
Web Services

When XML use began to take off just after the year 2000, businesses, developers, and others looked
for new ways to use it. The promise of separating content and presentation had been met, but how
could this capability be capitalized on? The answer came in the form of web services.

Web services provide a way to exchange data between applications and servers. To facilitate this
communication, web services use the Internet to send messages composed of XML data back and
forth between a consumer (the application that uses the data) and a provider (the server that con-
tains the data). This is not unlike traditional distributed computing models, such as CORBA,
DCOM, and RMI, where method calls are executed over a network connection. The major differ-
ence with web services is that the data being transmitted is XML text instead of a binary format.

The promise behind web services is that of having software components available, on demand, to
any application in the world. Whether that be a web application or a traditional desktop applica-
tion, it is possible to use the same service to perform the same task.

Related Technologies
Web services aren’t a single technology or platform; in fact, they are a mixture of several protocols,
languages, and formats. And although several different platforms have incorporated web services
into their current offerings, there are still some basic parts that remain consistent.

SOAP
SOAP is a combination of an XML-based language and any number of common protocols for
transmitting this data. The SOAP specification describes an intricate language with numerous ele-
ments and attributes, intended to describe most types of data. This information can be transported
over any number of protocols, but is most commonly sent over HTTP along with other web traffic.

09_777781 ch06.qxp 12/30/05 8:25 PM Page 157

There are two main ways of using SOAP, the remote procedure call (RPC) style and the document style.

RPC-Style SOAP
The RPC style of SOAP treats the web service as though it were an object containing one or more meth-
ods (in much the same way you would use a local class to establish communication with a database). A
request is made to the service detailing the method name to call and the parameters, if any, to pass. The
method is executed on the server, and an XML response is dispatched containing the return value, if any,
or an error message if something went awry. Imagine a web service that provides simple arithmetic
operations: addition, subtraction, multiplication, and division. Each method takes two numbers and
returns a result. An RPC-style request for the add operation would look something like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>
<soap:Body>
<w:add xmlns:w=”http://www.wrox.com/services/math”>
<w:op1>4.5</w:op1>
<w:op2>5.4</w:op2>

</w:add>
</soap:Body>

</soap:Envelope>

Whenever you are dealing with non-trivial XML documents, for example documents that are to be
shared across businesses and applications, namespaces come into play. Namespaces are especially
important in SOAP because these documents need to be produced and read by different systems. The
SOAP namespace, specified in this example as http://schemas.xmlsoap.org/soap/envelope/, is
for version 1.1, and can vary depending on which version you are using. The version 1.2 namespace is
http://www.w3.org/2003/05/soap-envelope.

The <w:add/> element specifies the name of the method to call (add) and contains the other namespace
in the example, http://www.wrox.com/services/math. This namespace is specific to the service that
is being called and can be defined by the developer. The soap:encodingStyle attribute points to a URI
indicating how the data is encoded in the request. There are a variety of other encoding styles available
as well, such as the type system employed in XML schemas.

If the request to add two numbers executed successfully, the response message would look like this:

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”

soap:encodingStyle=”http://schemas.xmlsoap.org/soap/encoding/”>

An optional <soap:Header/> element can be used to contain additional informa-
tion, such as security credentials. If used, this element comes immediately before
<soap:Body/>.

Originally an acronym for Simple Object Access Protocol, the specification now
simply goes by SOAP.

158

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 158

<soap:Body>
<w:addResponse xmlns:w=”http://www.wrox.com/services/math”>
<w:addResult>9.9</w:addResult>

</w:addResponse>
</soap:Body>

</soap:Envelope>

As you can see, the format is similar to the initial request. The standard way of supplying the result is to
create an element with the name of the method followed by the word “Response.” In this case, the ele-
ment is <w:addResponse/>, and has the same namespace as the <w:add/> element in the request. The
actual result is returned in the <w:addResult/> element. Note that the web service developer can
define all these element names.

Were there a problem processing the SOAP request on the server, assuming the request actually reached
that far, then a <soap:Fault> element will be returned. For instance, if the first operand in the example
had been wrongly entered as a letter instead of the number, you might receive the following:

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<soap:Fault>
<faultcode>soap:Client</faultcode>
<faultstring>Server was unable to read request.

Input string was not in a correct format.
There is an error in XML document (4, 13).

</faultstring>
<detail/>

</soap:Fault>
</soap:Body>

</soap:Envelope>

The <soap:Fault> element, of which there can be only one, gives a clue as to the problem encountered.
The most telling information is that contained in <faultcode/>. There are a limited number of options
for this value, of which the two common ones are soap:Server and soap:Client. A soap:Server
fault code could indicate a problem such as the server being unable to connect to a database. In this case,
resending the message may well succeed. If soap:Client is specified, it often means that the message is
incorrectly formatted and will not succeed without some modification.

A more human-readable error message is stored in the <faultstring/> element, which contains
application-specific error details. If a secondary system, such as a database, is the primary cause of a
web service error, information pertaining to this error may be returned in an optional <faultactor/>
element (not shown in the previous example).

Document-Style SOAP
The document style of SOAP relies on XML schemas to designate the format of the request and response.
This style seems to be gaining in popularity and some predict that it will eventually all but replace the
RPC style. For a lucid explanation of why people are shying away from RPC with SOAP encoding, see
http://msdn.microsoft.com/library/en-us/dnsoap/html/argsoape.asp.

159

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 159

A document-style request may not look that different from an RPC-style request. For example, the RPC
request example from the previous section could be a valid document-style request by simply removing
the soap:encodingStyle attribute. The difference is that an RPC request always follows the same
style, with the method name in a containing element around its parameters; the document-style request
has no such constraints. Here’s an example that is completely different from an RPC request:

<?xml version=”1.0” encoding=”utf-8” ?>
<soap:Envelope xmlns:soap=”http://schemas.xmlsoap.org/soap/envelope/”>
<soap:Body>
<w:add xmlns:w=”http://www.wrox.com/services/math” op1=”4.5” op2=”5.4” />

</soap:Body>
</soap:Envelope>

Note that the highlighted line contains the method name (add) and two operands (op1 and op2) in a sin-
gle element. This construct is not possible using RPC-style requests. The document style has this flexibil-
ity because there is an accompanying XML schema. A web service can use this XML schema to validate
the structure of the request; the service is then free to use the information in the request appropriately.
Responses follow the same basic rules as requests: they can be very similar to RPC style or completely
different, again based on an XML schema.

At this point, you might be wondering where the XML schema is kept and how it is made available to
both the client and the service. The answer to those questions lies in yet another abbreviation: WSDL.

WSDL
Web Services Description Language (WSDL) is another XML-based language that was created to
describe the usage of a particular web service, or rather, how a particular service could be called. The
resulting specification describes an incredibly dense language, designed to be extremely flexible and
allow for as much re-use as possible; it is the sort of document that is manually constructed only by the
most ardent enthusiast. Typically, a software tool is used for the initial WSDL file creation and then hand
tweaked, as necessary.

