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C H A P T E R  3

Web Tier Technologies

■ State the benefits and drawbacks of adopting a web framework in
designing a Java EE application.

■ Explain standard uses for JSPs and Servlets in a typical Java EE
application.

■ Explain standard uses for JSF components in a typical Java EE
application.

■ Given a system requirements definition, explain and justify your
rationale for choosing a web-centric or EJB-centric implementa-
tion to solve the requirements. Web-centric means that you are
providing a solution that does not use EJBs. An EJB-centric solu-
tion will require an application server that supports EJBs.

Introduction

This chapter covers the area of presentation in the JEE platform, and
focuses on presentation technologies designed to render in a standards-
compliant HTML browser. In addition to focusing on the presentation
specifications and technologies that are included in the JEE platform,
we go one step further and analyze the benefits and drawbacks of using a
web framework to lend additional structure to a web application
(whether it also uses EJB or not) at the expense of additional complexity
or runtime overhead.
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Chapter 3 Web Tier Technologies

Prerequisite Review

The following list details resources and specifications that you should be
familiar with before reading this chapter. The main resources are as
follows:

■ The JavaServer Pages 2.1 specification—JSR 245
■ The Servlet 2.5 specification—JSR 154
■ The JSF 1.2 specification—JSR 252
■ The JSTL 1.2 specification—JSR 52
■ The Java EE 5 specification—JSR 244

We now cover the specific topics that should be addressed at a high level
before more esoteric and advanced discussions on the relative advan-
tages and disadvantages of the various JEE web tier technologies.

Model View Controller (MVC)

Regardless of application domain or industry vertical, technology plat-
form, and client-side technology, everyone agrees that three fundamen-
tal concepts should be decoupled and kept separate—namely, the data,
the business logic that operates on that data, and the presentation of that
data to the end user (see Figure 3-1). In the JEE platform, the seminal
design pattern that enforces this separation of concerns is called the
MVC model. In the earliest releases of the specification, references
were made to Model 1 and Model 2 architectures. However, all main-
stream frameworks now embrace Model 2 exclusively—where views
(implemented as JSP pages with or without JSF components) forward to
a central controller (implemented as a Servlet), which invokes a named
handler for the page or action before forwarding the user to a well-
defined page to render the outcome of the request.

Web Container

The web container is analogous to the EJB container described in Chap-
ter 4, “Business Tier Technologies.” Simply put, one of the biggest
advantages of the JEE platform is how much it gives the developer out
of the box from an infrastructure perspective, leaving the developer free
to focus on how to use the JEE platform to implement the required
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Prerequisite Review

business logic for their application. A web container provides services to
presentation and control components provided by the developer, imple-
mented as JSPs, JSF components, Servlets, filters, web event listeners,
and plain old Java classes (POJOs). These services include concurrency
control, access to user-managed transactions (more on this later), config-
uration, and security management.
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Figure 3-1 A high-level schematic depicting the basic flow between the three major
components of the Model-View-Controller design pattern. All MVC web frameworks
follow this basic separation of concerns to a greater or lesser extent.

Servlets

A Servlet is a server-side component designed to handle inbound service
requests from remote clients. Although the vast majority of all Servlets
implemented are designed to respond to HTTP/HTTPS GET and
POST requests, the Servlet model is designed to accommodate any 
protocol that is predicated around a request/response model. Servlet
developers must implement the javax.servlet.Servlet interface,
and specifically for HTTP Servlet developers, the javax.servlet.
HttpServlet interface. The core service method contains the routing
logic that forwards the inbound request to the appropriate handler. A
Servlet is hosted by the container, and multiple threads use it in order to
provide a scalable system unless the developer explicitly chooses not to
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do this by implementing the SingleThreadedModel tagging interface.
(This interface has been deprecated, as it results in systems that do not
scale.) Figure 3-2 illustrates the Servlet lifecycle, as managed by the web
container.
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Figure 3-2 The Servlet lifecycle is quite simple, as opposed to that of other server-
side components in the JEE stack. Most developers simply override three methods—
init(), doGet()/doPost(), and destroy() to add required behavior.

