
1
Demystifying Embedded Systems Middleware. DOI: 10.1016/B978-0-7506-8455-2.00001-7

 CHAPTER 1

 Demystifying Middleware in Embedded
Systems

 Chapter Points

 • Middleware is introduced in reference to the Embedded Systems Model

 • Outline why understanding middleware is important

 • Identifying common types of middleware in the embedded space

 1.1 What is the Middleware of an Embedded System?

 With the increase in the types and profi tability of complex, distributed embedded systems,

an approach common in the industry is designing and customizing these types of embedded

systems in some manner that is independent of the underlying low-level system software

and hardware components. To successfully achieve desired results within cost, schedule, and

complexity goals many engineering teams base their approach on architecting various higher-

level middleware software components into their embedded systems designs.

 Currently within the embedded systems industry, there is no formal consensus on how

embedded systems middleware should be defi ned. Thus, until such time as there is a

consensus, this book takes the pragmatic approach of defi ning what middleware is and how

different types of middleware can be categorized. Simply put, middleware is an abstraction

layer that acts as an intermediary. Middleware manages interactions between application

software and the underlying system software layers, such as the operating system and device

driver layers. Middleware also can manage interactions between multiple applications residing

within the embedded device, as well as applications residing across networked devices.

 Middleware is simply software, like any other, that in combination with the embedded

hardware and other types of embedded software is a means to an end to achieving some

combination of the desirable goals shown in Table 1.1 .

C0005.indd 1C0005.indd 1 9/8/10 4:31:26 PM9/8/10 4:31:26 PM

www.newnespress.com

2 Chapter 1

 As shown in Figure 1.1a , middleware resides in the system software layer of an embedded

system and is any software that is not a device driver, an operating system kernel, or an

application. Middleware components can exist within various permutations of a real-world

software stack: such as directly over device drivers, residing above an operating system,

tightly coupled with an operating system package from an off-the-shelf vendor, residing

above other middleware components, or some combination of the above, for example.

 Keep in mind that what determines if a piece of software is ‘middleware’ is by where it

resides within the embedded system’s architecture, and not only because of its inherent

purpose within the system alone. For example, as shown in Figure 1.1b , embedded Java

virtual machines (JVMs) are currently implemented in an embedded system in one of three

ways: in the hardware, in the system software layer, or in the application layer. When a JVM

is implemented within the system software layer and resides on an operating system kernel is

an example when a JVM is classifi ed as middleware .

 Table 1.1 : Examples of Desirable Requirements for Middleware to Meet

Requirement Description

Adaptive Middleware that enables overlying middleware and/or embedded
applications to adapt to changing availability of system resources

Flexibility and
Scalability

Middleware that allows overlying middleware and/or embedded
applications to be confi gurable and customizable in terms of functionality
that can be scaled in or out depending on application requirements, over
all device requirements, and underlying system software and hardware
limitations

Security Middleware that insures the overlying middleware and/or embedded
applications (and the users using them) have authorized access to
resources

Portability The ‘write-once’, ‘run-anywhere’ mantra. Middleware that allows overlying
middleware and/or embedded applications to run on different types of
embedded devices with different underlying system software and hardware
layers. To avoid requiring time-consuming and expensive rewrites of the
application code, middleware can mask the differences in underlying layers
within different types of embedded systems, programming languages, and
even implementations of the same standard produced by different design
teams

Connectivity
and Inter-
Communication

Middleware that provides overlying middleware and/or embedded
applications the ability to transparently communicate with other
applications on a remote device through some user-friendly, standardized
interface. Essentially, communication interfaces abstracted to level of local
procedure call or method invocation

C0005.indd 2C0005.indd 2 9/8/10 4:31:26 PM9/8/10 4:31:26 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 3

 Figure 1.1c shows a high-level block diagram of different types of middleware utilized in

embedded devices today. Within the scope of this text, at the most general level, middleware

is divided into two categories: core middleware and middleware that builds on these core
components. Within each category, middleware can be further broken down into types, such as fi le

systems, networking middleware, databases, and virtual machines to name a few. Open source and

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Middleware

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Middleware

Other System Middleware
(i.e., JVM, networking,…)

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Off-the-Shelf
Vendor Middleware

Middleware

 Figure 1.1a : Middleware and the Embedded Systems Model 1

Application Layer

System Software Layer

Hardware Layer

Middleware

Operating System Kernel

Device Driver Layer

Java Virtual Machine

Application Layer

System Software Layer

Hardware Layer

Java Application

Operating System Kernel

Device Driver Layer

Middleware

Java Virtual Machine

Application Layer

System Software Layer

Device Drivers

Operating System Kernel

Middleware

JVM Processor Support

Java Processor

Hardware Layer

 Figure 1.1b : Embedded JVMs in the Architecture 1

C0005.indd 3C0005.indd 3 9/8/10 4:31:26 PM9/8/10 4:31:26 PM

www.newnespress.com

4 Chapter 1

real-world examples of these types of middleware will be used when possible throughout this book

to demonstrate the technical concepts. Examples of building real-world designs based on these

types of middleware will be provided, and the challenges and risks to be aware of when utilizing

middleware in embedded systems will also be addressed in this text.

