Definung the
Open SOA Plaiform

This chapter covers
m Evaluating open source products
m Selecting the products

In chapter 1 we explored some of the history behind SOA, and then we examined
the key technology underpinnings of a SOA environment. Now we’ll focus on iden-
tifying a suitable open source product for each of these technology areas. Collec-
tively they’ll comprise what we’re calling the Open SOA Platform.

The open source community includes many early advocates of the recent wave of
emerging SOA-related technology projects. Historically, open source has sometimes
been considered a “late-follower,” with commercial products first to hit the market,
and then followed by “me-too” open source alternatives. One reason often cited by
critics of open source is that open source projects are often not innovators but imi-
tators (of course, some might argue Microsoft has done very well by following the
imitation model). There may be some truth to that criticism, but many of the prod-
ucts we’ll be examining are innovative and cutting edge. In some instances, the rea-
son development has lagged vis-a-vis commercial offerings is simply because of
resource challenges—open source projects are often supported and staffed by a
small team of developers, many of whom have full-time responsibilities elsewhere.

28

Licensed to Manning Marketing <stho@manning.com>

29

Overall, it did take some time before a comprehensive collection of open source
projects achieved sufficient breadth and maturity to offer a compelling alternative to
the highly priced commercial alternatives. Now, you can choose among many options
for crafting an entirely open source SOA environment. This chapter forms the basis for
the remainder of the book—it identifies the open source products that we’ll be explor-
ing in greater detail in the chapters that follow. The selected products will form the
basis for our Open SOA Platform, and we’ll illustrate how these products can be inte-
grated together in a coherent fashion so that, combined, they’ll equal or surpass in
value the offerings by the commercial SOA vendors. Figure 2.1 recaps the technologies
involved in the Open SOA Platform and highlights (in double-width lines) those that
we’ll investigate moving forward (as you recall, JMS, application servers, and GUIs are
covered thoroughly by other publications or are fairly commoditized in functionality).

Over the past five years I've had the opportunity to participate in “real-life” projects
that have used many of the open source products discussed in this chapter. In choosing
which ones will constitute our Open SOA Platform, I had to select a single product
within each product category. This isn’t intended to suggest those that aren’t selected
are any less worthy. As with any evaluation process, the final choice is based on some
combination of objective and subjective facts (obviously, we all want to believe we only
use objective facts, but human nature often dictates against such logic).

Before we dive into each of the technology categories and the open source possi-
bilities within each of them, let’s first establish some general, universal criteria that we
can use when evaluating any of the products.

;_I_

= TRy
N I* Orchestrated
— Business
Processes
5 0 N s
s || 2 2
) 2 < == |===| = == Business Publish =
S|l § [Enterprise | = = = = gl = g
g "; Decision Registry((!:F)) =
. \ =
§ g‘ Management | f m !,,..,OBRMS o
£ © m
S I ~N | 3
9 3 i Enterprise Adapters)| S
o Composite P 1]
i L :ﬁawces Services (}C)O C)C)O(:)C)O ‘ Sopvice %__ 2
2 Bus =
@ S | components
= 1 N A XX XXX e
d N
ERP CRM Back-
= l{ ffice [|
Y/ 3

Figure 2.1 Open SOA Platform technologies. Those surrounded in double-width lines represent what’s
covered in this book.

Licensed to Manning Marketing <stho@manning.com>

30

2.1

2.2

CHAPTER 2 Defining the Open SOA Platform

Evaluating open source products

Some general criteria exist for examining all of the technology products that consti-
tute the Open SOA Platform. They’re described in table 2.1.

Table 2.1 Open source selection criteria, general guidelines

Criteria Comments

Viability Is the product widely used, and does it enjoy a strong user commu-
nity? Is the solution well documented? Are sufficient development
resources committed to the project?

Architecture Is the architecture of the product complementary to the other prod-
ucts we are evaluating? Is it well documented and logical, and does it
adhere to common best practices and patterns?

Monitoring and management Does the product provide off-the-shelf monitoring and management
tools? Since we are mostly evaluating Java products, does it utilize
JMX, which is the standard for instrumentation and monitoring of Java
applications?

Extensibility Can the off-the-shelf solution be extended to add new functionality?
Does a pluggable framework exist for adding new functionality?

“True” open source This is a sensitive topic, but we want to consider only products that
are licensed using one of the common open source licenses: GPL,
LGPL, BSD, Apache, or Mozilla Public License. We want to avoid, if
possible, “free” or “community” versions that retain restrictions in
usage or modification.

Now that we’ve identified the general evaluation criteria that we can apply to evaluat-
ing the technologies that constitute the Open SOA Platform, let’s look at each tech-
nology category and identify for each an open source product that we’ll use. In this
process, we’ll identify competing open source solutions and address (a) the criteria
used for evaluating the products within a category, and (b) the justification for why a
given product was chosen. Let’s start with BPM.

Choosing a BPM solution

As we discussed in chapter 1, BPM refers to software that can be used to model and
execute workflow processes. BPM can be considered another form of application
development, albeit more visual in nature. Also, design and early development of BPM
processes can often be performed by subject matter experts instead of hardcore devel-
opers (that said, the latter is often still required, at least in later stages of the develop-
ment cycle). Why is BPM considered part of SOA? It is because it directly benefits, and
is enabled by, the exposing of reusable services that is central to SOA. With BPM, you
can create business processes that span across multiple, previously stovepiped, applica-
tions. In this sense, BPM applications are often fundamentally different from tradi-
tional applications, and are less focused on performing a specific task and more

Licensed to Manning Marketing <stho@manning.com>

221

Choosing a BPM solution 31

oriented toward an entire business process. For example, a new hire process within a
company may involve setting up the individual in a multitude of different systems,
from benefits and payroll to a 401 (k) system. A BPM process models that entire work-
flow and isn’t isolated to populating just one of the applications with data.

What is a “stovepiped” application?

A stovepiped application, by its design, is completely isolated and self-contained.
Legacy applications, which were often developed with little notion of integrating with
external data or systems, are often considered stovepiped. SOA tools provide the
ability to unlock the business rules and operations of these stovepiped applications
into services that can be invoked externally. Existing investments can be leveraged
without having to resort to replacing critical business systems.

It’'s worthwhile to distinguish between some of the terms used in BPM, as the
terminology can sometimes be rather confusing:

= A workflow is generally understood as series of human and/or automated tasks
that are performed to produce a desired outcome. A fancier name for workflow
that is commonly used is orchestration.

= Closely related to workflow is a process. It’s defined as “a set of activities and
transactions that an organization conducts on a regular basis in order to
achieve its objectives... It can exist within a single department, run throughout
the entire enterprise, or extend across the whole value chain” [BPMBasics]. A
process may involve one or more workflows.

= A task represents a specific work item that must be performed, most typically by
a user. Tasks constitute the work within the workflow.

= A nodeis a generic command or step within a process. It can be a task, a wait
state, or a decision. A business process consists of nodes.

= A transition (or, in XML Process Definition Language [XPDL] nomenclature,
edge) defines how nodes are connected.

BPM systems, by their nature, involve modeling what can be complex processes. Math-
ematical algorithms are often used as the basis for implementation and can be fairly
arcane to understand for those not steeped in its principles. The requirement to visu-
ally model workflows also represents a significant development challenge. These are
perhaps the reasons why open source BPM solutions were, at first, slow to emerge.
Recently that has changed, and you can now choose among several excellent open
source BPM systems. We’ll discuss how to make a wise choice in the next section.

BPM product evaluation criteria

As you recall, in section 2.1 we discussed general criteria for evaluating open source
SOA software. There are obviously some additional BPM-specific criteria that we’ll
want to consider; they are listed in table 2.2.

Licensed to Manning Marketing <stho@manning.com>

32

222

CHAPTER 2 Defining the Open SOA Platform

What’s the difference between BPM and BPEL?

BPEL (Business Process Execution Language) can be considered a subset of BPM.
BPEL provides a semantically rich language for creating business processes that are
composed of SOAP-based web services. It's a specification for how to materialize a
business process that’s composed of SOAP-based web services. BPEL, by itself,
has no specific provisions for human activity—based tasks or queues (though the
emerging BPEL4People—WS-BPEL Extension for People—will address some of
these deficiencies), which are typically associated with workflow-based BPM pro-
cesses. The BPEL standard also doesn’t specifically address reporting, analysis, or
monitoring, though some BPEL vendors have augmented their offerings to include
such features. In other words, the term BPM is typically used when referring to com-
plete product offerings whereas BPEL is typically used to refer to the web service or-
chestration standard.

