

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations
have been printed with initial capital letters or in all capitals.

Sun Microsystems, Inc. has intellectual property rights relating to implementations of the technology described in
this publication. In particular, and without limitation, these intellectual property rights may include one or more U.S.
patents, foreign patents, or pending applications.

Sun, Sun Microsystems, the Sun logo, J2ME, J2EE, Java Card, and all Sun and Java based trademarks and logos are
trademarks or registered trademarks of Sun Microsystems, Inc., in the United States and other countries. UNIX is a
registered trademark in the United States and other countries, exclusively licensed through X/Open Company, Ltd.
This publication is provided “as is” without warranty of any kind, either express or implied, including, but not limited
to, the implied warranties of merchantability, fitness for a particular purpose, or non-infringement. This publication
could include technical inaccuracies or typographical errors. Changes are periodically added to the information
herein; these changes will be incorporated in new editions of the publication. Sun Microsystems, Inc. may make
improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied
warranty of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or
consequential damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the United States, please contact:

International Sales
international@pearson.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data:

Cade, Mark.

Sun Certified Enterprise Architect for Java EE study guide / Mark Cade, Humphrey Sheil. — 2nd ed.

p. cm.

Previous ed.: Sun Certified Enterprise Architect for J2EE technology study guide, 2002.

ISBN 978-0-13-148203-6 (pbk. : alk. paper) 1. Electronic data processing personnel—Certification. 2. Java
(Computer program language)—Examinations—Study guides. I. Sheil, Humphrey. II. Cade, Mark. Sun Certified
Enterprise Architect for J2EE technology study guide. III. Title.

QA76.3.C23 2010

005.13’3—dc22

2009052010

Copyright © 2010 Sun Microsystems, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and
permission must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system,
or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For
information regarding permissions, write to:

Pearson Education, Inc
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671 3447

ISBN-13: 978-0-13-148203-6
ISBN-10: 0-13-148203-3

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana
First printing February 2010

C H A P T E R 3

Web Tier Technologies

■ State the benefits and drawbacks of adopting a web framework in
designing a Java EE application.

■ Explain standard uses for JSPs and Servlets in a typical Java EE
application.

■ Explain standard uses for JSF components in a typical Java EE
application.

■ Given a system requirements definition, explain and justify your
rationale for choosing a web-centric or EJB-centric implementa-
tion to solve the requirements. Web-centric means that you are
providing a solution that does not use EJBs. An EJB-centric solu-
tion will require an application server that supports EJBs.

Introduction

This chapter covers the area of presentation in the JEE platform, and
focuses on presentation technologies designed to render in a standards-
compliant HTML browser. In addition to focusing on the presentation
specifications and technologies that are included in the JEE platform,
we go one step further and analyze the benefits and drawbacks of using a
web framework to lend additional structure to a web application
(whether it also uses EJB or not) at the expense of additional complexity
or runtime overhead.

35

Chapter 3 Web Tier Technologies

Prerequisite Review

The following list details resources and specifications that you should be
familiar with before reading this chapter. The main resources are as
follows:

■ The JavaServer Pages 2.1 specification—JSR 245
■ The Servlet 2.5 specification—JSR 154
■ The JSF 1.2 specification—JSR 252
■ The JSTL 1.2 specification—JSR 52
■ The Java EE 5 specification—JSR 244

We now cover the specific topics that should be addressed at a high level
before more esoteric and advanced discussions on the relative advan-
tages and disadvantages of the various JEE web tier technologies.

Model View Controller (MVC)

Regardless of application domain or industry vertical, technology plat-
form, and client-side technology, everyone agrees that three fundamen-
tal concepts should be decoupled and kept separate—namely, the data,
the business logic that operates on that data, and the presentation of that
data to the end user (see Figure 3-1). In the JEE platform, the seminal
design pattern that enforces this separation of concerns is called the
MVC model. In the earliest releases of the specification, references
were made to Model 1 and Model 2 architectures. However, all main-
stream frameworks now embrace Model 2 exclusively—where views
(implemented as JSP pages with or without JSF components) forward to
a central controller (implemented as a Servlet), which invokes a named
handler for the page or action before forwarding the user to a well-
defined page to render the outcome of the request.

Web Container

The web container is analogous to the EJB container described in Chap-
ter 4, “Business Tier Technologies.” Simply put, one of the biggest
advantages of the JEE platform is how much it gives the developer out
of the box from an infrastructure perspective, leaving the developer free
to focus on how to use the JEE platform to implement the required

36

Prerequisite Review

business logic for their application. A web container provides services to
presentation and control components provided by the developer, imple-
mented as JSPs, JSF components, Servlets, filters, web event listeners,
and plain old Java classes (POJOs). These services include concurrency
control, access to user-managed transactions (more on this later), config-
uration, and security management.

37

state query user actions

view routing

state changes

change updates

Model (underlying data)
Controller (flow control /

business logic)

View (presentation)

Figure 3-1 A high-level schematic depicting the basic flow between the three major
components of the Model-View-Controller design pattern. All MVC web frameworks
follow this basic separation of concerns to a greater or lesser extent.

Servlets

A Servlet is a server-side component designed to handle inbound service
requests from remote clients. Although the vast majority of all Servlets
implemented are designed to respond to HTTP/HTTPS GET and
POST requests, the Servlet model is designed to accommodate any
protocol that is predicated around a request/response model. Servlet
developers must implement the javax.servlet.Servlet interface,
and specifically for HTTP Servlet developers, the javax.servlet.
HttpServlet interface. The core service method contains the routing
logic that forwards the inbound request to the appropriate handler. A
Servlet is hosted by the container, and multiple threads use it in order to
provide a scalable system unless the developer explicitly chooses not to

Chapter 3 Web Tier Technologies

do this by implementing the SingleThreadedModel tagging interface.
(This interface has been deprecated, as it results in systems that do not
scale.) Figure 3-2 illustrates the Servlet lifecycle, as managed by the web
container.