 Core middleware is software that is most commonly found in embedded systems designs

today that do incorporate a middleware layer, and is the type of software that is most

commonly used as the foundation for more complex middleware software. By understanding

the different types of core middleware, the reader will have a strong foundation to

understanding and designing any middleware component successfully. The four types of core

middleware discussed in this book are:

 • Chapter 4 . Networking

 • Chapter 5 . File systems

 • Chapter 6 . Virtual machines

 • Chapter 7 . Databases.

 Middleware that builds on the core components varies widely from market to market

and device to device. In general, this more complex type of middleware falls under some

combination of the following:

 • Message Oriented and Distributed Messaging, i.e.,

 • Message Oriented Middleware (MOM)

 • Message Queues

 • Java Messaging Service (JMS)

 • Message Brokers

 • Simple Object Access Protocol (SOAP)

Hardware Layer

Application Layer

Operating System

Middleware

BSP

Device
Driver

Device
Driver

Kernel

Middleware

Hardware Layer

Application Layer

Operating System

Middleware

Kernel

Middleware

Middleware Middleware

Application Layer

Middleware

Middleware Building-on-the-Core

Core Middleware

Hardware Layer

Device
Driver

Device
Driver

Device
Driver

Device
Driver

Device
Driver Device

Driver

BSP

Device
Driver

Complex Messaging
& Communication

Market-Specific

DatabasesFile
Systems

Virtual
Machines

Networking

 Figure 1.1c : Types of Middleware in Embedded Systems

C0005.indd 4C0005.indd 4 9/8/10 4:31:28 PM9/8/10 4:31:28 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 5

 • Distributed Transaction, i.e.,

 • Remote Procedure Call (RPC)

 • Remote Method Invocation (RMI)

 • Distributed Component Object Model (DCOM)

 • Distributed Computing Environment (DCE)

 • Transaction Processing, i.e.,

 • Java Beans (TP) Monitor

 • Object Request Brokers, i.e.,

 • Common Object Request Broker Object (CORBA)

 • Data Access Object (DAO) Frameworks

 • Authentication and Security, i.e.,

 • Java Authentication and Authorization Support (JAAS)

 • Integration Brokers.

 At the highest level, these more complex types of middleware will be subcategorized and

discussed under the following two chapters:

 • Chapter 3 . Market-specifi c Complex Middleware

 • Chapter 8 . Complex Messaging and Communication Middleware.

 This book introduces the main concepts of different types of middleware and provides snap-

shots of open-source to help illustrate the main points. When introducing the fundamentals

of various middleware components within the relative chapters, this book takes a multistep

approach that includes:

 • discussing the importance of understanding the standards, underlying hardware, and

system software layers

 • defi ning the purpose of the particular middleware component within the system, and

examples of the APIs provided with a particular middleware component

 • introducing middleware models and open-source software examples that would make

understanding the middleware software architecture much simpler

 • providing some examples of how overlying layers utilize various middleware components

to apply some of what the reader has read.

 The fi nal chapter pulls it all together with pros and cons of utilizing the different types of

middleware in embedded systems designs. As this book will demonstrate, there are several

different types of embedded systems middleware on the market today, in addition to the

countless homegrown solutions. Note that these embedded systems middleware solutions can

be further categorized as other types of middleware depending on the fi eld – such as being

 proprietary versus open-source , for example. In short, the key is for the reader to pick up on

the high-level concepts and the patterns in embedded middleware software – and to recognize

that these endless permutations of middleware solutions in the embedded space exist, because

there is not ‘one’ solution that is perfect for all types of embedded designs.