Obviously, this only scratches the surface of the underlying functionality typical in any
BPM solution. However, it does touch on some of the most important features and
provides us with guidance on identifying what constitutes a BPM. That way, we can
identify possible open source products, which is our next topic.

Table 2.2 BPM evaluation criteria

Criteria Comments

Simplicity BPM solutions, particularly those by commercial vendors, have a history
of being very complicated to learn and even more difficult to deploy. Cir-
cumstantial evidence suggests many solutions become expensive “shelf-
ware” and never live up to the promises anticipated. We want our
solution to be simple to learn, deploy, and manage.

Lightweight/embeddable In part related to simplicity, this criterion refers to the ability, if need be,
to incorporate the BPM “engine” directly into an application. For example,
you might be building a new loan processing application and want the
ability to embed a workflow engine directly within it without having to
manage it externally.

Process nodes Are all standard process nodes available out of the box? This would
include decision/conditional routing, human-interface task support,
forks/splits, and joins/merges. Can callout nodes or capabilities exist to
invoke Java and web services?

Transactional requirements Do auditing, logging, and rollback/compensation features exist? Are
long-running transactions supported? Are roles and users supported?

Open source BPM products

As we pointed out earlier, BPM solutions tend to be fairly complex in nature. This is
both because of the visual modeling requirements and the complex workflow algo-
rithms that drive the BPM engine. Fortunately, within the past few years, we’ve seen
exciting developments in the open source community surrounding BPM, and there

Licensed to Manning Marketing <stho@manning.com>

Choosing a BPM solution 33

are now several excellent products to choose from. Table 2.3 lists the most active BPM
open source products available today.

Table 2.3 BPM open source product overview

Product

Comments

Intalio BPMS
(Community Edition)

ActiveBPEL Engine

Apache ODE

Enhydra Shark and Java
Workflow Editor (JaWe)

JBoss jBPM

ObjectWeb Bonita

WSO02 Business Process
Server

Feature-rich BPM that uses business process modeling notion (BPMN) to
generate BPEL-based orchestrations. Unfortunately, only parts of Intalio’s
solution are open source, with some confusing licensing restrictions.
Also, since BPMN is converted to BPEL (with that code being proprie-
tary), extending the product seems problematic, and reliance on BPEL
means support for only SOAP-based web services.

An efficient and highly regarded BPEL engine. Models can be designed
using the free, but not open source, Designer. Important functionality
such as persisting process instances to a database, or versioning of pro-
cesses, is only supported out of the box in the commercial Enterprise
version. My experience using the product suggests that the open source
release isn’t suitable for production usage.

Apache ODE (Orchestration Director Engine) is a runtime BPEL engine. Its
APl is such that you can extend it in new and interesting ways, and thus
aren’t tied to the SOAP-only invocation of BPEL. The licensing model is
very attractive, and the engine is lightweight and can be exposed, via
Java Business Integration (JBI), to ServiceMix, an excellent open source
ESB, which we cover later. Apache ODE doesn’t come with a designer per
se, but you can use the beta of the Eclipse BPEL editor.

Shark is a workflow engine that adheres to the XPDL workflow standard
that’s supported by the Workforce Management Coalition (WfMC). JaWe
is an XPDL editor, but has some limitations compared with its commer-
cial cousin, Together Workflow Editor. Documentation specific to Shark
was difficult to locate, and the emphasis, like with Intalio and Active-
BPEL, is to push you toward commercial products.

A mature, efficient, and lightweight process/workflow engine with a
usable Eclipse-based modeler. Uses its own terse XML graph notation
language known as jPDL (jBPM Process Definition Language), and
includes support for all core modeling nodes, such as decision and fork.
Can be easily extended and isn’t tied to a particular deployment frame-
work. Unlike several others, there is no commercial “upgrade,” and no
functionality is specifically excluded.

Powerful, XPDL-compliant workflow engine. Well documented and mature.
Includes excellent human-task Ul integration (i.e., form generator).
Doesn’t come with an open source editor, and requires the JOnAS (Java
Open Application Server) application server.

The WSO02 Business Process Server is based upon Apache ODE, and adds
a web-based administrative interface along with simulation capabilities.

While the overview in table 2.3 doesn’t delve deeply into the feature sets of each avail-
able solution, the criteria we established does point to Apache ODE, JBoss jBPM, or
Bonita as the most appealing of the solutions. We’ll address the reasons for this next.

Licensed to Manning Marketing <stho@manning.com>

34

223

224

CHAPTER 2 Defining the Open SOA Platform

Selecting a BPM solution

For several of the products listed in table 2.3, licensing issues were a major consider-
ation in their exclusion from further consideration. In the case of Intalio, only some
portions of their product are truly open source. With several others, the open source
releases are more of a teaser to encourage upgrading to a commercial product
(Shark/JaWe, ActiveBPEL). While Apache ODE can be fairly easily extended, it
doesn’t come with any built-in support for human-interface tasks, which (though not
a part of the core BPEL standard) are an essential part of a BPM. Also, given that it’s a
BPEL execution engine, it’s limited to working with SOAP-based web services, and
can’t, for example, directly invoke a Java class or populate a JMS message (granted,
you could extend it to support this, but then it’s no longer truly supporting the BPEL
standard). For these reasons, we didn't select ODE, or WSO2's Business Process Server,
which is based on ODE, as the BPM product.

ObjectWeb’s Bonita offers an attractive open source solution. It has a proven heri-
tage dating back to its 1.0 release, and with the release of Version 2, added support for
XPDL. Unfortunately, Bonita doesn’t come with an XPDL editor. Instead, Bonita sug-
gests using one of the available open source or commercial editors. This raises a con-
cern, as the open source XPDL editors don’t appear to be sufficiently robust (at least
compared with their commercial alternatives). An additional concern is the newer
version’s reliance on the JOnAS application server. This will limit the ability to embed
the engine within other applications. Because of these reasons, we didn’t consider
Bonita moving forward.

This leaves JBoss jJBPM. It’s a simple-to-use, but very powerful, workflow engine. As
mentioned, jPDL is the XML vocabulary used to express business processes, and they
can be created visually using the jPDL Designer, an Eclipse-based plug-in. Further,
centralized administration of jJBPM processes can be managed through the jBPM
Console, which is a web-based management tool. jJBPM has the financial backing of
JBoss and enjoys a fairly vibrant user community, based on forum and mail list activ-
ity. It also is being extended to support those who want to use BPEL scripts for work-
flow execution (at its core, it’s a graph-based process engine). For these reasons, we
selected it as the BPM solution for our SOA technology stack. Let’s take a more in-
depth look at jJBPM.

Introducing JBoss jBPM

The jBPM project’s first official release was in early 2004, followed by the 2.0 release
later in the year. At approximately the same time, the jBPM team merged with JBoss,
officially making jBPM a part of the JBoss family of products. Since the merger, the
product has been managed and led by largely the same team, which has resulted in a
solid, robust, and time-tested product. At the time of this writing, the 3.3 release of
jBPM was the latest production version, with 4.0 in early alpha (we didn't use the 4.0
release for this book as it remains very fluid).

Licensed to Manning Marketing <stho@manning.com>

2.3

Choosing an enterprise decision management solution 35

JBoss describes jJBPM as “a flexible, extensible framework for process languages,” or
alternatively as a “platform for graph-based languages.” The jBPM Process Definition
Language (jJPDL) was the first, or “native,” process language developed on this frame-
work. jBPM comes with the jPDL Eclipse plug-in Designer for easily creating business
processes, along with a web application page-flow framework for creating human-
based tasks. It supports persistence of process instances by storing them within nearly
any open source or commercial database (using the well-respected Hibernate object-
relational database mapping framework). Chapters 5, 6, and 7 will delve into great
detail on jBPM.

Choosing an enterprise decision management solution

Enterprise decision management (EDM) is an approach to automating and improving the
decisions a business makes on a day-to-day basis. It plays an important role in our
Open SOA Platform, as it provides the centralized management for all of the business
rules and logic associated with each of the applications.

Fundamentally, an EDM is about extracting the decisions and rules that are today
embedded into applications or people and systematically exposing them as rule assets
that can be centrally managed and authored. Some have gone so far as to proclaim a
“Business Rule Revolution” is under way, insofar as it “represents an emerging undeni-
able need for the right people to know what a business’s rules are, to be able to change
those rules on demand according to changing objectives, to be accountable for those
rules, and to predict, as closely as possible, the impact of rule changes on the business,
its customers, its partners, its competition, and its regulators” [VonHalleGoldberg].

What’s the difference between BRMS and EDM ?

