Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

CHAPTER 3

Characteristics of EDA

Firing Up the Corporate Neurons

Getting to a complete understanding of event-draerhitecture (EDA) takes us
on a step-by-step process of learning. First, v8eudised the enterprise nervous
system and the way EDAs are formed by connectirmgielisteners with event
consumers and event processors, and so on. Thexptain how these EDA
components will likely be realized in today’s emtése architecture, we learned
about Web services and service-oriented architec{(80OA). To get the full
picture, though, we now need to get into depthhencharacteristics and qualities
of EDA components.

If the EDA components are like the neurons in thiemgorise nervous system,
then we need to understand how their “synapses’nandal message pathways
work if we want to form a complete picture of EDWe need to know how they
actually can or should work together to realize desired functionality of an
EDA. In this context, we go more deeply into theaept of loose coupling and
also explore in depth the ways that an EDA needwsatalle messaging between
its components. With the key concepts defined, entlay out a thorough
definition of EDA, using an idealized EDA as an mxyde.

Revisiting the Enterprise Nervous System

Returning to our cat scenario, if your cat stepyaum toe, how do you know it?
How do you know it’s a cat, and not a lion? You htigvant to pet the cat, but
shoot the lion. And, perhaps most important, howaau be sure that your body
and mind learn how to distinguish between the odtthe lion in the first place?
How do you keep learning to process sensory expeg&? The world is
constantly changing, so our nervous systems, andEDAs, must be flexible,
adaptable, and fast learners. We want our EDAsetad sensitive, responsive,
and teachable as our own nervous systems. To getd, tve need to endow our
EDA components with nervous system-like capalslitie

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

When the cat’s paw presses against your toe, the roells in your toe fire
off a signal to your brain saying, “Hey, somethistgpped on my toe.” In this
way, the neurons in your toe are like event protkiCEhe neural pathways that
the messages follow as they travel up your spingheo brain are like the
messaging backbone of the EDA. Your brain is akamt event listener and an
event processor. If you pet the cat, your handthadherves that tell your hand to
move are event reactors. Figure 3.1 compares thA &idh your nervous
system.

Figure 3.1 The human nervous system comparedamifBDA.

The nervous system analogy is helpful for getting idea of EDA on a
number of levels. In addition to being a useful eloaf the EDA components in
terms that we can understand (and perhaps, morertiamp, that you can use to
explain to other less-sophisticated people), weleam a lot about how an EDA
works by understanding how the nerves and brainnuamicate and share
information. As a first step in mapping from nergaystem to EDA in terms of
its characteristics, we look at event-driven pragrang, a technology that is
comparable to an EDA and quite familiar, as welirfgrmative.

Event-Driven Programming: EDA’s Kissing Cousin

We all use a close cousin of EDA on a daily basi® whose simplicity can help
us gain a better understanding of EDA, perhapsowitteven realizing it. It's
called event-driven programming (EDP) and it's catnmin most runtime
platforms. It's also found in CPU architectures,eting systems, GUI
interfaces, and network monitoring. EDP consistewant dispatchers and event
handlers (sometimes called event listeners). Ekantllers are snippets of code
that are only interested in receiving particulaer@e in the system. The event
handler subscribes to a particular event by regyigtdtself with the dispatcher.
The event dispatcher keeps track of all registéisteners then, when the event
occurs, notifies each listener through a systetrpeaising the event data.

For example, you might have a piece of code thetetes if the user moves
the mouse. Let's call this a mouse event listeAsrshown in Figure 3.2, the
mouse event listener registers itself with the alisper—in this case, the
operating system. The operating system recordlmachk reference to the mouse
event listener. Every time the user moves the madhsedispatcher invokes each
listener passing the mouse movement event. The enmosement event signals
a change in the mouse or cursor position, hendeaage in the system’s state.
Other examples of event-driven programming can bend in computer
hardware interrupts, software operating systemrimpes, and other user
interface events, such as mouse movements, ke ctiext entry, and so on.

Figure 3.2 The PC's instruction to listen for mewticks is an example of event-driven
programming (EDP), a close cousin of EDA. Whenrtfmuse is clicked, the mouse click event
listener in the PC’s operating system is triggewetich, in turn, activates whatever function is mea
to be invoked by the mouse click. When the mouswislicked, the event listener waits.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Wikipedia describes event-driven programming as,nliké traditional
programs, which follow their own control flow patte only sometimes changing
course at branch points, the control flow of ewvdngen programs [is] largely
driven by external events. The definition points out that there is no central
controller of the flow of data, which is countetitive to the way most of us
were taught to program.