38

request

response

Happens exactly
once per deployment

Container removes the servlet,
calling the destroy method

Occurs many times,
for as long as the
servlet instance

is in service

Container passes relevant
calls to the servlet’s service method

Happens exactly
once per deployment

Container readies the servlet for
work by calling the init method

Happens exactly
once per deployment

Container instantiates one
instance of the class

Happens exactly
once per deployment

Container loads the servlet class

Figure 3-2 The Servlet lifecycle is quite simple, as opposed to that of other server-
side components in the JEE stack. Most developers simply override three methods—
init(), doGet()/doPost(), and destroy() to add required behavior.

Filters

Filters are server-side components hosted by the web container that
receive an inbound request before it is received by any other component.
Filters then are used to pre-process requests—for example, log the
event, perform security checks, and so on. Filters are frequently used by
web frameworks to make their operation as transparent to the developer
as possible, removing or at least ameliorating a significant barrier to their
adoption—the complexity (perceived or otherwise) of their develop-
ment overhead. In addition, filters can be used to perform dedicated
processing after a request has been received and processed.

Prerequisite Review

Listeners

Listeners are server-side components hosted by the web container that
are notified about specific events that occur during a Servlet’s lifecycle.
Listeners are used to take actions based on these events. The event
model is well-defined, consisting solely of notifications on the web con-
text (Servlet initialization and destruction, attribute adds/edits/deletes)
and session activity (creation, invalidation and timeout, and attribute
adds/edits/deletes).

JavaServer Pages (JSP)

JavaServer Pages are HTML pages with embedded mark-up that is eval-
uated at runtime by the web container to create complete HTML pages,
which are sent to the client for rendering to the end user. JSP technology
has matured significantly in the JEE platform—key elements added
since its inception have been the JSTL (Java Standard Tag Library) and
the Unified Expression Language (EL), which are covered in separate
sections later in the chapter. However, from an architect’s perspective,
their purpose is simple—they represent the ongoing effort from Sun to
enforce a workable MVC model in the JEE, separating presentation
logic from business logic. Like all container-managed objects in the JEE,
JSPs have a well-defined lifecycle, depicted in Figure 3-3.

39

request

response

The original state of the
JSP page, containing all
taglibs, directives, etc.
included by the JSP

developer.

Unless disabled, most containers
recompile JSP source that is newer

than the servlet source code to
aid development efficiency.

The compiled servlet
now “acts” as a JSP.

JSPs are fulfilled as
servlets, so must be

compiled to the servlet
model before handling

requests.

JSP source

Servlet source code

Compiled servlet

Figure 3-3 Although JSPs appear more complex than Servlets, and represent a
huge improvement on developer productivity and code maintainability, they are
actually implemented as Servlets under the hood by the web container.

Chapter 3 Web Tier Technologies

Java Standard Tag Library (JSTL)

The JSTL is a set of tag libraries that forms part of the JSP specification.
Before the advent of the JSTL, open source communities such as
Apache, commercial companies, and indeed individual software teams
built their own tag libraries. The JSTL brought much needed standardi-
zation to the tag library space, allowing developers and architects to
effectively delegate control and enhanced presentation logic tags to the
specification writers and focus instead on their application logic. The
JSTL is an example of open standards adding tangible value to develop-
ers as the JSP specification grows out to bring structure to an area badly
needing it.

Unified Expression Language (EL)

The EL was introduced in the JSP 2.0 specification, whereas the JSF 1.1
specification introduced its own EL. The word Unified indicates that in
JEE 5, these two EL definitions come together in a logical attempt to
simplify the overall platform. Simply put, the addition of an EL provides
developers with the ability to banish Java scriptlets from JSP pages com-
pletely. There are two constructs to represent EL expressions: ${expr}
and #{expr}. $ indicates that the expr is evaluated immediately, whereas
indicates to the container that evaluation should be deferred. The con-
tainer also makes a number of useful implicit objects available to an exe-
cuting EL snippet—for example, requestScope, sessionScope, and so
on. Access to this information further improves the ability of EL to
replace custom Java snippets in JSP. Custom Java snippets on their own
are not necessarily a bad thing (although the code is often more read-
able, elegant, and easier to maintain). The single biggest danger when
developers need to code Java in JSPs is that they implement not only
presentation logic, but business logic as well, violating the core tenet of
the MVC design pattern.

Managing Sessions

The Servlet specification provides an elegant way to allow a client-server
conversation to manage session state over the HTTP protocol, which is
essentially stateless. The web container provides access to a simple map,
called the HttpSession, where developers can read from and write to
any data that needs to be stored in order to process a client’s request.
Judicious use of this object is needed, however—storing large objects,

40

Prerequisite Review

such as collections of search results, is a known performance and scala-
bility anti-pattern.

JavaServer Faces (JSF)

JavaServer Faces is a UI framework for web applications based on the
JEE platform. Initially controversial (and still so in some quarters), with
many developers and architects resenting the imposition of yet another
web framework in an already over-crowded space, JSF has grown to rep-
resent the foremost method of constructing web UIs as recommended
by Sun Microsystems. Nevertheless, many application architects still
eschew JSF and use a simpler MVC model, typically leveraging a web
framework like vanilla Struts.