EDM, besides sounding a bit sexier and less boring than Business Rule Management
System (BRMS), is also considered to be a superset of BRMS. By that, it also in-
cludes leveraging analytical models that can be derived from data warehouse or busi-
ness intelligence capabilities to conceivably create self-tuning rulesets. The reason
we chose EDM for this book was that EDM is becoming the more recognized acronym
for rule-based systems. Consider it similar to how workflow slowly became subsumed
by the more glitzy sounding business process management (after all, workflow does
sound pretty dry).

The value of managing business rules in a centralized fashion, and making them
maintainable by business users instead of developers, has long been recognized as a
laudable goal. Unfortunately, tapping into those rules from external applications and
processes was often a considerable challenge. Early business rule vendors had their
own proprietary API, often in one or two supported languages. This made integrating
the business rules difficult and ensured vendor lock-in. The advent of web services
and SOA opened up a vast new opportunity for incorporating a BRMS. Since web ser-
vices are designed to be language and platform neutral, centralized business rules can

Licensed to Manning Marketing <stho@manning.com>

36

CHAPTER 2 Defining the Open SOA Platform

now be accessed by virtually any application. Further, composite applications, such as
business processes designed using a BPM, can easily tap into a BRMS for decision-based
content routing rules. Perhaps the hyperbole of a “Business Rules Revolution” isn’t
such an exaggeration after all. In this case, the foundations of SOA become an
enabling force to this exciting, even enterprise-changing, technology.

Figure 2.2 depicts the main components of an EDM.

In figure 2.2, we see a repository of rules broadly categorized according to the types
of rules they are, such as “Constraint Rules,” which serves, for instance, to impose limits
such as the maximum amount of credit to extend to a customer. These various types of
rules constitute the rule repository, which obviously has a central role in a rules system.
The Rule Engine component, sometimes referred to as the inference or execution engine,
represents the algorithms and logic that define how the engine works. The API/Web
Service layer defines how you interface with the system. Many EDMs include multiple
language-specific libraries and APIs, and often a SOAP- or REST-based web service inter-
face. The Authoring IDE is the tool for writing, editing, testing, and categorizing rules.
An important aspect of the authoring environment is whether support for domain-spe-
cific languages (DSLs) is available. This refers to the ability to express rules in a lan-
guage that’s natural to the business user yet has rigorous semantics. Consider it
analogous to building your own programming language using a business vocabulary
(hence, it’s sometimes referred to as “language-oriented programming”). The External
Apps are those applications that are utilizing the rules engine.

What’s the role of EDM in SOA? One of the principal tenets of SOA is designing sys-
tems that are flexible and agile. Rules engines are instrumental in advancing this con-
cept, as they allow business rules to be changed independently of making application
modifications. This effectively eliminates having to go through drawn-out develop-
ment and testing cycles, thus improving agility. This obviously also contributes to
loose coupling (another tenet of SOA), as the binding between an application and its
business rules is no longer as tight. The next section delves more deeply into the crite-
ria used for evaluating an EDM offering.

Decision Services

0 Guideline
2 Rules a
= Constraint Routing
s Rules] Rules
Computational
% Rules
= Action E\Hlant
ules
External E’ Riltes Deduction
Apps H < Rules

Rule Engine

Figure 2.2 The components of an EDM, and its relationship to API services and rule engine

Licensed to Manning Marketing <stho@manning.com>

23.1

23.2

Choosing an enterprise decision management solution 37

EDM product evaluation criteria

Section 2.1 identified some general criteria for evaluating the various SOA technolo-
gies, and an EDM obviously has some additional product-specific requirements.
Table 2.4 identifies some key requirements we’ll use when analyzing the suitability of
the various open source rule systems.

Table 2.4 Open source selection criteria, general guidelines

Criteria Comments

Centralized rule repository Central to the concept of EDM is a repository that enables rules to be
and classification classified, managed, and versioned. This should include the ability to
add custom metadata and properties to each rule and ruleset. Security
and access control are also important requirements.

Auditing and logging In a time of increasing regulatory and compliance demands, the ability to
audit the frequency and outcome of rule actions is essential. This can
also provide analytical feedback to rule authors, allowing them to refine
and improve their rules over time.

Integrated development A complete authoring environment for design, creating, testing, and pub-
environment (IDE) lishing rules. Usually should include “wizards” or other forms of assis-
tance for those new to the system.

Domain-specific language We alluded to this briefly earlier: the ability to create a language based
(DSL) support on business or domain nomenclature. An example of a rule expressed

using a DSL is, “If Order is greater than $10,000, then sales manager

approval is required.” That, in turn, would be translated into a form that
the rules engine could understand.

Robust API Refers to the ability to integrate with the rules engine. This means not
only providing programmatic access to the rule engine, but also whether
it includes support for reading/writing data from popular SQL databases,
where most fact-related data resides. In addition, the APl should support
multiple languages and/or have strong web services support.

Performance Although performance was listed in section 2.1, it is worth reiterating
because of the importance performance plays within an EDM. It’s not
uncommon to develop thousands of rules, and a highly efficient engine
must be used since many rules must be fired in a real-time capacity.

Now that we have a foundation for assessing an EDM, we can turn to identifying the
possible open source EDM candidates.

Open source EDM products

While commercial business rule solutions have been around for a decade or more, it’s
only been within the past five years or so that open source alternatives have become
available. This is no doubt because of the increased visibility that has become associ-
ated with the “business rule approach,” along with the success stories presented by the
commercial vendors. Table 2.5 identifies the open source EDM products.

Licensed to Manning Marketing <stho@manning.com>

38

2.3.3

CHAPTER 2 Defining the Open SOA Platform

Table 2.5 EDM open source product overview

Product Comments

Mandarax Primarily just a rules engine with limited IDE support (Oryx, a Ul editor for
Mandarax, is maintained by a third party, and is a bit buggy and unrefined).
Doesn’t include a repository.

OpenlLexicon Fairly new product (2006) with limited documentation. Favorable license
(modified Mozilla). Includes a polished management interface and reposi-
tory. Can create rules through a web-based interface. DSL support is some-
what limited. Doesn’t appear to be easily embeddable.

JBoss Rules (Drools) Highly mature rules engine that has undergone several significant enhance-
ments recently, which include the addition of BRMS repository functionality.
DSL support is limited but useful. Highly efficient rules engine and decent
Eclipse-based authoring environment. Lightweight and embeddable.

OpenRules Restrictive license for commercial use (for example, you must purchase a
non-GPL license if you're using OpenRules in a SaaS or ASP model). For this
reason, it wasn’t considered a viable selection for our Open SOA Platform.
That said, it’s a highly capable BRMS with a strong support community.

Jess Jess, an early and highly respected rules engine, isn’t open source or free,
though it's commonly assumed to be (it's very affordable).

TermWare Primarily targeted as an embedded solution. Doesn’t include repository,
management features, or IDE.

Based on the results in table 2.5, it appears as though the only two real choices are
OpenLexicon and JBoss Rules (hereafter referred to as Drools, its historical name).
Let’s examine the reasons next.

Selecting an EDM

Mandarax, while maintained by a fairly small team of developers, does offer some
innovative features. They include an elegant way of tapping into working memory
from a variety of data sources, as well as a novel API approach to creating functions
and predicate-style clauses using standard Java classes. Documentation is adequate.
The biggest concern with Mandarax is that it’s maintained by a small team and
appears to have a limited user base. The concern is that, over time, without a strong
user base the project could fall into quiescence and would no longer be actively main-
tained (a fate that afflicts the majority of open source projects). For this reason, we
didn’t consider Mandarax.

Both OpenRules and Jess were excluded from consideration due to their licensing
restrictions. OpenRules, while proclaiming itself as open source, doesn’t fit my criteria
of open source: using it in certain commercial capacities requires purchasing a
license. Although we are advocates of purchasing support for those open source appli-
cations that have a sponsoring company whose revenue model is based on that (such
as JBoss), we think it’s disingenuous to pitch a product as open source when a license
must be purchased for commercial use. On the other hand, Jess clearly doesn’t aim to

Licensed to Manning Marketing <stho@manning.com>

234

24

Choosing an ESB 39

mislead and doesn’t position itself as open source (free versions for certain types of
usage are available).

OpenLexicon shows great long-term promise, but the fact remains that it’s still rel-
atively new and lacks comprehensive documentation. Its nicely integrated BRMS fea-
tures and well-designed user interface should definitely place it on anyone’s open
source short list. This leaves Drools, which has a long and proven track record and has
been enhanced with more enterprise BRMS features, such as repository management.

