
Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

CHAPTER 3

Characteristics of EDA

Firing Up the Corporate Neurons

Getting to a complete understanding of event-driven architecture (EDA) takes us
on a step-by-step process of learning. First, we discussed the enterprise nervous
system and the way EDAs are formed by connecting event listeners with event
consumers and event processors, and so on. Then, to explain how these EDA
components will likely be realized in today’s enterprise architecture, we learned
about Web services and service-oriented architecture (SOA). To get the full
picture, though, we now need to get into depth on the characteristics and qualities
of EDA components.

If the EDA components are like the neurons in the enterprise nervous system,
then we need to understand how their “synapses” and neural message pathways
work if we want to form a complete picture of EDA. We need to know how they
actually can or should work together to realize the desired functionality of an
EDA. In this context, we go more deeply into the concept of loose coupling and
also explore in depth the ways that an EDA needs to handle messaging between
its components. With the key concepts defined, we then lay out a thorough
definition of EDA, using an idealized EDA as an example.

Revisiting the Enterprise Nervous System

Returning to our cat scenario, if your cat steps on your toe, how do you know it?
How do you know it’s a cat, and not a lion? You might want to pet the cat, but
shoot the lion. And, perhaps most important, how can you be sure that your body
and mind learn how to distinguish between the cat and the lion in the first place?
How do you keep learning to process sensory experiences? The world is
constantly changing, so our nervous systems, and our EDAs, must be flexible,
adaptable, and fast learners. We want our EDAs to be as sensitive, responsive,
and teachable as our own nervous systems. To get there, we need to endow our
EDA components with nervous system–like capabilities.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

When the cat’s paw presses against your toe, the nerve cells in your toe fire
off a signal to your brain saying, “Hey, something stepped on my toe.” In this
way, the neurons in your toe are like event producers. The neural pathways that
the messages follow as they travel up your spine to the brain are like the
messaging backbone of the EDA. Your brain is at once an event listener and an
event processor. If you pet the cat, your hand and the nerves that tell your hand to
move are event reactors. Figure 3.1 compares the EDA with your nervous
system.

Figure 3.1 The human nervous system compared with an EDA.

The nervous system analogy is helpful for getting the idea of EDA on a
number of levels. In addition to being a useful model of the EDA components in
terms that we can understand (and perhaps, more important, that you can use to
explain to other less-sophisticated people), we can learn a lot about how an EDA
works by understanding how the nerves and brain communicate and share
information. As a first step in mapping from nervous system to EDA in terms of
its characteristics, we look at event-driven programming, a technology that is
comparable to an EDA and quite familiar, as well as informative.

Event-Driven Programming: EDA’s Kissing Cousin

We all use a close cousin of EDA on a daily basis, one whose simplicity can help
us gain a better understanding of EDA, perhaps without even realizing it. It’s
called event-driven programming (EDP) and it’s common in most runtime
platforms. It’s also found in CPU architectures, operating systems, GUI
interfaces, and network monitoring. EDP consists of event dispatchers and event
handlers (sometimes called event listeners). Event handlers are snippets of code
that are only interested in receiving particular events in the system. The event
handler subscribes to a particular event by registering itself with the dispatcher.
The event dispatcher keeps track of all registered listeners then, when the event
occurs, notifies each listener through a system call passing the event data.

For example, you might have a piece of code that executes if the user moves
the mouse. Let’s call this a mouse event listener. As shown in Figure 3.2, the
mouse event listener registers itself with the dispatcher—in this case, the
operating system. The operating system records a callback reference to the mouse
event listener. Every time the user moves the mouse, the dispatcher invokes each
listener passing the mouse movement event. The mouse movement event signals
a change in the mouse or cursor position, hence a change in the system’s state.
Other examples of event-driven programming can be found in computer
hardware interrupts, software operating system interrupts, and other user
interface events, such as mouse movements, key clicks, text entry, and so on.

Figure 3.2 The PC’s instruction to listen for mouse clicks is an example of event-driven
programming (EDP), a close cousin of EDA. When the mouse is clicked, the mouse click event
listener in the PC’s operating system is triggered, which, in turn, activates whatever function is meant
to be invoked by the mouse click. When the mouse is not clicked, the event listener waits.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Wikipedia describes event-driven programming as, “Unlike traditional
programs, which follow their own control flow pattern, only sometimes changing
course at branch points, the control flow of event-driven programs [is] largely
driven by external events.”1 The definition points out that there is no central
controller of the flow of data, which is counterintuitive to the way most of us
were taught to program.