The reason we bring this up is to emphasize a k&indtion between EDP
and conventional software: a lack of a central ler. This distinction is
critical to understanding how EDA works. When yastfenter the programming
world, you're taught how to write a “Hello Worldrggram. You might learn
that a program has a main method body from whimlv fiontrol is transferred to
other methods. The main method is treated likerdrobier (see Figure 3.3).

Figure 3.3 In a conventional programming desigeprroller method controls the flow of data and
process steps.

In contrast, in event-driven programming, there aoecentral controllers
dictating the sequence flow. As shown in Figure 8ach component listening
for events acts independently from the others aftednohas no idea of its
coexistence. When an event occurs, the event datalayed to each event
listener. The event listener is then free to reacthat information however it
chooses, perhaps activating a process specifidaiynded for that particular
event trigger. The event information is relayed natyonously to the event
listeners so multiple listeners react to the ewata at the same time, increasing
performance but also creating an unpredictablerafiexecution.

Figure 3.4 In event-driven programming (EDP), @Visteners receive state change data (events)
and pass them along to event dispatchers, whichabivate processes that depend on the nature of
the triggering events.

As shown in Figure 3.4, the listeners execute comratly. This is quite
different from the typical program that controlse tfiow of data. In a typical
program, the controller method calls out to eadbcemponent, passes relevant
data, waits for control to return, then continuesthe next one—a very
predictable behavior. Of course, the controller hodt could take an
asynchronous approach, but the point is that oseahgredefined flow of data
whereas the other does not.

When waiting for events, event listeners are typica a quiescent state,
though occasionally you'll see a simulated eveitedr model where event
listeners cyclically poll for information. They sle for a predefined period then
awaken to poll the system for new events. The dieepis usually so small that
the process is near real time.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Similar to EDP-based systems, EDA relies on dynarioding of
components through message-driven communicatiois provides the loose
coupling and asynchrony foundation for EDA. EDA qgamnents connect to a
common transport medium and subscribe to interestedt types. Most EDA
components also publish events—meaning they ariaiyp publishers and
subscribers, depending on context. The biggeserdifice between EDA and
EDP is that EDP event listeners are colocated amddsted in low system-level
events like mouse clicks, whereas EDA event conssinage likely to be
distributed and interested in high-level businegtoas such as “purchase order
fulfilled.”

More on Loose Coupling

Let’'s go deeper on loose coupling, a core enaldimgracteristic of EDA. You

can't have EDA without loose coupling. So, as farvee EDA believers are
concerned, the looser the better. However, gettingn effective and workable
definition of loose coupling can prove challengitfgyou ask nine developers to
define loose coupling, you'll likely get nine difent answers. The term is
loosely used, loosely defined, and loosely undedstd’he reason is that the
meaning of loose coupling is context sensitive. DA purposes, loose
coupling is the measurement of two fundamentals:

= Preconception
= Maintainability (Changeability)

Preconception: The amount of knowledge, prejudicdixed idea that a piece of
software has about another piece of software

Preconception is a quality of software that reidbie amount of knowledge,
prejudice, or fixed idea that one piece of code diasut another piece of code.
The more preconception that an application (oreggiof an application) has in
relation to another application with which it musteroperate, the tighter the
coupling between the two. The less preconceptibme, lboser the coupling.
We've all seen tight coupling that stems from higkels of preconceptions.
Think of systems where every configuration attrébahd every piece of mutable
text is hard-coded in the system. It can take giaststo correct a simple spelling
mistake. During design, these systems all made nglesi yet enormous,
configuration preconception—they assumed that trdiguration would be set
at compile time and never need to be changed. Yilunever get to the
flexibility of configuration that you need to buikh EDA with this kind of tight
coupling.

Ultimately, to move toward EDA and SOA, you shogtdve for software
that makes as few presumptions as possible. Toausemmon, real-world
example of tight coupling, consider a point-of-s@R&OS) program calling a
credit card debit (CCD) program and passing iteditrcard (CC) number. As
shown in Figure 3.5, the POS program has a precattanotion that it will
always be calling the CCD program and always besipgsit a CC number,
hence the two systems are now tightly coupled.

Maintainability: The level of rework required byl gharticipants when one
integrated component changes

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Figure 3.5 In this classic example of tight conglia POS system sends a credit card number to a
CCD program and requests a validation, which igceteéd by a returned value io§ Aut hent i c.
The two systems are so tightly bound together tdagyalmost be viewed as one single system.

Maintainability, the other EDA-enabling componehtanse coupling, refers
to the level of rework required by all participamtsen one integrated component
changes. When a piece of software changes, how rohenge does that
introduce to other dependent software pieces? PBesttices dictate that we
should strive for software that embraces and tatds change, not software that
resists it. As a rule, the looser the coupling lesmcomponents or systems, the
easier it is to make software changes without imipgaelated components or
systems.