Filters

Filters are server-side components hosted by the web container that
receive an inbound request before it is received by any other component.
Filters then are used to pre-process requests—for example, log the
event, perform security checks, and so on. Filters are frequently used by
web frameworks to make their operation as transparent to the developer
as possible, removing or at least ameliorating a significant barrier to their
adoption—the complexity (perceived or otherwise) of their develop-
ment overhead. In addition, filters can be used to perform dedicated
processing after a request has been received and processed.



Prerequisite Review

Listeners

Listeners are server-side components hosted by the web container that
are notified about specific events that occur during a Servlet’s lifecycle.
Listeners are used to take actions based on these events. The event
model is well-defined, consisting solely of notifications on the web con-
text (Servlet initialization and destruction, attribute adds/edits/deletes)
and session activity (creation, invalidation and timeout, and attribute
adds/edits/deletes).

JavaServer Pages (JSP)

JavaServer Pages are HTML pages with embedded mark-up that is eval-
uated at runtime by the web container to create complete HTML pages,
which are sent to the client for rendering to the end user. JSP technology
has matured significantly in the JEE platform—key elements added
since its inception have been the JSTL (Java Standard Tag Library) and
the Unified Expression Language (EL), which are covered in separate
sections later in the chapter. However, from an architect’s perspective,
their purpose is simple—they represent the ongoing effort from Sun to
enforce a workable MVC model in the JEE, separating presentation
logic from business logic. Like all container-managed objects in the JEE,
JSPs have a well-defined lifecycle, depicted in Figure 3-3.
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Figure 3-3 Although JSPs appear more complex than Servlets, and represent a
huge improvement on developer productivity and code maintainability, they are
actually implemented as Servlets under the hood by the web container.
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Java Standard Tag Library (JSTL)

The JSTL is a set of tag libraries that forms part of the JSP specification.
Before the advent of the JSTL, open source communities such as
Apache, commercial companies, and indeed individual software teams
built their own tag libraries. The JSTL brought much needed standardi-
zation to the tag library space, allowing developers and architects to
effectively delegate control and enhanced presentation logic tags to the
specification writers and focus instead on their application logic. The
JSTL is an example of open standards adding tangible value to develop-
ers as the JSP specification grows out to bring structure to an area badly
needing it.

Unified Expression Language (EL)

The EL was introduced in the JSP 2.0 specification, whereas the JSF 1.1
specification introduced its own EL. The word Unified indicates that in
JEE 5, these two EL definitions come together in a logical attempt to
simplify the overall platform. Simply put, the addition of an EL provides
developers with the ability to banish Java scriptlets from JSP pages com-
pletely. There are two constructs to represent EL expressions: ${expr}
and #{expr}. $ indicates that the expr is evaluated immediately, whereas
# indicates to the container that evaluation should be deferred. The con-
tainer also makes a number of useful implicit objects available to an exe-
cuting EL snippet—for example, requestScope, sessionScope, and so
on. Access to this information further improves the ability of EL to
replace custom Java snippets in JSP. Custom Java snippets on their own
are not necessarily a bad thing (although the code is often more read-
able, elegant, and easier to maintain). The single biggest danger when
developers need to code Java in JSPs is that they implement not only
presentation logic, but business logic as well, violating the core tenet of
the MVC design pattern.

Managing Sessions

The Servlet specification provides an elegant way to allow a client-server
conversation to manage session state over the HTTP protocol, which is
essentially stateless. The web container provides access to a simple map,
called the HttpSession, where developers can read from and write to
any data that needs to be stored in order to process a client’s request.
Judicious use of this object is needed, however—storing large objects,
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such as collections of search results, is a known performance and scala-
bility anti-pattern.