The reason we bring this up is to emphasize a key distinction between EDP
and conventional software: a lack of a central controller. This distinction is
critical to understanding how EDA works. When you first enter the programming
world, you’re taught how to write a “Hello World” program. You might learn
that a program has a main method body from which flow control is transferred to
other methods. The main method is treated like a controller (see Figure 3.3).

Figure 3.3 In a conventional programming design, a controller method controls the flow of data and
process steps.

In contrast, in event-driven programming, there are no central controllers
dictating the sequence flow. As shown in Figure 3.4, each component listening
for events acts independently from the others and often has no idea of its
coexistence. When an event occurs, the event data is relayed to each event
listener. The event listener is then free to react to that information however it
chooses, perhaps activating a process specifically intended for that particular
event trigger. The event information is relayed asynchronously to the event
listeners so multiple listeners react to the event data at the same time, increasing
performance but also creating an unpredictable order of execution.

Figure 3.4 In event-driven programming (EDP), event listeners receive state change data (events)
and pass them along to event dispatchers, which then activate processes that depend on the nature of
the triggering events.

As shown in Figure 3.4, the listeners execute concurrently. This is quite
different from the typical program that controls the flow of data. In a typical
program, the controller method calls out to each subcomponent, passes relevant
data, waits for control to return, then continues to the next one—a very
predictable behavior. Of course, the controller method could take an
asynchronous approach, but the point is that one has a predefined flow of data
whereas the other does not.

When waiting for events, event listeners are typically in a quiescent state,
though occasionally you’ll see a simulated event-driven model where event
listeners cyclically poll for information. They sleep for a predefined period then
awaken to poll the system for new events. The sleep time is usually so small that
the process is near real time.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Similar to EDP-based systems, EDA relies on dynamic binding of
components through message-driven communication. This provides the loose
coupling and asynchrony foundation for EDA. EDA components connect to a
common transport medium and subscribe to interested event types. Most EDA
components also publish events—meaning they are typically publishers and
subscribers, depending on context. The biggest difference between EDA and
EDP is that EDP event listeners are colocated and interested in low system-level
events like mouse clicks, whereas EDA event consumers are likely to be
distributed and interested in high-level business actions such as “purchase order
fulfilled.”

More on Loose Coupling

Let’s go deeper on loose coupling, a core enabling characteristic of EDA. You
can’t have EDA without loose coupling. So, as far as we EDA believers are
concerned, the looser the better. However, getting to an effective and workable
definition of loose coupling can prove challenging. If you ask nine developers to
define loose coupling, you’ll likely get nine different answers. The term is
loosely used, loosely defined, and loosely understood. The reason is that the
meaning of loose coupling is context sensitive. For EDA purposes, loose
coupling is the measurement of two fundamentals:

■ Preconception

■ Maintainability (Changeability)

Preconception: The amount of knowledge, prejudice, or fixed idea that a piece of
software has about another piece of software

Preconception is a quality of software that reflects the amount of knowledge,
prejudice, or fixed idea that one piece of code has about another piece of code.
The more preconception that an application (or a piece of an application) has in
relation to another application with which it must interoperate, the tighter the
coupling between the two. The less preconception, the looser the coupling.
We’ve all seen tight coupling that stems from high levels of preconceptions.
Think of systems where every configuration attribute and every piece of mutable
text is hard-coded in the system. It can take days just to correct a simple spelling
mistake. During design, these systems all made a single, yet enormous,
configuration preconception—they assumed that the configuration would be set
at compile time and never need to be changed. You will never get to the
flexibility of configuration that you need to build an EDA with this kind of tight
coupling.

Ultimately, to move toward EDA and SOA, you should strive for software
that makes as few presumptions as possible. To use a common, real-world
example of tight coupling, consider a point-of-sale (POS) program calling a
credit card debit (CCD) program and passing it a credit card (CC) number. As
shown in Figure 3.5, the POS program has a preconceived notion that it will
always be calling the CCD program and always be passing it a CC number,
hence the two systems are now tightly coupled.
Maintainability: The level of rework required by all participants when one
integrated component changes

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Figure 3.5 In this classic example of tight coupling, a POS system sends a credit card number to a
CCD program and requests a validation, which is indicated by a returned value of isAuthentic.
The two systems are so tightly bound together they can almost be viewed as one single system.

Maintainability, the other EDA-enabling component of loose coupling, refers
to the level of rework required by all participants when one integrated component
changes. When a piece of software changes, how much change does that
introduce to other dependent software pieces? Best practices dictate that we
should strive for software that embraces and facilitates change, not software that
resists it. As a rule, the looser the coupling between components or systems, the
easier it is to make software changes without impacting related components or
systems.