C0005.indd 5C0005.indd 5 9/8/10 4:31:28 PM9/8/10 4:31:28 PM

www.newnespress.com

6 Chapter 1

 1.2 How to Begin When Building a Complex Middleware-based Solution

 For better or worse, successfully building an embedded system with middleware requires more

than just solid technology alone. Engineers and programmers who recognize this wisdom from day

one are most likely to reach production within quality standards, deadlines, and costs. In fact, the

most common mistakes that kill complex embedded systems projects, especially those that utilize

middleware components, are unrelated to the middleware technology itself. It is because team

members did not recognize that successfully completing complex embedded designs requires:

 • Rule #1 : more than technology

 • Rule #2 : discipline in following development processes and best practices

 • Rule #3 : teamwork

 • Rule #4 : alignment behind leadership

 • Rule #5 : strong ethics and integrity among each and every team member.

 So, what does this book mean by Rule 1 – that building an embedded system with

middleware successfully requires more than just technology?

 It means that many different infl uences, including technical, business-oriented, political, and

social to name a few, will impact the process of architecting an embedded design and taking

it to production. The architecture business cycle shown in Figure 1.2 shows a visualization

Schedule
versus
Quality
versus
Features

 Figure 1.2 : Architecture Business Cycle 2

C0005.indd 6C0005.indd 6 9/8/10 4:31:28 PM9/8/10 4:31:28 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 7

of this rule in which many different types of infl uences generate the requirements, the

requirements in turn generate the embedded system’s architecture, this architecture is then

the basis for producing the device, and the resulting embedded system design in turn provides

feedback for requirements and capabilities back to the team.

 So, out of the architecture business cycle comes a refl ection of what challenges real-world

development teams building a complex middleware-based system face – balancing quality versus

schedule versus features. This is where the other four rules stated at the start of this section come

into play for insuring success. Ultimately, the options embedded teams have to choose from

when targeting to successfully build a complex design are typically some combination of:

 • X Option 1: Don’t ship

 • X Option 2: Blindly ship on time, with buggy features

 • X Option 3: Pressure tired developers to work even longer hours

 • X Option 4: Throw more resources at the project

 • X Option 5: Let the schedule slip

 • √ Option 6: Healthy Shipping Philosophy: ‘ Shipping a very high-quality system on
time . ’

 Not shipping unfortunately happens too often in the industry, and is obviously the option

everyone on the team wants to avoid. ‘No’ products will ultimately lead to ‘no’ team, and in

some cases ‘no’ company. So, moving on to the next option – why ‘shipping a buggy product’

is also to be avoided at all costs is because there are serious liabilities that would result if the

organization is sued for a lot of money, and/or employees going to prison if anyone gets hurt

as a result of the bugs in the deployed design (see Figure 1.3). When developers are forced to

cut corners to meet the schedule relative to design options, are being forced to work overtime

to the point of exhaustion, are undisciplined about using best practices when programming,

code inspections, testing, and so on – this can then result in serious liabilities for the

organization when what is deployed contains serious defects.

 Option 3 – ‘pressure tired developers to work even longer hours’ – is also to be avoided.

The key is to ‘not’ panic. Removing calm from an engineering team and pushing exhausted

developers to work even longer overtime hours on a complex system that incorporates

middleware software will only result in more serious problems. Tired, afraid, and/or stressed-

out engineers and developers will result in mistakes being made during development, which

in turn translates to additional costs and delays.

 Negative infl uences on a project, whether fi nancial, political, technical, and/or social in

nature, have the unfortunate ability to negatively harm the cohesiveness of an ordinarily

healthy team within a company – eventually leading to sustaining these stressed software

teams as unprofi table in themselves. Within a team, even a single weak link, such as a team

of exhausted and stressed-out engineers, will be debilitating for an entire project and even an

C0005.indd 7C0005.indd 7 9/8/10 4:31:28 PM9/8/10 4:31:28 PM

www.newnespress.com

8 Chapter 1

entire organization. This is because these types of problems radiate outwards infl uencing the

entire environment, like waves (Figure 1.4).

 The key here is to decrease the interruptions (see Figure 1.5) and stress for a development

team during their most productive programming hours within a normal work week, so that

there is more focus and fewer mistakes.