JavaServer Faces (JSF)

JavaServer Faces is a UI framework for web applications based on the
JEE platform. Initially controversial (and still so in some quarters), with
many developers and architects resenting the imposition of yet another
web framework in an already over-crowded space, JSF has grown to rep-
resent the foremost method of constructing web UIs as recommended
by Sun Microsystems. Nevertheless, many application architects still
eschew JSF and use a simpler MVC model, typically leveraging a web
framework like vanilla Struts.

Disregarding any good or bad will toward JSF, let’s examine its goals.
JSF is designed to be easy to use by developers; it is also designed to
allow developers to stop thinking in terms of HTTP requests and
responses and instead to think about UI development in terms of user-
and system-generated events. JSF components are re-usable, improving
developer productivity, software quality, and system maintainability; the
clear intent of the JSF specification is that the technology be toolable, or
provided with deep and mature support from IDEs like Eclipse, Net-
beans, and IntelliJ. In this respect, JSF maps closely onto other tech-
nologies like ASP.NET from Microsoft and, in turn, is a clear break with
directions from frameworks like Ruby on Rails, where the developer is
never far away or insulated from the underlying HTTP request/response
model.

Templating Frameworks

Especially in the early days of JSP and even today, a segment of the
developer and architect population railed against what they saw as the
poor ease of development and runtime performance provided by the
JSP-centric model. These malcontents fought back against the tide by
using the Servlet container to build out a simpler, more efficient way of
including dynamic content in HTML fragments, resulting in the cre-
ation of template-centric frameworks such as Velocity and FreeMarker.
The presence of these frameworks has kept the JSP and JSF communi-
ties honest, in showing how simple web development can and should be.
However, no matter how relevant or pressing the claims of these frame-
works may be, the fact remains that the mandated way to build presenta-
tion logic in the JEE platform is either using JSP or JSF.
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Web Frameworks

Web frameworks fill the gap between the JSP/Servlet/JSF specification
and what an architect needs in order to build a consistent, high-quality
web application in the UI platform. The authors are often struck, after
reading a three- or four-hundred-page specification, how many open
questions there are. In the case of web UIs, a good web framework fills
that void, providing the architect and developer with a clear roadmap on
exactly how to implement core features such as action handlers, client-
and server-side validation, how to handle transactions in a sensible man-
ner, integrate security, manage session state, and build a maintainable
and understandable web UI. In fact, mainstream web frameworks have
been so successful, a significant percentage of architects have decided
not to use EJB in their applications at all—so confident are they that a
good web framework is all that is needed to design and construct a good
JEE system. And in many, if not most, cases, they are correct. EJBs in
the JEE platform provide specific features that are necessary only when
business requirements dictate it (these features are detailed in Chapter
4, along with the decision matrix governing when the use of EJBs is
appropriate). If you choose not to specify or use a web framework in Part
II of the exam, be prepared to clearly justify your decision. We believe
that very few, if any, non-trivial Java projects are not using a web frame-
work to impose standard practices on the development team, to produce
maintainable code, and to avoid re-inventing the wheel on every new
development.

Discussion

In this section, we examine the best uses for each of the various compo-
nents of the JEE web technology stack. Almost all the components can
be used to tackle any presentation/flow control/business logic problem,
but the specifics of JSPs, Servlets, JSF, and so on mean that they each are
better-suited to specific scenarios, as detailed here.

JSPs and Servlets—Standard Uses

JSPs handle the presentation of data to the end user. They should con-
tain no business logic. A good rule of thumb is to minimize or eliminate
entirely all Java code from JSPs and replace it instead with either
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EL, the JSTL, or a custom/third-party tag. This guideline tends to rein-
force the role of JSPs as the V in MVC—that is, the View.

JSF—Standard Uses

The standard uses for JSF are the same as for JSP. As an architect, you
are faced with a choice: either continue to use JSP with JSTL and a good
MVC framework, or use JSF. They do the same thing. Also, they are not
mutually exclusive. It is perfectly possible to add tags to a JSP page that
represent a specific JSF UI component, resulting in a hybrid solution.
JSF garnered a significant amount of bad press when it first launched (as
have many 1.0 implementations of specifications in the JEE platform),
but it has matured since then. Many architects, however, simply see no
need for it and prefer JSP with JSTL and EL. 