Disregarding any good or bad will toward JSF, let’s examine its goals.
JSF is designed to be easy to use by developers; it is also designed to
allow developers to stop thinking in terms of HTTP requests and
responses and instead to think about UI development in terms of user-
and system-generated events. JSF components are re-usable, improving
developer productivity, software quality, and system maintainability; the
clear intent of the JSF specification is that the technology be toolable, or
provided with deep and mature support from IDEs like Eclipse, Net-
beans, and IntelliJ. In this respect, JSF maps closely onto other tech-
nologies like ASP.NET from Microsoft and, in turn, is a clear break with
directions from frameworks like Ruby on Rails, where the developer is
never far away or insulated from the underlying HTTP request/response
model.

Templating Frameworks

Especially in the early days of JSP and even today, a segment of the
developer and architect population railed against what they saw as the
poor ease of development and runtime performance provided by the
JSP-centric model. These malcontents fought back against the tide by
using the Servlet container to build out a simpler, more efficient way of
including dynamic content in HTML fragments, resulting in the cre-
ation of template-centric frameworks such as Velocity and FreeMarker.
The presence of these frameworks has kept the JSP and JSF communi-
ties honest, in showing how simple web development can and should be.
However, no matter how relevant or pressing the claims of these frame-
works may be, the fact remains that the mandated way to build presenta-
tion logic in the JEE platform is either using JSP or JSF.

41

Chapter 3 Web Tier Technologies

Web Frameworks

Web frameworks fill the gap between the JSP/Servlet/JSF specification
and what an architect needs in order to build a consistent, high-quality
web application in the UI platform. The authors are often struck, after
reading a three- or four-hundred-page specification, how many open
questions there are. In the case of web UIs, a good web framework fills
that void, providing the architect and developer with a clear roadmap on
exactly how to implement core features such as action handlers, client-
and server-side validation, how to handle transactions in a sensible man-
ner, integrate security, manage session state, and build a maintainable
and understandable web UI. In fact, mainstream web frameworks have
been so successful, a significant percentage of architects have decided
not to use EJB in their applications at all—so confident are they that a
good web framework is all that is needed to design and construct a good
JEE system. And in many, if not most, cases, they are correct. EJBs in
the JEE platform provide specific features that are necessary only when
business requirements dictate it (these features are detailed in Chapter
4, along with the decision matrix governing when the use of EJBs is
appropriate). If you choose not to specify or use a web framework in Part
II of the exam, be prepared to clearly justify your decision. We believe
that very few, if any, non-trivial Java projects are not using a web frame-
work to impose standard practices on the development team, to produce
maintainable code, and to avoid re-inventing the wheel on every new
development.

Discussion

In this section, we examine the best uses for each of the various compo-
nents of the JEE web technology stack. Almost all the components can
be used to tackle any presentation/flow control/business logic problem,
but the specifics of JSPs, Servlets, JSF, and so on mean that they each are
better-suited to specific scenarios, as detailed here.

JSPs and Servlets—Standard Uses

JSPs handle the presentation of data to the end user. They should con-
tain no business logic. A good rule of thumb is to minimize or eliminate
entirely all Java code from JSPs and replace it instead with either

42

Discussion

EL, the JSTL, or a custom/third-party tag. This guideline tends to rein-
force the role of JSPs as the V in MVC—that is, the View.

JSF—Standard Uses

The standard uses for JSF are the same as for JSP. As an architect, you
are faced with a choice: either continue to use JSP with JSTL and a good
MVC framework, or use JSF. They do the same thing. Also, they are not
mutually exclusive. It is perfectly possible to add tags to a JSP page that
represent a specific JSF UI component, resulting in a hybrid solution.
JSF garnered a significant amount of bad press when it first launched (as
have many 1.0 implementations of specifications in the JEE platform),
but it has matured since then. Many architects, however, simply see no
need for it and prefer JSP with JSTL and EL.

Web-Centric Implementations

As intimated earlier, a significant proportion (exact figures are not avail-
able and indeed vary by industry vertical) of all JEE applications in exis-
tence today are deployed using only a web container—that is, they do
not use EJBs. This class of JEE application is termed web-centric.

The current version of the exam tests this concept in detail. As a JEE
architect, you are perfectly entitled to stipulate that EJBs not be used in
your design, but you must clearly understand why that decision is man-
dated and the impact of that decision on your developers as they imple-
ment the business logic. The exam tests this concept by presenting you
with a set of scenarios. Scenarios that have a strong messaging, transac-
tion, or security management component are all candidates where an
EJB-centric implementation is warranted and indeed necessary. (Let’s
be blunt—choosing EJB is the right answer.) Scenarios where ease of
development is key, where an existing application is already web-centric,
or where transactions are not key to the business (read-only or read-
mostly) mean that you should choose a web-centric answer from those
provided in the exam.

There are some stand-out reasons where using EJB is simply not
warranted. The most straight-forward example is a standard Create,
Read, Update, and Delete (CRUD) application built using Struts to
organize and control the presentation and business logic tiers, and
Hibernate plus a DAO access layer to implement the persistence tier.
Assuming that there are no asynchronous messaging requirements or

43

Chapter 3 Web Tier Technologies

JMS queues or topics to access, and that the functionality contained in
the web container for concurrency control, security, and session man-
agement is sufficient, then the right decision is to adopt a web-centric
approach.