The following is a WSDL file describing a sample math service with a single add method (which you
will be building later):

<?xml version=”1.0” encoding=”utf-8”?>
<wsdl:definitions

xmlns:http=”http://schemas.xmlsoap.org/wsdl/http/”
xmlns:soap=”http://schemas.xmlsoap.org/wsdl/soap/”
xmlns:s=”http://www.w3.org/2001/XMLSchema”
xmlns:tns=”http://www.wrox.com/services/math”
xmlns:wsdl=”http://schemas.xmlsoap.org/wsdl/”
targetNamespace=”http://www.wrox.com/services/math”>

<wsdl:types>
<s:schema elementFormDefault=”qualified”

targetNamespace=”http://www.wrox.com/services/math”>

Web services created using Visual Studio .NET are, by default, in document style
(although this can be changed by applying various attributes to the underlying
code).

160

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 160

<s:element name=”add”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”op1” type=”s:float” />
<s:element minOccurs=”1” maxOccurs=”1” name=”op2” type=”s:float” />

</s:sequence>
</s:complexType>

</s:element>
<s:element name=”addResponse”>
<s:complexType>
<s:sequence>
<s:element minOccurs=”1” maxOccurs=”1” name=”addResult”

type=”s:float” />
</s:sequence>

</s:complexType>
</s:element>

</s:schema>
</wsdl:types>
<wsdl:message name=”addSoapIn”>
<wsdl:part name=”parameters” element=”tns:add” />

</wsdl:message>
<wsdl:message name=”addSoapOut”>
<wsdl:part name=”parameters” element=”tns:addResponse” />

</wsdl:message>
<wsdl:portType name=”MathSoap”>
<wsdl:operation name=”add”>
<wsdl:documentation>
Returns the sum of two floats as a float
</wsdl:documentation>
<wsdl:input message=”tns:addSoapIn” />
<wsdl:output message=”tns:addSoapOut” />

</wsdl:operation>
</wsdl:portType>
<wsdl:binding name=”MathSoap” type=”tns:MathSoap”>
<soap:binding transport=”http://schemas.xmlsoap.org/soap/http”

style=”document” />
<wsdl:operation name=”add”>
<soap:operation soapAction=”http://www.wrox.com/services/math/add”

style=”document” />
<wsdl:input>
<soap:body use=”literal” />

</wsdl:input>
<wsdl:output>
<soap:body use=”literal” />

</wsdl:output>
</wsdl:operation>

</wsdl:binding>
<wsdl:service name=”Math”>
<wsdl:documentation>
Contains a number of simple arithmetical functions

</wsdl:documentation>
<wsdl:port name=”MathSoap” binding=”tns:MathSoap”>
<soap:address location=”http://localhost/Math/Math.asmx” />

</wsdl:port>
</wsdl:service>

</wsdl:definitions>

161

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 161

Remember that this WSDL is describing only a basic service that adds two numbers; for simplicity, the
three other methods you will be implementing have been removed. Although this WSDL file is long and
complex, you should understand what its various sections mean.

The document element, <wsdl:definitions/>, encompasses the content and allows the declaration of
various namespaces. The next element, <wsdl:types/>, contains the XML schema used by the service.
Inside of this element is <s:schema/>, which describes the format of all elements that can appear in the
<soap:Body/> of either the request or the response.

The first element described in the schema is <add/>. Since the <s:schema/> element has
elementFormDefault set to qualified, <add/> is assumed to be in the namespace designated by the
targetNamespace attribute, http://www.wrox.com/services/math. The <add/> element is then
declared to contain a sequence of two other elements, <op1/> and <op2/>. Both of these elements have
minOccurs and maxOccurs set to 1, which means that they must both appear once and once only. They
also both have a type attribute of s:float, which is one of the built-in XML schema types.

You can find a complete list of XML schema data types at www.w3.org/TR/xmlschema-
0/#CreatDt. If your service needs more complicated types than these, you can construct complex
types by aggregating and restricting these base types.

Next in the schema is another <s:element/>, this one describing <addResponse/>. This element is
defined to have one child element, <addResult/>, which contains the result of the operation (also
defined as type s:float). This is the last entry in the included XML schema.

Back in the main body of the WSDL file is a short section describing two <wsdl:message/> elements:
addSoapIn and addSoapOut. Each of these elements has a <wsdl:part/> element that specifies the
element in the XML schema to use. These both refer to the two elements add and addResponse, respec-
tively. This section states the format of each message.

The following section, <wsdl:portType/>, is used to group the <wsdl:message> elements into opera-
tions. An operation is considered to be a single unit of work and, therefore, comprises of a <wsdl:input>
and normally a <wsdl:output> and an optional <wsdl:fault> element. The preceding example has
one <wsdl:portType> and describes a <wsdl:operation/> named add. The message attributes on its
<wsdl:input> and <wsdl:output> children refer back to the <wsdl:message> elements previously
defined. There is also a <wsdl:documentation/> element containing a user-friendly description of the
method. (You will learn where this information comes from later in the chapter.)

After the port type is a <wsdl:binding/> block. A binding pairs an operation with a protocol used to
communicate with the service. There are three bindings described in the WSDL specification, SOAP,
HTTP GET/POST, and MIME.

This chapter concentrates on the SOAP binding. The HTTP GET/POST binding
deals with how URLs are constructed (for GET requests) or how the form data is
encoded (for POST requests). The MIME binding allows parts of the message, nor-
mally the output, to be expressed in different mime types. This means that one part
of the response could be in XML, whereas a second part could be in HTML.

You can read more about these alternative bindings at www.w3.org/TR/2002/WD-
wsdl12-bindings-20020709/.

162

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 162

First, the name of the binding is set to MathSoap, and the type points to the MathSoap port type defined
in the <wsdl:portType> section. Second, the <soap:binding/> element uses the transport attribute
to specify that the service operates over HTTP. The <wsdl:operation/> element simply defines the
name of the method, add. The <soap:operation/> element contains the soapAction that needs to be
incorporated into the header of the HTTP request as well as the style attribute, which specifies that the
SOAP message will be a document type rather than an RPC type.

The main difference between a document-style message and an RPC-style message is that the document
style sends the message as elements within the <soap:body> that can have whatever structure the
sender and receiver agree on using the embedded schema as a guide. An RPC-style message, however,
has an element named after the method being called. This in turn will have one element for each param-
eter the method accepts.

The <soap:operation/> element has two children, <wsdl:input> and <wsdl:output>, which are
used to further describe the request and response format. In this case, the <soap:body> specifies a use
attribute of literal. In practical terms, this is the only option with document-style services; with RPC-
style services the choice extends to encoded, in which case the <soap:body> would further specify
exactly which encoding type was to be used for the parameter types.