Web-Centric Implementations

As intimated earlier, a significant proportion (exact figures are not avail-
able and indeed vary by industry vertical) of all JEE applications in exis-
tence today are deployed using only a web container—that is, they do
not use EJBs. This class of JEE application is termed web-centric. 

The current version of the exam tests this concept in detail. As a JEE
architect, you are perfectly entitled to stipulate that EJBs not be used in
your design, but you must clearly understand why that decision is man-
dated and the impact of that decision on your developers as they imple-
ment the business logic. The exam tests this concept by presenting you
with a set of scenarios. Scenarios that have a strong messaging, transac-
tion, or security management component are all candidates where an
EJB-centric implementation is warranted and indeed necessary. (Let’s
be blunt—choosing EJB is the right answer.) Scenarios where ease of
development is key, where an existing application is already web-centric,
or where transactions are not key to the business (read-only or read-
mostly) mean that you should choose a web-centric answer from those
provided in the exam.

There are some stand-out reasons where using EJB is simply not
warranted. The most straight-forward example is a standard Create,
Read, Update, and Delete (CRUD) application built using Struts to
organize and control the presentation and business logic tiers, and
Hibernate plus a DAO access layer to implement the persistence tier.
Assuming that there are no asynchronous messaging requirements or
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JMS queues or topics to access, and that the functionality contained in
the web container for concurrency control, security, and session man-
agement is sufficient, then the right decision is to adopt a web-centric
approach.

Now, let’s consider an alternative scenario. You work for XYZ Bank, a
large multinational bank with investment and retail operations, which
has invested significant amounts of capital into a transactional system
based on mainframe technology over the last thirty years. Ensuring sys-
tem reliability and security are paramount; there is absolutely no room
for data corruption from edge conditions, such as the lost update or opti-
mistic locking going wrong. If the system enters into an unknown state
because of a technology failure, not only will the system need to be
brought back within 10 minutes in order to avoid a service-level agree-
ment (SLA) breach, the relevant regulatory authorities must also be
notified and a full system audit will be enforced. As the solution archi-
tect, do you believe that using only the web container segment of the
JEE platform is sufficient to meet the non-functional requirements
detailed here?

We would answer this rhetorical question as follows: It is possible to
fulfill the preceding scenario using only a web framework, but we would
not be comfortable in doing so. Many aspects of the EJB framework lend
themselves very well to this type of deployment; choosing to use only a
web framework will essentially force you, as the architect, into replicat-
ing in your code the reliability and availability characteristics that already
exist in the core JEE platform. This is not a good use of your time and
will result in a buggier implementation that needs to be maintained
moving forward.

EJB-Centric Implementations

Let’s reconsider the bank scenario laid out in the previous section. Look-
ing at the business requirements, we can see that they translate into non-
functional requirements (NFRs) focusing on system correctness,
reliability, and security. In this scenario, and answering the question
posed in the last section, assuming that the internal bank systems can be
accessed by a non-EJB solution, it is possible to achieve a solution that
will meet the NFRs using only a web-centric solution. But, and this is
the key point, you will need to commit your team to writing entire mod-
ules of custom code to replace features that you get from an EJB con-
tainer for free. In addition, it is likely that you will also need to take

44



Discussion

advantage of vendor-specific libraries/mechanisms to implement these
modules. That is the key point. In the scenarios examined here, there is
no right or wrong answer—just more correct and less correct. And that is
the key role of an architect: to examine the possible solutions and select
the most correct solution, taking into account the vagaries of the known
set of business requirements.

Rationale for Choosing Between EJB-Centric and Web-
Centric Implementations

As you may have gathered from the two preceding sections, neither we,
nor indeed the exam, believe that a web-centric or an EJB-centric archi-
tecture is always right or always wrong. The decision to select one over
the other is based purely on an impassionate review of the facts relating
to a specific project. In order of decreasing importance, the pertinent
facets to consider are as follows:

■ Transaction requirements—The more onerous, the bigger the
reason to select EJB.