Introducing JBoss Rules (Drools)

The Drools project began in 2001, and the first production-ready release was the 2.x
version that appeared in 2003. By 2005, Drools had become a popular open source
rules engine, so much so that in October of that year, it joined the JBoss family of prod-
ucts. With the deeper pockets afforded by JBoss (and then Red Hat, which, in turn,
acquired JBoss in 2006), the 3.0 release of Drools offered significant performance
enhancements and introduced an authoring/IDE Eclipse environment. In addition, a
new rule language, DRL, simplified rule creation. Even more substantial improvements
accompanied the 4.0 release. The rule language was enhanced; a Hibernate frame-
work was introduced for populating working memory; performance was further
improved; and, perhaps most significantly, BRMS functionality was added. The 5.0
release, which will be available by the time of this publication, adds further enhance-
ments, related to process flow and includes complex event processing features (we are
using the 5.0 release for the examples presented in this book). Drools can now claim to
be a true feature-rich alternative to commercial BRMS offerings.

The Drools team at JBoss now includes over 12 full-time staffers, along with a fairly
large contingent of non-JBoss contributors. The project has excellent documentation,
which can be somewhat of a rarity in the open source world. The mailing list is also
quite active.

If there’s a knock against Drools, it’s that a prebuilt web services interface isn’t
available. We address this deficiency in chapter 11, where you’ll learn how to easily
expose Drools rules as SOAP-based web services.

Choosing an ESB

As discussed in chapter 1, an enterprise service bus (ESB) is considered middleware
that lies between business applications and routes and transforms messages along the
way. Since the ESB acts as a messaging bus, it eliminates the need for point-to-point
connectivity between systems. Instead, when one system needs to communicate with
another, it simply deposits a message to the bus, and the ESB is then responsible for
determining how to route the message to its destination endpoint. Any necessary
transformations are performed along the way. Figure 2.3 illustrates the central role an
ESB can play.

An important role an ESB plays is bridging between different protocols. For
instance, an interface to an ERP system may require SOAP, but an internal CRM may

Licensed to Manning Marketing <stho@manning.com>

40

24.1

CHAPTER 2 Defining the Open SOA Platform

only support XML over JMS. An ESB can translate between these protocols and lift JMS
messages originating from the CRM and into a SOAP web service call understood by the
ERP (and vice versa). Typically, ESB “adapters” perform the function of communicating
with a disparate group of protocols, such as SOAP, CORBA, JMS, MQ Series, MSMQ, FTP,
POP3, and HTTP, among others. We’ll examine the ESB evaluation criteria next.

Figure 2.3 Central role of an ESB
within the enterprise

ESB product evaluation criteria

In selecting which open source ESB to use for the SOA technology platform, let’s con-
sider several ESB-specific requirements, as shown in table 2.6.

Table 2.6 Open source selection criteria, general guidelines

Criteria Comments

Protocol adapters An ESB should support, at a minimum, adapters for the following protocols:
POP3/SMTR HTTR FTR SOAR JMS and File.

Data-flow processing/ An ESB must often perform a series of tasks as part of a data gathering,
choreography routing, and transformation process. This requires the ability to chain
together multiple steps into a processing pipeline that may require content-
based routing, splitting, aggregating, and exception logic. For real-time pro-
cessing, an ESB event-flow choreography may eliminate the need for BPM-
type orchestrations (which are more suitable for long-running transactions).

Clustering and failover Given the central role an ESB plays within a SOA environment, it must fea-
ture clustering and failover capabilities. In addition, the ability must exist to
distribute, among a number of different servers, the various ESB services.
For example, XSLT transformations can be very CPU intensive, so it may be
desirable to isolate such processing on a separate server or servers.

Licensed to Manning Marketing <stho@manning.com>

Choosing an ESB 41

Table 2.6 Open source selection criteria, general guidelines (continued)

Criteria Comments

Transformations Most ESBs, if not all, are XML-centric. That is, the messages that flow
through the bus must typically be in XML format (binary data can be
addressed through Base-64 encoding). As such, the ability to transform from
one XML format to another is essential. While every ESB supports XSLT
transformations, not all support XQuery, which adds significant query and
transformational capabilities.

Service extensibility A well-defined API should exist that easily permits creation of new services
or adapters.

Although disagreement exists as to who invented the ESB (both Sonic Software, now a
division of Progress, and TIBCO claim that honor), the first real mature commercial
products began to appear around 2002. Emerging in 2004 was the first real open source
ESB, Mule. It was closely followed by ServiceMix, which in turn was succeeded by several
others. Now, there are at least half a dozen compelling open source ESBs. Indeed, it’s
difficult to make a clear-cut decision based on competing features, as several possess
nearly identical capabilities (and this is no small feat, given how comprehensive these
products are). Instead, the decision simply may come down to personal preference. In
other words, you can’t go wrong by picking nearly any of the top-tier ESBs.

What is the different between choreography and orchestration?

In a choreographed process flow, each node within the process determines which
path to proceed moving forward. For example, each node could reside within its own
Java virtual machine. It receives a message through some in-port queue, performs its
processing, and then determines which out-port queue to deposit the message. The
node is, in a sense, oblivious to its role within the larger process. With an orchestra-
tion, however, the process flow is managed centrally and typically within a single Java
virtual machine. In the case of BPEL, each time a process is initiated, an “instance”
of the process is created, and managed by the BPEL engine. If it is long-running, the
instance may be persisted to a database (a process known as dehydration). Within
a choreographed service, there’s no concept of a “process instance,” and the mes-
sages instead reside, somewhere, within the process nodes.

There’s one distinction that can be made between some of the competing products—
those that support the Java Business Integration (JBI) specification and those that don’t.
What is JBI? It’s a Java Community Process (JSR 208) specification for building a run-
time integration architecture and was formally approved in summer 2005. It expands
on WSDL 2.0’s message patterns to create a container that can house services and the
consumers of those services. Without getting too immersed now into the technical
nomenclature of JBI, suffice to say that it represents a standard for creating ESB com-
ponents and its runtime messaging environment. Although it originally began with

Licensed to Manning Marketing <stho@manning.com>

42

24.2

CHAPTER 2 Defining the Open SOA Platform

much fanfare, several early proponents such as IBM and BEA (now Oracle) soured on
the JBI, and the follow-up version of the standard, intended to address many of its per-
ceived inadequacies, has languished.

How important is JBI? That’s a matter of great debate. Obviously the proponents
of ServiceMix and OpenESB would argue that it’s an important differentiator, as you
are then not tied into a potentially proprietary solution. However, non-JBI imple-
mentations, such as Mule, could rightly point out that their product is based on
open standards, just not JBI (though they do now offer JBI integration capabilities).
It arguably also makes their products easier to use and configure, as JBI has some
fairly abstruse configuration and deployment requirements. JBI does appear to be
gaining some momentum, especially as the 2.0 specification (JSR 312) works its way
through the approval process (it’s purported to address some of the biggest deficien-
cies in the 1.0 spec).

With the JBI considerations in mind, let’s take alook at the open source ESB products.

Open source ESB products

While the product category known as ESB is a fairly recent development, several open
source products were quick to emerge. In part this was because a community of expe-
rienced developers already existed with great familiarity with messaging solutions such
as JMS. There’s a now a solid selection of products from which to choose, with several
very mature. The open source ESBs are identified in table 2.7.

As table 2.7 indicates, there are several excellent choices. Let’s take a closer look.

Table 2.7 Open source ESB product overview

Product Comments

ServiceMix Early (2005) JBI-compliant ESB. Has dozens of components/adapters and sup-
ports nearly every protocol. Allows creation of fairly complex data flows using
enterprise integration pattern components. Active project with frequent
releases.

MuleSource Mule Broad connectivity options and is strong in transformation, routing, and security.
Like ServiceMix, supports common enterprise integration patterns for real-time
choreography. Vast array of components/adapters. Well documented, mature,
and proven. Broad range of app servers supported.

Apache Synapse Positioned as a lightweight ESB that, while supporting essential ESB functional-
(WSO2 ESB) ity, is simple to use by way of XML configuration. In addition, it's designed with
high performance and availability features that make it especially suitable for
web mediation.

JBoss ESB A fairly new entrant that still appears to be maturing. Not a greatly active user
community, and using web services is tedious. Does provide nice integration
with other JBoss middleware products.

OpenESB Like JBoss ESB, a fairly new project that’s still maturing. Version 2 promises to
offer significant enhancements. Good IDE support through NetBeans plug-in.
GlassFish App Server v2 has built-in support for OpenESB, but support for other
app servers is lacking. Documentation is fairly sparse.

Licensed to Manning Marketing <stho@manning.com>

24.3

Choosing an ESB 43

Table 2.7 Open source ESB product overview (continued)

Product Comments

Jitterbit Positioned more as an “end-user ESB” that’s simple to use without being a
developer. However, lacks broad protocol support. The concept of JitterPaks is
novel and makes exchange of prebuilt integrations feasible. Backend written in
C++, which limits appeal to Java shops. Strong LDAP integration capabilities.

