the windows on the right side, look for an error message
indicating the cause. In most cases, the error was caused by a mapping
or an object that was inadvertently selected from the input help.

In some cases, however, the error was caused by incorrectly configured
communication channels or adapters. To check this, start Transaction
SXMB_IFR, which is used for calling the PI tools. On the bottom right,
select the Runtime Workbench and logon using your user PI-##.

You will see the options for the Runtime Workbench, most of which
you will become familiar with while working on the following exercises
and the case study. Even though you already know a different way of
displaying a message overview using Transaction SXMB_MONI, you can
use the Message Monitoring menu option to view the message status
in the PI system. First, select Component Monitoring, and display the
components with every possible status.

In the directory structure of the components, follow the menu path:
Domain.XX.<PI-Hostname> • Integration Server • Adapter Engine. A
status view opens beneath the directory structure, providing you with
information about the general status of the Adapter Engine. On the top-
right, click the Adapter Monitoring button (see Figure 4.22).

After expanding the namespace http://sap.com/xi/PI/System, a new
browser window opens and displays the selection of all available adapt-
ers. A gray diamond next to an adapter type indicates that a communica-
tion channel for this type hasn’t been created. A green square indicates
that all communication channels of this type have been correctly con-
figured and that no error has occurred during processing. A red circle,
however, indicates that at least one communication channel of this type
is faulty.

You’ll need to see if an error occurred for the adapter types RFC or File.
For a closer analysis, you can click on the relevant type to list all of
the communication channels. If the communication channel displays an
error, you are presented with a detailed error description to the right,
which you can use to correct the error.

Checking the
adapters

Selecting the
adapter type

334 Book.indb 214 3/31/10 1:18:48 PM

www.sap-press.com

215

Exercise 1: RFC-to-File 4.1

Entry Point to Component Monitoring of the Runtime WorkbenchFigure	4.22	

Alternative Mapping: ABAP Mapping 4.1.5	 (Optional)

As an alternative to the graphical mapping that you used in this exercise,
you will learn how to implement the same mapping using an ABAP class.
To do this, you must perform some preparatory steps, and receive autho-
rization for development in the SAP NetWeaver PI system.

Creating the ABAP Mapping

The ABAP mapping is created as a normal ABAP class in the PI system,
and, in operation mapping, is referred to by the class name. As a result,
the Execute method is called automatically, and does the mapping. This
method must be implemented by you; an ABAP mapping cannot be
imported into Enterprise Services Repository when developing the ABAP
mapping separately.

Log on to the PI system and call the class builder with Transaction SE24.
Enter the name of the new class following the schema ZCL_PI_ABAP_MAP-
PING_##, and click Create (see Figure 4.23). In the pop-up window,

Creation of an
ABAP class for the
mapping

334 Book.indb 215 3/31/10 1:18:48 PM

www.sap-press.com

216

4 Technical Exercises

type in a meaningful description for the new class and click Save. If you
haven’t yet entered a developer key for your user, you will have to do
so now.

Creating the ABAP Mapping Class in Class BuilderFigure	4.23	

Because the ABAP mapping is a normal ABAP class, you must provide
the names of transport requests and of a package for this development
(unless you are planning a local development). Once you do this, the class
builder will open, and you can see your new ABAP class. Click on the
Interfaces tab and choose the ABAP interface IF_MAPPING (see Figure
4.24). This interface contains the Execute method with the correspond-
ing signature, and thus represents the defi nition of the new method.1

Integration of the IF_MAPPING Interface in the New ClassFigure	4.24	

After integrating the interface, the Methods tab displays the Execute
method that you now must implement. To do this, double-click the
method name and save the changed class. Before developing the actual
coding, let’s look at the XML view of the message (see Listing 4.1).

1 You can fi nd detailed information about the interface in the SAP Help Portal
at: http://help.sap.com/saphelp_nwpi711/helpdata/de/ba/e18b1a0fc14f1faf884ae-
50cece51b/frameset.htm.

Use of the
IF_MAPPING

interface

Target message
structure

334 Book.indb 216 3/31/10 1:18:49 PM

www.sap-press.com

217

Exercise 1: RFC-to-File      4.1

<?xml version=”1.0” encoding=”UTF-8”?>
<ns1:MT_Material
 xmlns:ns1=”http://www.sap-press.com/pi/training/##”>
 <MATNR>PI_BOOK-##</MATNR>
 <MAKTX>SAP PI Developer Book</MAKTX>
 <ERSDA>01062009</ERSDA>
 <ERNAM>SYS_A-##</ERNAM>
 <MTART>FERT</MTART>
 <MBRSH>1</MBRSH>
 <MATKL>030</MATKL>
 <MEINS>PT</MEINS>
 <BRGEW>1.200</BRGEW>
 <NTGEW>001.080</NTGEW>
 <GEWEI>KGM</GEWEI>
 <MTPOS_MARA>NORM</MTPOS_MARA>
</ns1:MT_Material>

XML View of a Message Sent after the MappingListing 4.1 

You can access this view in either the file that is created as the result of
the first exercise, or by testing the message mapping of the first exer-
cise and displaying the results in the XML view. The only value that is
changed in the mapping is the net weight, which is automatically cal-
culated based on the gross weight. The structure and the remaining val-
ues are not changed by the mapping, thus keeping the ABAP mapping
simple.

You can find the detailed source code of the ABAP mapping in Appendix
A. Copy the source code, replace the placeholder ##, and activate the
method so it can be used later in the operation mapping.

Because a detailed discussion is beyond the scope of this book, we
will only briefly discuss the method. First, the iXML library for ABAP
Objects is initialized, which allows you to simply parse and reassemble
XML documents.2 Then objects for factories and the input stream are
declared. After the definition of the input document, the relevant nodes
are declared and extracted from the input document using the get_ele-
ments_by_tag_name method.

2	 Detailed information on the iXML Library of SAP can be found on the SAP Help
Portal at: http://help.sap.com/saphelp_nwpi711/helpdata/de/86/8280ba12d511d5
991b00508b6b8b11/frameset.htm.

Structure of the
new method

334 Book.indb 217 3/31/10 1:18:49 PM

www.sap-press.com

218

4      Technical Exercises

After the output document has been declared, it is filled with the values
from the input document; most values can be inserted without change.
Only the net weight is recreated as a node and calculated on the basis of
gross weight. In addition, you must correct the date format from YYYY-
MM-DD to DDMMYYYY, so that the file can be transferred into a new
material via IDocs (in the next exercise).

After the node assignments to the new document are completed, a cus-
tom message is inserted into the trace; this lets you see the details of
the execution of the newly-created method in Transaction SXMB_MONI.
Finally, the output stream is declared, and a renderer is created that is
responsible for compiling the output document.

Integrating ABAP Mapping

After creating and activating the new mapping, you must insert it in the
existing operation mapping OM_Z_RFM_MATERIALINPUT_## to_SI_Mate-
rial_Async_In, and activate the object again. To do this, simply open the
aforementioned operation mapping, and then switch to change mode.
In the bottom-center section of the screen, change the entry in the Type
column from Message Mapping to Abap-class. Then enter the name of
the created ABAP class ZCL_PI_ABAP_MAPPING_## (see Figure 4.25). The
ABAP mapping cannot be tested in the Enterprise Services Repository.
Save and activate the change; other changes, such as changes to the con-
figuration, are not necessary.

You can run the scenario once again by calling the program Z_PROG_MATE-
RIALINPUT_##. The behavior results in the same outcome. By tracing your
message in the message monitoring of Transaction SXMB_MONI, you’ll
find the log entry you specified in the ABAP class (see Figure 4.26).

Adjustment of the
operation mapping

Testing the
changed process

334 Book.indb 218 3/31/10 1:18:49 PM

www.sap-press.com

219

Exercise 1: RFC-to-File 4.1

Integrating ABAP Mapping in Operation MappingFigure	4.25	

Trace Entry of the ABAP Mapping in the MessageFigure	4.26	

334 Book.indb 219 3/31/10 1:18:50 PM

www.sap-press.com

220

4      Technical Exercises

Exercise 2: File-to-IDoc4.2	

The file containing the material master data that you created in the first
exercise now needs to be integrated in business system B to become a
material. Although the file has already been transferred to system B from
a logical point of view, it technically still resides on the file system of the
PI system, in the /tmp or C:\temp directory, respectively. This allows you
to keep system A as the sender and system B as the receiver, because
system A can also access the file system of the PI system to read the file.
System A reads the file using the file adapter and transfers it to the PI
system from where the record will be sent as an IDoc to system B.

A diagram of the adapters used and their directions is shown in Figure
4.27.

PI System

System A
File

Adapter
IDoc

Adapter System B

Scheme of the Second Exercise File-to-IDocFigure 4.27 

Note

If you didn’t do the first exercise, you can find the templates for the file in
Appendix A. In this exercise, you will reuse several design elements of the
receiving side from the first exercise.

Basics4.2.1	

Now that you have familiarized yourself with the receiver side of the file
adapter, it’s time to get to know the sender side. The data mapping to an
IDoc presents a certain challenge in this exercise, because IDocs contain
very sophisticated and complex data structures. Despite the age of this
format, it still plays an important role in the SAP environment, partly
because of its automatic processing option.

Course of the
second exercise

Jumping in at
Exercise 2

Overview of the
new objects

334 Book.indb 220 3/31/10 1:18:51 PM

www.sap-press.com

221

Exercise 2: File-to-IDoc 4.2

You can take advantage of this in this scenario by creating a partner
agreement in system B . This agreement ensures that the incoming mate-
rial master data is automatically processed in IDoc form (i.e., that the
corresponding material is created automatically).

The partner agreement you will create is not a new element for SAP
NetWeaver PI, but an element of the traditional application link enabling
(ALE) communication . The partner agreement can only be created once
for a sending system (i.e., system A) because the differentiation is made
according to the logical system of the sending application. The client of
the sending system A, however, can only be assigned a single logical
system.3

Log on to system B and call Transaction BD54 to verify that the name
of the logical system (system A) is known. Every system must know the
names of the logical systems of the IDoc partners. The name of the logical
system is usually structured according to the scheme <SID>CLNT<client>
(see Figure 4.28).

Creation of a Logical SystemFigure	4.28	

3 If you perform this exercise with other class members, we recommend having the
instructor perform the following steps.

Function of the
partner agreement

Creating the
partner agreement

334 Book.indb 221 3/31/10 1:18:51 PM

www.sap-press.com

222

4 Technical Exercises

Leave Transaction BD54 and call Transaction WE20. The left part of
the screen shows the existing partner agreements sorted by partner
types. The right side contains detailed information about the selected
agreement.

From the menu bar, follow the Partners • Create menu path, or click
the Create icon to create a new partner agreement . Enter the name of
the logical system of system A (the one you just checked) as the partner
number. Take care to select the partner type LS (logical system) in the
details window . Make sure that the partner status value in the Classifi ca-
tion tab is set to A, for active.

Next, specify that incoming IDocs of the MATMAS (Master Material) type
are automatically processed according to a specifi c pattern. To do this,
save the partner agreement and, in the lower area, Inbound parameters,
click the Create inbound parameter icon. In the new screen template,
select the message type MATMAS (see Figure 4.29).

Inbound Parameters of the Partner Agreement in System BFigure	4.29	

Confi guring the
inbound

parameters

334 Book.indb 222 3/31/10 1:18:52 PM

www.sap-press.com

223

Exercise 2: File-to-IDoc      4.2

Below the Inbound options tab, select the predefined process code,
MATM. If a syntax error occurs, don’t terminate the process, as this helps
you easily identify potential errors later on. However, if you successfully
tested your integration scenario, you can enable the Cancel Processing
After Syntax Error option by selecting its corresponding checkbox. The
Processing by Function Module option should be performed immedi-
ately. Save these settings to exit this transaction.

You just created a partner agreement for communicating with system A
via an IDoc.

Design4.2.2	

Object creation in the Enterprise Services Repository is much easier after
working through the first exercise. If you have already gone through all
of the processes, you can reuse some design objects from the first exer-
cise. Reused objects are indicated with an asterisk (*) in Table 4.5.

Object Type Sender Side Receiver Side

Service interface SI_Material_Async_
Out

MATMAS.MATMAS02

Message type MT_Material *

Data type DT_Material *

Operation mapping OM_SI_Material_Async_Out_to_MATMAS_
MATMAS02

Message mapping MM_MT_Material_to_MATMAS_MATMAS02

Elements in the Enterprise Services Repository for the File-to-IDoc ExerciseTable 4.5 

The sender side, which corresponds to the receiver side from Exercise
1, is already complete, except for the outbound service interface. Open
the creation dialog in the Service Interfaces path, and create the ser-
vice interface SI_Material_Async_Out. This is taken from the Outbound
category, and is used in the Asynchronous mode. The output message
corresponds to the MT_Material message type already created in the last
exercise (see Figure 4.30). Save the completed interface.

Overview of the
new design objects

Creating the
outbound service
interface

334 Book.indb 223 3/31/10 1:18:52 PM

www.sap-press.com

224

4 Technical Exercises

Editing the Outbound Service Interface for the File-to-IDoc ExerciseFigure	4.30	

On the receiver side, you fi rst need to import the metadata of the MAT-
MAS.MATMAS02 IDoc. You can import the metadata the same way as you
imported the RFC interface in Exercise 1. In the Enterprise Services
Repository, navigate to your software component version and open the
import dialog via the context menu of the Imported Objects directory.
If systems A and B run different SAP systems so that the required IDoc
type is unknown in system A, you can log on to business system B. Oth-
erwise, you can import from system A.

In the next step, expand the IDocs area, mark the MATMAS.MATMAS02 type,
and import it. Like the interface defi nition of RFC interfaces, the inter-
face defi nition of IDocs can be used both as a message type and as a ser-
vice interface, so more objects are not required on the receiver side.

Create a new message mapping named MM_MT_Material_to_MATMAS_MAT-
MAS02, assign the MT_Material message type on the sender’s side, and
assign the MATMAS.MATMAS02 IDoc type on the receiver’s side. Message
mapping is a challenge when using IDocs, because the data structure is
very complex and can contain several hundred entries. To keep track,
Table 4.6 presents the relevant fi elds of this example.

Importing the
IDoc metadata

Creating the
message mapping

334 Book.indb 224 3/31/10 1:18:53 PM

www.sap-press.com

225

Exercise 2: File-to-IDoc      4.2

Data Element of
MT_Material/
Constants

Data Element
of MATMAS.
MATMAS02

Segment of MATMAS.
MATMAS02

Constant: 1 BEGIN None (IDOC)

MT_Material E1MARAM None (IDOC)

MT_Material SEGMENT E1MARAM

Constant: 005 MSGFN E1MARAM

MATNR E1MARAM

Constant: KBG PSTAT E1MARAM

Constant: KBG VPSTA E1MARAM

Constant: 000 BLANZ E1MARAM

ERSDA E1MARAM

ERNAM E1MARAM

MTART E1MARAM

MBRSH E1MARAM

MATKL E1MARAM

MEINS E1MARAM

BRGEW E1MARAM

NTGEW E1MARAM

GEWEI E1MARAM

MTPOS_MARA E1MARAM

MT_Material E1MAKTM E1MARAM

MT_Material SEGMENT E1MARAM/E1MAKTM

Constant: 005 MSGFN E1MARAM/E1MAKTM

MAKTX E1MARAM/E1MAKTM

Constant: D SPRAS E1MARAM/E1MAKTM

Constant: DE SPRAS_ISO E1MARAM/E1MAKTM

Assignment of Data Elements in the Message Mapping of the File-to-IDoc Table 4.6 
Exercise

334 Book.indb 225 3/31/10 1:18:53 PM

www.sap-press.com

226

4      Technical Exercises

As you can see, element names in the DT_Material data type were not
chosen by chance. Some fields of the IDoc structure are populated with
constants that were not queried in the material input mask.

In particular, pay attention to the BEGIN and SEGMENT fields, and to the
segments that control the creation of the IDoc or its segments, respec-
tively. While BEGIN must be assigned a specific value, you can assign any
field to the SEGMENT fields (and the segments themselves), because this
only determines the number of segments in the IDoc. Later in this sec-
tion, you will work with this more.

In addition, it’s worth mentioning the MSGFN fields found in every seg-
ment. These fields specify the function to be used by the data in the
receiving system. The 005 constant stands for changing or creating.

If you closely examine the structure of the IDoc, you will notice that
most segments allow for multiple integrations. Most IDocs are appro-
priate for mass processing. This IDoc can be used for creating several
material master data sets; however, the IDoc in this example is only used
to create a single material master record. Documentation of this and all
other IDoc types can be found in Transaction WE60.

If you examine the table containing the element assignment, you will see
that only two of the segments are provided with data. The unused seg-
ments can be disabled to prevent them from generating fields. For such
a segment, open the context menu and select the Disable Field function.
The icon next to the segment is then crossed out and the segment is no
longer checked for data. Disable all segments except E1MARAM and its
child segment, E1MAKTM.

Next, create the message mapping (see Figure 4.22) using Table 4.6
and test it. If it runs smoothly, save it. The work area of Figure 4.31
shows how the constant is assigned to the BEGIN element in the message
mapping.

Structure of the
IDoc type

Deactivating fields

334 Book.indb 226 3/31/10 1:18:53 PM

www.sap-press.com

227

Exercise 2: File-to-IDoc 4.2

Message Mapping of the File-to-IDoc ExerciseFigure	4.31	

Next, create the operation mapping OM_MI_Material_Async_Out_to_MAT-
MAS_MATMAS02 based on the message mapping MM_MT_Material_to_MAT-
MAS_MATMAS02 via the context menu in the appropriate path. Use the two
service interfaces SI_Material_Async_Out and MATMAS.MATMAS02, import
the interfaces into the lower area of the details window, and assign the
message mapping you just created (see Figure 4.32). In the Test tab, test
the operation mapping and save the object.

Operation Mapping for the File-to-IDoc ExerciseFigure	4.32	

Creating the
operation mapping

334 Book.indb 227 3/31/10 1:18:54 PM

www.sap-press.com

228

4      Technical Exercises

Because this was the last new design object for this exercise, you should
now apply all of the changes in the Change Lists tab before switching to
the Integration Directory.

Configuration4.2.3	

Now use the PI tools menu or the direct URL to switch to the Integration
Directory. In the previous exercise, you already created the basic ele-
ments for the configuration. Because there are hardly any overlaps with
the first exercise at the configuration level, you will create all required
objects — even the communication channels — and use the Configura-
tion Wizard to create the connection elements. This wizard saves you
from several steps and contributes to a smooth implementation.4 An
overview of all of the configuration objects in this exercise is shown in
Table 4.7.