Consider the hard-coded POS system described pdyioA simple
configuration change requires a source code chacgmpilation, regression
testing, scheduled system downtime, downtime matifbns, promotion to
production, and the like. A system that resistsngeais considered a tightly
coupled system.

What Your CFO Is Thinking

Imagine that you are the owner of this tightly cedpPOS system, and your CFO tells you
that, as of some very rapidly approaching date, estpects the POS systems to accept
coupons as a form of payment in addition to creditds. Unlike the credit cards, which
have a 16-digit identifying number and a matchirpgigtion date, the coupons have a 10-
character identifier composed of letters and nusib@hen you tell your CFO that it
might take you three months to make this change,isimot going to be too interested in
the issues of maintainability and preconceptioroived in the POS software, but you
know that these two tight coupling demons are @mmi@. The coupons might actually
provide you with a good pretext to start discusangEDA/SOA approach to POS. You
can tell the CFO that you can make future coupansitions faster if you loosen up the
coupling in the POS systems.
Now let's suppose we begin to alleviate our headadly removing some of
the system’s preconceived ideas. As a start, &tssime we make the following
two changes:

n First, we remove the hard-coded instructions fram gystem code, and
instead let behavior be driven by accessing valsewed in a
configuration file (presumably read into memoryrestantiation).

= Second, we enable our system to be dynamicallynfegoed (meaning
our system would have a mechanism for reloading wessions of the
configuration file while still active).

In this case, making a simple change to our cordigon file, such as
indicating that an entry in coupon format is a édibrm of payment or even
correcting a spelling mistake, only requires a @sgion test and a signal sent to
the production system to reload its configuratibhe system is maintainable—
we updated the system while it stayed in productenmd we did so without
compiling a lick of code.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

We have also successfully decreased the couplitvgebe our system and its
configuration. The system is now loosely couplethwéspect to this context but
it might still be tightly coupled in other areaseWave only increased its loosely
coupled index. We have increased its changeabiitd decreased its
preconception with respect to configuration, buiviaoes it interact with other
modules or components? It might be tightly coupléti other software.

This is where the meaning of loose coupling is exnsensitive. We can say
the system is loosely coupled if that statememasle within the context of the
configuration file. We can also say it is not logseoupled if the statement is
made referring to its integration techniques.

This example oversimplifies the situation becauasditoded systems are
often very difficult to modify into configurationriven systems, and even harder
to modify to dynamically configuration-driven systs, but the points are valid.
We did decrease the tight coupling and ease oufdoba. Moreover, we can see
that significant rework time would have been sated the system designers
taken this approach from the beginning.

To illustrate our point, we have just used an elampere we increased the
degree of loose coupling of the system by loosadypting configuration
attributes. However, the term is typically used teference integration
constraints. Two or more systems are tightly cadipldaen their integration is
difficult to change because of each system’s pregptions.

Our previous point-of-sale (POS) scenario is anmgta of two tightly
coupled systems. Changes in either system areliikety to necessitate changes
in the other. At the extreme (though not uncommemj of this spectrum, the
overall design might be so tightly integrated tlia two systems might be
considered one atomic unit.

The POS system has preconceived notions about bantdract with the
CCD system. For example, the POS system calls @fspmethod in the CCD
system, namedal i dat e, passing it the CC number. Now suppose the CCD
system changes the method namestaut hent i c. This might happen if a third
party purchased the CCD system, for example.

What we want to do is isolate those changes sombato not have to change
our POS system with every vendor’'s whim. To loogprthe architecture, let's
exercise a design pattern called the adapter pattée will add an intermediate
(adapter) component between the POS and CCD systémssole purpose of
this component is to isolate the preconceived kedgé of the CCD system.
This allows the vendor to make changes without embhe affecting the POS
system.

Now vendor changes in the CCD system are isolatelcan be bridged
using the intermediate component. As the diagramigure 3.6 illustrates, the
vendor can change the method name and only theeadagmponent needs to
change.

Figure 3.6 The insertion of an adapter betweerPth& and CCD systems loosens the coupling.
Changes to the CCD system are isolated and caridget using the adapter.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

This reduces the POS system’s preconception aleutCCD giving the
systems greater changeability. In essence, we nawve Igreater business
flexibility because we now have the freedom to slwitendors if we choose. We
can swap out the Credit Card Debit (CCD) productaimother just by changing
the adapter component.

The true benefits of the design shown in Figure & radically evident
when we talk about multicomponent integration, wahis shown in Figure 3.7.
Here, the benefits are multiplied by each partidigacomponent. This is also
where the return on investment shows through redseerstand that the up-
front time spent on building the adapter is nowirsgumore money with each
use. The more you use it, the more you'll save.

Figure 3.7 Use of adapters in multicomponent irgggn.