Bostech ChainBuilder | Adds polished user interface and management features to JBI containers such as
ESB ServiceMix or OpenESB. Eliminates a good portion of the tedium in configuring
and packaging JBI assemblies. Documentation is adequate, though the project
doesn’t appear to have a lot of downloads, which raises concern about viability.

OpenAdapter Mature, elegant, and lightweight ESB. Although it's been around for a long time,
documentation is poor. Project activity is low, although a dedicated group of
developers keeps the release cycle frequent. Maybe best suited for embedded-
type applications.

Selecting an ESB

Both OpenESB and JBoss ESB are fairly new entrants into the space. While it’s true
that JBoss ESB has been around prior to JBoss purchase of the solution, it only
recently introduced SOAP-based web services support. Sun’s OpenESB appears to be
gaining some momentum, but overall it lacks in documentation and mindshare
(there’s also confusion about its role in Sun vis-a-vis the SeeBeyond ESB that was
acquired with Sun’s purchase of SeeBeyond). At this point, we consider both OpenESB
and JBoss ESB too immature, at least compared with some of the others, to consider as
viable options.

Jitterbit, while very interesting, isn’t positioned as a full-fledged ESB in the vein of
the others. That said, it has a clever, userfriendly interface that’s intended for techni-
cal business users and not necessarily developers. It supports the most common trans-
port protocols and has excellent database connectivity with easy-to-use extraction
wizards. On the negative side, documentation remains relatively weak, and there are
some licensing restrictions introduced through its own Jitterbit Public License (which
is unfortunate). Given the end-user orientation of the product, it isn’t well suited for
the complex ESB routing and transformational abilities that our Open SOA Platform
demands. As such, it was excluded from consideration.

OpenAdapter is one of the easier ESB products to learn and use. It’s very mature,
and is lightweight and fast. It also has a devoted development team that provides fre-
quent releases. Notwithstanding these positive attributes, it doesn’t appear to have sig-
nificant momentum or user adoption. Disappointingly, its documentation is poor,
with only a few of their adapters adequately documented. Because of these reasons, we
determined that OpenAdapter wasn’t a good fit for the platform.

Both ServiceMix and Mule represent excellent choices. They both offer a broad
range of functionality and support a wide range of transport protocols. A strong case
can be made for either product. However, we believe that for most environments,

Licensed to Manning Marketing <stho@manning.com>

44

2.4.4

CHAPTER 2 Defining the Open SOA Platform

Apache Synapse is the better choice. Why? The main reason is one of simplicity. Most
of the ESBs we’ve talked previously about include relatively complicated configura-
tions. This is particularly true of ServiceMix, which, by its JBI heritage, has a complex
deployment structure. The same, albeit to a lesser degree, applies to Mule.

One of the earliest, and still most popular uses of an ESB, is to service-enable exist-
ing legacy applications. Common usage scenarios include exposing legacy services
with a SOAP or HTTP wrapper. As you’ll learn, however, this can be better accom-
plished using the Service Component Architecture (SCA). That being the case, the
role of an ESB becomes less pronounced and instead is used primarily as a protocol
bridge. Indeed, JMS solutions such as ActiveMQ), which is the default messaging prod-
uct for many open source ESBs, now incorporate enterprise integration patterns, via
Apache Camel, that can perform many tasks traditionally left to the ESB. This includes
functionality such as routing, transformations, message splitting/aggregation, and
content filtering. It may well be that the central role that ESBs have typically played
within a SOA environment will reduce in next-generation architectures.

In light of these developments, we believe that Apache Synapse, because of its dual
capacity as both a lightweight ESB and service mediation (discussed in section 2.8) is a
prudent choice for most enterprises. For those requiring more sophisticated ESB
capabilities, such as advanced routing features or more esoteric protocols adapters,
consider using Mule or ServiceMix.

Introducing Synapse as a lightweight ESB

Synapse originated in 2005 from the X-Broker source code denoted by Infravio, which
subsequently was purchased by WebMethods, which was then sold to Software AG.
While the motivations for the donation are unclear, it likely was because Infravio was a
vendor within the SOA registry space, and the X-Broker code wasn’t considered a key
offering. What is interesting is that, more recently, Synapse has become closely affili-
ated with WSO2, which has re-branded Synapse as WSO2’s ESB. Most of the project
members for Apache Synapse belong to WSO2. WSO2’s ESB, which is also open source,
tracks closely with the official Apache Synapse releases, and offers some nifty graphi-
cal front-end management and monitoring enhancements to Synapse. However, we
won’t demonstrate the use of WSO2’s version, since learning the essentials of Synapse
is the most important consideration (and matches our desire to keep things as light-
weight as possible).

The initial Apache incubator proposal submitted by Synapse definitely positions
it as an ESB-type product, with highlights citing multiprotocol connectivity, transfor-
mation features, and high performance, and management. Special emphasis is
placed on proving support for the WS-* standards stack, which includes WS-Address-
ing, WS-ReliableMessaging, WS-Security, and WS-Policy. This is noteworthy, as Syn-
apse will be used for such purposes within our Open SOA Platform. The latest
release as of this writing is 1.2, which added numerous enhanced capabilities as well
as improvements for scalability and robustness. That release builds upon the 1.1

Licensed to Manning Marketing <stho@manning.com>

2.5

Choosing an ESP solution 45

WS02's ESB 2.0 and Carbon

As we pointed out, WS0O2 has largely provided the financial and development
resources behind Apache Synapse. As this book neared production, WSO2 released
a significantly upgraded version of their ESB product, upon which the future version
of Synapse will likely be based. In this new 2.0 release, the WSO2 ESB was rewritten
using their new Carbon framework, which is a modular, OSGi-based solution.
Unfortunately, we didn't have an opportunity to evaluate this product yet, but please
visit our SOA blog at http://jdavis.open-soa.info/wordpress for ongoing and updated
information.

release, which added task scheduling, XQuery support, file system support through
Apache VFS, and database mediation.
A simplified view of the Synapse architecture is shown in figure 2.4.

(Clients | Apache Synapse

‘ L

sjujodpug

E "
L] |~
J

Figure 2.4 Simplified Apache Synapse architecture

As shown in figure 2.4, a request arrives from a client, and the proxy configuration
determines which processing sequence to apply to the inbound message. Sequences
are then applied to perform transformations, credential mapping, caching, security
processing, and the like. Sequences can be applied to both the inbound and out-
bound messages, thus providing great flexibility. A remote or local registry can be
used to facilitate reuse of commonly used sequences. Chapter 9 will go into much
greater detail with code samples on the use of Apache Synapse.

Choosing an ESP solution

Event stream processing (ESP) is an emerging field that has begun to gather a lot of
interest. It’s considered a part of a broader trend known as Event-Driven Architecture
(EDA). EDA is a style of application architecture that’s centered on asynchronous,
“push-based” communications. It’s entirely complementary to SOA and uses
asynchronous messages, in lieu of RPC-style function calls, to perform distributed

Licensed to Manning Marketing <stho@manning.com>

46

25.1

CHAPTER 2 Defining the Open SOA Platform

computing. An event is simply an act of something happening, be it a new order, ship-
ping notice, or employee termination. The system that records the event (or sensor)
generates an event object, which is sent by way of a notification. The consumer of the
notification (or responder) may be another system that, in turn, uses the event to initi-

ate some action as a response. This is where the concept of ESP comes into play

(which alternatively is sometimes called complex event processing, or CEP). Since ESP is a
fairly nascent technology, let’s take a closer look at it.

What is event stream processing?

ESP involves building or using tools to
design, manage, and monitor the
events that flow through an EDA-ori-
ented environment. Fvent patterns are
used to filter event data in order to
detect opportunities or anomalies. An
ESP solution must be able to support a
high volume of events, perhaps mil-
lions daily, in order for it to be a viable
offering. A business rule engine can be
used in tandem with the event patterns
to determine who receives what alerts.
The relationship between these entities
is shown in figure 2.5.

In figure 2.5, messages that arrive
into the JMS bus are interrogated by the
ESP (sometimes referred to as wire-tap-
ping). The business rules in the illustra-
tion may be contained directly within

1} Ligl,fsf weinh | |

Messaging Bus / JMS

1 1

Event Stream Processor
Business Rules

BI Dashboard

ﬁ ﬁ
Figure 2.5 Event stream processing used for
receiving business event notifications

the ESP or externally managed, and drive the logic that occurs when certain patterns
are detected. The results can then be fed into a BI dashboard.

Bl, BAM, and ESP: are they all the same thing?