Now, let’s consider an alternative scenario. You work for XYZ Bank, a
large multinational bank with investment and retail operations, which
has invested significant amounts of capital into a transactional system
based on mainframe technology over the last thirty years. Ensuring sys-
tem reliability and security are paramount; there is absolutely no room
for data corruption from edge conditions, such as the lost update or opti-
mistic locking going wrong. If the system enters into an unknown state
because of a technology failure, not only will the system need to be
brought back within 10 minutes in order to avoid a service-level agree-
ment (SLA) breach, the relevant regulatory authorities must also be
notified and a full system audit will be enforced. As the solution archi-
tect, do you believe that using only the web container segment of the
JEE platform is sufficient to meet the non-functional requirements
detailed here?

We would answer this rhetorical question as follows: It is possible to
fulfill the preceding scenario using only a web framework, but we would
not be comfortable in doing so. Many aspects of the EJB framework lend
themselves very well to this type of deployment; choosing to use only a
web framework will essentially force you, as the architect, into replicat-
ing in your code the reliability and availability characteristics that already
exist in the core JEE platform. This is not a good use of your time and
will result in a buggier implementation that needs to be maintained
moving forward.

EJB-Centric Implementations

Let’s reconsider the bank scenario laid out in the previous section. Look-
ing at the business requirements, we can see that they translate into non-
functional requirements (NFRs) focusing on system correctness,
reliability, and security. In this scenario, and answering the question
posed in the last section, assuming that the internal bank systems can be
accessed by a non-EJB solution, it is possible to achieve a solution that
will meet the NFRs using only a web-centric solution. But, and this is
the key point, you will need to commit your team to writing entire mod-
ules of custom code to replace features that you get from an EJB con-
tainer for free. In addition, it is likely that you will also need to take

44

Discussion

advantage of vendor-specific libraries/mechanisms to implement these
modules. That is the key point. In the scenarios examined here, there is
no right or wrong answer—just more correct and less correct. And that is
the key role of an architect: to examine the possible solutions and select
the most correct solution, taking into account the vagaries of the known
set of business requirements.

Rationale for Choosing Between EJB-Centric and Web-
Centric Implementations

As you may have gathered from the two preceding sections, neither we,
nor indeed the exam, believe that a web-centric or an EJB-centric archi-
tecture is always right or always wrong. The decision to select one over
the other is based purely on an impassionate review of the facts relating
to a specific project. In order of decreasing importance, the pertinent
facets to consider are as follows:

■ Transaction requirements—The more onerous, the bigger the
reason to select EJB.

■ Security requirements—Again, the more onerous, the bigger the
reason to select EJB.

■ Messaging requirements—Need to integrate with an asynchro-
nous messaging system—Again, if present, a clear reason to select
message-driven beans (MDBs); that is, the EJB-centric approach.

■ Performance.
■ Ease of development.
■ Scalability.
■ Existing team skills or existing project implementation.

The last four facets listed are not reasons in themselves that will conclu-
sively force you to choose one approach over the other; indeed, the
waters have been muddied in recent JEE releases for each. The primary
focus for EJB 3.0 (and continued in 3.1) is improving the ease of devel-
opment. As you will see in Chapter 4, the general consensus is that EJBs
are now, at last, easy enough to develop that their use is warranted in sit-
uations where previously system designers did not specify their use.
Assuming an efficient container implementation, stateless session beans
should be as efficient as Servlets/Action handlers in executing business
logic on the server side as a proxy for the client. The obvious exception

45

Chapter 3 Web Tier Technologies

here is stateful session beans. The need to maintain one session bean per
connected client for the duration of the conversation will always make
stateful session beans a poor scaling design choice, suitable only for a
small subset of applications with very specific requirements.

The Future of Client-Server Communication

It is worth noting that the current release of the exam was written in
2007 and contains material on Asynchronous JavaScript and XML, or
AJAX. Architects must understand the benefits of AJAX as they relate to
providing an enhanced end-user experience and how the JEE 5 platform
allows server-side components to service AJAX requests from browsers.
Looking forward, the exam will be refreshed in sympathy with the
release of future JEE versions. If JEE 6 or 7 is released into a world
where AJAX is declining in favor of cometd (HTTP continuations), or
another way of enhancing the end-user experience for browser-based
applications, then expect that technology to be reflected in the questions
posed. After all, the exam is written by a team of subject matter experts
who construct the questions and answers for Part I based on the current
state of play in the Enterprise Java space.

Essential Points

■ Presentation tier technologies remain a major element of the JEE
5 platform and are a significant source of exam content for Parts I
and III.

■ Part II is less concerned with the actual presentation technology
selected (within reason, of course) and more concerned with the
candidate displaying two things—in-depth understanding of the
business requirements and selecting a presentation technology
that meets those requirements.

■ JSF has grown from the presentation tier that disgruntled archi-
tects tried to ignore to a significant element of the JEE plat-
form—and for the exam. If you are a JSP-centric architect, beef
up on JSF because you need to know it.

46

Review Your Progress

■ The exam tests your understanding of the best UI technologies to
use in the JEE platform by presenting a series of scenarios. The
description of the scenario provides all the information you need
to select the correct technology/combination of technologies to
use from the multiple choice answers provided.

■ In the real world, there are no official “Sun recommended” blue-
print patterns—only guidelines and recommendations. As a JEE
architect, one of your key skills is the ability to analyze application
requirements and choose the best combination of JEE technolo-
gies—especially at the web tier—to meet those requirements,
while not over-engineering the solution.

Review Your Progress

These questions test your understanding of JEE web components and
their most appropriate use to solve a given business problem:

1. You are the architect at a large investment bank. Your main area
of responsibility is a new web application designed to replace the
aging user interface for the existing clearing house back office
system. One of the systems is read from/written to via a JMS
Queue in asynchronous fashion and transactions and security
management are paramount. Select the most appropriate imple-
mentation from the following list:

A. JSP and JSTL accessing a business logic tier built using EJBs
and MDBs.

B. JSP and JSTL accessing a business logic tier built using
MDBs only.

C. JSF accessing the systems directly.
D. JSP accessing the systems directly.

Answer: A. B is not flexible enough, omitting EJBs and allowing
only MDBs. C and D couple the presentation tier directly to the
backend resource, creating potential security, performance, and
maintenance problems. A provides what is needed.