The argument can be made that we have now onltedhifie tight coupling
to our adapter, which is true, though we have addéaer of abstraction that
does, in fact, increase maintainability of the sgstWe'll demonstrate how to
fully decouple these systems when we talk abouhtedeven architecture later
in this chapter.

There will always be a degree of coupling. Eveityfdecoupled components
have some degree of coupling. The desire is to veras much as possible but it
is naive to think the systems will ever be trulgalgpled. For example, service
components need data to do their job, and as silchlways be coupled to the
required input data. Even a component that ret@rgme stamp is tightly
coupled with the system call used to retrieve theent time. As we strive for
loose coupling, we should remember that the bestcare achieve is a high
“degree of looseness.”

More about Messages

Coupling, loose or tight, is all about messages. alopractical purposes, it is
only possible to have loose coupling and EDA, wittmessaging design that
decouples the message sending and receiving parntikallows for redirection if
needed. To see why this is the case, let's lodlwatcore aspects of messaging:
harmonization and delivery. Harmonization is how tomponents interact to
ensure message delivery. Delivery is the messagatgod used to transfer data.
Message harmonization is how the components irteiacensure message
delivery.

Harmonization can be synchronous or asynchronougnch8onous
messaging is like a procedure call shown in Fig@8. The producer
communicates with the consumer and waits for aoresp before continuing. The
consumer has to be present for the communicaticontlete and all processing
waits until the transfer of data concludes. Forngple, most POS systems and
ATMs sit in a waiting state until transaction apgabis granted. Then, they
spring back into life and complete the process #t@ted as the procedure call
was completed. Comparable examples of synchronessaging in real life
include instant messaging, phone conversationslabdusiness meetings.

Figure 3.8 Example of synchronous messaging, eegowhere the requesting entity waits for a
response until resuming action.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

In contrast, asynchronous messaging does not Ilplaidessing or wait for a
response. As Figure 3.9 illustrates, the messagsuoger in an asynchronous
messaging setup need not be present at the tin@rdmit. This is the most
common form of communication in distributed systdmsause of the inherent
unreliability of the network. In asynchronous megsg, messages are sent to a
mediator that stores the message for retrievahbycbnsumer. This allows for
message delivery whether the consumer is reaclabh®t. The producer can
continue processing and the consumer can connedttillabind retrieve the
awaiting messages. Examples include e-mail (theswoer does not need to be
present to complete delivery), placing a telephoaleand leaving a voice mail
message (versus a world without voice mail), asdudision forums.

Figure 3.9 Example of simple, point-to-point agymmnous messaging.

There are multiple ways to execute message delivbpther synchronously
or asynchronously. Synchronous messaging incluegsest/reply applications
like remote procedure calls and conversational aggsg like many of the older
modem protocols. Our focus here is on asynchronmssaging. Asynchronous
messaging comes in two flavors: point-to-point vblsh/subscribe.

Message delivery is the messaging method usedriefar data.

Point-to-point messaging, shown in Figure 3.9, seduwhen many-to-one
messaging is required (meaning one or more produtasd to relay messages to
one consumer). This is orchestrated using a qudeassages from producers are
stored in a queue. There can be multiple consusmisected to the queue but
only one consumer processes each message. Afterabsage is processed, it is
removed from the queue. If there are multiple coms, they're typically
duplicates of the same component and they processages identically. This
multiplicity is to facilitate load balancing morehan multidimensional
processing.

Publish/subscribe messaging, shown in Figure 3idQysed when many
applications need to receive the same messagewildesdissemination of event
data makes it ideal for event-driven architectuMsssages from producers are
stored in a repository called a topic. Table 3.mnmarizes the differences
between the two modes of message flow. Unlike goitoint messaging,
pub/sub messages remain in the topic after prougssitil expiration or purging.
Consumers subscribe to
the topic and specify their interest in currenttpred messages. Interested
consumers are sent the current topic contentsafietlicdoy any new messages. For
others, communication begins with the arrival of a
new message.

Topics provide the advantage of exposing businesnte that can be
leveraged in an EDA. One consideration is the #eisn complete
indeterminism, and we will soon explore ways todiarthis.

Figure 3.10 Example of publish/subscribe (pub/sgynchronous messaging using a message
queue.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Asynchronous messaging requires a message medatadapter. This can
be achieved using a database, native languagergctsstike Java Channels, or
the most common provider of this functionality, s&ge-oriented-middleware
(MOM). MOM software is a class of applications sfieally for managing the
reliable transport of messages. This includes egipiins like IBM's WebSphere
MQ (formally MQSeries), Microsoft Message QueuinyISMQ), BEA's
Tuxedo, Tibco’'s Rendezvous, others based on Su@éa JMessaging
Specification (JMS), and a multitude of others.