Business intelligence (Bl) refers broadly to the technologies and applications used
to analyze and present business information to targeted business consumers. Busi-
ness activity monitoring (BAM), though similar to Bl, tends to focus on real-time anal-
ysis of information. Bl, on the other hand, often works in conjunction with data
warehousing technologies to present analytics on historically gathered data. ESP
shares the same real-time monitoring emphasis as BAM, but the source of data is
derived directly from event streams. Historically, BAM solutions might cull real-time
data from transaction records or BPM systems, but now are being enhanced to sup-
port ESP. So, BAM can be considered a super-set of ESP.

Licensed to Manning Marketing <stho@manning.com>

25.2

2.6

Choosing a registry 47

Perhaps because ESP is a fairly new concept, there’s a dearth of open source solutions
currently available that specifically address ESP. Esper is the only widespread open
source ESP currently available. Some others are currently in development, including
Pion. Several open source BI tools, which can be used in conjunction with an ESP to
create executive dashboards, have become popular. Pentaho is perhaps the most rec-
ognized open source BI vendor, but others have successfully used tools such as Jasper-
Reports and Eclipse Foundation’s Business Intelligence and Reporting Tools (BIRT)
to create effective BI solutions. Though not open source, SeeWhy Software offers a
“Community Edition” BI product that contains significant ESP capabilities. It can be
used in production but is limited to a single release on any single-processor server.

Given that Esper is the only open source Java ESP currently available, let’s examine
itin greater detail.

Introducing Esper

The Esper project (whose name was derived from ESP-er, someone born with telepa-
thy or paranormal mental abilities) was first released in August 2006. However, the
project founder, Thomas Bernhardt, had developed earlier prototypes of ESP type
solutions while working at a large financial institution. Since its initial release, a steady
stream of updates has been provided (the most recent release, as of this writing, was
3.0). Beyond typical bug fixes, the main focus of enhancements relate to the Event
Query Language (EQL), which is an SQI-like language for developing query expres-
sions against inbound events. With EQL, you register prebuilt queries into the ESP
engine, and as data is received, it’s evaluated against those queries. Because events
often must be viewed within the context of time (that is, no order in 15 minutes at
night may be normal, but during the day, may indicate a website outage, for example),
EQL provides “temporal window” syntax that allows time-period queries to be defined.

The documentation for Esper is quite good, especially since it’s a fairly new proj-
ect. This is likely because the founders of Esper have created a sponsoring company
called EsperTech, which aims to build on the open source code base to introduce
high availabilities and management features to Esper. This model is, admittedly, less
than ideal for open source advocates, as it may mean some advanced features likely
won’t find their way into the open source release (this model contrasts with JBoss, who
make their revenue entirely from support and do not limit the features found in their
open source products).

Let’s now turn our attention to the registry, which is used to store reference infor-
mation about the artifacts that comprise a SOA.

Choosing a registry

The registry’s role in our Open SOA Platform is to store the various software artifacts
that are used in achieving a SOA environment. Historically, the Lightweight Directory
Access Protocol (LDAP), which is a specification for directory services, was commonly
used for registry purposes. It has become nearly ubiquitous in the enterprise because

Licensed to Manning Marketing <stho@manning.com>

48

CHAPTER 2 Defining the Open SOA Platform

of Microsoft’s Active Directory (AD) product, which is LDAP based. Most people mis-
takenly assume, in fact, that AD/LDAP is just intended for user and group manage-
ment. Clearly, this is an excellent use of LDAP, but it’s capable of considerably more.
LDAP is ideally suited for any type of hierarchical directory where high-performance
queries are required (with less emphasis on transactional updates and inserts).

Figure 2.6 depicts how LDAP could be used for managing a variety of artifacts, from
individuals to BPM processes.

Although LDAP can be configured to support the management of software arti-
facts, it isn’t necessarily ideally suited for this function. In particular, storing of the
actual artifacts themselves, with the ability to query its contents, isn’t easily accom-
plished without extensive customizations.

A more suitable fit than LDAP might be Universal Description, Discovery, and Integra-
tion (UDDI), which is a web services standard for publication and discovery of web ser-
vices and their providers. While some vendors have released UDDI-based products
(such as HP’s Systinet), it has never achieved significant adoption. This is perhaps due
to several reasons: complexity of the standard and its jargoned and arcane nomencla-
ture (tModels, for example); its initial emphasis on public-based registries; and the
initial lack of any strong UDDI open source offering. At best, UDDI is limping along,
and the now available open source UDDI projects show little activity or enthusiasm.

One trend that has begun to emerge is that proprietary registry offerings have
started to appear in SOA governance products. They are usually integrated with policy
management features that dictate what services can be called by which clients. This is
a sensible marriage, as governance obviously is closely tied to asset and artifact lifecy-
cle management. Until recently, there have been no real open source SOA governance
projects. Thankfully, that’s now changing. WSO2 has released their WSO2 Registry
product, and MuleSource released Galaxy, a SOA Governance product that is predi-
cated on a registry. Since both are an initial 1.0 release, they’re obviously a bit green
around the edges, but these are exciting developments. Let’s now take a look at some
of the criteria we’ll use for evaluating registry products.

DN: de=mycompany, de=com

QU=People, OU=BPM

U=Services

— —
John Doe Jane Doe WebOrder Procurement

Figure 2.6 An example of an
LDAP repository storing users,
services, and BPM process
metadata

sn=Doe
uid=jodoe

engine=jBPM
location=spock

‘ cn=John Doe
objectClass=bpmProcess

Order Customer Lcn:?locurcmcnl BPM Process

Licensed to Manning Marketing <stho@manning.com>

26.1

2.6.2

Choosing a registry 49

Registry evaluation criteria

As you recall, in table 2.1 we identified some broad open source criteria that can be
applied across all products we are evaluating. In addition, table 2.8 introduces some
requirements specific to registries.

Table 2.8 Registry evaluation criteria

Criteria Comments

Artifact and metadata The ability to classify and store artifacts by type; for example, a WSDL or SCA
repository configuration file. Should also allow for custom, searchable properties to be
defined by artifact type.

Indexed searching The ability to search metadata specific to the artifact type; for example,
search operations within a WSDL, or components within a SCA composition.

Administration Must include a graphical (preferably web) interface for managing and adminis-
tering the repository. This would include the ability to add new artifacts, arti-
fact types, search, and reporting.

Logging and activity Should provide the ability to monitor activity within the system. This would
monitoring include such things as new or modified artifacts and metadata modifications.

Role-based permissions | The ability to define users and user groups by roles.

API The ability to interact with the repository through a programmatic API. Ideally,
would be SOAP- or REST-based.

The next section identifies the possible open source products that can be used for the
Open SOA Platform.

Open source registry products

The open source products that potentially can serve as the registry (see table 2.9) are
broken into two main types: LDAP based and proprietary. For reasons we’ve already
cited, the LDAP products have some disadvantages insofar as they’re designed more as
directory servers than artifact repositories. Nonetheless, it’s worthwhile to consider
them, since LDAP does provide extensibility features. The two open source UDDI
implementations, Apache jUDDI and Novell’s Nsure UDDI Server, weren’t considered,
for the reasons cited earlier regarding UDDI.

Table 2.9 Open source ESB product overview

Product Type EoHmoms

OpenLDAP LDAP Proven, reliable, and has been around the longest. Now works with
most popular backend databases. High performance and supports
very large databases. Documentation is poor, which is surprising
given its long heritage (though some LDAP books do cover Open-
LDAP). Fairly complex to administer, and Windows platform support is
sporadic (most run it on Linux or Unix).

Licensed to Manning Marketing <stho@manning.com>

50

2.6.3

CHAPTER 2 Defining the Open SOA Platform

Table 2.9 Open source ESB product overview (continued)

Product Type CoRments

Fedora Directory LDAP LDAPHeritage dates back to Netscape DS, and so it is mature. Excel-

Server (Red Hat) lent graphical administration console. Synchronizes with Active Direc-
tory. Good documentation. Intended to run on Red Hat or related
Linux flavors (such as CentOS). No Windows capability.

ApacheDS LDAP 100% Java-based solution. Excellent performance and support for
many advanced features, such as triggers and stored procedures.
Nice Eclipse-based plug-in (Studio) for browsing and editing reposi-
tory. Lightweight and easy to administer.

OpenDS (Sun) LDAP 100% Java-based solution that looks quite promising. Sun is position-
ing it as a possible replacement for their existing Sun ONE DS. At the
time of this writing, version 1.2.0 has been released.

MuleSource Proprietary | Position as a SOA Governance product, it's based on a repository

Galaxy designed for managing SOA-based artifacts. This includes Mule con-
figurations, WSDL, XML files, and Spring configurations.