Object Type Sender Side:
System A

Receiver Side:
System B

Communication
channel

File_
SenderChannel_##

IDoc_
ReceiverChannel

Sender agreement | SystemA | SI_
Material_Async_Out
| |

Receiver agreement | SystemA | |
SystemB | MATMAS.
MATMAS02

Receiver determination | SystemA | SI_Material_Async_Out

Interface
determination

| SystemA | SI_Material_Async_Out | |
SystemB

Elements in the Integration Directory for the File-to-IDoc ExerciseTable 4.7 

4	 This exercise was created on the basis of PI release 7.1 SP7. In this version, it may
happen that not all objects are created when generating the configuration objects
using the Configuration Wizard. Missing objects must then be created, as described
in Section 4.1.3, Configuration. In addition, the value help may not display the
right entries within the wizard. In such a case, directly enter the data of the object.

Overview of
configuration

objects

334 Book.indb 228 3/31/10 1:18:54 PM

www.sap-press.com

229

Exercise 2: File-to-IDoc 4.2

Setting Up the Communication Channels

To create the sending communication channel for the fi le adapter, open
the creation dialog using the context menu of the Communication Chan-
nel object. The new communication channel should be named File_
SenderChannel_## . Enter system A as the communication component.
Enter a description and create the new object.

In the Details window (see Figure 4.33), select the File adapter type
and ensure that Sender is selected. Set the Transport Protocol to File
System (NFS), because a local directory is accessed. With the Message
Protocol, the File setting ensures that the fi le is read without being
converted. The Adapter Engine is the Integration Server (IS).

Setting up the File Sender Channel for System AFigure	4.33	

In the Source Directory fi eld, select the setting you used for the receiver
channel in the RFC-to-File exercise (see Section 4.1.3). If you followed
the recommendations, this is /tmp for Unix, or C:\temp for Windows. The
fi le name should be pi_input_##.dat, where ## represents the participant
number.

In the Processing tab, you can keep the Quality of Service as Exactly
Once. Set the Poll Interval (Sec) to a value between 3 and 10 minutes;
otherwise, the load on the IS can be too high. The Retry Interval fi eld
specifi es the number of seconds the adapter should wait before retrying
after a failed read. (This value is not relevant to this exercise.) The Pro-

Creating the fi le
sender channel

334 Book.indb 229 3/31/10 1:18:55 PM

www.sap-press.com

230

4 Technical Exercises

cessing Mode of the communication channel can take various character-
istics depending on your permissions at the operating system level.

One option is the Archive, which causes the fi le to be moved to another
folder. Alternatively, the fi le can be deleted or left unchanged in the test
operation, which causes the data record to be sent continuously. Use
archiving with a time stamp if an appropriate folder is available. The fi le
cannot be archived in the source directory. If you do not have an appro-
priate folder, you can just delete the fi le. The processing order can be
freely chosen; however, you should set the File Type to Binary.

The receiving communication channel for IDocs is only created once (as
described in the basics of this exercise) because you cannot distinguish
channels between several participants.5

Using the context menu of the Communication Channel object, cre-
ate the communication channel IDoc_ReceiverChannel and enter the
description. Set the Adapter Type to IDoc, and set the direction to
Receiver. The Transport Protocol, Message Protocol, and Adapter
Engine fi elds don’t normally offer options, so just ignore them (see Fig-
ure 4.34).

IDoc Receiver Channel for System BFigure	4.34	

5 The IDoc communication channel can only be created once by the instructor.

Creating the IDoc
receiver channel

334 Book.indb 230 3/31/10 1:18:55 PM

www.sap-press.com

231

Exercise 2: File-to-IDoc      4.2

For the RFC Destination, select the SystemB_IDoc connection, which
you created while preparing for the exercises. The Segment Version is
used for integrating with legacy SAP systems, and can be used for send-
ing only those segments that already existed in a specific R/3 release. The
Interface Version field (which is mandatory) serves the same purpose
but refers to the entire interface definition. For this field, select the SAP
Release 4.0 or Higher option. Enter the Port for system B, which was
created according to the SAP<SIDB> scheme during the preparation (the
system ID (SID) for system B is SIDB). In the SAP Release field, enter
the release of the receiving SAP system. In the case of SAP ECC 6.0, the
entry is 700. Save the object and activate the two new communication
channels.

To ensure that the file communication channel has been configured cor-
rectly, you can view the adapter in Component Monitoring. Open the
Runtime Workbench and display all components by clicking on the entry
on Component Monitoring. In the list, click on the Adapter Engine. A
new area appears below the list, which contains the Adapter Monitor-
ing button on the right side. Select the File adapter type and check its
status.

If no errors occurred, the status should be green. If an error has occurred,
you will find a detailed description of the error status. Some errors only
occur during data processing, so you should return to the adapter moni-
toring if you encounter problems at a later stage.

Creating the Connection Elements

In this exercise, the connection between the two communication chan-
nels or between the sender and the receiver interface is created using the
Configuration Wizard. The wizard is started via the Tools • Configura-
tion Wizard menu path, or by clicking the corresponding icon in the
Integration Directory’s toolbar. The wizard collects data for the step-by-
step configuration, and creates the appropriate objects. In the progress
bar on the left side of the wizard, you can use the orange mark to iden-
tify your current position in the configuration process.

In the first step, you can select whether to configure an internal or part-
ner communication. Internal communication takes place entirely within

Checking the
file adapter

Calling the
Configuration
Wizard

Determining the
communication
type

334 Book.indb 231 3/31/10 1:18:56 PM

www.sap-press.com

232

4 Technical Exercises

the enterprise landscape, while partner communication either entirely
or partially involves external business partners. For our scenario, select
the Internal Communication option.

In the next screen (see Figure 4.35), you can specify the values for the
sending side . Before you specify other values, however, you should select
the sending Adapter Type; in this exercise, this is the fi le adapter. Next,
select business system A as the Communication Component. In the
Interface fi eld, specify the interface as SI_Material_Async_Out. When
selecting the values using the input help, you may need to delete the
search criteria and search once more to fi nd a specifi c interface. If you
used the input help for entering the interface, the namespace is popu-
lated automatically. Otherwise, specify your namespace as http://www.
sap-press.com/pi/training/##.

Confi guration Wizard — Information about the Sender in the File-to-Figure	4.35	
IDoc Exercise

When you continue to the next step, you are presented with the same
input mask for the receiver side (see Figure 4.36). As before, fi rst select
the Adapter Type IDoc . Set the service to business system B and set the

Setting the sender
parameters

Setting the
receiver

parameters

334 Book.indb 232 3/31/10 1:18:56 PM

www.sap-press.com

233

Exercise 2: File-to-IDoc 4.2

Interface to MATMAS.MATMAS02. By selecting the IDoc adapter type, the
namespace is already defi ned.

Confi guration Wizard — Information about the Receiver in the File-to-Figure	4.36	
IDoc Exercise

In the next input mask, the communication channel on the sending side
is queried to automatically create the sender agreement |SystemA|SI_
Material_Async_Out||. Specify your sending fi le communication chan-
nel File_SenderChannel_## of system A.

The next step is for creating the receiver determination |SystemA|SI_
Material_Async_Out. At fi rst, it checks to see if a receiver determina-
tion for the sending interface already exists for the relevant system. If
the object does exist, it is extended. Otherwise, a new object is created
that does not require any input. Because this training scenario shouldn’t
contain an appropriate receiver determination yet, this step is only for
your information.

The next step for creating the interface determination |SystemA|SI_
Material_Async_Out||SystemB can either be used for information or for

Determining the
sender channel

Creating the
receiver
determination

Creating the
interface
determination

334 Book.indb 233 3/31/10 1:18:57 PM

www.sap-press.com

234

4 Technical Exercises

checking (see Figure 4.37). Ensure that the MATMAS.MATMAS02 interface
has been selected and that the operation mapping is displayed. If the
mapping isn’t displayed, this usually indicates that it has not been cre-
ated (or at least not activated).

Confi guration Wizard — Information about the Interface Determination Figure	4.37	
of the File-to-IDoc Exercise

The last object checked for this scenario is the receiver agreement
|SystemA||SystemB|MATMAS.MATMAS02. To create this object, you only
need the receiving communication channel IDoc_ReceiverChannel,
which should have been entered already. Continue to the last step.

After you have made the necessary changes, you can directly assign the
new objects to a specifi c scenario. Select your scenario (PI_Training_##)
and click the Finish button. The required objects are now created, and
reused objects are modifi ed. After the objects have been generated suc-
cessfully, you will receive a detailed log on the updated and created
objects. In release 7.1 SP7, it is possible that not all objects are created.
Missing confi guration objects must be created manually, as described in

Creating the
receiver agreement

334 Book.indb 234 3/31/10 1:18:58 PM

www.sap-press.com

235

Exercise 2: File-to-IDoc 4.2

Section 4.1.3. Finally, the changes must be activated in the Change Lists
tab.

Process and Monitoring4.2.4	

The process of the integration scenario in this exercise is triggered
by creating the fi le pi_input_##.dat in the directory of the sending fi le
adapter. When creating and placing the fi le, you can use the template
from Appendix A. However, the fi le should already be in the appropriate
directory after processing the fi rst exercise. It may be that the fi le could
not be processed directly after saving the File-ReceiverChannel; in this
case, call the appropriate program Z_PROG_MATERIALINPUT_## from the
fi rst exercise again to create a new fi le.

Depending on the poll interval that has been set in the communication
channel, the fi le is archived or deleted after several minutes. If the pro-
cess is successful, you can look at your new material, PI_BOOK-##, in
Transaction MM03 of business system B shortly after the fi le disappears.
In the fi rst screen, select your material and confi rm your input by press-
ing the [Enter] key. Select the two views, Basic Data 1 and Basic Data 2,
and check the details. To keep the used IDoc structure small, only these
two basic views have been created (see Figure 4.38).

Entry Point for Displaying the Material PI_BOOK-##Figure	4.38	

Controlling
the process

334 Book.indb 235 3/31/10 1:18:58 PM

www.sap-press.com

236

4      Technical Exercises

Using two utilities, you have the option of accessing more views; Trans-
action WE60 stores the documentation of the entire IDoc type with all
of its field names. If you are already familiar with MM in the SAP sys-
tem, and now want to know which field of the input mask corresponds
to a field in the IDoc, you can get this information by pressing [F1]. For
example, open any material using Transaction MM03 and highlight a
field. Press the [F1] key and click the Technical Information icon. In
most cases, the Field Data area contains the exact field name matching
that of the IDoc.

If the material hasn’t been created in system B (even after you have
waited for a while) you will need to troubleshoot the problem. The first
possible source of an error is the file adapter, because it doesn’t read and
archive the file. In the Component Monitoring of the Runtime Work-
bench, recheck the status of the corresponding adapter. Some errors are
only obvious while a message is being processed.

The next item to troubleshoot would be the message monitoring on the
XI system. You can open this via Transaction SXMB_MONI, or the mes-
sage monitoring in the Runtime Workbench. There you can see if the
message has reached the PI system, and analyze whether a content error
has occurred for an Integration Builder object. However, if the message
shows a black-and-white checkered flag, it has been successfully for-
warded to system B.

You can use Transaction SM58 (the monitoring function for transactional
RFC calls) to see if there were problems with the technical delivery. For
example, one possible error could be a missing or faulty partner agree-
ment created when you prepared the systems for the exercises.

If you still haven’t discovered the error, the IDoc has been delivered but
not processed (i.e., the material has not been created automatically upon
receipt of data). To check this, start Transaction BD87 in system B and
click the Execute icon without changing the selection criteria. You will
receive a list of all IDocs that have been processed on the current day,
categorized by various statuses (see Figure 4.39).

Extending the
sent data

Checking the file
processing

Checking the
incoming of

the IDoc

334 Book.indb 236 3/31/10 1:18:58 PM

www.sap-press.com

237

Exercise 2: File-to-IDoc 4.2

Status Monitor for ALE MessagesFigure	4.39	

To determine the exact source of error when processing a message, click
on the appropriate category (e.g., Application document posted). The
selection is restricted to the messages in this category. Because system B
only differentiates IDocs processing by the names of the logical systems,
delivered messages cannot be distinguished by participants.

If you double-click on one of the messages in the list, the corresponding
details are displayed. On the left side, expand the Status records direc-
tory and the numbers underneath. Every number represents a specifi c
message. In this exercise, you will even fi nd messages for messages that
have been successfully processed.

If you double-click on one of these numbers, the status record is dis-
played. To see a descriptive error message, follow the Goto • Applica-
tion Log menu path, or click on the appropriate button. You will see
warnings and error messages that occurred while the message was pro-
cessed, and you can see if you have overlooked a fi eld or fi lled it with
the wrong data (see Figure 4.40). IDoc fi elds are checked, and the input
in the relevant transactions.

Navigation in the
Status Monitor for
ALE messages

334 Book.indb 237 3/31/10 1:18:59 PM

www.sap-press.com

238

4 Technical Exercises

Application Log of an IDoc MessageFigure	4.40	

Exercise 3: ABAP-Proxy-to-Simple 4.3	
Object Access Protocol (SOAP)

In the second exercise, you used an IDoc to import the data you created
as a fi le in the fi rst exercise into business system B. In addition, you
could verify that the material master record was properly created. How-
ever, in real life, you can’t always access both the sending and receiving
system.

Therefore, we will implement an integration scenario in this third exer-
cise that allows you to control the successful material creation from sys-
tem A. You will create an ABAP proxy in system A and call it synchro-
nously. The request is forwarded to a Web service on system B, and
a response is returned shortly afterward. The PI system serves as the
mediator between the different adapter and data formats.

The scheme of this exercise for synchronous communication is illus-
trated in Figure 4.41.

Course of the
exercise

334 Book.indb 238 3/31/10 1:19:00 PM

www.sap-press.com

239

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP)      4.3

PI System

System A
SOAP

Adapter System B

ABAP
Proxy

Scheme of Exercise 3 ABAP-Proxy-to-SOAPFigure 4.41 

Basics4.3.1	

The Web service is addressed via the SOAP adapter, and is based on
the business application programming interface (BAPI) BAPI_MATERIAL_
EXISTENCECHECK, which is provided by system B. As of the technical basis
of SAP Web Application Server (WAS) 6.20, remote-enabled function
modules can be addressed as Web services without specifying any fur-
ther settings. As with the import of RFC and IDoc interfaces, these Web
services can also export the Web Service Description Language (WSDL)
description from the SAP system and use it in the PI system.

To obtain the WSDL description for the appropriate BAPI, use a Ser-
vice, which you can find via the URL scheme http://<Host SystemB>:<Port
80XX>/sap/bc/bsp/sap/webservicebrowser/search.html?sap-client=<client>.
The XX in the port number represents the instance number of the respec-
tive server. The specifications about host and port can be obtained from
Transaction SMICM by following the menu path: Goto • Services.

Open the appropriate URL in the Web browser and log on as user SYS_B-
##. In the search field, enter the name of the BAPI (BAPI_MATERIAL_EXIS-
TENCECHECK), and confirm your selection by pressing the [Enter] key.
The search result shows the BAPI with two links on the right side (see
Figure 4.42).

The question mark (?) opens the function module’s documentation, if
there is any. The wsdl label opens the WSDL description of this func-
tion module in a separate window. Because Microsoft Internet Explorer,
for example, automatically adds functions for collapsing and expand-
ing individual sections to WSDL descriptions, it is necessary to save the
source text of the display. This can be done by following the View •

Origin of the
Web service

Web Service
Repository

334 Book.indb 239 3/31/10 1:19:00 PM

www.sap-press.com

240

4 Technical Exercises

Sourcecode menu path. Save the document as BAPI_MATERIAL_EXIS-
TENCECHECK_SystemB.wsdl. You will import this fi le into the PI system
during the design phase.

Web Service Repository Figure	4.42	

The calling ABAP proxy class is created based on a service interface exist-
ing in the Enterprise Services Repository. Because inbound and outbound
data formats match those of the Web service, you will use the imported
WSDL defi nition as the data and message type of the outbound service
interface as well.

Design4.3.2	

In contrast to the previous exercises, you are now facing your fi rst syn-
chronous scenario. This means you not only have to create the design
objects to access the Web service, but also for the way back. In this
respect, this example is easy because you are using the existing WSDL
interface, so you don’t have to create any data or message types. In other
cases, a synchronous scenario can involve creating up to four different
data types and the corresponding message types. While the message
mapping is created separately for every direction, the same operation
mapping is used for both directions. The new objects to be created for
this exercise are listed in Table 4.8.

Overview of the
design objects

334 Book.indb 240 3/31/10 1:19:00 PM

www.sap-press.com

241

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP)      4.3

Object Type Sender Side Receiver Side

Service interface SI_ABAP_PROXY_MAT_
EXIST_##_Sync_Out

SI_ws_bapi_material_existencecheck_
Sync_In

Message type ws_bapi_material_existencecheck

Data type

Operation mapping OM_ABAP_PROXY_MAT_EXIST_##_to_ws_bapi_material_
existencecheck

Message mapping
(request)

MM_ABAP_PROXY_MAT_EXIST_##_to_ws_bapi_material_
existencecheck

Message mapping
(response)

MM_ws_bapi_material_existencecheck_to_ABAP_PROXY_MAT_
EXIST_##

Elements in the Enterprise Services Repository for the ABAP-Proxy-to-Table 4.8 
SOAP Exercise

Creating the Interface Objects

First, open the context via the Interface Objects • External Defini-
tions menu path in your namespace. Create the external definition ws_
bapi_material_existencecheck, which will contain the WSDL descrip-
tion of the Web service on system B. In the details window, ensure that
the Category wsdl is selected, and, next to the File field, click the Click
here to Import external definitions icon. Select the BAPI_MATERIAL_
EXISTENCECHECK_SystemB.wsdl file on your local machine, which you
just transferred from the Web Service Repository (see Figure 4.43).

After the import, you can see the contents of the file in the Imported
Document tab. Select the Messages tab to see both of the message types
created by the import. Based on the corresponding function module,
the Web service contains the definition for the inbound and outbound
message. In addition, you can use the message names to determine the
connection to the corresponding BAPI.

The import of the external definition is handled as a message type with
integrated data types. As a result, the service interface must be created
manually on the receiving side. Open the creation dialog by choosing the
context menu from the Interface Objects • Service Interfaces menu
path and create the SI_ws_bapi_material_existencecheck_Sync_In ser-
vice interface.

Importing the
WSDL description

Creating the
synchronous
inbound interface

334 Book.indb 241 3/31/10 1:19:01 PM

www.sap-press.com

242

4 Technical Exercises

Importing the External Defi nition for the ABAP-Proxy-to-SOAP ExerciseFigure	4.43	

Although the Web service processes both inbound and outbound mes-
sages due to its synchronous character, it is primarily used as an inbound
interface in this scenario. Accordingly, set the Inbound category and the
Synchronous mode. This combination gives you the option of specify-
ing both an input and an output message. When selecting a message
type from a Web service, you cannot use the drag-and-drop method.
Therefore, the easiest option is to use the input help. Below the newly
created external defi nition, select the message type BAPI_MATERIAL_EXIS-
TENCECHECKInput for the input message and the corresponding counter-
part for the output message (see Figure 4.44). Save the service interface.