JMS is the most prominent vendor-agnostic stanélaranessage-oriented-
middleware. Before its creation, messaging-basekitactures were locked in to
a particular vendor. Now, most MOM applications o the standard, making
it the primary choice for implementation teams @ned with vendor-agnostic
portability.

Table 3.1 Point-to-Point Versus Publish/Subscribe

Point-to-Point Queues Publish/Subscribe Topics

Single consumer Multiple consumers
Preconceived consumer Anonymous consumers
Medium decoupling High decoupling

Messages are consumed Messages remain until pargegbiration

The Ideal EDA

Having taken our deep dive into the key charadtesisof EDA, we can now
examine a workable, if idealistic definition of EDWith the usual caveat that no
architecture will, in all likelihood, ever embodyDB in 100% of its
functionality, we can define EDA as an enterprigghiééecture that works in the
following ways:

EDA: What It Is

= An EDA is loosely coupled or entirely decoupled.
= An EDA uses asynchronous messaging, typically /s
= An EDA is granular at the event level.

n EDAs have event listeners, event producers, evertepsors, and event
reactors—ideally based on Simple Object AccessoRobt(SOAP) Web
services and compatible application components.

m An EDA uses a commonly accessible messaging baektsuch as an
enterprise service bus (ESB) as well as adaptermtermediaries to
transport messages.

= An EDA does not rely on a central controller.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA: What It Does and What It Enables

= An EDA enables agility in operational change mamnagyet.

= An EDA enables correlation of data for analyticsl dsusiness process
modeling, management, and governance.

= An EDA enables agility in realizing business anabl/tand dynamically
changing analytic models.

= An EDA enables dynamic determinism—EDA enables eéhterprise to
react to events in accordance with a dynamicalgnging set of business
rules, for example, learning how to avoid shooting cat and petting the
lion (in contrast to controller-based architectutest can be too rigid to be
dynamic, for example, shooting the cat, not beingra of the lion).

= An EDA brings greater consciousness of events gcetiterprise nervous
system.

Though we delve more deeply into the ways that S@Vdb services enable
EDA later in the book, we want to go through a basiplanation at this point
because our described use of Web services as evedticers might appear
confusing to some readers. Much has been writtental¥eb services in recent
years, and, indeed, many of you likely already weith them. It might seem
incorrect to characterize a Web service as a “@reduof SOAP Extensible
Markup Language (XML) event state messages when Wakices, to be
accurate, actually respond to invocation, perhapgliag off SOAP XML if
instructed to do so. This is, of course, correctSAAP Web service does not
transmit a SOAP message without being triggerediotso. Thus, when we talk
about Web services functioning as event producsss,are describing Web
services that are specifically programmed to sevghtedata to the message
backbone. These event Web services could be tedgley activities occurring
inside an application or by other Web services. idason we suggest that event
producers should be configured in this way—as Wahices that transmit event
state data upon invocation—is that there is a kegkl of utility in transmitting
the event data in the portable, universally real&AP XML format.

Figure 3.11 revisits our phone company example stmmivs a high-level
model of how its systems would function and intemgpe in an ideal EDA. Let's
make a few basic observations about how the conp&yA works. With an
EDA, in contrast with the traditional enterprisepbqation integration (EAI)
approach, the company’s three system groups alkl sament data through
adapters and message listeners to a service bueguivalent EDA hub that
manages a number of pub/sub message queues feystdims that need that
event data to carry out their tasks.

Figure 3.11 A high-level overview of an event-@rivarchitecture at a phone company. Each system
group is loosely coupled with one another usingddads-based pub/sub asynchronous messaging.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

As shown in Figure 3.12, using a dynamic determinimodel, the order
management system can now listen for overagesnuates and unpaid bills that
occur in billing and line management system eveartd respond to them
according to the business rules. Thus, if “John eQteeds his allowance of
wireless minutes and fails to pay for the overdlge,business rules contained in
the order management system will deny him the rigrgdd new services to his
account.

Figure 3.12 In the phone company EDA example, sg@pavents in two systems—an overage in
wireless minutes and an unpaid balance in thengiliystem—are correlated by an application that
then denies the order management system the abilgsant the customer a new service request.

The order management system does not have to Hawekind of
preconception about the line management system itha¢éeded to have to
provide this function under the EAl model. The taystems are decoupled but
still interoperating through the EDA. The billingstem is the event producer
and the order management system is the event censum

Figure 3.13 shows how event listeners detect tle d@parate events—the
unpaid overage charge and the overage in minusedf.itThe EDA-based
application that authorizes or declines the newiserrequest subscribes to the
event publishing done by the line management anlihdisystems. The
combination of events—unpaid balance and overagminfites—combines to
change the state of John Q’s account. The changgte is itself an event. John
Q’s status goes from “eligible” to “ineligible” fonew services. If John Q
requests new services, the order management sykieks to the EDA
application to determine if John Q’s status isibley

Figure 3.13 The EDA-based application subscribem/ent data that is published and consumed by
event listeners on separate systems. This giveSBi#ebased application the ability to have
awareness of changes in state related to Johnh@utitightly coupling any of the applications
involved in the query.