Executive Leadership

Management

Software Team 1 Hardware Team 1 Software Team ‘N’

Company

Manufacturing

Sales
&

Marketing

 Figure 1.4 : Problems Radiate and Impact Environment

• Breach of Contract, i.e.,

° if bug fixes stated in contract are not forthcoming in timely manner

• Breach of Warranty and Implied Warranty, i.e.,

° delivering system without promised features

• Strict and Negligence Liability, i.e.,

° bug causes damage to property

° bug causes injury

° bug causes death

• Malpractice, i.e.,

° customer purchases defective product

• Misrepresentation and Fraud, i.e.,

° product released and sold that doesn’t meet advertised claims

- Based on the chapter “Legal Consequences of Defective Software” by Cem Kaner
Testing Computer Software. 1999

 Figure 1.3 : Why Not Blindly Ship? – Programming and Engineering Ethics Matter 3

C0005.indd 8C0005.indd 8 9/8/10 4:31:28 PM9/8/10 4:31:28 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 9

 Another approach in the industry to avoid a schedule from slipping has been to throw more

and more resources at a project. Throwing more resources ad-hoc at project tasks without

proper planning, training, and team building is the surest way to hurt a team and guarantee a

missed deadline. As indicated in Figure 1.6 , productivity crashes with the more people there

are on a project. A limit in the number of communication channels can happen through more

than one (> 1) smaller sub-teams, as long as:

 • it makes sense for the embedded systems product being designed, i.e.,

 • not dozens of developers and several line/project managers for a few MB of code

 • not when few have embedded systems experience and/or experience building the product

 • not for corporate empire-building! – which results in costly project problems and

delays = bad for business!

“… developers imprisoned in noisy cubicles, those who had no defense against frequent
interruptions, did poorly. How poorly? The numbers are breathtaking. The best quartile was
300% more productive than the lowest 25%. Yet privacy was the only difference between the
groups.

Think about it – would you like 3¥ faster development?

It takes your developers 15 minutes, on average, to move from active perception of the office
busyness to being totally and productively engaged in the cyberworld of coding. Yet a mere
11 minutes passes between interruptions for the average developer. Ever wonder why
firmware costs so much? …”

- Jack Ganssle. A Boss’s Quick-Start to Firmware Engineering.
- DeMarco and Lister. Peopleware.

 Figure 1.5 : Real World Tidbit, Underpinnings of Software Productivity

Comm
Channels

Number of people

1

300

250

200

150

100

50

0
3 5 7 9 11 13 15 17 19 21 23 25

 Figure 1.6 : Too Many People 4

C0005.indd 9C0005.indd 9 9/8/10 4:31:30 PM9/8/10 4:31:30 PM

www.newnespress.com

10 Chapter 1

 • in a healthy team environment

 • no secretiveness

 • no hackers

 • best practices and processes not ignored

 • team members have sense of professional responsibility, alignment, and trust with

each other, leadership and the organization.

 While more related to this discussion will be covered in the last chapter of this book,

ultimately the most powerful way to meet project schedules and successfully take an

embedded system middleware-based solution to production is:

 • by shipping a very high-quality product on time

 • have a strong technical foundation

 • sacrifi cing less essential features in the fi rst release

 • start with skeleton, then hang code off skeleton

 • Do not overcomplicate the design!

 • Systems integration, testing and verifi cation from Day 1.

 The rest of this chapter and most of this book are dedicated to supplying the reader with a

strong, pragmatic technical foundation relative to embedded systems middleware. The last

section of this book will pull it all together to link in what was introduced in this section.

 1.3 Why is a Strong Technical Foundation Important
in Middleware Design?

 One of the biggest myths propagated by inexperienced team members and mistakes made in

the industry is assuming that the embedded systems programmers of a middleware layer can

afford to think as abstractly as PC developers and/or the application developers using that

middleware layer. There are too many examples of stressed-out engineers, millions of dollars

in project overruns, and failed ventures in the industry that are a result of team members not

understanding the fundamentals relative to utilizing middleware within an embedded system

at the start and throughout the design process of the project. When it comes to understanding

the underlying hardware and system software when designing middleware software, it is

critical that, at the very least, developers understand the entire design at a systems level. In

fact, one of the most common mistakes made on an embedded project that makes it much

tougher to successfully build a complex design is when engineers and programmers on the

team do not investigate or understand the type of embedded system they are trying to build,

the components that can make up the device, and/or the impact individual components have

on each other.

 Thus, this book is a springboard from ‘Embedded Systems Architecture: A Practical
Guide for Engineers and Programmers’ . This book takes a more detailed and practical

C0005.indd 10C0005.indd 10 9/8/10 4:31:32 PM9/8/10 4:31:32 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 11

approach of discussing all layers relative to the Embedded Systems Model, shown in

 Figure 1.1a , when introducing principles and major elements of embedded systems

middleware. This is because it is critical to the success of any project team that

introduces middleware into the architecture that all team members understand all layers

of an embedded system because all layers of an embedded system are impacted by

middleware and vice versa.