Consider the hard-coded POS system described previously. A simple
configuration change requires a source code change, compilation, regression
testing, scheduled system downtime, downtime notifications, promotion to
production, and the like. A system that resists change is considered a tightly
coupled system.

What Your CFO Is Thinking

Imagine that you are the owner of this tightly coupled POS system, and your CFO tells you
that, as of some very rapidly approaching date, she expects the POS systems to accept
coupons as a form of payment in addition to credit cards. Unlike the credit cards, which
have a 16-digit identifying number and a matching expiration date, the coupons have a 10-
character identifier composed of letters and numbers. When you tell your CFO that it
might take you three months to make this change, she is not going to be too interested in
the issues of maintainability and preconception involved in the POS software, but you
know that these two tight coupling demons are to blame. The coupons might actually
provide you with a good pretext to start discussing an EDA/SOA approach to POS. You
can tell the CFO that you can make future coupon transitions faster if you loosen up the
coupling in the POS systems.

Now let’s suppose we begin to alleviate our headaches by removing some of
the system’s preconceived ideas. As a start, let’s assume we make the following
two changes:

■ First, we remove the hard-coded instructions from our system code, and
instead let behavior be driven by accessing values stored in a
configuration file (presumably read into memory at instantiation).

■ Second, we enable our system to be dynamically reconfigured (meaning
our system would have a mechanism for reloading new versions of the
configuration file while still active).

In this case, making a simple change to our configuration file, such as
indicating that an entry in coupon format is a valid form of payment or even
correcting a spelling mistake, only requires a regression test and a signal sent to
the production system to reload its configuration. The system is maintainable—
we updated the system while it stayed in production, and we did so without
compiling a lick of code.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

We have also successfully decreased the coupling between our system and its
configuration. The system is now loosely coupled with respect to this context but
it might still be tightly coupled in other areas. We have only increased its loosely
coupled index. We have increased its changeability and decreased its
preconception with respect to configuration, but how does it interact with other
modules or components? It might be tightly coupled with other software.

This is where the meaning of loose coupling is context sensitive. We can say
the system is loosely coupled if that statement is made within the context of the
configuration file. We can also say it is not loosely coupled if the statement is
made referring to its integration techniques.

This example oversimplifies the situation because hard-coded systems are
often very difficult to modify into configuration-driven systems, and even harder
to modify to dynamically configuration-driven systems, but the points are valid.
We did decrease the tight coupling and ease our headache. Moreover, we can see
that significant rework time would have been saved had the system designers
taken this approach from the beginning.

To illustrate our point, we have just used an example where we increased the
degree of loose coupling of the system by loosely coupling configuration
attributes. However, the term is typically used to reference integration
constraints. Two or more systems are tightly coupled when their integration is
difficult to change because of each system’s preconceptions.

Our previous point-of-sale (POS) scenario is an example of two tightly
coupled systems. Changes in either system are very likely to necessitate changes
in the other. At the extreme (though not uncommon) end of this spectrum, the
overall design might be so tightly integrated that the two systems might be
considered one atomic unit.

The POS system has preconceived notions about how to interact with the
CCD system. For example, the POS system calls a specific method in the CCD
system, named validate, passing it the CC number. Now suppose the CCD
system changes the method name to isAuthentic. This might happen if a third
party purchased the CCD system, for example.

What we want to do is isolate those changes so that we do not have to change
our POS system with every vendor’s whim. To loosen up the architecture, let’s
exercise a design pattern called the adapter pattern. We will add an intermediate
(adapter) component between the POS and CCD systems. The sole purpose of
this component is to isolate the preconceived knowledge of the CCD system.
This allows the vendor to make changes without adversely affecting the POS
system.

Now vendor changes in the CCD system are isolated and can be bridged
using the intermediate component. As the diagram in Figure 3.6 illustrates, the
vendor can change the method name and only the adapter component needs to
change.

Figure 3.6 The insertion of an adapter between the POS and CCD systems loosens the coupling.
Changes to the CCD system are isolated and can be bridged using the adapter.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

This reduces the POS system’s preconception about the CCD giving the
systems greater changeability. In essence, we now have greater business
flexibility because we now have the freedom to switch vendors if we choose. We
can swap out the Credit Card Debit (CCD) product for another just by changing
the adapter component.

The true benefits of the design shown in Figure 3.6 are radically evident
when we talk about multicomponent integration, which is shown in Figure 3.7.
Here, the benefits are multiplied by each participating component. This is also
where the return on investment shows through reuse. Understand that the up-
front time spent on building the adapter is now saving more money with each
use. The more you use it, the more you’ll save.