Creating the Service Interface for the Web Service of the ABAP-Proxy-to-Figure	4.44	
SOAP Exercise

334 Book.indb 242 3/31/10 1:19:01 PM

www.sap-press.com

243

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP) 4.3

Now that the receiver’s interface objects have been created, a service
interface is still needed for the sender side. The data and the message
type are based on the imported WSDL description. Open the creation
dialog for service interfaces and create the interface SI_ABAP_PROXY_MAT_
EXIST_##_Sync_Out. The included participant number is not necessary
in the Integration Builder; however, the ABAP classes created later must
be distinguishable.

The new interface belongs to the Outbound category and the Syn-
chronous mode. For the Request Message, select the BAPI_MATE-
RIAL_EXISTENCECHECKInput message type from the external defi nition,
ws_bapi_material_existencecheck. The Response Message is of the
BAPI_MATERIAL_EXISTENCECHECKOutput type from the same external def-
inition (see Figure 4.45). Save the interface and activate all interface
objects.

Creation of the Service Interface for the ABAP Proxy of the ABAP-Proxy-Figure	4.45	
to-SOAP Exercise

Creating the Mapping Objects

Despite previously naming the mapping objects, we won’t strictly name
the message mapping s according to their message types. The reason is
that the same message types are used on both the sending and receiving
sides, so a standard name doesn’t have to be descriptive.

Creating the
service interface
for the ABAP proxy

Creating the
message mapping
for the way to the
Web service

334 Book.indb 243 3/31/10 1:19:02 PM

www.sap-press.com

244

4 Technical Exercises

As such, create the message mapping MM_ABAP_PROXY_MAT_EXIST_##_to_
ws_bapi_material_existencecheck via the Mapping Objects • Message
Mappings menu path. This serves as the mapping for the way from the
ABAP proxy to the Web service. As an outbound message, select the
BAPI_MATERIAL_EXISTENCECHECKInput type from the external defi nition
ws_bapi_material_existencecheck, which can be found in the External
Defi nitions directory. The target message is of the same type. The map-
ping of the way to the Web service is fairly easy, because only the two
MATERIAL fi elds need to be connected (see Figure 4.46). Test and save the
message mapping.

Creating the Message Mapping for the Way to the Web Service in the Figure	4.46	
ABAP-Proxy-to-SOAP Exercise

The message mapping MM_ws_bapi_material_existencecheck_to_ABAP_
PROXY_MAT_EXIST_## for the way back is created according to the same
pattern. However, both the outbound and inbound messages are BAPI_
MATERIAL_EXISTENCECHECKOutput. The mapping can quickly be imple-
mented by clicking the Map Selected Fields and Substructures if
Names Are Identical icon.

This simple mapping is used to take the fi rst steps in the area of user-
defi ned mapping programs. For this, you create a user-defi ned function
within the graphical mapping. The function’s goal is to fi ll an element
with specifi c content depending on the contents of another element; the
function is an IF construction that could also be implemented using one
of the predefi ned functions. If the Web service detects that the tested
material is available, it provides a return code without a descriptive mes-

Creating the
message mapping

for the way back

Extending the
message mapping
by a user-defi ned

function

334 Book.indb 244 3/31/10 1:19:02 PM

www.sap-press.com

245

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP) 4.3

sage. If an error occurs, however, a detailed error description is returned.
The adaptation of the success and failure responses is achieved using the
new function.

One of the affected elements is MESSAGE, which should include a descrip-
tion. The controlling element is NUMBER, which contains a value of 000 in
the case of a successful connection.

To create a user-defi ned function, double-click on the MESSAGE target
element and add the outbound fi eld NUMBER to the work area. In the
bottom-left of the work area, click the Create New Function icon to
create a user-defi ned Java function. Name the function Successmessage
and enter a description (see Figure 4.47).

Creating the User-Defi ned Function for the ABAP-Proxy-to-SOAP Figure	4.47	
Exercise

Because it is a simple function it is suffi cient to only load the values
(SINGLE Values) in the cache. In the list of arguments, use the appro-
priate icon to create another argument, b, that, just like argument a, is
of the String type. The arguments are the transfer parameters to the
function.

You now have the option of creating a Java function that is only valid
within this mapping. This procedure should not be confused with the
deployment of Java classes, which is referred to as Java mapping, and

Creating a user-
defi ned function

Structure of the
source code

334 Book.indb 245 3/31/10 1:19:03 PM

www.sap-press.com

246

4 Technical Exercises

which is described in Section 4.5.5, Alternative Java Mapping (Optional),
using an example.

You are still working within the graphical mapping of SAP NetWeaver PI.
In the lower part of the work area, the function selection has switched to
the User-Defi ned area, and you can see your new function as a selection
option. The newly displayed window represents a small Java editor that
already contains a few settings. Insert the source code from Listing 4.2
in the implementation part of the function (see Figure 4.48). You do not
have to import any additional classes because the most important classes
are imported automatically.

if (a.equals (“000”))
 return “The material is available”;
else return b;

Source Code of the User-Defi ned Function of the Message MappingListing	4.2	

User-Defi ned Function for the ABAP-Proxy-to-SOAP ExerciseFigure	4.48	

Save the new function and insert it between the existing NUMBER and MES-
SAGE (source) and MESSAGE (target) rectangles by clicking on the function
name. Drag the connections between the three objects so that NUMBER is
connected to the upper white fi eld of the function on the left side. The
upper input fi eld of the function is automatically assigned to argument
a. Connect MESSAGE (source) to the second white fi eld on the left side and
assign the function result to the target fi eld (see Figure 4.49).

Integrating the
user-defi ned

function

334 Book.indb 246 3/31/10 1:19:03 PM

www.sap-press.com

247

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP) 4.3

Integration of the User-Defi ned Function for the ABAP-Proxy-to-SOAP Figure	4.49	
Exercise

Save and test the entire mapping. Use the value 000 for NUMBER and
another value including any message input for testing. If NUMBER equals
000, the message stored in the function should appear in the MESSAGE
fi eld.

The two message mappings for both directions of the exchange must
now be embedded in the operation mapping OM_ABAP_PROXY_MAT_
EXIST_##_to_ws_bapi_material_existencecheck. Open the creation dia-
log for the new operation mapping and enter the name and an appropri-
ate description.

The details window does not show any changes yet compared to an
asynchronous communication. For the outbound interface, select the
interface SI_ABAP_PROXY_MAT_EXIST_##_Sync_Out using the input help.
The target interface is the service interface, SI_ws_bapi_material_exis-
tencecheck_Sync_In. In the lower area of the details window, click on
the Read Interfaces button and pay attention to the Request label under-
neath. The simple label turns into two tabs that can be used for confi gur-
ing each direction (see Figure 4.50).

In the Request tab, select the Name fi eld in the list of mapping pro-
grams, and use the input help to select your mapping. Now click on the
Response tab and repeat this step. In both cases, the input help should
only display one entry. Save the operation mapping and activate all map-
ping objects of this exercise.

Creating the
synchronous
operation mapping

334 Book.indb 247 3/31/10 1:19:04 PM

www.sap-press.com

248

4 Technical Exercises

Operation Mapping for the ABAP-Proxy-to-SOAP ExerciseFigure	4.50	

Generating the ABAP Proxy

The SI_ABAP_PROXY_MAT_EXIST_##_Sync_Out service interface created in
the Enterprise Services Repository is the basis of proxy generation. An
ABAP class is automatically created to allow communication with this
interface from an ABAP program. In contrast to remote-enabled func-
tion modules, however, no adapter is used. Data is exchanged in the PI
format between the local and central IE.

For the remaining steps, you need developer permission in system A,
a package Z_PI_TRAINING, and a corresponding transport request. The
package can be created using Transaction SE80. If you already devel-
oped the RFC modules yourself during the fi rst exercise (see Section 4.1,
Exercise 1: RFC-to-File) or downloaded the appropriate transport from
the website for this book (http://www.sap-press.com), you can use the cor-
responding package.

Log in to system A via the user SYS_A-## and call Transaction SPROXY .
The structure of this screen is similar to the Enterprise Services Reposi-
tory: The created software component versions are displayed on the left,
with the namespaces listed beneath them. Within the namespaces, how-
ever, only the objects of the Interface Objects branch are displayed.

Providing an
ABAP package

Generating a
proxy class

334 Book.indb 248 3/31/10 1:19:04 PM

www.sap-press.com

249

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP) 4.3

In your namespace, expand the Message Interface (outbound) branch
and double-click the service interface SI_ABAP_PROXY_MAT_EXIST_##_
Sync_Out. You will be asked if a proxy should be created for this inter-
face; answer Yes. You are then asked for specifi c settings for the proxy
class. Enter the package Z_PI_TRAINING and the prefi x Z.

After confi rming this information, a warning dialog pops up during the
generation process, informing you that there have been name collisions
or name shortenings. The reason for this is because the names of the
generated ABAP objects may contain a maximum of 30 characters, while
the Integration Builder accepts longer names.

The details window of the newly generated proxy class contains four
tabs. The Properties tab informs you about the classifi cation of the
object and the name ZCO_SI_ABAP_PROXY_MAT_EXIST_##. The Name Prob-
lems tab lists all elements that caused problems during the generation
process. The name of the class has been shortened, but is still descriptive
and distinguishes the individual participants.

In the right column of this list, you can see which object in the Enter-
prise Services Repository corresponds to the rows and their contents.
The second row displays the structure of the message type BAPI_MATE-
RIAL_EXISTENCECHECKOutput. Change the last two letters to OU so the
structure is named ZSI_ABAP_PROXY_MAT_EXIST_##_OU (see Figure 4.51).
The counterpart to the message type BAPI_MATERIAL_EXISTENCECHECK-
Input should also be renamed to ZSI_ABAP_PROXY_MAT_EXIST_##_IN
for consistency. The last structure, which corresponds to BAPIRETURN1,
should be renamed to ZSI_ABAP_PROXY_MAT_EXIST_00_RE.

Naming Problems when Generating the ABAP Proxy for the ABAP-Proxy-Figure	4.51	
to-SOAP Exercise

Properties of
the proxy class

334 Book.indb 249 3/31/10 1:19:05 PM

www.sap-press.com

250

4      Technical Exercises

The Generation tab displays a list of all of the created objects, regard-
less of any naming problems. The Structure tab displays a hierarchical
arrangement of all objects. For example, you can see that the new class
ZCO_SI_ABAP_PROXY_MAT_EXIST_## contains a method called EXECUTE_
SYNCHRONOUS. Below this method, you can view the parameters from the
ABAP program’s point of view.

Save the proxy class and specify the corresponding transport request.
Check the objects by following the Proxy • Check menu path, or by
clicking the Check icon. The list of checking messages should contain
four yellow warnings, but no red error messages. Confirm the list and
activate the objects via the Proxy • Activate menu path, or by clicking
the Activate icon. After you’ve activated the objects, the activation log
can contain warning messages; however, you can ignore the log in this
case, because there shouldn’t be any errors.

For checking, you can call the Class Builder using Transaction SE24, and
display the class ZCO_SI_ABAP_PROXY_MAT_EXIST_##. Within the Meth-
ods tab, you can see that the method EXECUTE_SYNCHRONOUS has been
created in addition to the constructor. In addition, the GET_PROTOCOL
and GET_TRANSPORT_BINDING methods are displayed, which have been
created but not yet implemented. These two optional methods are not
required for this exercise.

Configuration4.3.3	

Change to the Integration Directory and log in, if necessary. Before you
use the Configuration Wizard to configure the objects, you first need to
create a communication channel for the receiver side. On the side of the
sending system, no communication channel is used, because communi-
cation with a proxy does not require an adapter.

The configuration objects you create for this exercise are listed in Table
4.9.

Open the context menu of the Communication Channel path and create
a new communication channel for the communication component Sys-

Activation of
the proxy class

Overview of
configuration

objects

Creating the SOAP
communication

channel

334 Book.indb 250 3/31/10 1:19:05 PM

www.sap-press.com

251

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP)      4.3

temB. Name it “SOAP_Receiverchannel_##” and enter a description. Con-
tinue with Create, and, in the details window, select the SOAP adapter
type. The communication channel is created as a Receiver. Ensure that
the Transport Protocol is set to HTTP. The other parameters in the
header can be left unchanged.

Object Type Sender Side:
System A

Receiver Side:
System B

Communication
channel

SOAP_
Receiverchannel_##

Receiver agreement | SystemA | |
SystemB | SI_ws_
bapi_material_
existencecheck_
Sync_In

Receiver determination SystemA | SI_ABAP_PROXY_MAT_EXIST_##_
Sync_Out

Interface
determination

| SystemA | SI_ABAP_PROXY_MAT_EXIST_##_
Sync_Out | | SystemB

Elements in the Integration Directory for the ABAP-Proxy-to-SOAP ExerciseTable 4.9 

In the Connection Parameters area, enter the URL of the target system
according to the following scheme: http://<host SystemB>:<ABAP-Port>/sap/
bc/soap/rfc/sap/BAPI_MATERIAL_EXISTENCECHECK?sap-client=<client>.
The client of system B is required to determine against which client user
authentication should be performed. To be sure, use Transaction SICF in
system B to verify that the corresponding service is active. This service
allows you to call remote-enabled function modules as Web services.

In the details window of the communication channel, enable the Con-
figure User Authentication option. The User and Password fields are
displayed. Enter the data of your user SYS_B-## (see Figure 4.52), and
save the communication channel.

334 Book.indb 251 3/31/10 1:19:05 PM

www.sap-press.com

252

4 Technical Exercises

Setting Up the SOAP Receiver Channel for System BFigure	4.52	

After the fi nal piece for the confi guration has been created, start the Con-
fi guration Wizard via the Tools • Confi guration Wizard menu path,
or by clicking the Confi guration Wizard icon. The integration scenario
you are implementing belongs to the Internal Communication category.
The sender is business system A, which sends data using the service
interface SI_ABAP_PROXY_MAT_EXIST_##_Sync_Out. The adapter is of the
XI type and should already be set (see Figure 4.53).

Settings of the Sender in the Confi guration Wizard of the ABAP-Proxy-Figure	4.53	
to-SOAP Exercise

The receiver is business system B, which receives information via the
SOAP adapter type. The service interface used is SI_ws_bapi_material_
existencecheck_Sync_In (see Figure 4.54).

Using the
Confi guration

Wizard

334 Book.indb 252 3/31/10 1:19:06 PM

www.sap-press.com

253

Exercise 3: ABAP-Proxy-to-Simple Object Access Protocol (SOAP) 4.3

Settings of the Receiver in the Confi guration Wizard of the ABAP-Proxy-Figure	4.54	
to-SOAP Exercise

In the next step, you won’t need to create a sender agreement, because
no conversion takes place. The next screen informs you that the receiver
determination SystemA|SI_ABAP_PROXY_MAT_EXIST_##_Sync_Out is cre-
ated for this scenario. The interface determination shown in the next
step should already display the appropriate operation mapping for the
target interface SI_ws_bapi_material_existencecheck_Sync_In. Con-
tinue with the next step.

The receiver agreement |SystemA||SystemB|SI_ws_bapi_material_exis-
tencecheck_Sync_In should refer to the communication channel you just
created, SOAP_Receiverchannel_##. Make sure that the new objects are
added to your PI_Training_## scenario and fi nish the wizard. Activate all
new and changed confi guration objects in your change list.

Process and Monitoring 4.3.4	

In this scenario, the proxy class with the EXECUTE_SYNCHRONOUS method
must be integrated in an ABAP program. Log in to the client of system A
as user SYS_A-## and call Transaction SE38 or SE80. You can create the
program for calling the proxy method yourself or import the correspond-
ing transport from the website for this book (http://www.sap-press.com). If
you develop the transport yourself, you will fi nd the sample source code
of the Z_MATERIAL_EXISTENCECHECK_## program in Appendix A of this
book. You can partially use the data types of the BAPI_MATERIAL_EXIS-
TENCECHECK BAPI, which you can view using the Function Builder in
Transaction SE37.

Creating a calling
ABAP program

334 Book.indb 253 3/31/10 1:19:06 PM

www.sap-press.com

254

4 Technical Exercises

Most variables correspond to the structures that have been generated
together with the ABAP class. The ABAP class must be referenced via an
object so that the EXECUTE_SYNCHRONOUS method can be called. In addi-
tion, for the wa_input response structure, note that the structure con-
tains wa_return, and is therefore detached in a separate step.

Test the program after you have checked and activated it. Specify the PI_
BOOK-## material created in Exercise 2 and run the program. You should
receive the return code 000 and the message “The material is available”,
as shown in Figure 4.55.

Successful Availability Check of a MaterialFigure	4.55	

In contrast to asynchronous scenarios, a synchronous scenario usually
doesn’t leave any marks. Only asynchronous messages are stored in the
persistence layer of SAP NetWeaver PI to enable a later analysis.

Exercise 4: Business Process Management (BPM)4.4	

The fourth exercise deals with a simple scenario where a department
manager or a material manager must be informed about the successful
creation of materials. On the sending side, notifi cation is sent using the
RFC adapter, while the result is stored as a fi le in system B.

The important part of this process is that notifi cations are collected and
sorted by creating users. If three messages have been created by one
user, those three messages are merged into one and transferred to the
material manager. This is controlled using an integration process.

As such, the focus of this exercise does not lie on using new adapters, but
on the introduction of SAP NetWeaver PI cross-component Business Process
Management (ccBPM). You will deal with the corresponding tools in the

Course of the
exercise

334 Book.indb 254 3/31/10 1:19:07 PM

www.sap-press.com

255

Exercise 4: Business Process Management (BPM) 4.4

Enterprise Services Repository, and the representation in the Integration
Directory. Figure 4.56 contains a rough overview of this scenario.

Scheme of Exercise 4 BPMFigure	4.56	

Basics4.4.1	

ccBPM is mainly about integrating processes that can be implemented
within one company or across several different companies. For that pur-
pose, a Business Process Engine (BPE) is used to merge individual transfor-
mations that were implemented using the Adapter Engine and the IE to
a business process.

The Business Process Execution Language (BPEL) is used to describe the
business processes. Process models are created via a graphical editor
that is introduced in the following section. In contrast to the SAP Busi-
ness Workfl ow , the BPE communicates with applications on backend
systems exclusively using messages.6 It cannot access processes within
applications, the user, or organization management on backend systems.
Therefore, the following applies:

The BPE doesn’t control processes within applications. However, you EE

can use messages to integrate applications in cross-system processes.

The BPE doesn’t control user interactions; they can only be controlled EE

on the backend systems.

6 More information about this topic can be found in the SAP Help Portal at: http://
help.sap.com/saphelp_nwpi71/helpdata/EN/3c/831620a4f1044dba38b370f77835cc/
frameset.htm.

Basics of cross-
component
Business Process
Management

334 Book.indb 255 3/31/10 1:19:07 PM

www.sap-press.com

256

4      Technical Exercises

The BPM itself does not provide any cross-system monitoring for busi-
ness documents processed within an integration process. Within the
technical monitoring, however, you can display the log of an integration
process and the corresponding messages.