47

Chapter 3 Web Tier Technologies

2. You are the architect at ACME Corporation—the hottest Inter-
net start-up of the moment. The start-up provides a front-end
accessible by multiple devices, from smart phones to desktops,
and provides innovative social networking features to its mem-
bers. The key considerations for the system are performance
and scalability, and individual messages between members are
not considered important (that is, they can be resent). Select the
most appropriate implementation for this system from the fol-
lowing list:

A. JSP + JSTL accessing the messaging layer directly.
B. JSF accessing EJBs, with access to the messaging layer

mediated by a JMS client and MDB.
C. JSF accessing stateful session beans—one for each con-

nected client.
D. JSP + JSTL accessing a JPA-based persistence tier.

Answer: A. All of the other options contain a reasonable chance
that there will be an unnecessary overhead associated with the
components used—EJBs, JPA, and so on. A is the simplest
answer for the business problem described, especially when the
priority of performance and scalability is stated in the stem of
the question.

3. You are a subject matter expert on JEE consulting for ACME
Corporation. ACME has an existing application built using an
earlier version of the JEE platform. Performance and scalability
are not an issue, although system is not as maintainable as
ACME would like. The application uses JSP pages as part of a
Model 2 MVC architecture with Java code in the JSPs and some
presentation coded as Servlets. What do you recommend?

A. A complete rewrite of the existing presentation architecture
to leverage JSF and JPA.

B. A deeper analysis of the current system to ensure that JEE
best practices (especially the MVC model) are respected
throughout the code, replacing Java code in JSPs with JSTL
and EL as necessary and making Servlets act purely as con-
trollers.

C. ACME move the system to use Ruby on Rails.

48

Review Your Progress

D. A complete rewrite of the current architecture to leverage
JSF, session beans, JMS, and JPA.

Answer: B. All of the other answers are nonsensical when you
realize where ACME is. They have a system that works today,
which requires some refactoring to move to MVC, and they sim-
ply need a roadmap after this work is completed to guide them
onto JEE 6, 7, and beyond. No rewrites are necessary.

4. You are a JEE architect at ABC Bank and have been tasked with
designing their next-generation UI framework for online bank-
ing. The online banking application must be accessible by both
standard browser clients and mobile devices. What do you rec-
ommend as the simplest and most optimal solution?

A. A JSF-based architecture, leveraging the capability of device
or channel-specific JSF renderers to support both mobile
and standard browser clients.

B. A JSP-only architecture, with custom logic to probe and
handle individual devices at runtime.

C. A Servlet-based architecture.
D. A template-based architecture.

Answer: A. JSF is designed to support exactly this type of use
case—the other available options, while workable, are not the
most optimal or most simple.

5. XYZ Corp has retained you as the architect for their latest web
application: XYZOnline. This application allows customers to
search, browse, and order catalog content online. XYZOnline
accesses the inventory and payment systems as web services.
What architecture do you recommend?

A. JSP/JSF pages accessing the web services layer using state-
less session beans.

B. Servlets accessing the web services directly using JAX-WS as
necessary.

C. JSP/JSF pages accessing the web services layer using JAX-
WS as necessary.

D. JSP/JSF pages accessing the web services using JMS.

49

Chapter 3 Web Tier Technologies

Answer: C. A uses stateless session beans when nothing in the
description warrants their usage. B uses Servlets to generate the
presentation, while D uses JMS in the wrong context. C is the
best solution for the stated business requirements.

6. You have been asked to evaluate multiple web presentation
technologies for ABC Corp. Their priorities are future-proofing,
tooling support from IDEs and the ability to render multiple
versions of the same component for different devices. What do
you recommend to ABC?

A. Use JSF components as part of a Servlet.
B. Use JSTL and the EL as part of JSP pages.
C. Use JSF components as part of JSP pages.
D. Use JSTL and the EL as part of Servlets.

Answer: C. The key to choosing C is to realize that the question
guides you there by mentioning tooling support and future
proofness. B is close but does not match the requirements
exactly. D and A are not valid answers.

50

Index

A
Abstract Factory pattern, 101-102
active replication, 29
activity diagrams, 160
Adapter pattern, 107-108
adornments, 155
aggregation, 154
AJAX (Asynchronous JavaScript and

XML), 46
Alexander, Christopher, 99
algorithms, load balancing, 25
Alur, Deepak, 100
annotational elements (UML), 153
annotations for web services, 61
APIs

JAXB, 72
JAXR, 73

Application Controller pattern, 129
application infrastructure layer, 19
Application Service pattern, 135-136
architects, characteristics of, 5-6
architecture

creating, 4-6
decomposition, 13-14

availability improvements, 28-29
dimensions, 23-24
extensibility improvements, 29
layers, 18-20
performance improvements,