Figure 3.7 Use of adapters in multicomponent integration.

The argument can be made that we have now only shifted the tight coupling
to our adapter, which is true, though we have added a layer of abstraction that
does, in fact, increase maintainability of the system. We’ll demonstrate how to
fully decouple these systems when we talk about event-driven architecture later
in this chapter.

There will always be a degree of coupling. Even fully decoupled components
have some degree of coupling. The desire is to remove as much as possible but it
is naïve to think the systems will ever be truly decoupled. For example, service
components need data to do their job, and as such will always be coupled to the
required input data. Even a component that returns a time stamp is tightly
coupled with the system call used to retrieve the current time. As we strive for
loose coupling, we should remember that the best we can achieve is a high
“degree of looseness.”

More about Messages

Coupling, loose or tight, is all about messages. For all practical purposes, it is
only possible to have loose coupling and EDA, with a messaging design that
decouples the message sending and receiving parties and allows for redirection if
needed. To see why this is the case, let’s look at two core aspects of messaging:
harmonization and delivery. Harmonization is how the components interact to
ensure message delivery. Delivery is the messaging method used to transfer data.
Message harmonization is how the components interact to ensure message
delivery.

Harmonization can be synchronous or asynchronous. Synchronous
messaging is like a procedure call shown in Figure 3.8. The producer
communicates with the consumer and waits for a response before continuing. The
consumer has to be present for the communication to complete and all processing
waits until the transfer of data concludes. For example, most POS systems and
ATMs sit in a waiting state until transaction approval is granted. Then, they
spring back into life and complete the process that stalled as the procedure call
was completed. Comparable examples of synchronous messaging in real life
include instant messaging, phone conversations, and live business meetings.

Figure 3.8 Example of synchronous messaging, a process where the requesting entity waits for a
response until resuming action.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

In contrast, asynchronous messaging does not block processing or wait for a
response. As Figure 3.9 illustrates, the message consumer in an asynchronous
messaging setup need not be present at the time of transmit. This is the most
common form of communication in distributed systems because of the inherent
unreliability of the network. In asynchronous messaging, messages are sent to a
mediator that stores the message for retrieval by the consumer. This allows for
message delivery whether the consumer is reachable or not. The producer can
continue processing and the consumer can connect at will and retrieve the
awaiting messages. Examples include e-mail (the consumer does not need to be
present to complete delivery), placing a telephone call and leaving a voice mail
message (versus a world without voice mail), and discussion forums.

Figure 3.9 Example of simple, point-to-point asynchronous messaging.

There are multiple ways to execute message delivery whether synchronously
or asynchronously. Synchronous messaging includes request/reply applications
like remote procedure calls and conversational messaging like many of the older
modem protocols. Our focus here is on asynchronous messaging. Asynchronous
messaging comes in two flavors: point-to-point or publish/subscribe.
Message delivery is the messaging method used to transfer data.

Point-to-point messaging, shown in Figure 3.9, is used when many-to-one
messaging is required (meaning one or more producers need to relay messages to
one consumer). This is orchestrated using a queue. Messages from producers are
stored in a queue. There can be multiple consumers connected to the queue but
only one consumer processes each message. After the message is processed, it is
removed from the queue. If there are multiple consumers, they’re typically
duplicates of the same component and they process messages identically. This
multiplicity is to facilitate load balancing more than multidimensional
processing.

Publish/subscribe messaging, shown in Figure 3.10, is used when many
applications need to receive the same message. This wide dissemination of event
data makes it ideal for event-driven architectures. Messages from producers are
stored in a repository called a topic. Table 3.1 summarizes the differences
between the two modes of message flow. Unlike point-to-point messaging,
pub/sub messages remain in the topic after processing until expiration or purging.
Consumers subscribe to
the topic and specify their interest in currently stored messages. Interested
consumers are sent the current topic contents followed by any new messages. For
others, communication begins with the arrival of a
new message.

Topics provide the advantage of exposing business events that can be
leveraged in an EDA. One consideration is the transaction complete
indeterminism, and we will soon explore ways to handle this.

Figure 3.10 Example of publish/subscribe (pub/sub) asynchronous messaging using a message
queue.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Asynchronous messaging requires a message mediator, or adapter. This can
be achieved using a database, native language constructs like Java Channels, or
the most common provider of this functionality, message-oriented-middleware
(MOM). MOM software is a class of applications specifically for managing the
reliable transport of messages. This includes applications like IBM’s WebSphere
MQ (formally MQSeries), Microsoft Message Queuing (MSMQ), BEA’s
Tuxedo, Tibco’s Rendezvous, others based on Sun’s Java Messaging
Specification (JMS), and a multitude of others.