Before you start working on this exercise, it’s important to look at the
steps taking place within the business process. At first, the business pro-
cess records all messages of a specific interface and sorts them by their
creators. A loop is opened for each creator name that collects messages
of this type, until three are reached. As soon as three identical messages
from the same creator have been collected, the loop ends. These three
individual messages are merged into a single message in a new format
and then sent. How these considerations are implemented in the BPM of
SAP NetWeaver PI is explained in the course of the design phase.

As in Exercise 1, the RFC call starting the integration process is made
using the program Z_PROG_MATERIALINFO_##, which calls the remote-
enabled function module Z_RFM_MATERIALINFO_##. The module only
works with the material number, the creator name, and the creation date
parameters. Again, the source code can be found in Appendix A, and the
corresponding transport can be downloaded from this book’s web page
(http://www.sap-press.com).

Design4.4.2	

Before you put the individual objects together to form an integration
process, let’s first deal with the design objects in this exercise.

Creating the Design Objects

In the context of using business processes, you will get to know a new
category of service interfaces: abstract interfaces. The important thing to
know about abstract interfaces is that they don’t have a direction. This
means they aren’t assigned to the Inbound or Outbound category, and
can be used in both directions. The only restriction is that abstract inter-
faces can only be used in integration processes.

This property requires them to be declared separately as interfaces of the
Abstract category, even for imported objects. However, if the abstract

Internal procedure
of the integration

process

Particular aspects
of the design

phase

334 Book.indb 256 3/31/10 1:19:07 PM

www.sap-press.com

257

Exercise 4: Business Process Management (BPM)      4.4

interfaces are used for receiving or sending messages within a process,
you need a counterpart in the defined direction.

Communication between an abstract and a direction-related interface
does not require a mapping, as long as the same message type is used.
The mapping objects in this exercise are solely used for generating a
single message from the three collected messages; you will deal with
the particular aspect of mappings that can have several messages on one
side. Because the target format of the integration process needs to be cre-
ated, the required design objects are listed in Table 4.10.

Object Type Sender Side Integration Process/
Receiver

Service interface SI_RFM_MATINFO_##_
Async_Abstract

SI_MatInfo_List_EE

Async_Abstract

SI_MatInfo_List_EE

Async_In

Message type Z_RFM_
MATERIALINFO_##

MT_MatInfo_ListEE

Data type DT_MatInfo_ListEE

DT_MatInfoEE

Operation mapping OM_RFM_MATINFO_##_Async_Abstract_to_MT_
MatInfo_List_Async_Abstract

Message mapping MM_RFM_MATINFO_##_to_MT_MatInfo_List

Integration process IP_MatInfo_##

Elements in the Enterprise Services Repository for the ccBPM ExerciseTable 4.10 

First, import the definition of the RFC function module Z_RFM_MATERI-
ALINFO_## from business system A.7 In the Imported Objects directory,
use the context menu and log in as user SYS_A-##. Based on the Z_RFM_
MATERIALINFO_## message of this imported interface, create the service
interface SI_RFM_MATINFO_##_Async_Abstract. Make sure that you set
the Category to Abstract.

7	 Importing the interface definition requires that the function module Z_RFM_MA-
TERIALINFO_## exists on system A and that it is remote enabled. This can be
done by importing the corresponding transport request, or by manually creating
the function module. The source code can be found in Appendix A.

Creating the
objects for the
sender side

334 Book.indb 257 3/31/10 1:19:07 PM

www.sap-press.com

258

4 Technical Exercises

This interface is asynchronous. Choose the stateless option for the
interface pattern. For operation pattern, select the only possible
value, Normal operation (see Figure 4.57). Save the interface. In doing
this, you have created all objects on the sender side.

Defi nition of the Abstract Interface SI_RFM_MATINFO_##_Async_Figure	4.57	
Abstract

The message type containing the collected notifi cations at the end of the
process is based on a multilevel data type. This means that there is an
atomic data type, DT_MatInfo, which can contain the contents of one
message. To merge several messages into one, the atomic data type must
be integrated in a parent type. For this example, the parent data type is
DT_MatInfo_List.

Start by creating the DT_MatInfo data type, and add three elements con-
taining the material number (material_number), the creator (created_
by), and the creation date (creation_date). The fi rst two values are of
the xsd:string type, while the creation date is of the xsd:date type (see
Figure 4.58). Save this data type.

Creating the
data types

334 Book.indb 258 3/31/10 1:19:08 PM

www.sap-press.com

259

Exercise 4: Business Process Management (BPM) 4.4

Structure of the DT_MatInfo Data Type Figure	4.58	

Next, create the DT_MatInfo_List data type so it only contains a single
element. This element, MatInfo, is of the DT_MatInfo type, which you
can select using the search help. Once you have created a nested struc-
ture, you can record a notifi cation.

To convert the data type into a list, though, you need to change the
occurrence of this element. When you double-click in the Occurrence
column of the element, a new window opens. Click on Properties; from
the input help of the MaxOccurs fi eld, select the unbounded entry so an
unlimited number of notifi cations can be recorded. Confi rm your selec-
tion and save the data type. The data type should now be structured as
shown in Figure 4.59.

Structure of the DT_MatInfo_List Data TypeFigure	4.59	

Create the message type MT_MatInfo_List and base it on the DT_Mat-
Info_List data type. Integrate this new message type in the service
interface SI_MatInfo_List_Async_Abstract, which you will use later in
the integration process. The service interface belongs to the Abstract
category and the Asynchronous mode. You can leave both pattern fi elds
unchanged (see Figure 4.60). Save the abstract interface.

Creating the
remaining objects
on the receiver
side

334 Book.indb 259 3/31/10 1:19:08 PM

www.sap-press.com

260

4 Technical Exercises

Sending a message via this interface requires a counterpart in the form
of an interface belonging to the Inbound category. Therefore, create a
service interface SI_MatInfo_List_Async_In that also uses the MT_Mat-
Info_List message type (however, this interface is used as an Inbound
interface for asynchronous communication). Save this interface object.
You have now created all objects for the receiver side.

Structure of the SI_MatInfo_List_Async_Abstract Service Interface Figure	4.60	

Mapping isn’t required for connecting abstract and direction-related
interfaces of the same message type. However, for converting the three
notifi cations into a single message, a mapping is required at the message
and interface level.

Start by creating the message mapping MM_RFM_MATINFO_##_to_MT_Mat-
Info_List. The outbound message is Z_RFM_MATERIALINFO_## of the RFC
interface of the same name. The target message is the MT_MatInfo_List
type you just created.

As you can see, the mapping does not present much of a challenge with
regard to its contents. However, its characteristics show that several out-
bound messages are transformed into a target message. To see this, navi-
gate to the Signature tab, where the two used messages can be found,
including their occurrences. For the outbound message, set an occur-
rence of 0..unbounded, and then return to the Defi nition tab (see Fig-
ure 4.61).

Creating the
mapping objects

334 Book.indb 260 3/31/10 1:19:09 PM

www.sap-press.com

261

Exercise 4: Business Process Management (BPM) 4.4

Now map the three fi elds to one another and connect the node Z_RFC_
MATERIALINFO_## on the outbound side to the target node MatInfo, as
shown in Figure 4.62. Save the mapping and test it by duplicating the
subtree Z_RFM_MATERIALINFO_## on the outbound side, using the menu
and populating it with data.

Setting the Occurrence in the Message MappingFigure	4.61	

Message Mapping of the ccBPM ExerciseFigure	4.62	

This message mapping still needs to be integrated in an appropriate oper-
ation mapping. The special thing about this mapping is that both the
sending and the receiving interface belong to the Abstract type. Still, you
can handle and map these interfaces as usual.

Create the operation mapping OM_RFM_MATINFO_##_Async_Abstract_to_
MT_MatInfo_List_Async_Abstract and use SI_RFM_MATINFO_##_Async_
Abstract as the outbound interface. The target interface is of the SI_
MatInfo_List_Async_Abstract type. The occurrence setting you just
specifi ed for the message mapping also needs to be specifi ed for the
operation mapping. You can set the Occurrence of the outbound inter-
face directly in the Defi nition tab to a value of 0...UNBOUNDED. In the
lower area, import the interfaces and select the message mapping you
just created (see Figure 4.63).

Creating the
operation mapping

334 Book.indb 261 3/31/10 1:19:10 PM

www.sap-press.com

262

4 Technical Exercises

Setting the Occurrence in the Operation MappingFigure	4.63	

Creating the Integration Process

You have now created all of the objects you will use during the integra-
tion process. Open the context menu of your namespace and choose the
New option, or follow the Object • New menu path, to get to the Gen-
eral Creation Wizard. In the wizard, navigate to the menu path: Process
Integration Scenario Objects • Integration Process. Make sure that
your namespace and software component version are displayed. Name
the new integration process IP_MatInfo_##, and enter a description (see
Figure 4.64). For this object, it is necessary to assign the participant
number, because your process will later be visible in the entire SAP
NetWeaver PI.

Creating a New Integration ProcessFigure	4.64	

Creating the
integration process

334 Book.indb 262 3/31/10 1:19:11 PM

www.sap-press.com

263

Exercise 4: Business Process Management (BPM) 4.4

creating the object brings you to the Details window, which is a graphical
process editor. Detach the window using the Fixing pin icon, and hide
the header to have as much space as possible (see Figure 4.65).

Structure of the Graphical Process EditorFigure	4.65	

The editor itself is divided into several areas. The most obvious element
is the graphical work area, where you can add objects by dragging and
dropping them from the list on the left side. You will fi nd functions for
controlling the view at the top of the work area.

The space to the right of the work area is divided into two parts: The
upper area contains an overview for particularly large integration pro-
cesses. (The slider lets you set the zoom.) Below the Process Overview
section, the Properties section shows the elements selected in the work
area. In the bottom-left section of the editor is the Processing Log,
which displays error messages and annotations. To the right of the log is
a list of the Container elements. These containers are the process-inter-

Structure of the
process editor

334 Book.indb 263 3/31/10 1:19:11 PM

www.sap-press.com

264

4 Technical Exercises

nal representation of interfaces or variables you can create for internal
use.

All of the panes provide additional alternative functions, which you can
select using the list icon next to the name of the pane. If you have already
worked with SAP business workfl ows, the principles of the process edi-
tor will remind you of the workfl ow builder. In this exercise, you will
only get to know the work area and container panes; you will create a
correlation in another function. An overview of all of the possible views
in the various panes is shown in Figure 4.66.

Graphical Definition
Correlation Editor
BPEL Display

Processing Log
Tasks
Search Result

Container
Correlation List
Process Signature

Process Overview
Dependent Objects
Process Outline

Views of the Panes in the Process EditorFigure	4.66	

Let’s start by creating the container elements. As mentioned earlier, the
container elements contain objects that are only used within the process.
In the case of messages, however, these internal objects equal an abstract
interface. A particular aspect of these message container elements is that
they can also exist in a multiline format; this means that a list of mes-
sages can be addressed with a single element. However, these multiline

Alternative
functions of the

panes

Creating the
container elements

334 Book.indb 264 3/31/10 1:19:12 PM

www.sap-press.com

265

Exercise 4: Business Process Management (BPM)      4.4

containers can only exist within the process; they can’t be sent in their
original format.

For this integration process, you will need three message container ele-
ments. The first container element, MatInfo, receives the incoming mes-
sages with the material information. This element is instantiated up to
three times over the course of the integration process. The individual
material information will be appended after receipt to the second ele-
ment, MatInfoContainer. It functions as a collecting list of material infor-
mation because of its multiline property. However, this list can only be
used within the integration process.

A conversion into the third message element, MatInfo_List, has to take
place to allow the data to leave the process. This element is based on a
service interface that can contain information about multiple materials,
and thus does not require the multiline property in the integration pro-
cess. The messages, and the containers used as their interrelationships,
are shown schematically in Figure 4.67.

MatInfo[1]
Type: SI_RFM_MATINFO_##_Async_Abstract

MatInfo[2]
Type: SI_RFM_MATINFO_##_Async_Abstract

MatInfo[3]
Type: SI_RFM_MATINFO_##_Async_Abstract

MatInfoContainer
Type (Multiline):

SI_RFM_MATINFO_##_ Async_Abstract

MatInfo[1]
Type: SI_RFM_MATINFO_##_ Async_Abstract

MatInfo[2]
Type: SI_RFM_MATINFO_##_ Async_Abstract

MatInfo[3]
Type: SI_RFM_MATINFO_##_ Async_Abstract

MatInfo_List
Type : SI_MatInfo_List_Async_Abstract

MatInfo[1]

MatInfo[2]

MatInfo[3]

Append

Append

Append

Convert

Use of the Container Elements in the Integrations ProcessFigure 4.67 

The first container, called MatInfo, belongs to the Abstract Interface
category and uses the interface SI_RFM_MATINFO_##_Async_Abstract. You
can find this entry in the input help of the Type column, which only lists
abstract interfaces of your software component version. This container
always contains the message currently sent to the process by the RFC
sender.

Scheme of the
message
processing

334 Book.indb 265 3/31/10 1:19:13 PM

www.sap-press.com

266

4 Technical Exercises

Note that the Multiline column can be used to make this container a
multiline container (this is not used for the fi rst container object). The
Description column allows you to give the object a description to refl ect
its function. The Scope column displays the validity area of the element.
Usually, the entire process is the validity area. You can only restrict the
validity of these blocks if you insert the blocks in the work area.

Using the same pattern, create the MatInfoContainer element, which
belongs to the same category and type, but is a multiline element. This
element stores MatInfo messages until they are sent in a single mes-
sage. Before being sent, however, this element must be converted, due
to its multiline character. The target element of this conversion is Mat-
Info_List, which also belongs to the Abstract Interface category, but
references the SI_MatInfo_List_Async_Abstract type.

Last but not least, you need a variable that counts how many times the
loop runs. This variable should be named Counter, and should be of
the simple xsd:integer type. The list of your container elements should
now correspond to the one shown in Figure 4.68.

Container Elements of the Integration ProcessFigure	4.68	

Before you get to the graphical modeling, you need to create a correla-
tion. Using this correlation, the process can identify related messages by
their content. In this exercise, the process must map and collect mes-
sages from the same creator; thus, the correlation consists of the cre-
ated_by fi eld contents of the incoming messages.

To create a correlation, click the Switch Editor icon, and select the alter-
native function Correlation List of the Container pane. Enter the name
MatInfo for the correlation. Highlight the new entry and click on the

Creating the
correlation

334 Book.indb 266 3/31/10 1:19:13 PM

www.sap-press.com

267

Exercise 4: Business Process Management (BPM) 4.4

Details icon above the list. The graphical work area changes into the
Correlation Editor view .

In the upper area of this view, the newly created correlation is already
selected. The area below it is divided into three parts: On the left, you
can see the correlation containers of the correlation fi elds. The center
part lets you select involved messages. The right area lets you specify
the actual fi elds.

In the left area, specify the name created_by and maintain the xsd:string
type. The message to which the correlation should apply is the SI_RFM_
MATINFO_##_Async_Abstract type, which can be specifi ed in the center
area. By selecting the interface, it is also displayed in the right area,
which up to now wasn’t available for input. Open the input help next
to the Created_by fi eld, thus opening the Expression Editor . Select the
ERNAM element from the displayed message. For this, you must fi rst acti-
vate the Container Element option and make sure that the Interface
entry is shown in the selection menu (see Figure 4.69).

Expression Editor in the Correlation EditorFigure	4.69	

334 Book.indb 267 3/31/10 1:19:14 PM

www.sap-press.com

268

4 Technical Exercises

Accept the selection by clicking the OK button. You are then brought
back to the correlation editor, as shown in Figure 4.70.

Correlation EditorFigure	4.70	

Click the Switch Editor icon on the top left of the Correlation Editor
to change back to the Graphical Defi nition view . You can now begin with
the graphical modeling of the business process. Table 4.11 gives you an
overview of all of the available objects (or step types) in the process edi-
tor. However, you will only use a few of them in this exercise.

Icon Step Type

Receive : This step lets you receive messages of a particular
interface, and always represents the beginning of an integration
process. The reception always happens asynchronously, but it
can simulate synchronous communication using a synchronous-
asynchronous bridge (Sync/Async Bridge). To bring messages
together, correlations can be specifi ed.

Send : This step sends a message from a specifi c interface in a
synchronous or asynchronous way. Send steps can close a Sync/
Async Bridge. Correlations can be specifi ed to bring messages
together.

Receiver Determination : The recipient identifi cation step is used
to get a list of recipients of a particular message. The confi gured
receiver determination from the Integration Directory is used.

Transformation : A transformation can be used to convert
messages of one interface into messages of another interface. It
can both split and merge several messages.

Step Types in the Process EditorTable	4.11	

334 Book.indb 268 3/31/10 1:19:15 PM

www.sap-press.com

269

Exercise 4: Business Process Management (BPM)      4.4

Icon Step Type

User Decision: The user decision step is new to SAP NetWeaver
PI, but has been used in SAP Business Workflows for a long
time. During runtime, agents are determined based on a
configurable parameter. An agent can choose from preset
options that affect the further course of the integration process.
The decision template can include the values of other container
objects.

Switch: A switch can be used to distinguish several values of a
container element.

Container Operation: A container operation is used to change
container objects. Two different operations can be distinguished:
the attachments of an object to another, multiline object; and
the change in the value of a container object (such as a counter
variable).

Control: The control step can stop the integration process, raise
an exception, or send an alert message.

Block: A block can be used for logical fragmentation of
integration processes, and is partly implicitly inserted by other
steps. A block can also be used for reducing the visibility of
container objects.

Fork: A parallel section allows independent processing of
multistep sequences. Each step sequence can therefore be
linked to a certain condition that must be met to perform it.
After processing all of the steps of the different sequences, they
reunite in a union operator.

Loop: In an integration process, the loop works like a WHILE
loop. As long as the condition specified in this step is not met,
the steps within the loop are processed one after another.

Wait: A wait step can delay the execution of subsequent steps.
You can specify a fixed date or a time period.

Undefined: An undefined step serves as a placeholder, or for
testing purposes.

Table 4.11  Step Types in the Process Editor (Cont.)

334 Book.indb 269 3/31/10 1:19:15 PM

www.sap-press.com

270

4 Technical Exercises

The fi rst step in a business process must always be a Receive step, which
can either be situated at the very beginning, or be integrated in a loop.
Because this process receives exactly three messages, the most obvious
procedure is to use a loop.

Drag a loop from the left toolbar to the work area between the start
and stop objects. The place where you can drop the loop is indicated by
yellow parentheses. The new loop element is automatically highlighted,
and its properties are displayed to the right of the work area (see Fig-
ure 4.71). Name this object Collection of Material information. The
Condition fi eld specifi es how long this loop is supposed to run, there-
fore making it a WHILE loop .