27-28

redundancy improvements, 24-27
scalability improvements, 30
service-level requirements, 20-22
strategies, 14-17
tiers, 17-18, 30-32

defending, 179
defined, 2-4, 32
mechanisms, 3
patterns, 99
versus design, 4

asymmetric clusters, 27
Asynchronous JavaScript and XML

(AJAX), 46
authentication, 86
authorization, 86-87
availability, 21

defined, 33
improvements, 28-29

B
Bean Managed Persistence (BMP)

entity beans, 57
beans. See EJBs
Beck, Kent, 100
behavior diagrams

activity diagrams, 160
interaction diagrams, 163

behavioral elements (UML), 152-153

181

behavioral patterns
Chain of Responsibility pattern,

115-116
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern, 124-125
Visitor pattern, 125-126

blocked time, 28
BMP entity beans, 57
Bridge pattern, 108-109
Builder pattern, 103-104
Business Delegate pattern, 132-133
Business Object pattern, 136
Business tier patterns

Application Service pattern,
135-136

Business Delegate pattern, 132-133
Business Object pattern, 136
Composite Entity pattern, 136
Service Locator pattern, 133
Session Facade pattern, 134-135
Transfer Object Assembler

pattern, 138
Transfer Object pattern, 137-138
Value List Handler pattern, 139

business tiers, 18. See also EJBs

C
capacity, 23, 26
Chain of Responsibility pattern,

115-116
characteristics of architects, 5-6
class diagrams, 157, 170

classes, 151
client tiers, 17
client-server communication, future

of, 46
client/server systems, 31
client-side security, 87
clustered pairs, 27
clusters, 27
CMP entity beans, 56
Command pattern, 116-117
common divisions, 156
common UML mechanisms

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

component APIs, 19
component diagrams, 157-158, 173
components, 152
Composite Entity pattern, 136
Composite pattern, 109-110
Composite View pattern, 130-131
compute and storage layer, 19
Configuration (decomposition

strategy), 16
constraints, 156
Container Managed Persistence

(CMP) entity beans, 56
containers, EJB 3.0, 63. See also

application infrastructure
layer, 19

Context Object pattern, 127-128
Core J2EE Patterns: Best Practices and

Design Strategies, 100
Core Java EE patterns, 126

Business tier patterns
Application Service pattern,

135-136
Business Delegate pattern,

132-133

182 Index

Business Object pattern, 136
Composite Entity pattern, 136
Service Locator pattern, 133
Session Facade pattern, 134-135
Transfer Object Assembler

pattern, 138
Transfer Object pattern, 137-138
Value List Handler pattern, 139

Integration tier patterns, 139
Data Access Object pattern, 140
Domain Store pattern, 141
Service Activator pattern,

140-141
Web Service Broker pattern, 142

Presentation tier patterns, 126
Application Controller

pattern, 129
Composite View pattern, 130-131
Context Object pattern, 127-128
Dispatcher View pattern, 131-132
Front Controller pattern, 128
Intercepting Filter pattern,

126-127
Service to Worker pattern, 132
View Helper pattern, 129

Coupling and Cohesion
(decomposition strategy), 16

creating architecture, 4-6
creational patterns, 101

Abstract Factory pattern, 101-102
Builder pattern, 103-104
Factory Method pattern, 104
Prototype pattern, 105
Singleton pattern, 106

credentials, 85-86
Crupi, John, 100
Cunningham, Ward, 100

D
Data Access Object pattern, 140
data tiers. See resource tiers, 18
declarative security, 91-92
decomposition, 13-14

availability improvements, 28-29
dimensions, 23-24
extensibility improvements, 29
layers, 18-20
performance improvements, 27-28
redundancy improvements, 24-27
scalability improvements, 30
service-level requirements, 20-22
strategies, 14-17
tiers, 17-18, 30-32

Decorator pattern, 111-112
dependencies, 154

ordering, 17
deployment diagrams, 159, 174
design versus architecture, 4
design patterns

behavioral
Chain of Responsibility

pattern, 115
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern,

124-125
Visitor pattern, 125-126

Core Java EE patterns
Business tier patterns, 132-139

Index 183

Integration tier patterns, 139-142
Presentation tier patterns,

126-132
creational

Abstract Factory pattern, 101-102
Builder pattern, 103-104
Factory Method pattern, 104-105
Prototype pattern, 105
Singleton pattern, 106

structural
Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

Design Patterns: Elements of Reusable
Object-Oriented Software, 100

diagrams, 150, 157, 178
behavior diagrams

activity diagrams, 160
interaction diagrams, 163

sequence diagrams, 176
structure diagrams, 157

class diagrams, 157, 170
component diagrams,

157-158, 173
deployment diagrams, 159, 174
package diagrams, 159-160

dimensions, 23-24
capacity, 23
heterogeneity, 24
modularity, 23
redundancy, 23
tolerance, 24
workload, 24

Dispatcher View pattern, 131-132

Distribution (decomposition
strategy), 15

domain model, 169
Domain Store pattern, 141

E
ease of development

in EJB 3.0, 63
of persistence strategies, 60

EIS (Enterprise Information
Source), 74

EJB containers, 88-89
EJB-centric implementations, 44

selecting versus web-centric, 45-46
EJBs (Enterprise Java Beans), 51

advantages/disadvantages, 59-60
characteristics of, 53-54
entity beans, 56

BMP entity beans, 57
CMP entity beans, 56

entity classes, 57-58
MDBs (message-driven beans), 58
opinions on, 52-53
persistence strategies, 58
session beans, 54

stateful session beans, 55-56
stateless session beans, 54-55

specifications for, 52
version 3.0 changes, 62-64
web services and, 61-62

EL (Unified Expression Language), 40
elements (UML), 150-151

annotational elements, 153
behavioral elements, 152-153
grouping elements, 153
structural elements, 151-152