JMS is the most prominent vendor-agnostic standard for message-oriented-
middleware. Before its creation, messaging-based architectures were locked in to
a particular vendor. Now, most MOM applications support the standard, making
it the primary choice for implementation teams concerned with vendor-agnostic
portability.

Table 3.1 Point-to-Point Versus Publish/Subscribe

Point-to-Point Queues Publish/Subscribe Topics

Single consumer Multiple consumers

Preconceived consumer Anonymous consumers

Medium decoupling High decoupling

Messages are consumed Messages remain until purged or expiration

The Ideal EDA

Having taken our deep dive into the key characteristics of EDA, we can now
examine a workable, if idealistic definition of EDA. With the usual caveat that no
architecture will, in all likelihood, ever embody EDA in 100% of its
functionality, we can define EDA as an enterprise architecture that works in the
following ways:

EDA: What It Is

■ An EDA is loosely coupled or entirely decoupled.

■ An EDA uses asynchronous messaging, typically pub/sub.

■ An EDA is granular at the event level.

■ EDAs have event listeners, event producers, event processors, and event
reactors—ideally based on Simple Object Access Protocol (SOAP) Web
services and compatible application components.

■ An EDA uses a commonly accessible messaging backbone, such as an
enterprise service bus (ESB) as well as adapters or intermediaries to
transport messages.

■ An EDA does not rely on a central controller.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA: What It Does and What It Enables

■ An EDA enables agility in operational change management.

■ An EDA enables correlation of data for analytics and business process
modeling, management, and governance.

■ An EDA enables agility in realizing business analytics and dynamically
changing analytic models.

■ An EDA enables dynamic determinism—EDA enables the enterprise to
react to events in accordance with a dynamically changing set of business
rules, for example, learning how to avoid shooting the cat and petting the
lion (in contrast to controller-based architectures that can be too rigid to be
dynamic, for example, shooting the cat, not being aware of the lion).

■ An EDA brings greater consciousness of events to the enterprise nervous
system.

Though we delve more deeply into the ways that SOAP Web services enable
EDA later in the book, we want to go through a basic explanation at this point
because our described use of Web services as event producers might appear
confusing to some readers. Much has been written about Web services in recent
years, and, indeed, many of you likely already work with them. It might seem
incorrect to characterize a Web service as a “producer” of SOAP Extensible
Markup Language (XML) event state messages when Web services, to be
accurate, actually respond to invocation, perhaps sending off SOAP XML if
instructed to do so. This is, of course, correct. A SOAP Web service does not
transmit a SOAP message without being triggered to do so. Thus, when we talk
about Web services functioning as event producers, we are describing Web
services that are specifically programmed to send event data to the message
backbone. These event Web services could be triggered by activities occurring
inside an application or by other Web services. The reason we suggest that event
producers should be configured in this way—as Web services that transmit event
state data upon invocation—is that there is a high level of utility in transmitting
the event data in the portable, universally readable SOAP XML format.

Figure 3.11 revisits our phone company example and shows a high-level
model of how its systems would function and interoperate in an ideal EDA. Let’s
make a few basic observations about how the company’s EDA works. With an
EDA, in contrast with the traditional enterprise application integration (EAI)
approach, the company’s three system groups all send event data through
adapters and message listeners to a service bus, or equivalent EDA hub that
manages a number of pub/sub message queues for all systems that need that
event data to carry out their tasks.

Figure 3.11 A high-level overview of an event-driven architecture at a phone company. Each system
group is loosely coupled with one another using standards-based pub/sub asynchronous messaging.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

As shown in Figure 3.12, using a dynamic determinism model, the order
management system can now listen for overages in minutes and unpaid bills that
occur in billing and line management system events and respond to them
according to the business rules. Thus, if “John Q” exceeds his allowance of
wireless minutes and fails to pay for the overage, the business rules contained in
the order management system will deny him the right to add new services to his
account.

Figure 3.12 In the phone company EDA example, separate events in two systems—an overage in
wireless minutes and an unpaid balance in the billing system—are correlated by an application that
then denies the order management system the ability to grant the customer a new service request.

The order management system does not have to have the kind of
preconception about the line management system that it needed to have to
provide this function under the EAI model. The two systems are decoupled but
still interoperating through the EDA. The billing system is the event producer
and the order management system is the event consumer.