Integration Process after the Insertion of the LoopFigure	4.71	

Click on the white area and open the input help; the condition editor
is displayed. Set the loop so it runs, as long as the Counter variable is
not 3. In contrast to SAP XI, the condition editor in SAP NetWeaver PI
has changed signifi cantly. On one hand, the intuitive creation of simple
terms is more complicated; on the other, the power of the editor has
increased due to new fl exibility. If a Condition fi eld has no content, a
help text is displayed in the actual working area of the editor, which will

Creating the
receive loop

Specifi cation of the
exit condiition for

the loop

334 Book.indb 270 3/31/10 1:19:16 PM

www.sap-press.com

271

Exercise 4: Business Process Management (BPM) 4.4

facilitate the fi rst steps (see Figure 4.72). Once you click the text box to
defi ne the condition, the text disappears, and the fi eld accepts input.

Condition Editor of the Loop Step in Initial StateFigure	4.72	

In the Condition Variables area, choose the Counter container object,
and drag it into the left Condition fi eld. The explanatory text disap-
pears, and instead displays the name of the inserted container object.
Then drag the inequality button (third from the top) on the left edge into
the Condition fi eld, and drop it behind the container element. Finally,
enter the constant value of 3, so the condition Counter! = 3 can be seen
in the condition fi eld (see Figure 4.73).

334 Book.indb 271 3/31/10 1:19:16 PM

www.sap-press.com

272

4 Technical Exercises

Condition in the Receiving LoopFigure	4.73	

For better readability, you should separate the operands and operator
by a space. Perform a semantic test using the appropriate icon above the
condition fi eld; if an error is found, an error message will be displayed
on the left-bottom. Copy the condition by clicking the OK button; the
condition should now be displayed in the appropriate fi eld in the prop-
erties of the loop step.

Now insert a Receive step in the loop, and call it Receive material info.
Because this is the fi rst Receive step in the process, the Start Process
property is automatically set for this object. In the properties, set the
MatInfo container element as the Message. The Receive step then expects
a message of this type. Specify the MatInfo correlation as the used and
activated correlation; incoming messages are then grouped using this
correlation, depending on the creator of the material. This means that
for messages with the same creator, a specifi c instance of the loop is only
called after the fi rst run.

Now let’s append an incoming message to the MatInfoContainer con-
tainer element, which is accomplished by adding a Container Operation
step . This step allows you to make changes to containers, such as setting
variables or appending messages to lists. Add the new object after the
Receive step and name it Append material info. The target of this opera-
tion is the MatInfoContainer container element, to which the MatInfo
container element is appended. Note that the operation must be Append ,
not Assign (see Figure 4.74).

 Inserting the steps
in the loop

Appending a
incoming message

to the multiline
container

334 Book.indb 272 3/31/10 1:19:17 PM

www.sap-press.com

273

Exercise 4: Business Process Management (BPM) 4.4

Properties of the Container Operation for Appending MatInfo to Figure	4.74	
MatInfoContainer

The last object in the loop is another Container Operation, which
increases the variable counter by one; name the Container Operation,
Increase Counter. The target of this operation is the Counter container
element. This time, the Assign operation is appropriate. As the fi rst
expression, reselect the Counter container element. The operator for the
addition is a plus sign (+). The second expression is a constant of the type
xsd:integer with a value of 1. The property values of this object result
in the mathematical expression Counter = Counter +1. After completing
the loop, the integration process should have the step sequence shown
in Figure 4.75.

Step Sequence of the Integration Process after Completing the LoopFigure	4.75	

The two missing steps merge the multiline container element into a sin-
gle message before sending it. Before the loop, insert a Transformation
object and call it Create MatInfo_List. Transformation objects allow you
to convert messages to a different format. For this, specify the operation
mapping OM_RFM_MATINFO_##_Async_Abstract_to_MT_MatInfo_List_
Async_Abstract. After specifying the operation mapping, appropriate
fi elds for the properties are completed, and the expected message type
is shown. At process execution time, the source messages reside in the

Conversion and
delivery of the
outbound message

334 Book.indb 273 3/31/10 1:19:17 PM

www.sap-press.com

274

4 Technical Exercises

MatInfoContainer container element. In this transformation, the target
message is passed to the MatInfo_List element (see Figure 4.76).

As the name suggests, the last step, Send Target Message, is a Send step .
The container element MatInfo_List is sent asynchronously.

The entire structure of the integration process is illustrated in Figure
4.77. Save the process and verify it via the menu path: Integration
Process • Check . If the process is successful, you should get a note that
MatInfo is initialized, but not used. If there are no more errors, you can
activate all new objects.

Properties of the Transformation Step for MatInfo_ListFigure	4.76	

Structure of the Complete Integration ProcessFigure	4.77	

Configuration4.4.3	

Message processing is confi gured in two steps, because an integration
process is equal to a business system with regard to confi guration. The
RFC call must be forwarded to the process; for this, use the RFC sender
channel you created in Exercise 1. (Because they run in SAP NetWeaver

Overview of the
confi guration

scenarios

334 Book.indb 274 3/31/10 1:19:18 PM

www.sap-press.com

275

Exercise 4: Business Process Management (BPM) 4.4

PI, integration processes don’t need adapters.) You also need to confi gure
the sending of outbound messages to system B, so you will need to cre-
ate two confi guration scenarios .

Before you can use the integration process during the confi guration
phase, you must declare it in the Integration Directory. In the Integra-
tion Directory, follow the menu path: Communication Component •

Integration process. Create a new process that represents your IP_Mat-
Info_## object from the Enterprise Services Repository. In the second
step, select your confi guration scenario, PI_Training_##, to assign the
integration process to the corresponding scenario list (see Figure 4.78).

Selecting the Integrations Process and Assigning it to the Confi guration Figure	4.78	
Scenario

In the third step of the Defi nition Wizard, you can specify a different
name for your process. To keep things simple, use the same name you
used in the Enterprise Services Repository, IP_MatInfo_##. After com-
pleting the wizard, your process shows up in the menu path Communi-
cation Component • Integration Process.

Delivery of Inbound Messages to the Integration Process

Table 4.12 provides an overview of all of the confi guration objects used
for delivering the creation notifi cation to the integration process. Com-
munication channels identifi ed by an asterisk (*) were created in Section
4.1.3, and will be reused here.

Creating the
integration process
in the Integration
Directory

334 Book.indb 275 3/31/10 1:19:18 PM

www.sap-press.com

276

4 Technical Exercises

Object Type Sender Side: System
A

Receiver Side:
Integration process
IP_MatInfo_##

Communication
channel

RFC_Sender_
Channel_## *

Sender agreement | SystemA | Z_RFM_
MATERIALINFO_##|*|*

Receiver determination | SystemA | Z_RFM_MATERIALINFO_##

Interface
determination

|SystemA|Z_RFM_MATERIALINFO_##||IP_
MatInfo_##

Elements in the Integration Directory for the First Scenario in the BPM Table	4.12	
Exercise

Call the Confi guration Wizard and select the Internal Communication
option. The sender is business system A, which sends data using the
RFC adapter with the RFC interface, Z_RFM_MATERIALINFO_## (see Figure
4.79).

Sender Settings in the Confi guration Wizard for the Incoming MessageFigure	4.79	

The receiver is the IP_MatInfo_## integration process, which is addressed
with the XI adapter. Once the integration process was selected as the
Communication Component using the value help, the associated inte-
gration process from the Enterprise Services Repository appears under-
neath. When you open the input help of the interface, only the SI_RFM_
MATINFO_##_Async_Abstract interface is displayed; this is used by the
Receive step to start the process. If the value help does not display any

Calling the
Confi guration

Wizard for the fi rst
scenario

334 Book.indb 276 3/31/10 1:19:19 PM

www.sap-press.com

277

Exercise 4: Business Process Management (BPM) 4.4

entries, you can directly enter the interface name and the namespace
(see Figure 4.80).

Receiver Settings in the Confi guration Wizard for the Incoming MessageFigure	4.80	

The sender agreement |SystemA|Z_RFM_MATERIALINFO_##|*|* uses the
existing communication channel, RFC_Sender_Channel_##, of Exercise
1. The screen for creating the receiver determination, |SystemA|Z_RFM_
MATERIALINFO_##, is of a purely informative nature.

In the next step, the interface determination |SystemA|Z_RFM_
MATERIALINFO_##||IP_MatInfo_## displays the interface SI_RFM_MAT-
INFO_##_Async_Abstract as the target, but does not fi nd an operation
mapping ; this is not necessary because both the sending and receiving
interface use the same message type. Because the receiver is integrated
with the XI adapter, a receiver agreement is not required.

Assign all objects to your PI_Training_## scenario and exit the wizard.
You can test the integration process after it has been activated, but the
outbound message will not be delivered. Before testing the project, wait
until the delivery of the outbound message has been confi gured.

Delivery of the Outbound Message of the Integration Process

Delivery of the outbound message can be arranged in a way similar to
the fi rst confi guration scenario of this exercise. The existing communica-
tion channel File_ReceiverChannel_##, which was created in Exercise
1, is used for the receiver. Table 4.13 provides an overview of all con-
fi guration objects used in this scenario.

334 Book.indb 277 3/31/10 1:19:19 PM

www.sap-press.com

278

4 Technical Exercises

Object Type Sender Side:
Integration Process
IP_MatInfo_##

Receiver Side:
System B

Communication
channel

File_
ReceiverChannel_##*

Receiver agreement |IP_MatInfo_##|
|SystemB|SI_
MatInfo_List_Async_
In

Receiver determination |IP_MatInfo_##|SI_MatInfo_List_Async_
Abstract

Interface
determination

|IP_MatInfo_##|SI_MatInfo_List_Async_
Abstract||
SystemB

Elements in the Integration Directory for the Outbound Message of the Table	4.13	
Integration Process

Call the Confi guration Wizard once more and select Internal Commu-
nication. The sender of this scenario is the integration process IP_Mat-
Info_##. Help is again restricted, because only the used interfaces are
displayed when sending messages from the process. In this case, only
one message is sent, so only one interface is displayed. Select the dis-
played interface SI_MatInfo_List_Async_Abstract (see Figure 4.81).

Sender Settings in the Confi guration Wizard of the Outbound MessageFigure	4.81	

The outbound message receiver is a File adapter of business system B,
which responds to the SI_MatInfo_List_Async_In interface (see Figure
4.82). This interface is the direction-related counterpart to the abstract

Calling the
Confi guration

Wizard for the
second scenario

Specifi cation of the
receiver in the
Confi guration

Wizard

334 Book.indb 278 3/31/10 1:19:20 PM

www.sap-press.com

279

Exercise 4: Business Process Management (BPM) 4.4

interface of the outbound message. A sender agreement isn’t used,
because the sending process runs in SAP NetWeaver PI.

Receiver Settings in the Confi guration Wizard for the Outbound MessageFigure	4.82	

The receiver determination step informs you that system B is integrated
in the object |IP_MatInfo_##|SI_MatInfo_List_Async_Abstract. As
with the fi rst scenario, the interface determination |IP_MatInfo_##|SI_
MatInfo_List_Async_Abstract||SystemB doesn’t require an operation
mapping, because it uses the same message type (see Figure 4.83).

Interface Determination of the Outbound MessageFigure	4.83	

The receiver agreement |IP_MatInfo_##||SystemB|SI_Mat-

Info_List_Async_In uses the existing communication channel
File_ReceiverChannel_##.

Add all of the new objects to your scenario PI_Training_## and fi nish
the wizard. You can now activate all new confi guration objects. Now that
you’ve fi nished the fourth exercise, test the process.

Information about
the receiver
determination

334 Book.indb 279 3/31/10 1:19:20 PM

www.sap-press.com

280

4 Technical Exercises

Process and Monitoring4.4.4	

The process of this integration scenario starts in system A. As such, log
in as user SYS_A-## and call Transaction SA38.

Run the program Z_PROG_MATERIALINFO_##. The program calls the func-
tion module Z_RFM_MATERIALINFO_## in the background, using the RFC
destination SYSTEMA_SENDER-##.8 Within the program you can only spec-
ify a material number. Information about the creator, including the cre-
ation date, is sent along automatically. The material you specify isn’t
important at this point, because the correlation of the three messages
is done using the creator (i.e., your SAP user SYS_A-##). Simply enter a
name and run the program (see Figure 4.84).

Call of Program Z_PROG_MATERIALINFO_##Figure	4.84	

You will see a message notifying you that the function module was suc-
cessfully called, but this does not imply that the message was actually
received; it only informs you that function module Z_RFM_MATERIAL-
INFO_## has been called without any errors.

Now change to the PI system and call Transaction SXMB_MONI. You can
see that your message came in and has been successfully processed. If
you scroll the display a bit to the right, you can see that the Outbound
status column displays a clock symbol (see Figure 4.85).9 This means
that the message is currently being sent. This display remains unchanged

8 The direct call of the function module in Transaction SE37 starts a synchronous
message exchange, and can thus cause corresponding errors.

9 When calling the transaction in English, the heading of this column may be “c.”
This depends on the support package being used.

Sending the fi rst
material creation

notifi cation

Checking the
processing of the

fi rst message

334 Book.indb 280 3/31/10 1:19:21 PM

www.sap-press.com

281

Exercise 4: Business Process Management (BPM) 4.4

until three messages from the same creator have come in, and the out-
bound message can be created.

Message Monitoring after the First MessageFigure	4.85	

Call the program for notifying the material manager twice more, and
return to the monitoring. You should now see the three incoming notifi -
cations, and a fourth message. The outbound status of the fi rst three mes-
sages now displays a black-and-white checkered fl ag (see Figure 4.86),
which lets you know that the process has completed. In the PI system,
call Transaction AL11, Transaction ZAPCMD, 10 or the fi le tool provided
on the website of this book to see if a fi le containing the corresponding
message has been created.

Message Monitoring after Three Messages of the Same CreatorFigure	4.86	

If the fourth message is not displayed in the monitoring, look at the
monitoring of the business processes. In the XI system, call Transaction
SXMB_MONI_BPE and double-click on the Process Selection entry. In the
selection mask of the Service fi eld, you can enter integration process

10 Detailed information on the SAP Commander (Transaction ZAPCMD) can be found
at: http://code.google.com/p/sapcommander.

Sending the two
remaining
messages

Monitoring the
business process

334 Book.indb 281 3/31/10 1:19:21 PM

www.sap-press.com

282

4 Technical Exercises

IP_MatInfo_## to only see the status of the workfl ow. You should not do
this if you want to examine an incomplete or possibly erroneous work-
fl ow ; instead, try to limit the selection period to only the time when the
messages have been sent, and run the query. The work items processed
during the selected period are now displayed.

Figure 4.87 shows the status of work items and workfl ow after sending
the fi rst message. A Wait step of the loop has been processed by receiving
the fi rst message, and is marked as completed. Another Wait step awaits
further messages. In addition, you can see that the workfl ow is started.

Work Items after Sending a MessageFigure	4.87	

To get to the workfl ow protocol , you can either select one of the steps by
double-clicking it and then clicking on the LOG icon, or simply double-
click the workfl ow entry in the collection. Regardless of which way you
proceed, it brings you to the workfl ow protocol (see Figure 4.88).

Display of the Workfl ow ProtocolsFigure	4.88	

Information on the current status of the workfl ow is displayed by click-
ing the button in the Details column in the lower part of the screen.
Click on the button in the Graphic column. This brings you to the graph-
ical display of the business process (see Figure 4.89). The green arrows
allow you to trace the process to see which processes have run. If a prob-

Analyzing the
work items

Graphical display
of the workfl ow

processing

334 Book.indb 282 3/31/10 1:19:22 PM

www.sap-press.com

283

Exercise 4: Business Process Management (BPM) 4.4

lem has occurred, double-click on the relevant object to display detailed
information on this step.

Follow the Extras • Diagnosis menu path to access analysis transactions
that will help you fi nd the reason for partially processed workfl ows.

Graphical Display of the Workfl ow LogFigure	4.89	

334 Book.indb 283 3/31/10 1:19:23 PM

www.sap-press.com

284

4      Technical Exercises

Extending the Exercise by Alert Monitoring (Optional)4.4.5	

The existing integration process can be completed by sending alerts for
better control. In the case of this exercise, the alert is a time-out veri-
fication, which sends a warning message if the collection loop has not
received all three input messages within a specified period. The pre-
requisite for implementing the subsequent steps is preparing the alert
monitoring in Chapter 3.

Creation of the Alert Class

To begin, create an alert category that enables the design of the message
and the control of message delivery and visibility. Log on to the PI sys-
tem, and call Transaction ALRTCDEF to create a new category.11 Switch
to change mode, and open the context menu of the menu path: All Clas-
sifications • PI_BOOK.

The PI_BOOK category classification was set up during the preparations for
the exercise. Click on the list to the right of the directory tree, and then
click the Create Alert Category icon (which looks like a blank page) to
create a new category within the classification. Enter the new category,
PI_Alert_##, in the newly created line, and the name PI_Alert_## and
a meaningful description. Confirm your entries with the [Enter] key.

The lower area of the screen now accepts input, and you can deter-
mine the characteristics of the category. First, turn on the Dynamic Text
option, which passes the text (which you will define later in the integra-
tion process) into the alert. You now have two alternatives to determine
who should later receive alerts of this category:

You can enter a fixed list of recipientsEE by clicking the Fixed Recipients
icon and entering the appropriate usernames; these users will always
receive the related alerts in the Runtime Workbench. This fixed allo-
cation is very inflexible, and, in using it, you take the risk that alerts
will not be delivered to all relevant recipients, or that users will be
notified inadvertently (due to mistakes in list maintenance).

11	 You can also create an alert category using the Alert Configuration option in the
Runtime Workbench; however, only the named transaction is called in the Web
GUI.

Using alerts to
monitor business

processes

Creating a new
alert category

Specification of the
possible alert

recipients

334 Book.indb 284 3/31/10 1:19:23 PM

www.sap-press.com

285

Exercise 4: Business Process Management (BPM) 4.4

EE A more fl exible alternative is to let the users decide whether or not
they want to receive an alert of this category. Users can subscribe to
alerts in this category in the Runtime Workbench. This subscription
option, however, is accessible only for users with certain technical
user roles. You can specify the list of relevant roles using the Subscrip-
tion Authorization icon. You can offer the subscription of your own
category to all participants by entering the role SAP_XI_DEVELOPER
(see Figure 4.90). Regardless of the choice of an alternative, you must
save your entries and assign a transport request if necessary.

Entering a Role for the Subscription of an Alert CategoryFigure	4.90	

The newly created alert category should now look something like Fig-
ure 4.91. Save the new category, and enter your transport request on
demand.

Enhancement of the Integration Process

To send an alert, the integration process has to be enhanced with a step
sequence that starts in parallel to the Receive step. This parallel sequence
sends an alert after a certain amount of time.

Start the Enterprise Services Repository, open your integration process
IP_MatInfo_##, and then switch to change mode. For a better overview
of the process and better transparency in monitoring, create a new block
called Regular Processing. Move all existing steps into this block, pre-
serving their order. Then drag a Fork step in front of the newly created
block, and name it Timeout Construct. Then drag the created block to
one of the two branches of the Fork step created by default (see Figure
4.92).