Enterprise Java Beans. See EJBs
enterprise services layer, 19

184 Index

entity beans
BMP entity beans, 57
CMP entity beans, 56

entity classes, 56-58
exam

Part I, 7-8
preparing for, 10

Part II, 8-9
preparing for, 11, 168-179

Part III, 9-10
preparing for, 11, 168-179

Exposure (decomposition strategy), 16
extensibility, 22

defined, 33
improvements, 29
of persistence strategies, 61

extensibility mechanisms, 156

F
Facade pattern, 112-113
Factory Method pattern

benefits of, 104
when to use, 105

failover, 26
filters, 38
Flyweight pattern, 113-114
frameworks

templating frameworks, 41
web frameworks, 42

Front Controller pattern, 128
Functionality (decomposition

strategy), 16

G
Gamma, Erich, 100
Generality (decomposition

strategy), 16
generalization, 155

GoF (Gang of Four), 100
GoF design patterns

behavioral patterns
Chain of Responsibility pattern,

115-116
Command pattern, 116-117
Interpreter pattern, 117
Iterator pattern, 118
Mediator pattern, 119-120
Memento pattern, 120-121
Observer pattern, 121-122
State pattern, 122
Strategy pattern, 123-124
Template Method pattern,

124-125
Visitor pattern, 125-126

creational patterns
Abstract Factory pattern, 101-10
Builder pattern, 103-104
Prototype pattern, 105
Singleton pattern, 106

creational Factory Method pattern
benefits of, 104
when to use, 105

structural patterns
Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

grouping, decomposition strategies,
14-15

grouping elements (UML), 153

Index 185

H
Helm, Richard, 100
heterogeneity, 24
horizontal scalability, 30
horizontal scaling, 21

I
integrating
integration, 16, 75

Java to non-Java, 76
JCA, 77

Java to Java, 75-76
Java to non-Java, web services, 76
web and EJB containers, 89

Integration tier patterns, 139
Data Access Object pattern, 140
Domain Store pattern, 141
Service Activator pattern, 140-141
Web Service Broker pattern, 142

integration tiers, 18
interaction diagrams, 163
interactions, 153
Intercepting Filter pattern, 126-127
interfaces, 151
Interpreter pattern, 117
Iterator pattern, 118

J
JAAS (Java Authentication and

Authorization Service), 85
Java Persistence API (JPA) in EJB 3.0,

56, 63-64
Java Standard Tag Library (JSTL), 40
Java to non-Java integration, JCA, 77
JavaServer Faces (JSF), 41

standard usage, 43
JavaServer Pages (JSP), 39

standard usage, 42

JAX-RPC, 72
JAX-WS API, 61, 72
JAXB (Java API for XML Binding), 72
JAXR (Java API for XML

Registries), 73
JCA (Java Connector Architecture),

74, 77
JMS (Java Messaging Service), 73-76
Johnson, Ralph, 100
JPA (Java Persistence API) in EJB 3.0,

63-64
JRE (Java Runtime Environment), 85
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39-42
JSTL (Java Standard Tag Library), 40
JustBuildIt Corporation scenario,

preparing for exam parts II
and III, 168-179

K–L
Layering (decomposition strategy), 15
layers, 18

application infrastructure layer, 19
application layer, 19
compute and storage layer, 19
enterprise services layer, 19
networking infrastructure layer, 20
virtual platform layer, 19

listeners, 39
load balancing, 25-26
logic, 16
logical tiers versus physical tiers, 30

M
maintainability, 22, 33
Malks, Danny, 100
man-in-the-middle attacks, 93
manageability, 22, 33

186 Index

MDBs (message-driven beans), 58
mechanisms, 3

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

Mediator pattern, 119-120
Memento pattern, 120-121
message-driven beans (MDBs), 58
messaging

JMS, 73-74
SOAP, 71

middleware. See integration tiers, 18
Model View Controller (MVC) model,

36-37
modeling, UML, 150

diagrams, 157-160, 163
mechanisms, 155-156
relationships, 154-155

modularity, 23
multi-tier systems, 31-32
MVC (Model View Controller) model,

36-37

N
N+1 clusters, 27
N-to-N clusters, 27
network sniffing, 94
networking infrastructure layer, 20
nodes, 152
non-functional requirements. See

service-level requirements
notes, 153

O–P
Observer pattern, 121-122
operating systems. See enterprise

services layer, 19
ordering dependencies, 17

package diagrams, 159-160
packages, 153
Part I of exam, 7-8

preparing for, 10
Part II of exam, 8-9

preparing for, 11, 168-179
Part III of exam, 9-10

preparing for, 11, 168-179
passive replication, 29
password cracking, 93
patterns, 99
performance, 20

improvements, 27-28
of persistence strategies, 60

persistence, 3
comparing strategies for, 60-61
entity beans

BMP entity beans, 57
CMP entity beans, 56

strategies, 58
phishing, 93
physical layer. See networking

infrastructure layer, 20
physical tiers versus logical tiers, 30
Planning and Tracking (decomposition

strategy), 17
preparing for exam

Part I, 7-10
Part II, 8-11, 168-179
Part III, 9-11, 168-179

Index 187

Presentation tier patterns, 126
Application Controller pattern, 129
Composite View pattern, 130-131
Context Object pattern, 127-128
Dispatcher View pattern, 131-132
Front Controller pattern, 128
Intercepting Filter pattern, 126-127
Service to Worker pattern, 132
View Helper pattern, 129

presentation tiers. See web tiers
principals, 86
processing time, 27
programmatic security, 92
Prototype pattern, 105
Proxy pattern, 114-115

Q–R
QoS (quality of service) requirements.