The final part of the document, <wsdl:service/>, deals with how to call the service from a client. It
also contains a human-readable description of the service and the <wsdl:port/> element, which refer-
ences the MathSoap binding in the last document section. Perhaps the most important element in this
section is <soap:address/>, which contains the crucial location attribute containing the URL needed
to access the service.

<wsdl:service name=”Math”>
<wsdl:documentation>
Contains a number of simple arithmetical functions

</wsdl:documentation>
<wsdl:port name=”MathSoap” binding=”tns:MathSoap”>
<soap:address location=”http://localhost/Math/Math.asmx” />

</wsdl:port>
</wsdl:service>

Looking at a complete WSDL file may be a bit daunting for new developers, but the good news is that
you will probably never have to hand code one yourself. In fact, the example file in this section was cre-
ated automatically by the .NET web service, which examines the underlying code and generates the nec-
essary XML.

XML schemas are a vast topic and a full discussion is outside the scope of this book. If you’d like to
learn more about XML schemas, consider picking up Beginning XML, 3rd Edition (Wiley Publishing,
ISBN 0-7645-7077-3), or for a web tutorial, visit www.w3schools.com/schema/default.asp.

REST
Representational State Transfer, often abbreviated as REST, describes a way of using the existing HTTP
protocol to transmit data. Although used mostly for web services, REST can be used for any type of
HTTP-based request and response systems as well. In regard to web services, REST enables you to call a
given URL in a specific format to return data (which will also be in a specific format). This data may con-
tain further information on how to retrieve even more data. For the web service usage, the data will be
returned as XML.

163

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 163

For example, suppose Wrox would like to provide a way for others to retrieve a list of all authors. REST-
style web services use simple URLs to access data; the Wrox Book service could use this URL to retrieve
the list of authors:

http://www.wrox.com/services/authors/

This service may return an XML representation of the known authors along with information on how to
access details about each one, such as:

<?xml version=”1.0” encoding=”utf-8” ?>
<authors xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns=”http://www.wrox.com/services/authors-books”
xlink:href=”http://www.wrox.com/services/authors/”>

<author forenames=”Michael” surname=”Kay”
xlink:href=”http://www.wrox.com/services/authors/kaym”
id=”kaym”/>

<author forenames=”Joe” surname=”Fawcett”
xlink:href=”http://www.wrox.com/services/authors/fawcettj”
id=”fawcettj”/>

<author forenames=”Jeremy” surname=”McPeak”
xlink:href=”http://www.wrox.com/services/authors/mcpeakj”
id=”mcpeakj”/>

<author forename=”Nicholas” surname=”Zakas”
xlink:href=”http://www.wrox.com/services/authors/zakasn”
id=”zakasn”/>

<!--
More authors

-->
</authors>

There are a couple of things to note about this XML. First, a default namespace of
http://www.wrox.com/services/authors-books is declared so that any un-prefixed elements, such
as <authors/>, are assumed to belong to this namespace. This means that the <authors/> element can
be differentiated from another element with a similar name but from a different namespace. The names-
pace URI, http://www.wrox.com/services/authors-books, is used simply as a unique string; there
is no guarantee that an actual resource is available at that location. The key is that it is a Uniform Resource
Identifier (URI), which is simply an identifier, not a Uniform Resource Locator (URL), which would indicate
that a resource is available at a specific location.

Second, note the use of the href attribute from the http://www.w3.org/1999/xlink namespace.
Although not essential, many REST-style services have now standardized on this notation for what, in
HTML, would be a standard hyperlink.

XLink is a way of linking documents that goes way beyond the straightforward hyperlinks of HTML. It
provides capabilities to specify a two-way dependency so that documents can be accessible from each
other as well as indicating how a link should be activated — for example, by hand, automatically, or
after a preset time. Its cousin, XPointer, is concerned with specifying sections within a document and
arose from the need for a more powerful notation than the simple named links within HTML pages.

Although they have both reached recommendation status at the W3C, they are still not widely used. For
more information, visit www.w3.org/XML/Linking.

164

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 164

If used in a web site or web application, the XML returned from the REST service would be transformed,
either client-side or server-side, to a more user-friendly format (most likely HTML) — perhaps some-
thing like this:

<html>
<head>
<title>Wrox Authors</title>

</head>
<body>
Michael Kay
Joe Fawcett
Jeremy McPeak
Nicholas Zakas

</body>
</html>

The user could then retrieve individual author data by following one of the links, which may return
XML similar to this:

<?xml version=”1.0” encoding=”utf-8” ?>
<author xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns=”http://www.wrox.com/services/authors-books”
xlink:href=”http://www.wrox.com/services/authors/fawcettj”
id=”fawcettj” forenames=”Joe” surname=”Fawcett”>

<books>
<book
xlink:href=”http://www.wrox.com/services/books/0764570773”
isbn=”0764570773” title=”Beginning XML”/>

<book
xlink:href=”http://www.wrox.com/services/books/0471777781”
isbn=”0471777781” title=”Professional Ajax”/>

</books>
</author>

Again, you see that the elements are in the http://www.wrox.com/services/authors-books names-
pace and the xlink:href attribute is a way to extract further information. An HTML representation of
this data may look like this:

<html>
<head>
<title>Author Details</title>

</head>
<body>
<p>Details for
Joe Fawcett</p>
<p>Books</p>
Beginning XML
Professional Ajax

</body>
</html>

165

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 165

And if, per chance, the user feels like following the link for Professional Ajax, he or she may receive the
following XML in response:

<?xml version=”1.0” encoding=”utf-8” ?>
<book xmlns:xlink=”http://www.w3.org/1999/xlink”

xmlns=”http://www.wrox.com/services/authors-books”
xlink:href=”http://www.wrox.com/services/books/0471777781”
isbn=”0471777781”>

<genre>Web Programming</genre>
<title>Professional AJAX</title>
<description>How to take advantage of asynchronous JavaScript
and XML to give your web pages a rich UI.</description>
<authors>
<author forenames=”Nicholas” surname=”Zakas”
xlink:href=”http://www.wrox.com/services/authors/zakasn”
id=”zakasn” />

<author forenames=”Jeremy” surname=”McPeak”
xlink:href=”http://www.wrox.com/services/authors/mcpeakj”
id=”mcpeakj” />

<author forenames=”Joe” surname=”Fawcett”
xlink:href=”http://www.wrox.com/services/authors/fawcettj”
id=”fawcettj” />

</authors>
</book>

REST-style services are fairly straightforward and follow a repeating pattern. For example, you may get
a complete list of authors by using http://www.wrox.com/services/authors/, whereas a slight
modification, adding an author ID at the end, may retrieve information about a single author, perhaps
from http://www.wrox.com/services/authors/fawcettj.

The service can be implemented in any number of ways. It could be through static web pages or, more
likely, some sort of server-side processing such as ASP, JSP, or PHP, that fetch data from a database and
return the appropriately constructed XML. In this case the URL would be mapped by the server into an
application-specific way of retrieving the data, possibly by invoking a stored procedure on the database
in question.