EDA opens new worlds of possibility for IT's abjlito serve its business
purpose. Think of all the business events a systund leverage if events were
exposed—examples include events such as ordergsiogecomplete, inventory
low, new critical order placed, payment receiveshrection down, and so on.
Today, it's a struggle to expose the needed evstause they're hidden away
within legacy systems. It's common to resort toablase triggers or polling to
expose these critical actions, but imagine the supple agility if the systems
exposed those actions natively.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Exposing system actions is the root of most intigmacomplexities. “Upon
completion of processing at System A, send resudystem B,” and so on. Most
legacy systems were not designed with unanticipasedn mind. They assumed
they would be the only system needing the inforomand thus didn’t expose
key event data for easy access. If you're luckg #iystem will provide an
application programming interface (API) to retriedata, but rarely will it
facilitate publishing an event or provide any eveasttieval mechanism. Because
events are typically not exposed, the first thirgu yhave to do is create an
algorithm to determine an event occurred. Oftegady system events have to be
interpreted by correlating multiple database fie(dg., “If both of these two
fields change state, then the order has been shipfje Imagine how much
easier integration would be if such event actioesawatively exposed.

Event-driven architectures are driven by system ergsibility (not
controllability) and are powered by business eveAts shown in Figure 3.13,
event handlers listen to low-level system eventdeMBDA agents respond to
coarser-grained business events. Some agents onghtrespond to aggregate
business events, creating an even coarser SysSponse.

EDAs are based on dynamic determinism. Dynamicraétésm relates to
unanticipated use of applications and informatiseess. Events might trigger
other services that might be unknown to the evabtigher. Any component can
subscribe to receive a particular event unbeknawthé producer. Because of
this dynamic processing, the state of the transad8 managed by the events
themselves, not by a management mechanism.

EDA embraces these concepts, which facilitate fidigt and extensibility,
ultimately increasing a system’s ability to evolVéis is accomplished through
calculated use of three concepts—Iloose couplingndmsony, and stateless
(modeless) service providers—though it doesn’t cofree. EDA brings
inherently decentralized control and a degree @étierminism to the system.

One of the main benefits of EDA is that it faciléa unanticipated use
through its message-driven communication. It reeasformation previously
trapped within monolithic systems. When designinQAEcomponents, you
should design for unanticipated use by producirenes/that can provide future
value whether a consumer is waiting or not. YourAEEbmponents should be
business-event-intuitive, publishing actions that\alued at a business level.

Imagine an EDA billing component. After it has 8hied billing a customer,
it should announce the fact even if there is neernirneed. What if all financial
actions were being sent via events? Recognizingtiieme was no immediate
need for these events when the systems were dhgibailt, look at how
beneficial it would be today. Imagine how easy thauld have made your
company’s Sarbanes-Oxley compliance efforts. Ofrsmuit takes a degree of
common sense in determining what might be of vaiuine future, but it's safe
to say that most concrete business state chandiebemialued. The caution to
note here, though, is that it is possible to craatevent publishing overload that
overwhelms system and network capacity.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA components should also be as stateless asbfms$he system state
should be carried in the event, not stored withzomponent variable. In some
situations, persistence is unavoidable, especidllithe component needs to
aggregate, resequence, or monitor specific evétasiever EDA components
should do their job and pass on the data thenrrétuprocess or wait for the next
event. This gives the system ultrahigh reuse piatersnd flexibility. The
flexibility of an EDA is leading to emerging condsphat leverage events at a
business process level.

Consciousness

EDA brings consciousness to the enterprise nensyssem. Without event-
driven architecture (EDA), enterprises operate fathey’'re on life support.
They're comatose (brain dead), meaning they argvareaof their surroundings.
They cannot independently act on conditions withmokered instruction or the
aid of human approval. Service-oriented architetu(SOAsS) define the
enterprise nervous system, while EDA brings awasn@/ith the right mix of
smart processing and rules, EDA enables the emderprervous system to
consciously react to internal and external condfighat affect the business
within a real-time context.

Consciously reacting means the architecture actgvamts independently
without being managed by a central controller. Ulyilegy components react to
business events in a dynamic decoupled fashiors. i§hin contrast to the central
controller commonly seen in SOAs.