Figure 3.13 shows how event listeners detect the two separate events—the
unpaid overage charge and the overage in minutes itself. The EDA-based
application that authorizes or declines the new service request subscribes to the
event publishing done by the line management and billing systems. The
combination of events—unpaid balance and overage of minutes—combines to
change the state of John Q’s account. The change in state is itself an event. John
Q’s status goes from “eligible” to “ineligible” for new services. If John Q
requests new services, the order management system looks to the EDA
application to determine if John Q’s status is eligible.

Figure 3.13 The EDA-based application subscribes to event data that is published and consumed by
event listeners on separate systems. This gives the EDA-based application the ability to have
awareness of changes in state related to John Q without tightly coupling any of the applications
involved in the query.

EDA opens new worlds of possibility for IT’s ability to serve its business
purpose. Think of all the business events a system could leverage if events were
exposed—examples include events such as order processing complete, inventory
low, new critical order placed, payment received, connection down, and so on.
Today, it’s a struggle to expose the needed events because they’re hidden away
within legacy systems. It’s common to resort to database triggers or polling to
expose these critical actions, but imagine the supportable agility if the systems
exposed those actions natively.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Exposing system actions is the root of most integration complexities. “Upon
completion of processing at System A, send result to system B,” and so on. Most
legacy systems were not designed with unanticipated use in mind. They assumed
they would be the only system needing the information and thus didn’t expose
key event data for easy access. If you’re lucky, the system will provide an
application programming interface (API) to retrieve data, but rarely will it
facilitate publishing an event or provide any event retrieval mechanism. Because
events are typically not exposed, the first thing you have to do is create an
algorithm to determine an event occurred. Often, legacy system events have to be
interpreted by correlating multiple database fields (e.g., “If both of these two
fields change state, then the order has been shipped…”). Imagine how much
easier integration would be if such event actions were natively exposed.

Event-driven architectures are driven by system extensibility (not
controllability) and are powered by business events. As shown in Figure 3.13,
event handlers listen to low-level system events while EDA agents respond to
coarser-grained business events. Some agents might only respond to aggregate
business events, creating an even coarser system response.

EDAs are based on dynamic determinism. Dynamic determinism relates to
unanticipated use of applications and information assets. Events might trigger
other services that might be unknown to the event publisher. Any component can
subscribe to receive a particular event unbeknown to the producer. Because of
this dynamic processing, the state of the transaction is managed by the events
themselves, not by a management mechanism.

EDA embraces these concepts, which facilitate flexibility and extensibility,
ultimately increasing a system’s ability to evolve. This is accomplished through
calculated use of three concepts—loose coupling, asynchrony, and stateless
(modeless) service providers—though it doesn’t come free. EDA brings
inherently decentralized control and a degree of indeterminism to the system.

One of the main benefits of EDA is that it facilitates unanticipated use
through its message-driven communication. It releases information previously
trapped within monolithic systems. When designing EDA components, you
should design for unanticipated use by producing events that can provide future
value whether a consumer is waiting or not. Your EDA components should be
business-event-intuitive, publishing actions that are valued at a business level.

Imagine an EDA billing component. After it has finished billing a customer,
it should announce the fact even if there is no current need. What if all financial
actions were being sent via events? Recognizing that there was no immediate
need for these events when the systems were originally built, look at how
beneficial it would be today. Imagine how easy that would have made your
company’s Sarbanes-Oxley compliance efforts. Of course, it takes a degree of
common sense in determining what might be of value in the future, but it’s safe
to say that most concrete business state changes will be valued. The caution to
note here, though, is that it is possible to create an event publishing overload that
overwhelms system and network capacity.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA components should also be as stateless as possible. The system state
should be carried in the event, not stored within a component variable. In some
situations, persistence is unavoidable, especially if the component needs to
aggregate, resequence, or monitor specific events. However EDA components
should do their job and pass on the data then return to process or wait for the next
event. This gives the system ultrahigh reuse potential and flexibility. The
flexibility of an EDA is leading to emerging concepts that leverage events at a
business process level.

Consciousness

EDA brings consciousness to the enterprise nervous system. Without event-
driven architecture (EDA), enterprises operate as if they’re on life support.
They’re comatose (brain dead), meaning they are unaware of their surroundings.
They cannot independently act on conditions without brokered instruction or the
aid of human approval. Service-oriented architectures (SOAs) define the
enterprise nervous system, while EDA brings awareness. With the right mix of
smart processing and rules, EDA enables the enterprise nervous system to
consciously react to internal and external conditions that affect the business
within a real-time context.