Subscription for
alert categories

Enhancing the
business process
with parallel
processing

334 Book.indb 285 3/31/10 1:19:23 PM

www.sap-press.com

286

4 Technical Exercises

Properties of the New Alert CategoryFigure	4.91	

Moving the Existing Steps to a Fork BranchFigure	4.92	

334 Book.indb 286 3/31/10 1:19:25 PM

www.sap-press.com

287

Exercise 4: Business Process Management (BPM) 4.4

Now drag a block step to the second, previously unused branch, and
then name the block Timeout Check. Drag a Wait step into this new
block, and then name it Timeout. Select the Wait Specifi ed Time Period
option as Type, and enter a wait time of three minutes; this delays the
execution of the next steps by three minutes. (This short duration is only
suitable for this exercise; in practical use, it will usually be higher.)

Insert a Control step after the Wait step, and call it Timeout Alert. This
step will send an alert when the entire integration process runs longer
than three minutes. Set the Action property of the control to the Throw
Alert option , thus sending an alert, while the process continues.

Set the Alert Server as the Source. Now enter the newly created Alert
Category following the PI_ALERT_## schema. In the Alert Message
fi eld, you can fi nally enter a message that will be displayed in the alert.
It is best to choose a meaningful alert, such as IP_MatInfo_## timed
out (Figure 4.93).

Properties of the Control Step in the Integration ProcessFigure	4.93	

The complete integration process should now match Figure 4.94. Save,
check, and activate the enhanced integration process.

Subscription to the Alert Category and Testing of the Process

If you assigned fi xed users when creating the new alert category, it is
not necessary to subscribe to a category; continue with the testing of the
modifi ed process.

To subscribe to an alert category, open the Runtime Workbench and
select Alert Inbox from the top menu. Click on Subscription in the blue
menu bar on the right, which results in another window that shows all
of the alert categories that you can subscribe to, and their subscription
status.

Inserting a Wait
step

Throwing the alert

Fixed recipients

334 Book.indb 287 3/31/10 1:19:25 PM

www.sap-press.com

288

4 Technical Exercises

Enhanced Integration Process with Time-out BranchFigure	4.94	

A gray light bulb in the Subscribed column indicates a category that
you have not subscribed to, while a bright yellow light bulb indicates
an active subscription category (see Figure 4.95). By clicking on the light
bulb icon or the corresponding buttons above the list, you can activate or
deactivate a subscription. The new settings apply immediately and don’t
need to be stored separately.

Subscribing to an Assigned Alert Category in the Runtime WorkbenchFigure	4.95	

To test the enhanced integration process, log on to system A with your
user SYS_A-##, and call Transaction SE38 to run the program Z_PROG_
MATERIALINFO_##, as you did in Exercise 1. Enter any material number,
and then run the program. Then wait the time specifi ed in the Wait step
of the integration process, and call the Runtime Workbench.

Start of the
integration process

334 Book.indb 288 3/31/10 1:19:26 PM

www.sap-press.com

289

Exercise 4: Business Process Management (BPM) 4.4

Navigate to the Alert Inbox to look at the incoming alert message. Select
the message at the beginning of the line to see all of the information.
On the Short Text tab, you can see the automatically inserted workfl ow
instance number, which helps you to identify and analyze the instance
causing this alert. On the Long Text tab, you can fi nd the test you entered
in the Alert Message of the Control step (see Figure 4.96).

Sent Alert Message in the Alert Inbox of the Runtime WorkbenchFigure	4.96	

Finally, log on to the PI system, and call Transaction SXMB_MONI_BPE to
display the workfl ow monitoring. Follow the Business Process Engine •

Monitoring • Process Selection menu path, and start this view. Limit
the selection period and execute the selection. A list of all work items
is displayed; you can see that two Wait steps have been processed and
another is ready. One of the processed Wait steps has received the fi rst
message, while the second waited the specifi ed time and then sent an
alert message. In addition, sending alerts is listed as a separate back-
ground step (see Figure 4.97).

Work Item View after the Alert MessageFigure	4.97	

Monitoring the
integration process

334 Book.indb 289 3/31/10 1:19:27 PM

www.sap-press.com

290

4 Technical Exercises

If you jump to the workfl ow log by double-clicking any work item and
then clicking the LOG icon, you can distinguish the two branches (see
Figure 4.98).

Workfl ow Log of the Enhanced Integration Process after the Alert Figure	4.98	
Message

Exercise 5: File-to-JDBC4.5	

In Section 4.2, you imported data from a fi le into business system B
using IDoc technology. With SAP NetWeaver PI, you can also write data
or messages directly into a database; this is done via the JDBC adapter ,
which we’ll discuss here. To do this, you must fi rst select the correspond-
ing target system (i.e., business system B or a database), which depends
on the prefi x of the material number. Figure 4.99 shows a schema of this
exercise with synchronous communication.

PI System

System A
File

Adapter
JDBC

Adapter MaxDB

Schema of Exercise 5 – File-to-JDBCFigure	4.99	

Basics4.5.1	

The JDBC adapter allows direct access to database tables, and can be
used for both read and write access. This data exchange can take place
synchronously or asynchronously.

Displaying the
workfl ow log

Course of
Exercise 5

334 Book.indb 290 3/31/10 1:19:27 PM

www.sap-press.com

291

Exercise 5: File-to-JDBC      4.5

Before using the JDBC adapter, the installation of a manufacturer-specific
driver is required. The individual JAR files can be downloaded from the
database vendors and grouped together in an archive called com.sap.
aii.adapter.lib.sda, so that they can be deployed on the SAP NetWeaver
Application Server (AS) using the Java Support Package Manager (JSPM).
The file extension SDA stands for software deployment archive. You can
find a detailed guide for the packaging and deployment of driver files in
the configuration guide for SAP NetWeaver PI, and also in the SAP Help
Portal: Providing External Drivers for the JDBC and JMS Adapters.12

If the JDBC adapter is configured as a sender, the communication chan-
nel contains a SQL query that is performed to get relevant data. The
retrieved table rows are converted to a message type, which must exist
as a design object. After selecting and converting, a SQL update can be
performed; this is often used to mark the read-in line with an appropri-
ate flag in a particular column, which prevents these lines from being
reread during the next query.

A receiving JDBC adapter can perform various actions on the rows of
a table: UPDATE, INSERT, DELETE, SELECT, and UPDATE_INSERT (the last
of which is equivalent to MODIFY). In addition, stored procedures can
be performed to directly call more complex SQL statements. The table
and action to be performed are determined via the message type of the
receiving side.

For this exercise, you need a database of your choice that is accessible
from the PI server via a network. In this example, a MaxDB database is
used. The material master record from Exercise 2 is written to a database
table that corresponds exactly to that structure. A SQL script for the cre-
ation of the database can be found in Appendix A.

Design4.5.2	

To write to a database with the JDBC adapter, you must map the con-
tents of the message in XML SQL format. This format is internally

12	 You can find these guides at: http://help.sap.com/saphelp_nwpi71/helpdata/en/33/
e6fb40f17af66fe10000000a1550b0/frameset.htm.

Driver installation

Configuration of
the JDBC adapter

Overview of the
design objects

334 Book.indb 291 3/31/10 1:19:27 PM

www.sap-press.com

292

4      Technical Exercises

converted by the JDBC adapter, and forwarded to the configured data-
base driver. In this example, it is limited to the INSERT operation.13
The objects that need to be created for this exercise are shown in
Table 4.14.

Object Type Sender Side Receiver Side

Service
interface

SI_INSERT_SQL_
Async_in

Message type MT_INSERT_SQL

Data type DT_INSERT_SQL

Operation
mapping

OM_SI_Material_Async_Out_to_SI_INSERT_SQL_
Async_in

Message
mapping

MM_MT_Material_to_MT_INSERT_SQL

Elements in the Enterprise Services Repository for the Exercise File-to-Table 4.14 
JDBC

Creation of the Interface Objects

Create a new data type in the Enterprise Services Repository. Navigate to
the context menu of the Data Types path in your namespace, and create
the data type DT_INSERT_SQL. To perform an Insert statement, this data
type must conform to the XML SQL format of the INSERT command. The
command has the format shown in Listing 4.3.

Within the <access> blocks, you can specify the data you want to insert
in the table; the XML tags correspond to the column names of your data-
base table. This statement must contain at least one <access> element.
The data type in our example is shown in Figure 4.100.

13	 You can find additional information on XML SQL format in the SAP Help Por-
tal at: http://help.sap.com/saphelp_nwpi71/helpdata/EN/2e/96fd3f2d14e869e100
00000a155106/frameset.htm.

334 Book.indb 292 3/31/10 1:19:27 PM

www.sap-press.com

293

Exercise 5: File-to-JDBC 4.5

<root>
 <StatementName>
 <dbTableName action=”INSERT”>
 <table>realDbTableName</table>
 <access>
 <col1>val1</col1>
 <col2>val2</col2>
 </access>
 <access>
 <col1>val11</col1>
 </access>
 </dbTableName>
 </StatementName>
</root>

XML Example for the XML SQL INSERT OperationListing	4.3	

Type Defi nition for the Scenario File-to-JDBCFigure	4.100	

Now create the MT_INSERT_SQL message type, based on the newly cre-
ated data type. To do this, open the context menu of the Message Types
path in your namespace, and create a new message type. As a data type,
enter the DT_INSERT_SQL data type that you just created.

Creation of the
interface objects

334 Book.indb 293 3/31/10 1:19:28 PM

www.sap-press.com

294

4 Technical Exercises

Finally, the service interface for this scenario has to be created; an asyn-
chronous inbound interface is required. Create the SI_INSERT_SQL_
Async_in service interface via the context menu of the Service Inter-
faces path , and reference the MT_INSERT_SQL message type as the request
message type. The settings of the service interface are shown in Figure
4.101.

Service Interface for the Scenario File-to-JDBCFigure	4.101	

Creation of the Mapping Objects

For the enhancement of the scenario from Section 4.2, you still need a
mapping between the sending fi le format and the newly created SQL-
XML format. Create a new message mapping with the name MM_MT_
Material_to_MT_INSERT_SQL, using the context menu of the Message
Mappings path in your namespace mapping. For the left side of the
mapping, enter MT_Material as the message type; for the right side,
MT_INSERT_SQL.

Map the action and table elements in the target message to the con-
stant value INSERT, and the database name in which you want to write
the values. In this example, the database name is PI_MATERIAL. Link the
elements of the Access node with the corresponding fi elds of the source
message (see Figure 4.102). Test the mapping, and check whether the
same XML message structure is produced as in the example XML for the
XML SQL Insert command.

Creating the
mapping objects

334 Book.indb 294 3/31/10 1:19:29 PM

www.sap-press.com

295

Exercise 5: File-to-JDBC 4.5

Message Mapping of the Exercise File-to-JDBCFigure	4.102	

As a fi nal step of the design, the operation mapping is now missing.
Create it with the name OM_SI_Material_Async_Out_to_SI_INSERT_SQL_
Async_in, using the context of the Operation Mappings path in your
namespace. Defi ne the service interface SI_Material_Async_Out as the
output interface, and SI_INSERT_SQL_Async_in as the target interface.
By clicking on the Read Operations button, the corresponding message
types of the interface are loaded. Now you can set the message map-
ping you just created as the mapping program. Activate all of the design
objects and switch to the Integration Directory.

Configuration4.5.3	

For this exercise, you don’t create a new scenario, but expand the sce-
nario from Section 4.2, such that the target is determined depending on
the material number’s prefi x in the incoming message. If the material
number’s prefi x is db, the material is written to the database; otherwise,

334 Book.indb 295 3/31/10 1:19:29 PM

www.sap-press.com

296

4      Technical Exercises

the IDoc that has already been configured in Section 4.2 is created and
posted to business system B.

The configuration objects that you will create for this exercise are shown
in Table 4.15. The receiver determination does not need to be changed
for the enhancement, as it already exists. The existing interface determi-
nation must be adjusted so that the message will be routed depending
on the prefix of the material number.

Type of Object Sender Side:
System A

Receiver Side:
System B

Communication
channel

JDBC_
ReceiverChannel_##

Receiver agreement |SystemA||SystemB​
|SI_INSERT_SQL_
Async_in

Receiver determination

Interface
determination

Elements in the Integration Directory for the Exercise Table 4.15 
File-to-JDBC

Open the context menu of the Communication Channel node in the
Integration Builder, and create a new communication channel with the
name JDBC_ReceiverChannel_##. Select business system B as the com-
munication component.

The adapter is of type JDBC. The communication channel is created as a
Receiver. Make sure that as Message Protocol the XML SQL Format is
set. Alternatively, you can set the Native SQL String option. This protocol
is mainly intended for testing purposes.

In the Connection tab, enter the connection to the database. The values
of the parameters JDBC Driver and Connection are dependent on the
database used. Enter a user for the database in the User Name and Pass-
word fields; this user must have the authorization to execute an INSERT
command on the appropriate table (see Figure 4.103).

Overview of the
configuration

objects

Configuration of
the JDBC adapter

334 Book.indb 296 3/31/10 1:19:29 PM

www.sap-press.com

297

Exercise 5: File-to-JDBC 4.5

Settings of the JDBC Receiver Channel for System BFigure	4.103	

To control the scenario depending on the prefi x of the material num-
ber, expand the interface determination |SystemA|SI_Material_Async_
out|SystemB| by another confi gured receiver interface. Make sure that
the new receiver interface comes fi rst, and that the Maintain Order At
Runtime checkbox is set. In doing so, the condition of the new receiver
interface is checked. If the condition is not met, an IDoc is sent to busi-
ness system B.

Select the SI_INSERT_SQL_Async_in service interface, and specify the
operation mapping as OM_SI_Material_Async_Out_to_SI_INSERT_SQL_
Async_in. Finally, specify the desired condition in the condition editor.
Start the condition editor using the values help of the Condition fi eld.

The condition editor will open in a new window, and allows you to
perform an examination of the incoming message’s content. Using the
value help in the Left Operand fi eld, you get to the expression editor that
allows you to specify the fi eld you want to check (see Figure 4.104).

Select the MATNR fi eld, and then click OK. Return to the window of the
condition editor and select < as an operator. This operator can check a
string for a pattern, and you can use the following wildcards:

+ for any characterEE

* for any character sequenceEE

Confi guration of
the interface
determination

Confi guration
using the
expression editor

334 Book.indb 297 3/31/10 1:19:30 PM

www.sap-press.com

298

4 Technical Exercises

Expression EditorFigure	4.104	

Enter the string db* in the fi eld of the right operand (see Figure 4.105);
as a result, all materials that have a material number starting with the
prefi x db are forwarded to the database. All others will be sent to busi-
ness system B.

Condition EditorFigure	4.105	

After setting all of the parameters, save the interface determination (see
Figure 4.106).

334 Book.indb 298 3/31/10 1:19:31 PM

www.sap-press.com

299

Exercise 5: File-to-JDBC 4.5

Interface Determination of the Scenario File-to-JDBCFigure	4.106	

Finally, the receiver agreement for the JDBC receiver still needs to be cre-
ated. You can create it via the context menu of the Receiver Agreement
node. Select business system A as the sending communication compo-
nent, and business system B as the recipient. Enter SI_INSERT_SQL_Async_
in as the receiver interface. Confi gure the newly created receiver channel
JDBC_ReceiverChannel_## as the communication channel of this object
(see Figure 4.107). Save and activate all of the confi guration objects.

Receiver Agreement for the Exercise File-to-JDBCFigure	4.107	

334 Book.indb 299 3/31/10 1:19:32 PM

www.sap-press.com

300

4      Technical Exercises

Process and Monitoring4.5.4	

The integration scenario in this exercise is triggered the same way as it
was in Exercise 2 — by creating pi_output_#.dat in the sending adapter’s
directory. For this example, create a material whose material number
(field MATNR) starts with the prefix db.

To create and place the file, you can use either the template file or the file
upload and download program that is provided on the website of this
book (http://www.sap-press.com). You can also use the file from the first
exercise. (It may be necessary to remove the write protection of this file
if you are on a UNIX system.)

Depending on which poll interval is set in the communication chan-
nel, the file is archived or deleted after a few minutes. In PI monitoring
(Transaction SXMB_MONI), you can now check that the correct interface
has been identified. Finally, in the database, you can verify whether the
material has been created in the table.

If the output message was handed over to the JDBC adapter, the scenario
ran successfully from the perspective of SAP NetWeaver PI. The moni-
tor for processed XML messages (Transaction SXMB_MONI) won’t show
error messages that occur in the adapter or in the database; for this you
can use the monitor of the JDBC adapter, which can be found in the Run-
time Workbench (http://<J2EE-Host>:<J2EE-Port>/rwb/index.jsp).

Alternative Java Mapping (Optional)4.5.5	

In the spirit of Java, let’s also discuss the server-side Java mapping. The
graphical mapping within the Enterprise Services Repository is automati-
cally translated into Java code, but only provides limited possibilities
for mapping. Experienced Java users may prefer to create extensive Java
code for mapping in their favorite editor; however, Java mapping can’t
be stateful. In other words, you can’t write any data in database tables,
because you cannot automatically exclude double entries.14

14	 Detailed information about the limitations and possibilities of Java mappings in
SAP NetWeaver PI can be found at: http://help.sap.com/saphelp_nwpi71/helpdata/en/
e2/e13fcd80fe47768df001a558ed10b6/frameset.htm.

Monitoring of
Exercise 5

Limitations of Java
mappings

334 Book.indb 300 3/31/10 1:19:32 PM

www.sap-press.com

301

Exercise 5: File-to-JDBC 4.5

Creation of the Java Mapping

The Java mapping, which will later be imported into the Enterprise Ser-
vices Repository and thus lies in the PI system, consists of a single Java
class in a JAR fi le. In principle, this class can be developed in any edi-
tor; however, you must reference SAP Java libraries. To use these librar-
ies directly, and to benefi t from error-checking, use the SAP NetWeaver
Developer Studio in the same release as the Java stack of the PI system.

Start the SAP NetWeaver Developer Studio , and create a new develop-
ment project via the File • New • Project menu path. In the Java cat-
egory, choose the Java Project option (see Figure 4.108).

Name the new project according to the scheme PI_Java_Mapping_##,
and proceed to the next step in the Creation Wizard. Click on Finish to
generate the project. If the Java Perspective is not already set, confi rm
the switch to this view. The new project will now appear in the tree on
the left side.

Creation of a New Java ProjectFigure	4.108	

To create a new class within the project, open the context menu of the
new project and follow the New • Class menu path. Name the package
in which the new class is to be created com.sappress.pi_training, and

SAP NetWeaver
Developer Studio
for Java mappings

Creation of the
class

334 Book.indb 301 3/31/10 1:19:33 PM

www.sap-press.com

302

4 Technical Exercises

enter the new class name MaterialMapper_## (see Figure 4.109). Com-
plete the Setup Wizard with the Finish button.

To access the aforementioned SAP Java libraries within the source code,
reopen the context menu of the project, and select the Properties option.
In the window, select the Java Build Path directory on the left, and then
navigate to the Libraries tab. Click on the Add Variable… button on the
right, and select the SAP_SYSTEM_ADD_LIBS variable. Then click Extend to
see the subtree. Navigate to the path of the fi rst library in Table 4.16, and
confi rm your choice by clicking OK.