Imagine the analogy of our consciousness with atefuof functional
components. Sections of consciousness procesgaaftarmation, just like each
component has an area of expertise. Componentdavgiertinent information,
process, and fire an output event. The output mightdestined to another
component or to an external client. Our consciossmeorks in the same manner,
processing information and sending output to eitbiérer synaptic nodes or
externally, perhaps through vocal communicationbaith of these cases, the
messages were not sent to a central controllee¢ad where to route or what to
do. The behavior is inherent in the design.

This is in direct contradiction to the way we teauid learn to program.
Schools and universities teach us to start evesjeprr with a central controller.
In Java, this would be the main method, where #tpisnce of control and the
flow of information are controlled. This type ofssgm is tightly coupled with the
controller and is difficult to make distributed. day’s architectures need to be
looser coupled and more agile than we've been taugh

Today’s systems need true dynamic processing. ®Bgstre classified as
dynamic or static, but, in reality, most systeme atatic; they have a finite
number of possible flows. If a system has a cewwatroller, it's definitely static
even if control branches are based on runtime nmétion. This makes testing
easier because of the degree of predeterminatibddas not provide the agility
of a dynamic system.

A central controller with a limited number of pdsfities decreases agility.
When the system needs to change outside of thassbjiities, new rules and
branches are added, increasing the tight coupling aomplicating the
architecture. Over time, the branching rules becemeomplex that it's nearly
impossible to manage and the system turns legacy.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

EDA is about removing the rigidity created by cahtiontrol and injecting real-
time context into the business process.

We need to be clear about one thing here: Whenalleabout removing
central control, we are not suggesting that you loareffective in an EDA by
removing all control from the application. An unt¢ailed application would
quickly degenerate into chaos and lock itself ugnaction, or in inappropriate
action. Real-world autonomic systems see this: dneisture-ridden sensors in
a B-2 bomber sent bad data to the aircraft’'s coerperusing it to fly itself into
the ground. Another example is the human body’'paese to significant blood
loss: If the body loses a large volume of bloo@, bnain detects the fact that it's
not getting enough oxygen (decreased blood) andnaitically dilates the
vascular system and increases the heart ratee Ibltfod loss is due to an open
wound, this serves only to lose blood faster! Semvive talk about EDA’s lack
of reliance on central control, we mean that thetrabd is distributed in the form
of business rules—and distributed rules must bdignamred to trigger appropriate
actions. The event components contain business thkt are implemented as
each event component is activated. The result isagplication, or set of
applications, that operates under control, butwitit a central controller.

Event-driven architectures insert context intopghecess, which is missing in
the central controller model. This is where theeptl for a truly dynamic
system emerges. Processing information has a doateglement often only
available outside of the central controller’s viekwen if that contextual change
is small, it can still have bearing on the way dsdtauld flow.

One contextual stimulus is the Internet. The Irgerihas opened up
businesses to a new undressing. Business-to-bssitragsactions, blogs,
outsourcing, trading partner networks, and usermnsonities have all cracked
open the hard exterior of corporations. They pre\ad easily accessible glimpse
into a corporation’s inner workings that wasn’t gget before. This glimpse
inside will only get larger with time making thenier workings public knowledge
and making media-spin-doctoring of unethical padimore evident.

Don Tapscott in The Naked Corporafidalks about how the Internet will
bring moral values to the forefront as unethicactices become more difficult
to cover and financial ramifications increase. Basses will be valued on their
financial standing along with reputation, reliayiliand integrity. This means
businesses will have to change their process flagetd on external conditions
such as worldly events and do so efficiently.

Information is being aggregated in different waRsisiness processes are
changing and being combined in real time with exémdata such as current
worldly events. Because of the increased exposureugh the Internet,
guestionable businesses practices are being urembveometimes, these
practices are unknown to the core business, hensdsses want to react
quickly to the publicity. Imagine a news investigatthat uncovers a major firm
is outsourcing labor to a company involved in chdldvery. For example,
company X is exposed for buying from a cocoa famWest Africa’s Ivory
Coast that uses child slavery. The business waooihdediately want to stop their
business transactions with that company and retbeta to a reputable supplier
before the damage becomes too great.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

For ethical reasons, eBay continually blocks awstithat attempt to profit
from horrific catastrophes like major hurricanespace shuttle accident, or even
a terrorist attack like 9-11. Imagine the publipnession of eBay if this was not
practiced and they profited from these events.

Now imagine having a system that's worldly awarewgh to circumvent
business processes if these cases should occupo&uphis system had an
autonomous component that compares news metad#tabwsiness process
metadata and curtails the process at the first giggoncern. The huge benefits
definitely outweigh the calculated risks. Simplyaeting a purchase order to
another supplier with comparable service levelsndefy has a big upside. If the
autonomous deduction was correct, it might havedalkie company millions in
bad press while maintaining their social respoligjbilf it was wrong, then no
real harm was done because the alternate compdrstilivdeliver on time.