Consciously reacting means the architecture acts on events independently
without being managed by a central controller. Underlying components react to
business events in a dynamic decoupled fashion. This is in contrast to the central
controller commonly seen in SOAs.

Imagine the analogy of our consciousness with a cluster of functional
components. Sections of consciousness process certain information, just like each
component has an area of expertise. Components wait for pertinent information,
process, and fire an output event. The output might be destined to another
component or to an external client. Our consciousness works in the same manner,
processing information and sending output to either other synaptic nodes or
externally, perhaps through vocal communication. In both of these cases, the
messages were not sent to a central controller to decide where to route or what to
do. The behavior is inherent in the design.

This is in direct contradiction to the way we teach and learn to program.
Schools and universities teach us to start every project with a central controller.
In Java, this would be the main method, where the sequence of control and the
flow of information are controlled. This type of system is tightly coupled with the
controller and is difficult to make distributed. Today’s architectures need to be
looser coupled and more agile than we’ve been taught.

Today’s systems need true dynamic processing. Systems are classified as
dynamic or static, but, in reality, most systems are static; they have a finite
number of possible flows. If a system has a central controller, it’s definitely static
even if control branches are based on runtime information. This makes testing
easier because of the degree of predetermination but does not provide the agility
of a dynamic system.

A central controller with a limited number of possibilities decreases agility.
When the system needs to change outside of those possibilities, new rules and
branches are added, increasing the tight coupling and complicating the
architecture. Over time, the branching rules become so complex that it’s nearly
impossible to manage and the system turns legacy.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA is about removing the rigidity created by central control and injecting real-
time context into the business process.

We need to be clear about one thing here: When we talk about removing
central control, we are not suggesting that you can be effective in an EDA by
removing all control from the application. An uncontrolled application would
quickly degenerate into chaos and lock itself up in inaction, or in inappropriate
action. Real-world autonomic systems see this: Three moisture-ridden sensors in
a B-2 bomber sent bad data to the aircraft’s computer, causing it to fly itself into
the ground. Another example is the human body’s response to significant blood
loss: If the body loses a large volume of blood, the brain detects the fact that it’s
not getting enough oxygen (decreased blood) and automatically dilates the
vascular system and increases the heart rate. If the blood loss is due to an open
wound, this serves only to lose blood faster! So when we talk about EDA’s lack
of reliance on central control, we mean that the control is distributed in the form
of business rules—and distributed rules must be configured to trigger appropriate
actions. The event components contain business rules that are implemented as
each event component is activated. The result is an application, or set of
applications, that operates under control, but not with a central controller.

Event-driven architectures insert context into the process, which is missing in
the central controller model. This is where the potential for a truly dynamic
system emerges. Processing information has a contextual element often only
available outside of the central controller’s view. Even if that contextual change
is small, it can still have bearing on the way data should flow.

One contextual stimulus is the Internet. The Internet has opened up
businesses to a new undressing. Business-to-business transactions, blogs,
outsourcing, trading partner networks, and user communities have all cracked
open the hard exterior of corporations. They provide an easily accessible glimpse
into a corporation’s inner workings that wasn’t present before. This glimpse
inside will only get larger with time making the inner workings public knowledge
and making media-spin-doctoring of unethical practices more evident.

Don Tapscott in The Naked Corporation2 talks about how the Internet will
bring moral values to the forefront as unethical practices become more difficult
to cover and financial ramifications increase. Businesses will be valued on their
financial standing along with reputation, reliability, and integrity. This means
businesses will have to change their process flow based on external conditions
such as worldly events and do so efficiently.

Information is being aggregated in different ways. Business processes are
changing and being combined in real time with external data such as current
worldly events. Because of the increased exposure through the Internet,
questionable businesses practices are being uncovered. Sometimes, these
practices are unknown to the core business, hence businesses want to react
quickly to the publicity. Imagine a news investigation that uncovers a major firm
is outsourcing labor to a company involved in child slavery. For example,
company X is exposed for buying from a cocoa farm in West Africa’s Ivory
Coast that uses child slavery. The business would immediately want to stop their
business transactions with that company and reroute them to a reputable supplier
before the damage becomes too great.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

For ethical reasons, eBay continually blocks auctions that attempt to profit
from horrific catastrophes like major hurricanes, a space shuttle accident, or even
a terrorist attack like 9-11. Imagine the public impression of eBay if this was not
practiced and they profited from these events.

Now imagine having a system that’s worldly aware enough to circumvent
business processes if these cases should occur. Suppose this system had an
autonomous component that compares news metadata with business process
metadata and curtails the process at the first sign of concern. The huge benefits
definitely outweigh the calculated risks. Simply rerouting a purchase order to
another supplier with comparable service levels definitely has a big upside. If the
autonomous deduction was correct, it might have saved the company millions in
bad press while maintaining their social responsibility. If it was wrong, then no
real harm was done because the alternate company will still deliver on time.