 Introducing middleware software to an embedded system introduces an additional overhead

that will impact everything from memory requirements to performance, reliability, as well as

scalability, for instance. The goal of this book is not just about introducing some of the most

common types of embedded systems middleware, but more importantly to show the reader
the pattern behind different types of embedded middleware designs and to help teach the
reader an approach to understanding and applying this knowledge to any embedded system’s
middleware component encountered in the future .

 The Embedded Systems Model represents the layers in which all components existing within

an embedded system design can reside. This model is a powerful tool utilized within the

scope of this book because it not only provides a clear visual representation of the various

middleware elements of an embedded system, their interrelationships, and functionality – this

model also provides a basis for modular architectural representations that commonly are used to

successfully structure an embedded systems project. At the highest level, there are three layers:

 • hardware , which contains all the physical components located on an embedded systems

board

 • system software , which is the device’s application-independent software

 • application software , which is the device’s application-specifi c software.

 As shown in Figure 1.7 , a middleware component – whether it is a fi le system, database,

or networking protocol – that resides in an embedded system’s middleware software layer

typically resides on top of ‘some’ combination of other middleware, an operating system,

device drivers, and hardware. This means middleware implemented in the system software

layer exists either as:

 • middleware that sits on top of the operating system layer, or device driver layer for

systems with no operating system

 • middleware that sits on top of other middleware components, for example a Java-based

database or fi le system that resides over a Java Virtual Machine (JVM)

 • middleware that has been tightly integrated and provided with a particular operating

system distribution.

 In some embedded systems, there may even be more than one different middleware

component, as well as more than one of the same type of middleware in the embedded device

(see Figure 1.8). In short, whatever the combination of middleware – in co-operation with

C0005.indd 11C0005.indd 11 9/8/10 4:31:32 PM9/8/10 4:31:32 PM

www.newnespress.com

12 Chapter 1

the underlying embedded software and hardware – these components act as an abstraction

layer that provides various data management functions to the other system software layer

components, application software layer in the system, and even other computer systems that

have remote access to the device.

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Middleware

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Middleware

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System / BSP
Sublayer

Middleware

Other System Middleware
(i.e., JVM, networking,…)

 Figure 1.7 : System Components and the Embedded Systems Model

Hardware Layer Memory Mediums
(i.e., Flash, RAM, etc.)

Embedded Systems Model

Hardware Layer

System Software Layer

Application Software Layer

Device Driver Sublayer

Operating System Sublayer

File System Middleware

File System Middleware

File System 3
(i.e., dos FS2)

File System 2
(i.e., TRFS aka. Transactional File System)

File System 1
(i.e., TrueFFS aka. True Flash File System)

 Figure 1.8 : Multiple File Systems in an Embedded System Example

C0005.indd 12C0005.indd 12 9/8/10 4:31:32 PM9/8/10 4:31:32 PM

www.newnespress.com

Demystifying Middleware in Embedded Systems 13

 1.4 Summary

 Middleware is increasingly becoming a required component in embedded systems designs

due to the increase in the types of complex, distributed embedded systems, the number of

applications found on embedded systems, and the desire for customizable embedded software

applications for embedded devices. In this chapter, middleware was defi ned relative to the

Embedded Systems Model, and the types of middleware introduced in this book were also

discussed. Finally, some initial guidelines of whether using middleware within an embedded

systems design should even be entertained as an option are discussed.

 Chapters 4–7 cover core middleware components, specifi cally fi le systems, networking,

and databases. Chapters 3, 8 and 9 go on to discuss middleware that builds on the core

components, as well as pulls all the concepts together in discussing overall design

implementations, approaches, and risk mitigation for utilizing middleware in real-world

embedded designs.

 The next chapter of this book introduces core components that underlie middleware

commonly found in embedded systems. Chapter 2 , specifi cally, introduces the hardware and

underlying system software required by core middleware.

 1.5 End Notes
 1 Systems Architecture, Noergaard, 2005. Elsevier.

 2 The six stages of creating an architecture outlined and applied to embedded systems in this book are inspired

by the Architecture Business Cycle developed by SEI. For more on this brainchild of SEI, read ‘Software

Architecture in Practice,’ by Bass, Clements, and Kazman.

 3 Based on the chapter ‘Legal Consequences of Defective Software’ by Cem Kaner. Testing Computer Software.

1999.

 4 ‘Better Firmware, Faster’. Jack Ganssle. 2007.

C0005.indd 13C0005.indd 13 9/8/10 4:31:33 PM9/8/10 4:31:33 PM

C0005.indd 14C0005.indd 14 9/8/10 4:31:33 PM9/8/10 4:31:33 PM