Creation of a Class within the ProjectFigure	4.109	

Integration of the
SAP Java libraries

for mappings

334 Book.indb 302 3/31/10 1:19:33 PM

www.sap-press.com

303

Exercise 5: File-to-JDBC 4.5

Library Path

Mapping API comp • SAP_XIAF • DCs • sap.com • com.sap.aii.
mapping.lib.facade • _comp • gen • default • public •
api • lib • java • com.sap.aii.mapping.api.fi lter.jar

SAP XML tool kit comp • ENGINEAPI • DCs • sap.com • sapxmltoolkit •
_comp • gen • default • public • default • lib • java •
sapxmltoolkit

JCo comp · ENGINEAPI • DCs • sap.com • com.sap.mw.jco •
_comp • gen • default • public • default • lib • java •
com.sap.mw.jco

Logging comp • ENGINEAPI • DCs • com.sap.tc.Logging •
_comp • gen • default • public • default • lib • java •
com.sap.tc.Logging

SAP Java Libraries for the Realization of the Java MappingTable	4.16	

Follow the same procedure with the three remaining libraries. When fi n-
ished, the listing of the Java libraries in your project should look similar
to Figure 4.110.

SAP Java Libraries of the Java Mapping ProjectFigure	4.110	

Now copy the code from Appendix A (or from the template fi le of the
online resources for this book) into the new class. At this point, we will
briefl y describe the structure and the fl ow of the class. In the execute

Structure and fl ow
of the class

334 Book.indb 303 3/31/10 1:19:34 PM

www.sap-press.com

304

4 Technical Exercises

method, in which the real event takes place, the main message is com-
posed step by step in the form of the new result document. First, the
message type is declared, and then the table name PI_MATERIAL is set.

The appendElement method at the end of the coding only serves the
simplifi ed appending of elements to the target message. The elements
of the source message are then appended to the target message without
further transformation. Finally, the target message is returned by the
transform method.

You now must create a JAR fi le out of the project with the new class,
which is necessary for importing into the Enterprise Services Reposi-
tory. To do this, follow the File • Export menu path. Select the JAR File
option and click on Next. In the upper left, and on the right, verify that
only your project (and no other entry) is selected. Enter the name of the
JAR fi le to be created according to the MaterialMapper_##.jar scheme,
including the path, and click Finish (see Figure 4.111).

Exporting the Project as a JAR FileFigure	4.111	

Export of the JAR
archive

334 Book.indb 304 3/31/10 1:19:34 PM

www.sap-press.com

305

Exercise 5: File-to-JDBC 4.5

Integration of the Java Mapping

Now switch to the Enterprise Services Repository and import the gen-
erated JAR archive to your namespace. Follow the Object • New menu
path, or click on the corresponding icon. On the left side of the Creation
Wizard, follow the Mapping Objects • Imported Archive menu path ,
and enter the name MM_MT_Material_to_MT_INSERT_SQL_Java (see Figure
4.112). Make sure that your namespace is displayed, and enter a mean-
ingful description before you exit the wizard.

Creation of an Imported Archive for the Java Mapping in the Enterprise Figure	4.112	
Services Repository

After creating the new object, the detail window opens, allowing you
to import the JAR fi le. From the File fi eld, click on the Import Archive
icon on the right side, and select the *.jar fi le type in the Files of type
box. Navigate to the JAR archive that you just exported, and then click
Open. In the File fi eld, the corresponding JAR archive and the relevant
fi les of the archive are now displayed (see Figure 4.113). Save the new
object; in doing so, the new Imported Archives directory is created, and
appears in the tree on the left side.

Creation of an
imported archive
in the Enterprise
Services Repository

Import of the JAR
archive

334 Book.indb 305 3/31/10 1:19:35 PM

www.sap-press.com

306

4 Technical Exercises

Details of the Imported Archive after the Import of the JAR ArchiveFigure	4.113	

Now change to the existing operation mapping OM_SI_Material_Async_
Out_to_SI_INSERT_SQL_Async_in, and then switch to the change mode.
In the Mapping Program section in the bottom-center of the screen,
select the Java Class type in the Type column. This allows you to select
the imported archive as a mapping program. Then, in the Name fi eld,
select the newly imported archive com/sappress/pi_training/Mate-
rialMapper_## (see Figure 4.114). Save the adjusted mapping, and test
it. Finally, activate the two newly created or modifi ed objects.

Replacement of the Existing Mapping Program with the Imported Figure	4.114	
Archive

Adjustment of the
operation mapping

334 Book.indb 306 3/31/10 1:19:36 PM

www.sap-press.com

307

More Adapters      4.6

More Adapters4.6	

Despite the variety of integration examples, not all of the adapters can be
discussed in the presented exercises and the following case study. None-
theless, we provide an overview of the omitted, but still frequently used,
adapter types. The focus lies on particular aspects of their real-life usage.
(The mail adapter is not considered here because it is implemented in the
case study in Chapter 5, SARIDIS Case Study in Sales and Distribution.)

Java Message Service (JMS) Adapter4.6.1	

The JMS adapter is mainly used for exchanging data with other enter-
prise application integration (EAI) and messaging systems, such as IBM
WebSphere MQ or SonicMQ. In contrast to other adapters, the JMS
adapter only allows asynchronous communication.

As with the JDBC adapter, JMS also requires vendor-dependent drivers
to be deployed. The drivers can be obtained from the vendors of the
integrated EAI systems, and set up the same way as the JDBC drivers.
Because the queues of other products are read or written to when using
this adapter, you also need to configure the connected EAI product, and
the SAP NetWeaver PI communication settings.

When configuring the JMS adapter both as a sender and a receiver, SAP
provides additional transport protocols, some of which are product spe-
cific. The settings of the sending JMS adapter lets you establish correla-
tions based on different criteria. Additionally, you can choose whether
the JMS payload is transferred as an entire message or as a message
payload. For asynchronous communication, there are two qualities of
service: exactly once (EO) and exactly-once-in-order (EOIO).

In its role as a receiver, the JMS adapter allows you to return the param-
eters and to specify the validity period and the priority of the JMS mes-
sage for the receiving system. In addition, you can set whether or not
data is transferred in a transactional JMS session. Depending on your
choice of the integrated EAI system (and thus the transport protocol),
configuration options vary significantly and might include additional
parameters.

Application areas
of the JMS adapter

Configuration of
the JMS adapter

334 Book.indb 307 3/31/10 1:19:36 PM

www.sap-press.com

308

4      Technical Exercises

SAP Business Connector (BC) Adapter4.6.2	

The SAP BC allows for communication with the SAP BC. As such, it is
particularly useful for integration scenarios to be partially replaced with
SAP NetWeaver PI.

A prerequisite for integrating SAP BC is that it must be at least version
4.7. The SAP BC adapter can process RFC and IDoc XML documents.
The adapter calls, however, are stateless. This means that transactional
sessions are not possible, and the EOIO Quality of Service (QoS) is not
available. In addition, it cannot process attachments.

As the sender, the adapter settings are very few, especially because the
majority of these are done in SAP BC. As a sender, the SAP BC adapter
provides the parameters storage period, repeat interval, repeat amount,
and timeout. The message protocol setting determines if RFC or IDoc
documents are received.

In the SAP BC itself, however, it is specified that the transport takes place
as XML in the SAP XML dialect. In addition, the URL of the BC adapter
is specified, which is structured according to the scheme http://<pi-
hostname>:<j2ee-port>/MessagingSystem/receive/BcAdapter/BC. In addition
to the parameters mentioned earlier, using the BC adapter in the receiver
role requires the URL of the receiving SAP BC and the corresponding
access data.

Plain HTTP Adapter4.6.3	

The SAP NetWeaver PI plain HTTP adapter allows you to receive and
send data in pure HTTP format. This is important when integrating busi-
ness systems that cannot create or process SOAP documents. The receiv-
ing HTTP adapter is addressed using the URL http://<pi-hostname>:<abap-
port>/sap/xi/adapter_plain?<query-string>. The query string contains
control data (such as the sender service, namespace, and interface) which
allows it to be identified and assigned to an appropriate receiver agree-
ment. The payload itself is sent in an HTTP post as an XML document
using the UTF-8 code page. Security settings, such as the use of HTTPS,
can be set in the communication channel.

Application area

Configuration

Using the plain
HTTP adapter

334 Book.indb 308 3/31/10 1:19:36 PM

www.sap-press.com

309

More Adapters      4.6

The plain HTTP adapter supports all QoSs. When used in synchronous
mode, the HTTP adapter can return feedback about errors or success
using the HTTP return code.

Java Proxy Generation4.6.4	

The Java proxy generation of the Enterprise Services Builder is only
relevant for customers who use SAP XI 3.0, used SAP NetWeaver PI
7.0, and are planning to perform an upgrade to SAP NetWeaver PI 7.1,
or have already performed such an upgrade. The current Java proxy
generation in release 7.1 is designed for minor adjustments of service
interfaces, which have been created due to the automatic migration of
message interfaces of an Integration Repository (release XI 3.0 and SAP
NetWeaver 7.0) to the Enterprise Services Repository. This migration
takes place during the import of message interfaces in the Enterprise
Services Repository.

Using the proxy generation of the Enterprise Services Builder, you can
subsequently generate proxy objects for these service interfaces. For ser-
vice interfaces that were created in release 7.1, this is not an option. The
Java proxy generation is therefore no longer supported in release 7.1 or
subsequent releases of SAP NetWeaver PI. For new developments, SAP
recommends the Java proxy generation in the SAP NetWeaver Developer
Studio.

RosettaNet Implementation Framework (RNIF) Adapter4.6.5	

The RNIF adapter supports the RNIF communication standard defined by
RosettaNet, which specifies the protocol versions 1.1 and 2.0. The RNIF
adapter for SAP NetWeaver PI is based on these versions.

The task of the RNIF adapter is to change the PI message format to Roset-
taNet message format. It has the ability to send messages from the PI sys-
tem into a RosettaNet-compliant system, and to receive messages from a
RosettaNet-compliant system.

The SAP Business Package for RosettaNet provides an integrated solution
for enterprise-wide trading, based on high-tech industry standards. For

News in Java proxy
generation

Connectivity to the
RosettaNet

334 Book.indb 309 3/31/10 1:19:36 PM

www.sap-press.com

310

4      Technical Exercises

more information, refer to the SAP Service Marketplace (http://service.
sap.com).

CIDX Adapter4.6.6	

The CIDX adapter supports the Chem eStandards, a data exchange stan-
dard published by the chemical industry, and is used for collaborative
Internet commerce in the chemical industry. The CIDX adapter is based
on the Chem eStandards encryption and security specifications, with
certain exceptions derived from an extended section of the RosettaNet
Implementation Framework in version 1.1.

The CIDX adapter is used for sending messages between the IS and a
Chem eStandards business transaction–compatible system; the message
format from the SAP NetWeaver PI is converted into a CIDX transaction
message format. For more information on CIDX, see http://www.cidx.
org.

Standard of the
chemical industry

334 Book.indb 310 3/31/10 1:19:36 PM

www.sap-press.com

487

Index

A

A2A, 58
ABAP

class, 165, 218
interface, 216
mapping, 112, 164
proxy, 100, 104, 140, 147, 158, 248
service, 122

ABAP application, 424
ABAP class, 215, 248
ABAP mapping, 215
ABAP proxy, 146, 238, 373
Abstract category, 340
Abstract interface, 256
Activation, 209
Adapter, 45, 74, 87

SAP NetWeaver Process Integration,
366
type, 71

Adapter engine, 203
Adapter framework, 86
Adapter monitoring, 214, 231, 404
Adapter type, 203, 214, 232
Administrator, 129
Advanced adapter engine, 113
Advanced Adapter Engine, 86
ALE, 136
ALE communication, 221, 387
ALE messages, 237
Alert

category, 167, 284
classification, 167
configuration, 83, 166
inbox, 166, 287, 289
message, 289
monitoring, 166
server, 287

ALERTPERSONALIZE_RULES, 167
ALERTSUBSCRIPTION, 167
ALRTCDEF, 284
AmberPoint, 438, 456

Apache, 432
Append, 272, 356
Application link enabling Æ see ALE,
136
Application log, 237
Application profile, 176
Application server, 62, 203

central, 134
Application system, 139
Application-to-application, 58
Architectural differences, 28
Architecture

service-oriented Æ see SOA, 64
Archive

imported, 305, 396
Archive file, 396
Archiving, 230
Argument, 245
ARIS business architect, 51
ARIS for SAP NetWeaver, 47, 441

toolset, 48
Arithmetic, 198
Asnyc-sync-bridge, 372
Assign, 273
Asynchronous dispatching, 358
Asynchronous processing, 108, 378
Authentication, 450
Authentication data, 147
Authorization object, 168
Authorization role, 156
Automatic data transfer, 145
Automatic posting procedure, 47
Availability management, 85

B

B2B, 58
integration, 68

Backward compatible password, 156
BAPI, 38, 105
Base64, 400

334 Book.indb 487 3/31/10 1:20:41 PM

www.sap-press.com

488

Index

Basic data, 235
Basic type, 371
Batches, 325
BD87, 332, 370, 391
Beer distribution game, 429, 433
Best effort, 108
Best-of-breed approach, 26
Billing document, 393
Bill-to party, 393
Boolean, 342
BPE, 82, 91, 255
BPEL, 255, 442

model, 441
process designer, 101

BPEL process, 430, 431, 434
BPM, 46, 59, 62
BPMN, 440, 442

model, 441
BSP_UNLOCK_LONG_APP, 167
Business application programming
interface, 38, 105
Business component, 98, 101, 359, 365,
374, 397, 398
Business intelligence, 61
Business object, 427
Business process, 59, 66, 370, 428

management, 59
modeling tool, 48
structure, 338

Business Process Engine, 82, 91, 255
Business process execution language for
web services, 43, 427
Business process execution language Æ
see BPEL, 101, 255
Business process management, 46, 59,
62
Business process modeling, 45
Business process modeling notation Æ
see BPMN, 440
Business process platform, 64
Business requirements, 53
Business scenario map, 425
Business system, 77, 78, 101, 131, 137,
138, 174, 202

role, 147

Business-to-business Æ see B2B, 68
Business workflow, 255

C

Callback, 34
Case study, 311
Category

abstract, 340
classification, 284
inbound, 195, 242

Central application server, 134
Change list

activate, 201
standard, 201

Change lists, 201, 210
Change of media type, 60
Checklist, 179
Class builder, 215, 250
Classes, 246
Classification, 315
Client, 135

copy, 131
Client proxy, 102
Collective number, 320, 322, 332
Common process layer, 441
Communication

channel, 82, 91, 159, 327, 358, 366
component, 82, 101
direct, 120
internal, 361

Communication category, 72
Communication channel, 204, 229, 233
Communication component, 275, 398
Communication mode, 72
Communication type, 231
Component monitoring, 83, 214, 231,
236
Compression, 155
Concat, 377
Condition, 271, 362, 400
Condition editor, 270, 298
Condition overview, 364
Configurable parameter, 411
Configuration, 76, 201, 295

guide, 129

334 Book.indb 488 3/31/10 1:20:41 PM

www.sap-press.com

489

Index

integrated, 115
object, 397, 407, 415, 419
objects, 97
scenario, 202, 275, 327
simulation, 331
wizard, 98, 252

Configuration management, 84
Configuration objects, 228, 327
Configuration overview, 207
Configuration scenario, 98
Configuration wizard, 131, 143, 228,
231, 250, 276, 329, 361
Configured receiver, 207
Connection method, 197
Connection parameters, 251
Connection test, 162
Constants, 198
Container

element, 358, 382
operation, 337

Container element, 267, 355
Container objects

multiline, 350
Container operation, 272
Context, 338, 346

change, 323
Context change, 343, 345
Cookie, 149, 155
CORBA, 41
Corporate group, 312
Correlation, 266, 272
Correlation editor, 267
Correlation list, 266
Course, 168
CPI-C Timeout, 159
CPL, 441
Cross-component business process
management, 255

D

Data
collection program, 145

Database
host name, 133

Data collection, 145
Data conflicts, 33
Data converter, 68
Data dictionary, 336
Data transfer

automatic, 145
Data type, 71, 192, 193, 318, 427

core, 71
global, 71
mail, 395

DateTrans, 379
Decision alternative, 412
Declaration, 358, 384
Definition

external, 241, 340
graphical, 268
wizard, 275

Dependencies, 197
Description conflicts, 33
Design, 75

objects, 189, 190
Design objects, 223, 240
Design phase, 256
Details menu, 193
Details window, 193
Development consultant, 184
Diagnosis, 283
Direct communication, 120
Direction-related interface, 257, 278
Dispatching

asynchronous, 358
Display

graphical, 283
Distribution channel, 322
Distributor, 429
Download, 130
Drag and drop, 194, 196, 242, 270
Driver, 291, 307
Duplicate subtree, 322

E

Eclipse, 443
Email, 166, 401
End-to-end monitoring, 83

334 Book.indb 489 3/31/10 1:20:41 PM

www.sap-press.com

490

Index

End-to-end process integration, 66
Enhancement

advanced adapter engine, 454
Enhancement concepts, 423
Enqueue, 134
Enterprise central component, 132
Enterprise service, 65
Enterprise service bus, 37
Enterprise services builder, 112, 413
Enterprise services repository, 45, 64,
65, 79, 122, 187
Enterprise services workplace, 425
equalsS, 343
ESR Æ see enterprise services
repository, 79
Exactly once, 108, 150
Exactly once in order, 108, 150
Exchange profile, 140, 164
EXECUTE_SYNCHRONOUS, 250
Expression editor, 267, 297, 364
Extension, 423
External definition, 241, 340
External interface definition, 178

F

Factory, 429
Fast entry, 392
Fault, 95
Fault message type, 195
Fax, 166
Federated service bus, 446

infrastructure, 446
FI area, 311
Ficticious label, 312
Field

disabling, 226
Field data, 236
File

adapter, 106, 185, 220, 358
receiver channel, 360
sender channel, 328

File access parameters, 205
File content conversion, 205
File name scheme, 205

File transfer protocol, 205
Filter, 136
Flag, 281
Folder, 188, 210
Fork, 285
FormatNum, 198
FTP, 205
Fully qualified host name, 143
Function

concat, 377
graphical, 197
if, 343
user-defined, 244

Function module, 186, 336
RFC-enabled, 432

Further data, 369, 404

G

Gateway server, 141, 203
Gateway service, 142
Global data type, 71
Globally unique identifier, 108
Goods availability check, 434
Goods issue, 403
Graphical definition, 268
Graphical display, 283
Graphical function, 197
Graphical modeling, 268
GUID, 108
Guided procedures, 49

H

Header data, 321
Header mapping, 387
Help

technical, 236
Heterogeneity, 25
Hierarchy level, 325
Hitech AG, 312
HMI, 153
Horizontal integration, 29