A similar scenario could support eBay’s ethics. An autonomous component
that compares news metadata with auction metadata could withhold auctions
based on real-time news events. If correct, it could save the company from public
embarrassment. If wrong, little harm was done other than to delay an auction
start time.

EDA can provide this dynamic monitoring, curtailing, and self-healing.
Event-driven architecture facilitates bringing these external contexts into the
business process. The idea is that the separation between concrete business
process and day-to-day reality is blurring. Businesses might be required to
change their process based on unexpected external events. This is much different
from the days where an end-to-end business process happened within a
company’s boundary (and control). Combining this need with the traditional
business need for rapid change means flexible architecture design is paramount.
One way to ensure this flexibility is through the SOA/EDA way—by reducing
central control and adding context to the business process.

BAM—A Related Concept

Business Activity Monitoring (BAM) is related to EDA, but different enough that
we discuss it in brief. Our goal is to help you differentiate between BAM and
EDA, as the two ideas are often used interchangeably in IT discussions. We do
not think they are interchangeable.

BAM is the idea that business decisions would be better and more timely if
they were based on timely information extracted through business activities that
are exposed near real time. Too often, decisions are made based on warehoused
data that is stale or misrepresented because of the available gathering technique.
Event-driven architectures make it easier to tap into key business activities. BAM
components monitor these activities, aggregate the information, watch for
anomalies, send warnings, and represent the data graphically.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Historically, most of the activity in this area was achieved with in-house built
dashboards. Now we’re seeing more vendor products in the space. BAM is most
useful in situations where quick critical decisions are important. Interesting
applications of this concept include illustrating Key Performance Indicators
(KPI), watching for homeland security anomalies, monitoring supply chain
activities, and discovering business-to-business (B2B) exchange patterns.
Implementing a BAM solution within your EDA is almost always a good idea.

Chapter Summary

■ In this chapter, we move forward with our metaphor of EDA as the
enterprise nervous system and match the EDA components—event
producers, listeners, processors, and reactors—to their equivalent in the
nervous system. Event producers and consumers are likened to the sensory
nerve endings that pick up and relay information about our senses to our
brain, which is like an event processor. Reactions, such as physical
movements, are like the event reactors. For additional context and
framework, we look at event-driven programming, a core technology of
most PCs, as a comparable example of events, event listening, and event
processing on a lower level of functioning than an EDA.

■ To complete our understanding of how EDA works, we then carry this
enterprise nervous system idea further and take an in-depth look at the
characteristics of EDAs and their components. Again, our focus is on the
EDA of the future: an implicit, complex, and dynamic EDA, one that can
adapt easily to changes and continually expand its reach of event detection
and event reaction.

■ EDA components must be loosely coupled to function dynamically. Loose
coupling requires that EDA components have low levels of preconception
about each other and maintainability. An EDA works best if each
component functions independently, with little need to know about the
other components it is communicating with, and few ramifications if one
component is modified.

■ EDAs, unlike conventional applications, do not rely on central controllers.

■ Events (state change notifications) are central to an EDA. An event can
take the form of a message and an EDA is a message-based idea. To work,
an EDA’s loosely coupled components must be able to produce and
consume messages. The messages could be related to event listening,
processing, or reactions. The more easily the messages can flow across the
EDA (which might span multiple enterprises), the better the EDA will
work.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

■ Asynchronous, or publish/subscribe (pub/sub) messaging, is one of the
best foundations for an EDA. As the EDA components communicate with
one another, they feed messages (events) into an event bus. Event listeners
receive the events, and then EDA components process the event data as
required by the EDA’s designed purpose. Pub/sub is ideal for EDAs
because it removes a lot of message flow dependencies from individual
components. It is simpler, for example, to connect event listeners using
pub/sub than to tightly couple them together, where changes in
configuration are costly and slow to accomplish.

■ To achieve loose coupling and asynchronous messaging, an EDA relies on
message intermediaries. In some cases, these are known as service buses.

■ The ideal EDA, therefore, is a loosely coupled, pub/sub-based
architecture, with low levels of preconception and high degrees of
maintainability among the components.

Endnotes

1. -Wikipedia. Event-Driven Programming. August 2004.
http://en.wikipedia.org/wiki/Event-driven_programming.

2. -Tapscott, Don. The Naked Corporation. New York: Free Press, 2003.