A similar scenario could support eBay’s ethics. @&rfonomous component
that compares news metadata with auction metadatl avithhold auctions
based on real-time news events. If correct, it@salve the company from public
embarrassment. If wrong, little harm was done othan to delay an auction
start time.

EDA can provide this dynamic monitoring, curtailingnd self-healing.
Event-driven architecture facilitates bringing thesxternal contexts into the
business process. The idea is that the separagbmebn concrete business
process and day-to-day reality is blurring. Bussess might be required to
change their process based on unexpected extesmnatise This is much different
from the days where an end-to-end business probegpened within a
company’s boundary (and control). Combining thigdevith the traditional
business need for rapid change means flexible taatbire design is paramount.
One way to ensure this flexibility is through th® FEDA way—Dby reducing
central control and adding context to the busipessess.

BAM—A Related Concept

Business Activity Monitoring (BAM) is related to ED but different enough that
we discuss it in brief. Our goal is to help youfeliéntiate between BAM and
EDA, as the two ideas are often used interchangealiT discussions. We do
not think they are interchangeable.

BAM is the idea that business decisions would béeb@and more timely if
they were based on timely information extractedulgh business activities that
are exposed near real time. Too often, decisiomsrade based on warehoused
data that is stale or misrepresented because @viable gathering technique.
Event-driven architectures make it easier to tép key business activities. BAM
components monitor these activities, aggregate itfiermation, watch for
anomalies, send warnings, and represent the daphigally.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson
Education, Inc.

Historically, most of the activity in this area washieved with in-house built
dashboards. Now we're seeing more vendor prododisel space. BAM is most
useful in situations where quick critical decisioas important. Interesting
applications of this concept include illustratinge\K Performance Indicators
(KP1), watching for homeland security anomalies, nitaring supply chain
activities, and discovering business-to-busines2B]B exchange patterns.
Implementing a BAM solution within your EDA is alsibalways a good idea.

Chapter Summary

» In this chapter, we move forward with our metaplodrEDA as the
enterprise nervous system and match the EDA conmsresvent
producers, listeners, processors, and reactorsheio ¢quivalent in the
nervous system. Event producers and consumerikaned to the sensory
nerve endings that pick up and relay informatioowlour senses to our
brain, which is like an event processor. Reactiog;h as physical
movements, are like the event reactors. For additiccontext and
framework, we look at event-driven programming,aaectechnology of
most PCs, as a comparable example of events, éstmting, and event
processing on a lower level of functioning tharEdhA.

» To complete our understanding of how EDA works, then carry this
enterprise nervous system idea further and taken-gepth look at the
characteristics of EDAs and their components. Again focus is on the
EDA of the future: an implicit, complex, and dynaniiDA, one that can
adapt easily to changes and continually expane#sh of event detection
and event reaction.

s EDA components must be loosely coupled to funatipmamically. Loose
coupling requires that EDA components have lowI|keweé preconception
about each other and maintainability. An EDA worksst if each
component functions independently, with little ngdedknow about the
other components it is communicating with, and fewifications if one
component is modified.

» EDASs, unlike conventional applications, do not retycentral controllers.

= Events (state change notifications) are centrartdeDA. An event can
take the form of a message and an EDA is a messasps idea. To work,
an EDA'’s loosely coupled components must be ablgrtmduce and
consume messages. The messages could be relaweenb listening,
processing, or reactions. The more easily the mgesszan flow across the
EDA (which might span multiple enterprises), thdtérethe EDA will
work.

Event-Driven Architecture, Addison-Wesley, Copyright 2009 Pearson

Education, Inc.

= Asynchronous, or publish/subscribe (pub/sub) measgags one of the

Endnotes

L _wik

best foundations for an EDA. As the EDA compon@aisimunicate with
one another, they feed messages (events) intoeart bus. Event listeners
receive the events, and then EDA components prdbessvent data as
required by the EDA’'s designed purpose. Pub/suldesl for EDAs
because it removes a lot of message flow depengeificdm individual
components. It is simpler, for example, to conreant listeners using
pub/sub than to tightly couple them together, whe&teanges in
configuration are costly and slow to accomplish.

To achieve loose coupling and asynchronous mesgaginEDA relies on
message intermediaries. In some cases, these@m kas service buses.

The ideal EDA, therefore, is a loosely coupled, /pub-based
architecture, with low levels of preconception ahijh degrees of
maintainability among the components.

ipedia. Event-Driven Programming. August 2004.

http://en.wikipedia.org/wiki/Event-driven_progranmmi
% _Tapscott, Don. The Naked CorporatiomNew York: Free Press, 2003.