You can read more about REST-style services (also called RESTful services) at www.network
world.com/ee/2003/eerest.html.

The .NET Connection
By most accounts, Microsoft spearheaded the web services movement with the introduction of SOAP.
When Microsoft presented SOAP to IBM as a way of transporting data, IBM quickly came on board,
helping to develop what later became WSDL. With the combined force of Microsoft and IBM, many
more big companies jumped on board, such as Oracle, Sun, and HP. The standards were established and
the beginning of the web service era was on the horizon, but there was a catch: there were no tools to
facilitate the creation of web services. That’s where .NET came in.

166

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 166

Microsoft released the .NET Framework in 2000 with the aim of providing a platform-independent
development framework to compete with Java. Since Microsoft started nearly from scratch with the
.NET initiative, they built in strong support for XML, as well as the creation and consumption of web
services using SOAP and WSDL. Using .NET, there are simple ways to provide a web services wrapper
around existing applications as well as exposing most .NET classes using web services.

When developing web services, you can decide how much interaction with SOAP and WSDL is necessary.
There are tools to shield developers from the underlying structure, but you can also change fine details if
necessary. The 2005 version of the .NET Framework makes even more use of XML and web services.

Design Decisions
Although the .NET Framework makes web service development easier, it is by no means the only way to
create them. Just like any other programming task, there are several design and development decisions
that must be made. Remember, web services provide a platform-independent way of requesting and
receiving data, so the service consumer doesn’t need (or in many cases want) information about how it is
implemented. Unfortunately, there are some things to be aware of when interoperability is a concern:

❑ Not all platforms support the same data types. For example, many services return an
ADO.NET dataset. A system without .NET will be unlikely to understand this data form.
Similarly, arrays can be problematic because they can be represented in any number of ways.

❑ Some services are more tolerant of missing or extra headers in the request. This problem is
allied to consumers that do not send all the correct headers, which can create problems, espe-
cially when it comes to securing a service.

In an effort to overcome these and other related issues, the Web Services Interoperability Organization
was formed. You can find its aims, findings, and conformance recommendations at www.ws-i.org/.

When creating a web service, your first decision is which platform to use. If you choose Windows, you’ll
almost certainly use IIS as your web server. You can use ASP.NET to create your web services, or ASP for
older versions of IIS (though this is more difficult). The examples in this chapter use ASP.NET.

If you are using UNIX or Linux, you will likely be using JSP or PHP, both of which have open source web
servers available. Using these, you need to program in Java or PHP, respectively, to create web services.

The Axis project (http://ws.apache.org/axis/) has development tools for both Java and C++.

For PHP there are also plenty of options, including PhpXMLRPC (http://phpxmlrpc.source
forge.net/) and Pear SOAP (http://pear.php.net/package/SOAP).

After you’ve chosen your language, you’ll need to decide who will have access to your service. Will your
application be the only one calling it, or will your service be accessible publicly? If the latter, you will
need to take into account the interoperability issues discussed previously; if the former, you can take
advantage of some of the specialized features provided by the client or the server.

167

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 167

With a web service created, the next step is to consume it. Any application that calls a web service is con-
sidered a consumer. Typically, consuming a web service follows a distinct pattern: create a request, send
the request, and act on the response received. The exact method for taking these steps is up to the func-
tionality that is accessible by the consumer.

Creating a Windows Web Service
Now it’s time to move away from the specifications and theories to create a simple web service. The web
service described in this section uses document-style SOAP requests and responses to implement the
Math service described in the WSDL file earlier in this chapter. Note that this process uses free tools
available from Microsoft, which involve a little more work than if you were to use, say, Visual Studio
.NET. However, the extra work you’ll do in this section will aid in your understanding of web services
and could pay handsome dividends later in your development career should anything go wrong with an
auto-generated service.

System Requirements
To create this service, you will need three minimum requirements:

❑ A Windows machine running IIS 5 or greater. This comes as standard on all XP Professional
machines and on all servers from Windows 2000 onwards.

❑ The .NET Framework must be installed on the machine running IIS. You will also need the .NET
Software Development Kit (SDK) on the machine you are developing on. For the purposes of
this example, it is assumed that you are developing on the machine that is running IIS. (You can
download both the .NET Framework and the SDK from http://msdn.microsoft.com/net
framework/downloads/updates/default.aspx.)

❑ A text editor to write the code. This can simply be Notepad, which is standard on all Windows
machines and is more than adequate for the purposes of this example (although for serious
development an editor that supports syntax highlighting is preferable).

Configuring IIS
The first task is to create a home for your service. Go to Start➪Administrative Tools and select Internet
Information Services. (Alternatively, enter %SystemRoot%\System32\inetsrv\iis.msc in the Start➪Run
box and click the OK button.) Expand the tree on the left to show the Default Web Site node, and then
right-click and choose New➪Virtual Directory, as shown in Figure 6-1. This will bring up the Virtual
Directory Creation Wizard, where you choose the name of the web service folder as seen by the client
(see Figure 6-2).

168

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 168

Figure 6-1

Figure 6-2

169

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 169

Name the folder Math, and then click Next. On the next screen, browse to the standard IIS directory of
C:\InetPub\wwwroot. Create a new folder, also named Math, directly below this folder. Accept the
defaults for the remaining screens of the wizard. When this is done, use Windows Explorer to create a
new folder underneath Math named bin, which will hold the DLL once the service is built. Your folder
hierarchy should now look like Figure 6-3.

Figure 6-3

Coding the Web Service
The web service you are creating is quite simple. Its name is Math, and it implements the four basic
arithmetic operations: addition, subtraction, multiplication, and division. These four operations each
accept two parameters, defined as floats, and return a float as the result. The class itself will be coded in
C#, and the web service will be published in ASP.NET.

Create a new file in your favorite text editor and add the following three lines:

using System;
using System.Web;
using System.Web.Services;

This code doesn’t add any extra functionality, but it does save you from having to type fully qualified
class names. Since you will be using several classes from these namespaces, it saves space to reference
them here.

Next, create a namespace called Wrox.Services and a class called Math that inherits from System.Web
.Services.WebService:

170

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 170

namespace Wrox.Services
{
[WebService (Description = “Contains a number of simple arithmetical functions”,

Namespace = “http://www.wrox.com/services/math”)]

public class Math : System.Web.Services.WebService
{
//class code here

}

}

The namespace keyword is used to in a similar way as namespaces in XML; it means the full name of
the Math class is Wrox.Services.Math. Immediately inside the namespace definition is an attribute
called WebService, which marks the class on the following line as a web service. Doing this enables
extra functionality for the class, such as generating a WSDL file. You will also notice that a Description
parameter is included (and will also appear in the WSDL file).

Then comes the class name, Math, which inherits from the base class of
System.Web.Services.WebService. Inheriting from this class means that you don’t need to worry
about any specific code for writing web services; the base class handles all of this. You can simply focus
on writing the methods that will be published as part of the web service.