WSO2 Registry Proprietary | Designed to store, catalog, index, and manage enterprise metadata
related to SOA artifacts. Includes versioning features and is light-
weight enough to be embeddable.

As you can see, selecting the right product for the metadata repository service is diffi-
cult, as many high-quality open source products now exist (a good problem to have!).

Selecting a registry

We eliminated Sun’s OpenDS from consideration, as it was still in beta during the
early stages of writing this book. It is worth noting, however, that it has received excel-
lent marks by those who have used it extensively. Some early benchmarks indicate
that it’s much faster than other Java-only based solutions (such as ApacheDS). It’s
being positioned as a complete, enterprise-ready solution, with advanced features
such as “multi-master” replication and load balancing. The three principles touted in
its development are ease-of-use, performance, and extensibility. The documentation
is surprisingly strong for a fairly young open source project. Even though OpenDS’s
earlier beta status eliminated it from consideration, it’s worth keeping a close eye on
moving forward.

The Fedora Directory Server appears positioned primarily for Red Hat flavors of
Linux—no Windows version exists. This fact limits its appeal and excludes it from our
consideration. Even though it doesn’t run natively on Windows, it’s worth pointing out
that it does have one of the best Active Directory synchronization features available.

This venerable OpenLDAP makes for an excellent choice. However, it too lacks
strong Windows platform support (there are some Windows releases, but they’re sig-
nificantly behind the Linux versions). It can also be a challenge to administer and is
fairly complex for those not well versed in Linux systems administration. ApacheDS,

Licensed to Manning Marketing <stho@manning.com>

2.6.4

Choosing a registry 51

unlike OpenLDAP, is lightweight and simple to set up. It’s also the only LDAP-certified
open source product (Open Group certification). New releases appear to be bridging
the performance gap between DS with OpenLDAP, and its Java codebase is appealing
(assuming you’re a Java developer).

While ApacheDS shows great promise as a directory server, it’s still LDAP, which
makes it rather challenging for supporting the storage and search of artifacts. The
hierarchical nature of LDAP is also not ideally suited for our needs. Let’s look at the
two remaining proprietary products, Galaxy and WSO2 Registry, both of which were
released in early 2008.

WSO2’s Registry product appears to be a great fit for our registry needs. Positioned
solely as a registry product, it’s designed as a catalog for services and service descrip-
tions. Artifacts can be structured data, such as XML-based files, or binary documents,
such as Word or Excel. Metadata classification is supported, as are user-assigned tags,
which can be useful for searching (think Flickr for the services). Versioning capabilities
are supported, and the user experience is intuitive due to its Web 2.0 design (which is
beautifully designed). User roles are also supported and configurable. Dependency
and lifecycle management support is built in as well. One of the most attractive aspects
of the product is the simple-to-use API. You can programmatically fetch objects from a
remote repository in a few lines of code, and extending the registry to support custom
object types by adding specific behaviors specific to them can be easily done.

The Galaxy product supports the same general feature set as WSO2’s Registry, such
as resource categorization, monitoring, and lifecycle and dependency management.
In addition, the 1.5 release included some advanced features such as replication
(available only in their pay version called Enterprise), scripting support, and an event
API. That said, WSO2’s Registry is easy to use, and trumps Galaxy with better Atom/RSS
support and automatic versioning/rollback features. A good case could be made for
selecting either product, but I remain a little leery of MuleSource’s dual-licensing
model, whereby some of Galaxy’s most attractive features are only available for those
who purchase the Enterprise license. WSO2, however, is 100 percent open source end
to end, so no features are purposely excluded from their base product. For these rea-
sons, we selected WS02’s Registry product.

Introducing WS02 Registry

WSO02’s Registry product is officially positioned as a marriage of SOA registry with Web
2.0 collaboration features. The Web 2.0 features pertain to its ability for users to tag,
comment on, and even rate registry entries/metadata. Figure 2.7 shows the essentials
parts of Registry.

Beyond the core requirements of searching and managing artifacts and their meta-
data, the product supports the definition of artifact types. Using this feature, Registry
can automatically introspect and index certain types of artifacts. Those supported out
of the box include things such as WSO2’s ESB (Synapse with added management capa-
bilities) XML configuration files, WSDLs, and XML Schemas. You can easily define,

Licensed to Manning Marketing <stho@manning.com>

52

2.7

CHAPTER 2 Defining the Open SOA Platform

Management

= Query &
Lifecycl
{M'aii‘;ZEM @ﬁ] [f;-g;ﬂ;ge /O]
O “ 683 J Figure 2.7 WSO02's Registry

“marketecture” of features

Administrati RESTFul 2
ministration || 0t Fres (i3)
API -"I"

' :
Web 2.0 T
Interface

"

rA uditing

Governance

.

P

D]

through its extensible handler mechanism, your own custom behaviors related to fil-
tered object types.

The lifecycle features of Registry enable larger enterprises to manage artifacts by
their state within the development lifecycle. For example, you could search on arti-
facts that are in the QA state. Promotion of the objects throughout the defined lifecy-
cle is also supported. The dependency management features pertain primarily to
document types that support inclusions. For example, an XSD schema import within a
WSDL can be automatically detected and then associated with the WSDL. Since schema
documents play such a central role in a SOA environment for defining services, this is
an important feature. The monitoring features provide excellent logging of all activity
performed within the system, and nearly everything is exposed through a RESTful
AtomPub API.

Bonus chapter

Coverage of WS02's Registry product can be found in a bonus chapter found at Man-
ning's website: http://www.manning.com/davis/. In part, we chose this approach
since the Registry product is currently undergoing a major rewrite as part of WS02’s
new Carbon platform, and we want to use that release as the focus for the chapter.

Let’s now turn our attention to arguably the most critical artifacts of all: the services
that constitute a SOA environment.

Choosing a service components

and composites framework

Services are the catalyst behind a successful SOA environment. Exciting developments
have occurred in this area over the past few years. The first salvo occurred with the
release of Eclipse 3.0. The product was rewritten to include the OSGi framework for its
runtime engine. OSGi uses a Java-based component model to dynamically manage the
lifecycle of applications. With it, you can install, uninstall, start, and stop models
within a runtime application. This technology represents the basis for Eclipse’s plug-
in architecture.

Licensed to Manning Marketing <stho@manning.com>

27.1

Choosing a service components and composites framework 53

The OSGi framework, whose specification is managed by the OSGi Alliance, was ini-
tially formed with an emphasis on embedded devices and appliances. However, it rap-
idly has become adopted within regular and even enterprise, applications. There are
currently three excellent implementations: Apache Felix, Knopflerfish, and Equinox
(the basis for the Eclipse OSGi implementation). Many of the Apache-based projects
are beginning to incorporate the OSGi framework.

Arriving a bit later was the Service Component Architecture (SCA) and its companion
technology, Service Data Objects (SDO). The 1.0 specification was delivered in fall 2005
and included such notable sponsors as IBM, Oracle/BEA, and IONA. SCA positions
itself as an architecture for building applications and systems using a SOA. It defines a
declarative XML-based mechanism for creating components and for exposing those
components as services that can be invoked through any number of different proto-
cols. Components can be wired together in a fashion similar to Springs “inversion-of-
control” feature, and are written in a way that is communication protocol neutral
(that is, the components have no awareness as to which protocol will be used to invoke
them, such as SOAP, JMS, or EJB). Given that a lot of folks are probably not yet familiar
with SCA, let's examine some of its core concepts in more detail.

Examining the Service Component Architecture

In SCA parlance, a composite is a collection, or assembly, of components or services. A
service can be thought of simply as a component that’s exposed through an external
protocol (for example, SOAP). A component, like a composite itself, can contain
properties and references to other components or services. You can see the relation-
ship between these items in figure 2.8 (which is a simplified view of SCA).

As figure 2.8 shows, a binding is how
you define through what communica- oot
tions protoco-l to expose a given compo- l" . l" l" .
nent as a service.