See service-level requirements

redundancy, 23-27
clusters, 27
failover, 26
load balancing, 25-26

relationships (UML), 150, 154-155
reliability, 21, 33
resource tiers, 18
response time, 28
ring clusters, 27
risks, 6
role of architects, 5-6
RPC (remote procedure call), 72

S
scalability, 20-21

defined, 33
improvements, 30
of EJBs, 59

scalable clusters, 27
scenarios, preparing for exam parts II

and III, 168-179
security, 22

authentication, 86
authorization, 86-87
client-side, 87
credentials, 85-86
declarative, 91-92
defined, 33
JAAS, 85
JRE, 85
of EJBs, 60
principals, 86
programmatic, 92
server-side EJB containers, 88
threats to, 93-94
web service security, 90-91

security models, 94
selecting EJB-centric versus

web-centric implementations,
45-46

sequence diagrams, 176
server-side security

EJB containers, 88
web containers, 88-89

Service Activator pattern, 140-141
Service Locator pattern, 133
Service to Worker pattern, 132
service-level requirements, 20-22

availability, 21
improvements, 28-29

dimensions, impact of, 23-24
extensibility, 22

improvements, 29
maintainability, 22
manageability, 22
performance, 20

improvements, 27-28

188 Index

redundancy improvements, 24-27
clusters, 27
failover, 26
load balancing, 25-26

reliability, 21
scalability, 20-21

improvements, 30
security, 22

services, 16
Servlets, 37-38
session beans, 54

stateful session beans, 55-56
stateless session beans, 54-55

Session Facade pattern, 134-135
session hijacking, 93
session management, 40
Singleton pattern, 106
sizing, 17
SOAP (Simple Object Access

Protocol), 71
social hacking, 93
specifications, 155
stand-by servers, failover and, 26
star clusters, 27
state machines, 153
State pattern, 122
stateful session beans, 55-56
stateless session beans, 54-55
stereotypes, 156
Strategy pattern, 123-124
structural elements (UML), 151-152
structural patterns

Adapter pattern, 107-108
Bridge pattern, 108-109
Composite pattern, 109-110
Decorator pattern, 111-112
Facade pattern, 112-113
Flyweight pattern, 113-114
Proxy pattern, 114-115

structure diagrams, 157
class diagrams, 157, 170
component diagrams, 157-158, 173
deployment diagrams, 159, 174
package diagrams, 159-160

Sun Java Center, 100
symmetric clusters, 27
system downtime, 28

T
tagged values, 156
technical risks, 6
Template Method pattern, 124-125
templating frameworks, 41
threats to security, 93-94
three-tier systems, 31-32
tiers, 17-18, 30-32

business tiers, 18
client tiers, 17
integration tiers, 18
multi-tier systems, 31-32
physical versus logical, 30
resource tiers, 18
service-level requirements, impact

on, 32
three-tier systems, 31-32
two-tier systems, 31
web tiers, 18

EJB-centric implementations, 44
EL (Unified Expression

Language), 40
filters, 38
future of client-server

communication, 46
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39, 42
JSTL (Java Standard Tag

Library), 40
listeners, 39

Index 189

MVC model, 36-37
Servlets, 37-38
session management, 40
specifications for, 36
templating frameworks, 41
web container, 36-37
web frameworks, 42
web-centric implementations,

43-46
tolerance, 24
Transfer Object Assember pattern, 138
Transfer Object pattern, 137-138
two-node clusters, 27
two-tier systems, 31

U
UML (Unified Modeling

Language), 150
common mechanisms

adornments, 155
common divisions, 156
extensibility mechanisms, 156
specifications, 155

diagrams, 157
behavior diagrams, 160, 163
structure diagrams, 157-160

elements, 151, 153
annotational elements, 153
behavioral, 152
grouping elements, 153
structural, 151-152

relationships, 154-155
Unified Expression Language (EL), 40

V
Value List Handler pattern, 139
vertical scaling, 21, 30
View helper pattern, 129
virtual platform layer, 19
virtualization, tiers and, 30
Visitor pattern, 125-126
Vitruvius, 5
Vlissedes, John, 100
Volatility (decomposition strategy), 16

W–Z
web containers, 36-37, 88-89
web frameworks, 42
Web Service Broker pattern, 142
web service security, 90-91
web services, 71

EJBs and, 61-62
Java to non-Java integration, 76
WSDL, 72

web tiers, 18
EJB-centric implementations, 44
EL (Unified Expression

Language), 40
filters, 38
future of client-server

communication, 46
JSF (JavaServer Faces), 41-43
JSP (JavaServer Pages), 39, 42
JSTL (Java Standard Tag

Library), 40
listeners, 39
MVC model, 36-37

190 Index

Servlets, 37-38
session management, 40
specifications for, 36
templating frameworks, 41
web container, 36-37
web frameworks, 42
web-centric implementations, 43-46

web-centric implementations, 43-46
Work Assignment (decomposition

strategy), 17
workload, 24
WSDL (Web Design Services

Description Language), 72

Index 191

	Chapter 3 Web Tier Technologies
	Introduction
	Prerequisite Review
	Model View Controller (MVC)
	Web Container
	Servlets
	Filters
	Listeners
	JavaServer Pages (JSP)
	Java Standard Tag Library (JSTL)
	Unified Expression Language (EL)
	Managing Sessions
	JavaServer Faces (JSF)
	Templating Frameworks
	Web Frameworks

	Discussion
	JSPs and Servlets—Standard Uses
	JSF—Standard Uses
	Web-Centric Implementations
	EJB-Centric Implementations
	Rationale for Choosing Between EJB-Centric and Web-Centric Implementations
	The Future of Client-Server Communication

	Essential Points
	Review Your Progress

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K–L
	M
	N
	O–P
	Q–R
	S
	T
	U
	V
	W–Z