Defining a method to be used in a web service is as easy as writing a regular method and tagging it with
the special WebMethod attribute:

[WebMethod(Description = “Returns the sum of two floats as a float”)]
public float add(float op1, float op2)
{
return op1 + op2;

}

Once again, the code is very simple. (What could be simpler than an addition operation?) Any method
that has a WebMethod attribute preceding it is considered part of the web service. The Description
parameter will become part of the generated WSDL file. Although you can write as many methods as
you’d like, here is the complete code for this example, including the four arithmetic methods:

using System;
using System.Web;
using System.Web.Services;

namespace Wrox.Services
{
[WebService (Description = “Contains a number of simple arithmetical functions”,

Namespace = “http://www.wrox.com/services/math”)]
public class Math : System.Web.Services.WebService
{

[WebMethod(Description = “Returns the sum of two floats as a float”)]
public float add(float op1, float op2)
{
return op1 + op2;

171

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 171

}

[WebMethod(Description = “Returns the difference of two floats as a float”)]
public float subtract(float op1, float op2)
{
return op1 - op2;

}

[WebMethod(Description = “Returns the product of two floats as a float”)]
public float multiply(float op1, float op2)
{
return op1 * op2;

}

[WebMethod(Description = “Returns the quotient of two floats as a float”)]
public float divide(float op1, float op2)
{
return op1 / op2;

}
}

}

Save this file in the Math directory and name it Math.asmx.cs.

Create another text file and enter the following line:

<%@WebService Language=”c#” Codebehind=”Math.asmx.cs” Class=”Wrox.Services.Math” %>

This is the ASP.NET file that uses the Math class you just created. The @WebService directive tells the
page to act like a web service. The meaning of the other attributes should be fairly obvious: Language
specifies the language of the code to use; Codebehind specifies the name of the file that the code exists
in; and Class specifies the fully qualified name of the class to use. Save this file in Math directory as
well, with the name Math.asmx.

Creating the Assembly
After you have created these two files, you can proceed with the next stage: compiling the source code
into an assembly that will be housed in a DLL. To do this, you can use the C# compiler that comes with
the .NET SDK. This will be in your Windows directory below the Microsoft.Net\Framework\
<version number> folder (for example, C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\).

The easiest way to compile and debug the code is to create a batch file. Create another text file and enter
the following (it should all be on one line despite the formatting of the book):

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll
/r:System.Web.dll
/r:System.Web.Services.dll /t:library /out:bin\Math.dll Math.asmx.cs

Remember to modify the path to csc.exe if necessary and save it to the Math folder as
MakeService.bat.

172

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 172

Next, you need to compile the DLL. Open a command prompt from Start➪Run and type cmd. Now nav-
igate to the Math folder by typing cd \inetpub\wwwroot\Math. Finally, run the following batch file:

C:\inetpub\wwwroot\Math\MakeService.bat

If all is well, you should be greeted with the compiler displaying some version and copyright informa-
tion, and then a blank line. This is good news and indicates that the compilation was successful. (If there
were any errors, they will be outputted to the console. Check the lines indicated and correct any syntax
or spelling mistakes.)

Assuming the DLL has compiled, you are ready to test the service. One of the joys of .NET web services
is that a whole test harness is created automatically for you. Open your web browser and navigate to
http://localhost/Math/math.asmx. You should soon see a page similar to the one displayed in
Figure 6-4.

Figure 6-4

You have the choice to try any of the four methods or you can view the generated WSDL file by clicking
the Service Description link. This reveals a WSDL file similar to the example earlier in the chapter, but
this will have entries for all four methods.

If you are using Notepad, be careful using the Save As dialog box. Make sure that
the File Type box is set to All Files, or else enclose the file name in double quotes.
Otherwise, Notepad adds a .txt extension to your file.

173

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 173

Since you have probably had enough of the add method, try the divide method. Clicking the link from
the previous screen should display the page in Figure 6-5.

Figure 6-5

Below the divide heading is the description you used with the WebMethod attribute, and below that is a
small test form. If you enter two numbers, such as 22 and 7, you’ll receive a response such as the one dis-
played in Figure 6-6.

In a production environment, you can now remove the Math.asmx.cs file, as it is no longer needed. The
Math.asmx simply passes on all requests directly to the DLL.

This test harness does not use SOAP for the request and response. Instead, it passes the two operands as
a POST request; the details of how to do this are shown at the bottom of the divide page in Figure 6-5.
Now that you have a web service defined, it’s time to use Ajax to call it.

Another way of viewing the WSDL file is to add ?WSDL to the web service URL, such
as http://localhost/Math/math.asmx?WSDL.

174

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 174

Figure 6-6

Web Services and Ajax
Now that you have a basic understanding of web services, and have created your own, you’re probably
wondering what this has to do with Ajax. Quite simply, web services are another avenue for Ajax appli-
cations to retrieve information. In the last chapter, you learned how to retrieve and use RSS and Atom
feeds to display information to the user, which is very similar to using web services. The main difference
is that by using web services, you are able to pass information to the server that can be manipulated and
sent back; you aren’t simply pulling information.

You can use JavaScript to consume a web service from within a web page so long as your users have a
modern browser. Internet Explorer 5.0 and higher, as well as the Mozilla family of browsers (including
Firefox), all have some functionality that allows web services to be consumed.

Creating the Test Harness
First, you’ll need a test harness to test the various approaches to calling web services from the browser.
This test harness is fairly simple: there is a list box to select one of the four arithmetic operations to exe-
cute, a text box for each of the two operands, and a button to invoke the service. These controls are dis-
abled until the page has fully loaded. Below those controls is another text box to display any valid result
as well as two text areas to display the request and response data:

175

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 175

<html>
<head>
<title>Web Service Test Harness</title>
<script type=”text/javascript”>

var SERVICE_URL = “http://localhost/Math/Math.asmx”;
var SOAP_ACTION_BASE = “http://www.wrox.com/services/math”;

function setUIEnabled(bEnabled)
{
var oButton = document.getElementById(“cmdRequest”);
oButton.disabled = !bEnabled;
var oList = document.getElementById(“lstMethods”);
oList.disabled = !bEnabled

}

function performOperation()
{
var oList = document.getElementById(“lstMethods”);
var sMethod = oList.options[oList.selectedIndex].value;
var sOp1 = document.getElementById(“txtOp1”).value;
var sOp2 = document.getElementById(“txtOp2”).value;

//Clear the message panes
document.getElementById(“txtRequest”).value = “”;
document.getElementById(“txtResponse”).value = “”;
document.getElementById(“txtResult”).value = “”;
performSpecificOperation(sMethod, sOp1, sOp2);

}
</script>

</head>
<body onload=”setUIEnabled(true)”>
Operation: <select id=”lstMethods” style=”width: 200px” disabled=”disabled”>
<option value=”add” selected=”selected”>Add</option>
<option value=”subtract”>Subtract</option>
<option value=”multiply”>Multiply</option>
<option value=”divide”>Divide</option>