. . . . Service €—— Component ——> Property
SDO is a companion specification that l l
1..* 0...*

defines a standard for exchanging data
graphs or sets. What’s unique about the
standard is that it supports the notion of
change logs. This allows for offline modifi-

Binding (1—" Reference

Figure 2.8 A simplified SCA class diagram

cations to be captured and recorded.
The graphs themselves can be serialized into XML, and class-generation tools exist to
create SDO objects from an XML Schema (alternatively, they can be created dynami-
cally, and the metadata describing the structure can be gleaned dynamically as well).
What’s the relationship between OSGi and SCA? In a sense, they’re competing tech-
nologies, as they both define a component framework for creating services. However,
OSGi primarily was designed for running within a single JVM and doesn’t inherently
support exposing of services through a wide range of protocols. SCA, on the other
hand, was developed with the goal of supporting a multilanguage distributed environ-
ment. There’s an initiative to bridge the two so that you can, for instance, easily deploy

Licensed to Manning Marketing <stho@manning.com>

54

2.7.2

CHAPTER 2 Defining the Open SOA Platform

OSGi services within SCA. In that respect, the technologies can nicely complement
each other, and indeed, the next major release (2.0) of Tuscany is being internally
rewritten to run within an OSGi container. For purposes of our SOA Platform, we
won’t specifically address OSGi, but we strongly encourage further research on the
subject if you aren’t already familiar with it. Apache Tuscany, an SCO and SDO open
source implementation, will be addressed in great detail starting in chapter 3.

Upon first examination of SCA, many Java developers are led to believe that it’s a
substitute for Spring (as many of you are aware, Spring is a popular Java application
framework). In part this confusion arises because SCA, like Spring, enables references
(or other components) to be injected at runtime. Spring, like SCA, also supports the
notion of properties, which can be declaratively defaulted in the XML configuration.
Spring-WS even supports exposing Spring-based beans as web services, so that’s
another similarity. That said, important distinctions exist, such as SCA’s aforemen-
tioned multiprotocol and multilanguage support. In addition, SCA more intuitively
supports asynchronous and conversational programming models. Like OSGi, Spring
integration is also available for SCA.

Because of the reasons cited, and SCA’s integrated support for SDOs, it’s the service
and component framework technology of choice for the Open SOA Platform. Let’s now
further explore Apache Tuscany, the open source implementation for SCA and SDO.

Introducing Apache Tuscany

Apache Tuscany is a fairly new project, with its first beta releases in 2006 followed by the
1.0 release in fall 2007. The development team appears well staffed and is likely funded
by the likes of IBM. The project recently was anointed as a top-level Apache Project
from its prior incubator status, which corresponded with the 1.3 release in August
2008. Version 1.4 was released in January 2009, and is the basis for the code samples
used in this book. The SCO and SDO standards have been transferred to the aegis of
the OASIS organization. This is a significant development, as it lends great credibility to
the project and removes the cloud that the combined specification was just a product
of a few select vendors. OASIS has also set up a special website called Open Service Ori-
ented Architecture (www.osoa.org) dedicated to advancing the standards.

The Tuscany and OASIS websites collectively contain extensive documentation. The
specification documents for SCA and its related technologies are well written and com-
prehensive. There are also a burgeoning number of SCA-related articles and some
upcoming books dedicated to the standard. The demo and code samples that come
with the Tuscany distribution are also very solid and a wonderful source of information.

Commercial support for SCA and SDO has become realized by product releases by
IBM (WebSphere), Oracle/BEA (WebLogic, Aqual.ogic, Workshop) and Oracle (SOA
Suite 11g). Clearly, the momentum for SCA and SDO continues unabated.

The last remaining technology that helps form the basis for the Open SOA Plat-
form is web service mediation.

Licensed to Manning Marketing <stho@manning.com>

Choosing a web services mediation solution 55

2.8 Choosing a web services mediation solution

Web service mediation rounds up our Open SOA Platform. Web service mediation
plays several key roles within a SOA environment. They include the following:

= Runtime governance—A service mediator can use security profiles to determine
which clients can access what data. For example, you can modify an outbound
data packet to restrict what data is presented. You can also monitor compliance
with service-level agreements. Monitoring and logging can be used for compli-
ance and auditing.

» Version rationalization—Often multiple versions of a company’s API exist. A
mediator can transform earlier versions into a format/specification consistent
with the most recent version. This eliminates having to manage multiple ver-
sions of backend code.

s Traffic management—In certain circumstances, it may be desirable to discrimi-
nate traffic based on a client profile. For example, a SaaS provider may choose
to charge extra for more than x number of requests per minute. For those cli-
ents not paying extra, inbound requests will be governed.

» Protocol mediation—This refers to the ability to easily translate messages from
one protocol to another: for example, converting a REST-based XML-over-HTTP
request into a SOAP format required for internal consumption. Or another sce-
nario is to add or remove WS-Security headers from an inbound SOAP request.

Figure 2.9 illustrates the role a web service mediator plays in receiving inbound
requests from a client.

Historically, some of these features were available through hardware devices, such
as F5 Networks’” BIG-IP family of products, Cisco’s various content switches, or Intel’s
XML Content Router. As you might imagine, these generally require a fairly deep
pocketbook. Until recently, pure-play open source mediation products didn’t exist.

Client

-~ Web Service | ¢ Lo BPM

{‘ 2 Mediator c i Process
o —_— =P
gl 1215 5
Tllo |2 O
2|25 |3 /
Zis = 1S
S| ||:n El \ Internal
3 © B |5 Apps
° |° o » r
e 73 (o

Firewall = .

Security {;

Figure 2.9 Web service mediation used as a proxy for inbound requests

Licensed to Manning Marketing <stho@manning.com>

56

2.9

CHAPTER 2 Defining the Open SOA Platform

Open source’s hidden documentation

One of the most undervalued forms of documentation available in open source proj-
ects is the JUnit test cases that are usually available with the source. There are often
a multitude of tests available for nearly every facet of behavior. What’s most instruc-
tive is how the tests, or assertions, are defined, as they shed great light on the an-
ticipated behavior of the application. Sometimes the test cases also provide insights
into methods not documented within the regular documentation.

Granted, some of the features can be accomplished through an ESB, such as version
rationalization. Some proxy and caching servers, such as Squid, also provided some of
the requisite functionality.

The Apache Synapse project, which launched in 2005, became the first open
source web service mediation designed solution. Because it does share some overlap
in terms of functionality with an ESB, it can also do double duty as a lightweight ESB
(you may recall from section 2.4 that it was, in fact, selected as the ESB for our Open
SOA Platform). The Synapse feature set, which includes proxy, caching, load-balanc-
ing/fail-over capabilities and superb WS-Security support, clearly positions it as best
suited for web service mediation. Let’s examine the Synapse project in more detail.

According to the press release announcing Apache Synapse, it’s “an open source
implementation of a Web service mediation framework and components for use in
developing and deploying SOA infrastructures” [Synapse]. Joining WSO2 in announc-
ing Synapse was Blue Titan, IONA, and Sonic Software—all well-respected players in
the SOA community. The first production release was in June 2007, and was followed
by a 1.1 release in November of that year. Synapse is part of the Web Services Project at
Apache (and is also a top-level Apache project), and the 1.2 release is the basis for our
coverage of the product in this book.

The documentation, at first blush, seems rather inadequate. However, much of the
best documentation resides within the write-up for the 50 or so samples that come
with the distribution. Collectively, they provide a great deal of worthwhile information
(you can find additional information on WSO2’s website listed as their ESB product).
The project mailing list is also fairly active.

WSO2’s release of Synapse also includes a nice administrative interface to Synapse,
and you’ll learn more about it in chapter 9’s in-depth dive into Synapse.

Summary

This chapter conducted a whirlwind examination of the key product categories of the
Open SOA Platform. For each, we identified a product, usually among several excellent
choices, as our selection. The categories and products selected are shown in table 2.10.

Licensed to Manning Marketing <stho@manning.com>

Summary

Table 2.10 Product categories and selections

57

Product category

Product selection

Home

Business process management
Enterprise decision management
Enterprise service bus

Event stream processing

Metadata repository

Service components and composites

Web service mediation

JBoss jBPM

JBoss Rules (Drools)
Apache Synapse
Esper

WSO02 Registry
Apache Tuscany

Apache Synapse

http://labs.jboss.com/jbossjbpm/
http://labs.jboss.com/drools/
http://synapse.apache.org/
http://esper.codehaus.org/
http://wso2.org/projects/registry
http://tuscany.apache.org/

http://ws.apache.org/synapse/

These products are well regarded and supported, and form the basis for the remain-
der of the book. The biggest challenge is how to integrate these products in a mean-

ingful way so as to create a compelling open source SOA.

A note on the examples and source code

Throughout many of the chapters, example code is presented to assist the reader in
understanding the concepts. To move the discussion along, we skirt past how to set
up and run the examples. However, the downloadable source code contains a READ-
ME.txt file for each chapter that walks through setting up your environment and run-
ning through each of the examples. If you encounter any issues, please use the
Manning Author forum associated with this book at http://www.manning-sand-
box.com/forum.jspa?forumID=416 to report any problems, and we’ll attempt to re-
solve them as quickly as possible.

Licensed to Manning Marketing <stho@manning.com>