334 Book.indb 490 3/31/10 1:20:41 PM

www.sap-press.com

491

Index

Host name
fully qualified, 143

HTTP
method Invocation, 153
response, 155

HTTP post, 308
Hub-and-spoke, 36

I

ICF, 150
IDES, 311
IDES_DEVELOP, 170
IDES system, 141
IDES_USER, 170
IDoc, 69, 220, 232, 314, 327, 332

adapter, 160
exercise, 161
inquiry, 410
MATMAS02, 314
metadata, 162
structure, 226

IDoc type, 226
IDX1, 162
If, 343
IF_MAPPING, 216
IfWithoutElse, 342
IMAP, 397
IMAP4, 394
Import, 175, 191, 318
Imported archive, 305, 396
Imported objects, 224
Inbound, 109, 349, 353
Inbound message, 72, 416, 417
Inbound options, 223
Inbound parameters, 222, 315, 372
Incoming invoice, 392
Input help, 194, 196, 200
Inquiry, 317, 332
Inquiry item, 317
Inside-out, 99, 100
Installation

guide, 131, 141
guideline, 446
number, 133

Installed software, 173

Instance, 341
Instance number, 134
Instructor, 183
Integrated configuration, 115
Integration

ARIS/SAP, 54
configuration, 46
data-oriented, 38
example, 31
layer, 61, 62
platform, 58, 62
process, 79, 91
process-oriented, 38
queueing mechanism, 45
scenario, 68, 77, 93
technology, 41

Integration builder, 106, 406, 414, 419
Integration direction, 29
Integration directory, 76, 81, 201
INTEGRATION_DIRECTORY_HMI, 153
Integration Engine, 88
Integration objects, 29
Integration of information, 61
Integration process, 101, 256, 350, 358,
410, 414

checking, 274
monitoring, 421

Integration registry, 45
Integration scope, 30
Integration server, 70
Interface

abstract, 256
definition, 231
determination, 207, 297
direction-related, 257, 278

Interface definition
external, 178

Interface determination, 73, 99, 208,
233
Interface pattern, 119

tentative update & confirm/
compensate, 95

Interface-Pattern
Tentative Update & Confirm/
Compensate, 120

Interface technology, 60
Internal communication, 329, 366

334 Book.indb 491 3/31/10 1:20:41 PM

www.sap-press.com

492

Index

Internal communication, 361
Internet communication framework,
150
Item data, 323
IT practice, 65
IT scenario, 67
iXML library, 217

J

JAR, 304, 305, 396
Java

build path, 302
class, 301, 306
Java web start, 130
mapping, 300
perspective, 301
project, 301
service, 122

Java connector architecture, 41
Java database connectivity Æ see JDBC,
290
Java mapping, 245
Java message service Æ see JMS, 307
Java RMI, 41
Java web start, 187
JDBC adapter, 107, 290
JMS

adapter, 307
JMS adapter, 307
JMS payload, 307

L

Label
ficticious, 312

LCRSAPRFC, 140
Legacy applications, 64
Legacy system, 314
Lifecycle management, 63, 67
Light bulb, 288
Local processing, 113
Local software component version, 176
Location transparency, 33
Lock, 190

Lock mechanism, 362
Lock overview, 190
Logging service, 431
Logical name, 161
Logical routing, 89, 206
Logical system, 135, 161, 162, 221, 315,
387
Logical unit of work, 124
Logon

data, 177
procedure, 154

Logon group, 135
Lookup-API, 125
Loop, 270
LUW, 124

M

Mail
address, 396

Mail adapter, 404
Mail package, 399
Mail provider, 397
Mail server, 394
Mandatory field, 197
Mapper, 44
Mapping, 74, 111, 197, 323, 387

lookup, 125
object, 94
program, 111, 113, 200
structure, 111

Mapping function, 198
Mapping templates, 326
Mass comparison, 157
Mass generation, 157
Mass processing, 428
Master password, 131, 154
Material description, 315
Material master data, 185, 220
Material price, 317
MATMAS, 222
Maximum occurrence, 320
MDMP, 159
Medium, 369
Message

control, 394

334 Book.indb 492 3/31/10 1:20:42 PM

www.sap-press.com

493

Index

mapping, 91, 96, 111, 226, 243,
294
nested, 317
packaging, 123, 124
path, 370
protocol, 398
queue, 150
split, 90
synchronous, 373
type, 95, 194

Message control, 335
Message flow, 75
Message ID, 205
Message mapping, 196, 224, 243
Message monitoring, 83, 236, 370,
404
Message protocol, 203
Message server, 134

port, 135
Message type, 95, 194, 195, 320, 336,
394
Metadata, 203, 224
Middleware, 58
Mode

asynchronous, 195, 340, 348, 353
synchronous, 242, 243, 348, 349,
376

Modeling
graphical, 268

Model level, 51
Monitoring, 46, 212, 213, 253, 300,
332, 370, 419

integration process, 421
Multiline, 266

N

Name
logical, 161

Name collision, 249
Namespace, 178, 188, 192, 317
Nested message, 317
Network file system, 205
NFS, 205
Node functions, 323, 343, 345

O

Object
copy, 375

Objects, 201, 202
imported, 190, 224

Occurrence, 197, 320, 353, 354
ODS, 61
Operand, 272
Operation, 273, 356

mapping, 227
read, 200

Operational data store, 61
Operation management, 84
Operation mapping, 97, 111, 199, 247,
277, 295, 327, 409
Operator, 272
Order number, 402
Outbound, 109, 243
Outbound delivery, 402
Outbound message, 72, 277, 416, 418
Outbound status, 281
Output, 368
Outside-in, 100

P

P4 port, 130
Package, 248
Parallel processing, 285
Parameter, 324

configurable, 411
Partner

agreement, 388
profile, 314, 334
role, 393

Partner agreement, 221, 222, 223, 372,
393
Partner connectivity kit, 102
Partner number, 314
Partner status, 315
Partner type, 222
Password

backward compatible, 156
Path

334 Book.indb 493 3/31/10 1:20:42 PM

www.sap-press.com

494

Index

prefix, 147, 153
Payload, 116
PCK, 102
Performance management, 85
Persistence layer, 254
PI-##, 169
PIAPPLUSER, 144, 147
Picking, 401
PI format, 70
Pipeline, 89

service, 90
PIRWBUSER, 156
PI_SYSTEM, 164
Plain HTTP adapter, 308
Platform

controlling, 47
design, 47
implementation, 47
strategy, 47

Platform differences, 28
Plattform

EAI, 61
Point-to-point connection, 122
Point-to-point integration, 35
Policy, 450
Poll interval, 329
Port, 162
Posting procedure

automatic, 47
Prerequisites, 184
Priority, 150
Problem management, 85
Process, 333
Process code, 336, 394
Process component, 427
Process execution language, 255
processing

local, 113
Processing

asynchronous, 108, 378
parallel, 285
synchronous, 108

Processing mode, 329
Processing parameters, 205
Process-oriented integration, 38
Process selection, 282
Product vendor, 171

Profile, 156, 161, 169
generation, 157

Program ID, 141
Proxy class, 158, 240, 248, 250
Proxy technology, 86, 102

Q

QRFC monitor, 150
Qualifier, 322, 364
Quality of service, 108, 329
Query, 314
Queue, 109, 150, 323, 343, 346

display, 327
Quotation, 367

creation, 368
Quotation list, 338

R

Receive, 272
Receiver

agreement, 91, 99, 206, 362
channel, 205, 251
determination, 116, 206, 362

Receiver agreement, 206, 234, 387
Receiver channel, 230, 234, 327
Receiver determination, 73, 99, 206,
233, 362
Receiver parameters, 232
Recipient, 284
Registered server program, 141, 159
Registration, 141
Remote-enabled function module, 430,
432
Remote function call Æ see RFC, 38
RemoveContexts, 343
Renderer, 218
Repository, 45
REQOTE, 315
Request, 95, 247, 338

message, 243
Requested date, 319
Request for quotation, 425

334 Book.indb 494 3/31/10 1:20:42 PM

www.sap-press.com

495

Index

Response, 95, 247
message, 243, 348

Retail, 316
Retailer, 429
Return code, 254, 374
RFC, 38, 185, 203

adapter, 105
connection, 75
destination, 159
interface, 191
lookup, 126
transactional, 164

RFC adapter, 185, 254
RFC call, 236, 256, 274
RFC-COMM, 161
RFC connection, 203
RFC function module, 430
RFC interface, 192, 196
RFC message, 196
RFC server parameter, 203
RosettaNet, 68
Router, 45
Routing

logical, 89, 206
technical, 91

Runtime, 76
Runtime environment, 46
Runtime workbench, 83, 166, 214, 231,
287

S

S/A bridge, 383
Sales order, 391, 404
Sales organization, 322
Sales process, 392
SAML, 428
SAP Business Workplace, 419
SAP Developer Network, 425
SAP Easy Access Menu, 332
SAP ECC, 132
SAP Enterprise Modeling Applications,
47
SAP Exchange Infrastructure, 57
SAP GUI, 130
SAP Java Library, 302

SAP NetWeaver Administrator, 438, 444
SAP NetWeaver Application Server
ABAP, 132
SAP NetWeaver Application Server Java,
132
SAP NetWeaver Composition
Environment, 64, 429, 443
SAP NetWeaver Developer Studio, 130,
301, 443
SAP NetWeaver Process Integration

Adapter, 366
connectivity, 102
service, 147
tool, 132, 170

SAP Roadmap, 441
SAP Service Marketplace, 394
SAPSLDAPI, 143
SAP_SLD_CONFIGURATOR, 144
SAP Solution Composer, 54
SAP Solution Manager, 438, 444
SAP Web Service Repository, 239
SAP_XI_DEVELOPER, 169
SARIDIS, 311, 423
SBWP, 420
Scaling conflicts, 33
SCC4, 161
Scenario, 327
Schema conflicts, 33
SC_Training_PI_##, 176
SDA, 291
Search criteria, 232
Secure network connection, 203
Security, 428
Security assertion markup kanguage,
428
Segment, 226, 322, 341
Selection method, 194
Sender, 203
Sender agreement, 98, 206, 362
Sender channel, 203, 204, 229, 233,
416, 418
Sender parameters, 232
Sending step

synchronous, 338
Server program

registered, 141, 159
Server proxy, 102

334 Book.indb 495 3/31/10 1:20:42 PM

www.sap-press.com

496

Index

Service, 64, 251
bus, 65
enabling, 435
group, 452
interface, 79, 94, 119, 241, 243,
320, 407, 427
Interface, 293
operation, 427
orchestration, 435
policy, 456

Service interface, 195, 223
Services registry, 65, 79, 427
Shared collaboration knowledge, 68
Shipping notification, 430
SICF, 149, 151
Signature, 353
SLD, 132

decision tree, 145
SLDAPICUST, 143
SLD bridge, 145
SLDCHECK, 144
SLD_NUC, 145
SLD_UC, 145
SMS, 166
SMTP, 394, 397
SNC, 203
SOA

management, 455
middleware, 427
properties, 39

SOAP, 41, 42, 239, 251, 360
adapter, 107
document, 69, 98
example, 42
management, 85

SOAP communication channel, 250
SOAP receiver channel, 358
Software

catalog, 173
feature, 78
installed, 173
product, 78, 136, 170

Software catalog, 170
Software component, 69, 93, 187, 317

status, 172
version, 78, 136, 177

Software component version, 177

Software deployment archive, 291
Software unit, 172
Sold-to party, 319
SonicMQ, 307
Source operation, 347
Source text view, 322
Special cases, 424
SplitByValue, 323, 345, 381
SPROXY, 158, 248
SP_Training_PI_##, 170
SQL

query, 291
update, 291

Standard order, 402
Start, 270
Start process, 356
Status record, 237
Step

block, 269
container operation, 269
control, 269
fork, 269
loop, 269
receive, 268
receiver determination, 268
send, 268, 274
switch, 269
transformation, 268, 274, 383
type, 268
undefined, 269
user decision, 269
wait, 269, 287

Stock volumes, 431
Stop, 270
Stored procedure, 291
Structure mapping, 111
Subfolder Æ see Folder, 188
Subscription, 167, 285, 288
Substructure, 341
Sunny electronics, 312
Supply chain, 429, 431
Supply chain level, 431, 432
Support package, 129
SU_Training_PI_##, 172
SXI_MONITOR, 332
SXMB_ADM, 149
SXMB_MONI, 212, 300, 332, 370

334 Book.indb 496 3/31/10 1:20:42 PM

www.sap-press.com

497

Index

SXMB_MONI_BPE, 282, 370, 391, 420
Sync-async-bridge, 371, 377, 383
Synchronous message, 373
Synchronous mode, 242, 243
Synchronous processing, 108
Synchronous sending step, 338
SYS_A-##, 169
SYS_B-##, 169
System

logical, 161, 162, 221, 315, 387
technical, 133, 173

SystemA, 139
SystemA_IDoc, 162, 163
SystemB, 139
SystemB_IDoc, 163

T

Table, 336
Target operation, 347
Target structure, 326
TCP/IP Connection, 140
Technical help, 236
Technical routing, 91
Technical system, 133, 138, 173

URL, 138
Test, 199, 201, 227, 322
Test instance

load, 322
Test mode, 332
Test program, 199
Throw alert, 287
Timeout, 154, 287
Tomcat, 432
Total operating costs, 445
Trace, 218
Transaction

BD87, 332, 370, 391
SBWP, 420
SCC4, 161
SICF, 149
SPROXY, 248
SXI_MONITOR, 332
SXMB_MONI, 212, 300, 332, 370
SXMB_MONI_BPE, 282, 370, 391,
420

VA13, 332
VA21, 368, 369
WE20, 334

Transactional port, 164
Transactional RFC, 164
Transaction

ALRTCDEF, 284
SICF, 151
SPROXY, 158
SXMB_ADM, 149
VL01N, 402
ZAPCMD, 281, 370

Transfer order, 401
Transformation, 199, 273, 326, 412
Translation, 73
Transport, 186
Transport request, 162
Transport security, 450
Troubleshooting guide, 179
Type

TCP/IP, 140

U

UDDI, 65, 80
Unbounded, 320, 353
Unicode, 143, 159

system, 141
Universal description, discovery, and
integration, 65, 80
University, 311
Usage type, 171
User decision, 412, 420
User defined, 246
User-defined function, 244
User type

service, 156

V

VA13, 332
VA21, 368, 369
Validation

advanced adapter engine, 118

334 Book.indb 497 3/31/10 1:20:42 PM

www.sap-press.com

498

Index

Marcus Banner, Heinzpeter Klein, Christian Riesener

Mastering SAP NetWeaver PI -
Administration
This practical SAP PRESS Essentials guide will guide you through all of the relevant
administration tasks involving SAP NetWeaver Process Integration, helping you to identify
and avoid the common pitfalls. The authors guide you through the configuration of
Enterprise Services Repository and the System Landscape Directory. Exclusive insights
help you to quickly learn the basics of configuring the System Landscape Directory and
Change Management Service. Plus, you get a highly detailed introduction to the XI
transport system. You’ll learn about the crucial topics of authorizations and performance
optimization. This second edition has been updated and revised, and is up to date for
SAP NetWeaver PI 7.1. A new chapter covers the Enterprise Services Repository. With
this unique guide, you’ll profit immediately from the authors’ wealth of practical
experience, and you’ll be fully prepared for the administration of SAP NetWeaver PI.

225 pp., 2. edition, 69,95 Euro / US$ 84.95

ISBN 978-1-59229-321-6

>> www.sap-press.com

2nd edition, extended and updated
SAP NetWeaver PI 7.1

Benefit from exclusive tips on
configuration, performance
optimization, and monitoring

Learn everything about SOA
integration and the Enterprise Services
Repository

 www.sap-press.com

integration engine, 117
Validity area, 266
Variable, 266, 270
Variable replacement, 206
Version, 170
Vertical integration, 29
Visual administrator, 84
VL01N, 402

W

WE20, 334
Web dynpro, 424
Web service, 37, 121, 238, 334, 336

repository, 240, 241
response, 350

Webservice
profile, 428
reliable messaging, 428

Web service description language Æ see
WSDL, 41
Web service reliable messaging, 122
Website, 130
WebSphereMQ, 307
Where-used list, 193
Whiplash effect, 430
Wholesaler, 429
Wizard

definition wizard, 275
Work area, 270
Work center, 444
Workflow, 34, 92, 282

engine, 93
log, 290
protocol, 282

Work item, 282, 289, 371

Work process, 124
Write mode, 205
WS-BPEL, 43, 427
WSDL, 41, 42, 239

file, 340
import, 241

WSDL interface, 240
WS RM, 122

X

XIALL, 398
XI_INTEGRATIONSERVER, 147
XIISUSER, 154
XIPAYLOAD, 399
XI service, 150
XML

format, 70
schema, 71
validation, 89, 116
XML SQL format, 291, 293, 296

XML document, 346
XML file, 346
XML message, 213
XSD file, 395
XSLT

mapping, 392, 394
XSLT file, 396
XSLT mapping, 112

Z

ZAPCMD, 281, 370
Zero downtime, 445
ZIP, 396

334 Book.indb 498 3/31/10 1:20:43 PM

www.sap-press.com

	SAP PRESS – reading sample

	Practical Guide to SAP NetWeaver PI – Development
	Valentin Nicolescu, Burkhardt Funk, Peter Niemeyer,Matthias Heiler, Holger Wittges, Thomas Morandell,Florian Visintin, Benedikt Kleine Stegemann, and Harald Kienegger

	Contents at a Glance
	Contents

	chapter 4: Technical Exercises
	4.1 Exercise 1: RFC-to-File
	4.1.1 Basic Principles
	4.1.2 Design
	4.1.3 Configuration
	4.1.4 Process and Monitoring
	4.1.5 Alternative Mapping: ABAP Mapping (Optional)

	4.2 Exercise 2: File-to-IDoc
	4.2.1 Basics
	4.2.2 Design
	4.2.3 Configuration
	4.2.4 Process and Monitoring

	4.3 Exercise 3: ABAP-Proxy-to-SimpleObject Access Protocol (SOAP)
	4.3.1 Basics
	4.3.2 Design
	4.3.3 Configuration
	4.3.4 Process and Monitoring

	4.4 Exercise 4: Business Process Management (BPM)
	4.4.1 Basics
	4.4.2 Design
	4.4.3 Configuration
	4.4.4 Process and Monitoring
	4.4.5 Extending the Exercise by Alert Monitoring (Optional)

	4.5 Exercise 5: File-to-JDBC
	4.5.1 Basics
	4.5.2 Design
	4.5.3 Configuration
	4.5.4 Process and Monitoring
	4.5.5 Alternative Java Mapping (Optional)

	4.6 More Adapters
	4.6.1 Java Message Service (JMS) Adapter
	4.6.2 SAP Business Connector (BC) Adapter
	4.6.3 Plain HTTP Adapter
	4.6.4 Java Proxy Generation
	4.6.5 RosettaNet Implementation Framework (RNIF) Adapter
	4.6.6 CIDX Adapter

	Index

	www.sap-press.com

	(c) Galileo Press GmbH 2010

	www:
	sap-press:
	com: www.sap-press.com