</select>

Operand 1: <input type=”text” id=”txtOp1” size=”10”/>

Operand 2: <input type=”text” id=”txtOp2” size=”10”/>

<input type=”button” id=”cmdRequest”

value=”Perform Operation”
onclick=”performOperation();” disabled=”disabled”/>

Result: <input type=”text” size=”20” id=”txtResult”>

<textarea rows=”30” cols=”60” id=”txtRequest”></textarea>
<textarea rows=”30” cols=”60” id=”txtResponse”></textarea>

</body>
</html>

The setUIEnabled() function is used to enable and disable the user interface of the test harness. This
ensures that only one request is sent at a time. There are also two constants defined, SERVICE_URL and
SOAP_ACTION_BASE, that contain the URL for the web service and the SOAP action header required to

176

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 176

call it, respectively. The button calls a function named performOperation(), which gathers the rele-
vant data and clears the text boxes before calling performSpecificOperation(). This method must be
defined by the particular test being used to execute the web service call (which will be included using a
JavaScript file). Depending on your personal browser preferences, the page resembles Figure 6-7.

Figure 6-7

The Internet Explorer Approach
In an early effort to get developers excited about web services, Microsoft developed and released a web
service behavior for Internet Explorer. Behaviors enable you to redefine the functionality, properties, and
methods of an existing HTML element or to create an entirely new one. The advantage of behaviors is the
encapsulation of functionality into a single file, ending with the .htc extension. Although the promise of
behaviors never lived up to the hype, the web service behavior is a solid component that can be very use-
ful to web developers. You can download the behavior from http://msdn.microsoft.com/
library/default.asp?url=/workshop/author/webservice/webservice.asp.

This file and the others associated with this chapter are included in the code download for Professional
Ajax, at www.wrox.com.

You can add behaviors to elements in a number of ways. The most straightforward is to use the ele-
ment’s CSS style property. To add the web service behavior to a <div/>, the code would be:

<div id=”divServiceHandler” style=”behavior: url(webservice.htc);”></div>

This assumes that the behavior is in the same folder on the server as the web page.

177

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 177

To show how to use this behavior, create a new version of the test harness and insert the highlighted line
directly below the <body/> element, as follows:

<body onload=”setUIEnabled(true);”>
<div id=”divServiceHandler” style=”behavior: url(webservice.htc);”></div>
Operation: <select id=”lstMethods” style=”width: 200px” name=”lstMethods”

disabled=”disabled”>

The next step is to define the performSpecificOperation() method specific to using the web service
behavior. This method accepts three arguments: the method name and the two operands. The code is as
follows:

var iCallId = 0;
function performSpecificOperation(sMethod, sOp1, sOp2)
{
var oServiceHandler = document.getElementById(“divServiceHandler”);
if (!oServiceHandler.Math)
{
oServiceHandler.useService(SERVICE_URL + “?WSDL”, “Math”);

}
iCallId = oServiceHandler.Math.callService(handleResponseFromBehavior,

sMethod, sOp1, sOp2);
}

A variable, iCallId, is initialized to zero. Although this plays no part in the test, it can be used to keep
track of multiple simultaneous calls. Then, a reference to the <div/> element that has the behavior
attached is stored in oServiceHandler. Next, a test is done to see if the behavior has already been used
by checking to see whether the Math property exists. If it doesn’t exist, you must set up the behavior by
passing the URL of the WSDL file and a identifying name for the service to useService(). The reason
for the identifier is to enable the behavior to use more than one service at a time. The callService()
method is then executed, passing in a callback function (handleResponseFromBehavior()), the name
of the method, and the two arguments.

When the response is received, the callback function, handleResponseFromBehavior(), will be called:

function handleResponseFromBehavior(oResult)
{
var oResponseOutput = document.getElementById(“txtResponse”);
if (oResult.error)
{
var sErrorMessage = oResult.errorDetail.code

+ “\n” + oResult.errorDetail.string;
alert(“An error occurred:\n”

+ sErrorMessage
+ “See message pane for SOAP fault.”);

oResponseOutput.value = oResult.errorDetail.raw.xml;
}
else
{
var oResultOutput = document.getElementById(“txtResult”);
oResultOutput.value = oResult.value;
oResponseOutput.value = oResult.raw.xml;

}
}

178

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 178

The callback function is passed an oResult object containing details about the call. If the error prop-
erty is not zero, the relevant SOAP fault details are displayed; otherwise oResult.value, the returned
value, is displayed on the page.

You can place the performSpecificOperation() and handleResponseFromBehavior() functions in
an external JavaScript file and include them in the test harness page using the <script/> element, as
follows:

<script type=”text/javascript” src=”WebServiceExampleBehavior.js”></script>

As you can see, using the web service behavior is fairly straightforward. All the work is done by the
behavior behind the scenes, and although the webservice.htc file is a bit large for a script file (51KB),
it can provide some very useful functionality.

If you want to see how the behavior works, feel free to examine the webservice.htc file in a text edi-
tor. Be warned, however; it was not meant as a tutorial and contains nearly 2300 lines of JavaScript.

The Mozilla Approach
Modern Mozilla-based browsers, such as Firefox and Netscape, have some high-level SOAP classes built
into their implementation of JavaScript. These browsers seek to wrap the basic strategy of making SOAP
calls with easier-to-use classes. As with the previous example, you first must define the
performSpecificOperation() function:

function performSpecificOperation(sMethod, sOp1, sOp2)
{
var oSoapCall = new SOAPCall();
oSoapCall.transportURI = SERVICE_URL;
oSoapCall.actionURI = SOAP_ACTION_BASE + “/” + sMethod;
var aParams = [];
var oParam = new SOAPParameter(sOp1, “op1”);
oParam.namespaceURI = SOAP_ACTION_BASE;
aParams.push(oParam);
oParam = new SOAPParameter(sOp2, “op2”);
oParam.namespaceURI = SOAP_ACTION_BASE;
aParams.push(oParam);
oSoapCall.encode(0, sMethod, SOAP_ACTION_BASE, 0, null, aParams.length, aParams);
var oSerializer = new XMLSerializer();
document.getElementById(“txtRequest”).value =

oSerializer.serializeToString(oSoapCall.envelope);
setUIEnabled(false);

//more code here}

This script takes advantage of a number of built-in classes, the first of which is SOAPCall. This class
wraps web service functionality in a similar way to the web service behavior for Internet Explorer. After
creating an instance of SOAPCall, you set two properties: transportURI, which points to the web ser-
vice location, and actionURI, which specifies the SOAP action and method name.