■ Security requirements—Again, the more onerous, the bigger the
reason to select EJB.

■ Messaging requirements—Need to integrate with an asynchro-
nous messaging system—Again, if present, a clear reason to select
message-driven beans (MDBs); that is, the EJB-centric approach.

■ Performance.
■ Ease of development.
■ Scalability.
■ Existing team skills or existing project implementation.

The last four facets listed are not reasons in themselves that will conclu-
sively force you to choose one approach over the other; indeed, the
waters have been muddied in recent JEE releases for each. The primary
focus for EJB 3.0 (and continued in 3.1) is improving the ease of devel-
opment. As you will see in Chapter 4, the general consensus is that EJBs
are now, at last, easy enough to develop that their use is warranted in sit-
uations where previously system designers did not specify their use.
Assuming an efficient container implementation, stateless session beans
should be as efficient as Servlets/Action handlers in executing business
logic on the server side as a proxy for the client. The obvious exception
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here is stateful session beans. The need to maintain one session bean per
connected client for the duration of the conversation will always make
stateful session beans a poor scaling design choice, suitable only for a
small subset of applications with very specific requirements.

The Future of Client-Server Communication

It is worth noting that the current release of the exam was written in
2007 and contains material on Asynchronous JavaScript and XML, or
AJAX. Architects must understand the benefits of AJAX as they relate to
providing an enhanced end-user experience and how the JEE 5 platform
allows server-side components to service AJAX requests from browsers.
Looking forward, the exam will be refreshed in sympathy with the
release of future JEE versions. If JEE 6 or 7 is released into a world
where AJAX is declining in favor of cometd (HTTP continuations), or
another way of enhancing the end-user experience for browser-based
applications, then expect that technology to be reflected in the questions
posed. After all, the exam is written by a team of subject matter experts
who construct the questions and answers for Part I based on the current
state of play in the Enterprise Java space.

Essential Points

■ Presentation tier technologies remain a major element of the JEE
5 platform and are a significant source of exam content for Parts I
and III.

■ Part II is less concerned with the actual presentation technology
selected (within reason, of course) and more concerned with the
candidate displaying two things—in-depth understanding of the
business requirements and selecting a presentation technology
that meets those requirements.

■ JSF has grown from the presentation tier that disgruntled archi-
tects tried to ignore to a significant element of the JEE plat-
form—and for the exam. If you are a JSP-centric architect, beef
up on JSF because you need to know it.
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■ The exam tests your understanding of the best UI technologies to
use in the JEE platform by presenting a series of scenarios. The
description of the scenario provides all the information you need
to select the correct technology/combination of technologies to
use from the multiple choice answers provided.

■ In the real world, there are no official “Sun recommended” blue-
print patterns—only guidelines and recommendations. As a JEE
architect, one of your key skills is the ability to analyze application
requirements and choose the best combination of JEE technolo-
gies—especially at the web tier—to meet those requirements,
while not over-engineering the solution.

Review Your Progress

These questions test your understanding of JEE web components and
their most appropriate use to solve a given business problem:

1. You are the architect at a large investment bank. Your main area
of responsibility is a new web application designed to replace the
aging user interface for the existing clearing house back office
system. One of the systems is read from/written to via a JMS
Queue in asynchronous fashion and transactions and security
management are paramount. Select the most appropriate imple-
mentation from the following list:

A. JSP and JSTL accessing a business logic tier built using EJBs
and MDBs.

B. JSP and JSTL accessing a business logic tier built using
MDBs only.

C. JSF accessing the systems directly.
D. JSP accessing the systems directly.

Answer: A. B is not flexible enough, omitting EJBs and allowing
only MDBs. C and D couple the presentation tier directly to the
backend resource, creating potential security, performance, and
maintenance problems. A provides what is needed.
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2. You are the architect at ACME Corporation—the hottest Inter-
net start-up of the moment. The start-up provides a front-end
accessible by multiple devices, from smart phones to desktops,
and provides innovative social networking features to its mem-
bers. The key considerations for the system are performance
and scalability, and individual messages between members are
not considered important (that is, they can be resent). Select the
most appropriate implementation for this system from the fol-
lowing list:

A. JSP + JSTL accessing the messaging layer directly.
B. JSF accessing EJBs, with access to the messaging layer

mediated by a JMS client and MDB.
C. JSF accessing stateful session beans—one for each con-

nected client.
D. JSP + JSTL accessing a JPA-based persistence tier.

Answer: A. All of the other options contain a reasonable chance
that there will be an unnecessary overhead associated with the
components used—EJBs, JPA, and so on. A is the simplest
answer for the business problem described, especially when the
priority of performance and scalability is stated in the stem of
the question.

3. You are a subject matter expert on JEE consulting for ACME
Corporation. ACME has an existing application built using an
earlier version of the JEE platform. Performance and scalability
are not an issue, although system is not as maintainable as
ACME would like. The application uses JSP pages as part of a
Model 2 MVC architecture with Java code in the JSPs and some
presentation coded as Servlets. What do you recommend?

A. A complete rewrite of the existing presentation architecture
to leverage JSF and JPA.

B. A deeper analysis of the current system to ensure that JEE
best practices (especially the MVC model) are respected
throughout the code, replacing Java code in JSPs with JSTL
and EL as necessary and making Servlets act purely as con-
trollers.

C. ACME move the system to use Ruby on Rails.
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D. A complete rewrite of the current architecture to leverage
JSF, session beans, JMS, and JPA.

Answer: B. All of the other answers are nonsensical when you
realize where ACME is. They have a system that works today,
which requires some refactoring to move to MVC, and they sim-
ply need a roadmap after this work is completed to guide them
onto JEE 6, 7, and beyond. No rewrites are necessary.

4. You are a JEE architect at ABC Bank and have been tasked with
designing their next-generation UI framework for online bank-
ing. The online banking application must be accessible by both
standard browser clients and mobile devices. What do you rec-
ommend as the simplest and most optimal solution?

A. A JSF-based architecture, leveraging the capability of device
or channel-specific JSF renderers to support both mobile
and standard browser clients.

B. A JSP-only architecture, with custom logic to probe and
handle individual devices at runtime.

C. A Servlet-based architecture.
D. A template-based architecture.

Answer: A. JSF is designed to support exactly this type of use
case—the other available options, while workable, are not the
most optimal or most simple.

5. XYZ Corp has retained you as the architect for their latest web
application: XYZOnline. This application allows customers to
search, browse, and order catalog content online. XYZOnline
accesses the inventory and payment systems as web services.
What architecture do you recommend?

A. JSP/JSF pages accessing the web services layer using state-
less session beans.

B. Servlets accessing the web services directly using JAX-WS as
necessary.

C. JSP/JSF pages accessing the web services layer using JAX-
WS as necessary.

D. JSP/JSF pages accessing the web services using JMS.
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Answer: C. A uses stateless session beans when nothing in the
description warrants their usage. B uses Servlets to generate the
presentation, while D uses JMS in the wrong context. C is the
best solution for the stated business requirements.

6. You have been asked to evaluate multiple web presentation
technologies for ABC Corp. Their priorities are future-proofing,
tooling support from IDEs and the ability to render multiple
versions of the same component for different devices. What do
you recommend to ABC?

A. Use JSF components as part of a Servlet.
B. Use JSTL and the EL as part of JSP pages.
C. Use JSF components as part of JSP pages.
D. Use JSTL and the EL as part of Servlets. 

Answer: C. The key to choosing C is to realize that the question
guides you there by mentioning tooling support and future
proofness. B is close but does not match the requirements
exactly. D and A are not valid answers.
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