179

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 179

Next, two parameters are created using the SOAPParameter constructor, which takes the value and the
name of the parameter to create. Each parameter has its namespace URI set to the value of the
targetNamespace in the WSDL schema section. In theory this shouldn’t be necessary, but the Mozilla
SOAP classes seem to be designed with the RPC style in mind and our service uses the document style,
so this extra step is needed. Both of these parameters are pushed onto the aParams array. The encode()
method prepares all the data for the call. There are seven parameters for this call. The first is the version
of SOAP being used, which can be set to zero unless it is important that a specific version is needed. The
second parameter is the name of the method to use, and the third is that of the targetNamespace from
the schema portion of the WSDL file. The next parameter is the count of how many extra headers are
needed in the call (none in this case), followed by an array of these headers (here set to null). The last
two parameters contain the number of SOAPParameter objects being sent and the actual parameters,
respectively.

Next, you actually need to send the request, which you can do by using the asyncInvoke() method, as
follows:

function performSpecificOperation(sMethod, sOp1, sOp2)
{
var oSoapCall = new SOAPCall();
oSoapCall.transportURI = SERVICE_URL;
oSoapCall.actionURI = SOAP_ACTION_BASE + “/” + sMethod;
var aParams = [];
var oParam = new SOAPParameter(sOp1, “op1”);
oParam.namespaceURI = SOAP_ACTION_BASE;
aParams.push(oParam);
oParam = new SOAPParameter(sOp2, “op2”);
oParam.namespaceURI = SOAP_ACTION_BASE;
aParams.push(oParam); oSoapCall.encode(0, sMethod, SOAP_ACTION_BASE, 0, null,

aParams.length, aParams);
document.getElementById(“txtRequest”).value =

oSerializer.serializeToString(oSoapCall.envelope);
setUIEnabled(false);

oSoapCall.asyncInvoke(
function (oResponse, oCall, iError)
{
var oResult = handleResponse(oResponse, oCall, iError);
showSoapResults(oResult);

}
);

}

The asyncInvoke() method accepts only one argument: a callback function (handleResponse()). This
function will be passed three arguments by the SOAP call: a SOAPResponse object, a pointer to the origi-
nal SOAP call (to track multiple instances, if necessary), and an error code. These are all passed to the
handleResponse function for processing, when the call returns:

function handleResponse(oResponse, oCall, iError)
{
setUIEnabled(true);
if (iError != 0)
{

180

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 180

alert(“Unrecognized error.”);
return false;

}
else
{
var oSerializer = new XMLSerializer();
document.getElementById(“txtResponse”).value =

oSerializer.serializeToString(oResponse.envelope);
var oFault = oResponse.fault;
if (oFault != null)
{
var sName = oFault.faultCode;
var sSummary = oFault.faultString;
alert(“An error occurred:\n” + sSummary

+ “\n” + sName
+ “\nSee message pane for SOAP fault”);

return false;
}
else
{
return oResponse;

}
}

}

If the error code is not zero, an error has occurred that can’t be explained. This happens only rarely; in
most cases an error will be returned through the fault property of the response object.

Another built-in class is used now, XMLSerializer. This takes an XML node and can convert it to a
string or a stream. In this case a string is retrieved and displayed in the right-hand text area.

If oResponse.fault is not null, a SOAP fault occurred, so an error message is built and displayed to
the user and no further action taken. Following a successful call, the response object is passed out as the
function’s return value and processed by the showSoapResults() function:

function showSoapResults(oResult)
{

if (!oResult) return;
document.getElementById(“txtResult”).value =
oResult.body.firstChild.firstChild.firstChild.data;

}

After checking that oResult is valid, the value of the <methodResult> element is extracted using the
DOM.

There is a method of the SoapResponse named getParameters, which, in theory, can be used to
retrieve the parameters in a more elegant manner. It does not seem to work as advertised with document
style calls, however, necessitating the need to examine the structure of the soap:Body using more
primitive methods.

181

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 181

The Universal Approach
The only way to consume web services on almost all modern browsers is by using XMLHttp. Because
Internet Explorer, Firefox, Opera, and Safari all have some basic support for XMLHttp, this is your best
bet for cross-browser consistency. Unfortunately, this type of consistency comes at a price — you are
responsible for building up the SOAP request by hand and posting it to the server. You are also responsi-
ble for parsing the result and watching for errors.

The two protagonists in this scenario are the XmlHttp ActiveX class from Microsoft and the
XmlHttpRequest class that comes with the more modern Mozilla-based browsers listed above. They
both have similar methods and properties, although in the time-honored fashion of these things
Microsoft was first on the scene before standards had been agreed on, so the later released Mozilla ver-
sion is more W3C compliant. The basic foundation of these classes is to allow an HTTP request to be
made to a web address. The target does not have to return XML — virtually any content can be
retrieved — and the ability to post data is also included. For SOAP calls, the normal method is to send a
POST request with the raw <soap:Envelope> as the payload.

In this example, you’ll once again be calling the test harness. This time, however, you’ll be using the
zXML library to create XMLHttp objects and constructing the complete SOAP call on your own. This
library uses a number of techniques to examine which XML classes are supported by the browser. It also
wraps these classes and adds extra methods and properties so that they can be used in a virtually identi-
cal manner. The generation of the SOAP request string is handled in a function called getRequest():

function getRequest(sMethod, sOp1, sOp2)
{

var sRequest = “<soap:Envelope xmlns:xsi=\””
+ “http://www.w3.org/2001/XMLSchema-instance\” “
+ “xmlns:xsd=\”http://www.w3.org/2001/XMLSchema\” “
+ “xmlns:soap=\”http://schemas.xmlsoap.org/soap/envelope/\”>\n”
+ “<soap:Body>\n”
+ “<” + sMethod + “ xmlns=\”” + SOAP_ACTION_BASE + “\”>\n”
+ “<op1>” + sOp1 + “</op1>\n”
+ “<op2>” + sOp2 + “</op2>\n”
+ “</” + sMethod + “>\n”
+ “</soap:Body>\n”
+ “</soap:Envelope>\n”;

return sRequest;
}

The getRequest() function is pretty straightforward; it simply constructs the SOAP string in the
appropriate format. (The appropriate format can be seen using the .NET test harness described in the
creation of the Math service.) The completed SOAP string is returned by getRequest() and is used by
performSpecificOperation() to build the SOAP request:

function performSpecificOperation(sMethod, sOp1, sOp2) {
oXmlHttp = zXmlHttp.createRequest();
setUIEnabled(false);
var sRequest = getRequest(sMethod, sOp1, sOp2);
var sSoapActionHeader = SOAP_ACTION_BASE + “/” + sMethod;
oXmlHttp.open(“POST”, SERVICE_URL, true);
oXmlHttp.onreadystatechange = handleResponse;
oXmlHttp.setRequestHeader(“Content-Type”, “text/xml”);

182

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 182

oXmlHttp.setRequestHeader(“SOAPAction”, sSoapActionHeader);
oXmlHttp.send(sRequest);
document.getElementById(“txtRequest”).value = sRequest;

}

First, a call is made on the zXmlHttp library to create an XMLHttp request. As stated previously, this
will be an instance of an ActiveX class if you are using Internet Explorer or of XmlHttpRequest if you
are using a Mozilla-based browser. The open method of the object received attempts to initialize the
request. The first parameter states that this request will be a POST request containing data, and then
comes the URL of the service, followed by a Boolean parameter specifying whether this request will be
asynchronous or whether the code should wait for a response after making the call.

The onreadystatechange property of the request specifies which function will be called when the state
of the request alters.

The performSpecificOperation() function then adds two headers to the HTML request. The first spec-
ifies the content type to be text/xml, and the second adds the SOAPAction header. This value can be read
from the .NET test harness page or can be seen in the WSDL file as the soapAction attribute of the rele-
vant <soap:operation/> element. Once the request is sent, the raw XML is displayed in the left text box.
When the processing state of the request changes, the handleResponse() function will be called:

function handleResponse()
{
if (oXmlHttp.readyState == 4)
{
setUIEnabled(true);
var oResponseOutput = document.getElementById(“txtResponse”);
var oResultOutput = document.getElementById(“txtResult”);
var oXmlResponse = oXmlHttp.responseXML;
var sHeaders = oXmlHttp.getAllResponseHeaders();
if (oXmlHttp.status != 200 || !oXmlResponse.xml)
{
alert(“Error accessing Web service.\n”

+ oXmlHttp.statusText
+ “\nSee response pane for further details.”);

var sResponse = (oXmlResponse.xml ? oXmlResponse.xml : oXmlResponseText);
oResponseOutput.value = sHeaders + sResponse;
return;

}
oResponseOutput.value = sHeaders + oXmlResponse.xml;
var sResult =

oXmlResponse.documentElement.firstChild.firstChild.firstChild.firstChild.data;
oResultOutput.value = sResult;

}
}

The handleResponse() function reacts to any change of state in the request. When the readyState
property equals 4, which equates to complete, there will be no more processing and it can be checked to
see if there is a valid result.

183

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 183

If the oXmlHttp.status does not equal 200 or the responseXML property is empty, an error has
occurred and a message is displayed to the user. Should the error be a SOAP fault, that information is
also displayed in the message pane. If, however, the error wasn’t a SOAP fault, the responseText is
displayed. If the call has succeeded, the raw XML is displayed in the right text box.

Assuming that the XML response is available, there are a number of ways to extract the actual result
including XSLT, using the DOM or text parsing; unfortunately, very few of these work across browsers
in a consistent manner. The DOM method of gradually stepping through the tree is not very elegant, but
it does have the merit of being applicable to whichever variety of XML document is in use.

Cross-Domain Web Services
So far in this chapter you’ve been calling a service that resides on the same domain as the page accessing
it. By doing this, you have avoided the problem of cross-domain scripting (also known as cross-site script-
ing, or XSS). As discussed earlier in this book, this problem is caused by the fact that there are security
risks in allowing calls to external web sites. If the web service is on the same domain as the calling page,
the browser will permit the SOAP request, but what if you want to use one of the Google or
Amazon.com services?

For this you’ll need to use a server-side proxy, which runs on your web server and makes calls on behalf
of the client. The proxy then returns the information it receives back to the client. The setup resembles
that of a web proxy server that is commonplace in corporate networks. In that model, all requests are
passed to a central server that retrieves the web page and passes it to the requestor.

The Google Web APIs Service
Google provides a number of methods that can be called through its web service, including methods for
retrieving cached copies of pages as well as the more obvious results for a given search phrase. The
method you will use to demonstrate a server-side proxy is doSpellingSuggestion, which takes a
phrase and returns what Google believes you meant to type. If your phrase is not misspelled or is so
obscure that it cannot hazard a suggestion, an empty string is returned.

The developers’ kit for the Google Web APIs service can be found at www.google
.com/apis/index.html. The kit contains the service’s SOAP and WSDL standards,
as well as examples in C#, Visual Basic .NET, and Java.

You will need to register with Google to receive a security key to allow you to access
the service. There are also rules about how it can be used both commercially and for
development purposes.

184

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 184

Setting Up the Proxy
After you have downloaded the Google documentation and received your key, you need to set up a ser-
vice on your own server that will accept the calls from your users and pass them to Google. The basic
service is built in the same way as the Math service discussed earlier.

To begin, open the IIS admin tool (Start➪Administrative Tools➪Internet Information Services). Expand
the tree on the left to show the Default Web Site node, and then right-click and choose New➪Virtual
Directory. In the Alias field of the Virtual Directory Creation Wizard, name your new directory
GoogleProxy, and then click Next. On the next screen, browse to the standard IIS directory of
C:\InetPub\wwwroot, and create a new folder, also named GoogleProxy. Accept the defaults for the
remaining screens of the wizard, and then use Windows Explorer to create a new folder below
GoogleProxy named bin.

Next, open your text editor and create the following file, all on one line:

<%@ WebService Language=”c#”
Codebehind=”GoogleProxy.asmx.cs” Class=”Wrox.Services.GoogleProxyService” %>

Save this as GoogleProxy.asmx in the GoogleProxy directory.

Now create the main file, GoogleProxy.asmx.cs:

using System;
using System.Web;
using System.Web.Services;
using GoogleService;

namespace Wrox.Services
{
[WebService (Description = “Enables calls to the Google API”,

Namespace = “http://www.wrox.com/services/googleProxy”)]
public class GoogleProxyService : System.Web.Services.WebService
{
readonly string GoogleKey = “EwVqJPJQFHL4inHoIQMEP9jExTpcf/KG”;

[WebMethod(
Description = “Returns Google spelling suggestion for a given phrase.”)]
public string doSpellingSuggestion(string Phrase)
{
GoogleSearchService s = new GoogleSearchService();
s.Url = “http://api.google.com/search/beta2”;
string suggestion = “”;
try
{
suggestion = s.doSpellingSuggestion(GoogleKey, Phrase);

}

185

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 185

catch(Exception Ex)
{
throw Ex;

}
if (suggestion == null) suggestion = “No suggestion found.”;
return suggestion;

}
}

}

Remember to enter the value of your Google key for the GoogleKey variable, and then save this file to
the same location as the others.

The code itself is fairly straightforward; all the real work is done by the GoogleSearchService. The
method doSpellingSuggestion creates an instance of the GoogleSearchService class. The URL of
the service is then set. This step is not always necessary, but we’ve found that it often helps to be able to
change the URL of services easily. In a production environment the URL would be read from a configu-
ration file, enabling you to move between servers easily.

The doSpellingSuggestion method is now called, passing in the Google key and the Phrase argu-
ment. This is another advantage of using a server-side proxy: you can keep sensitive information such as
your key away from the client-side environment of the browser.

If an exception is thrown, it will be re-thrown and returned as a SOAP fault. If the returned suggestion
is null, a suitable string is returned; otherwise, the suggestion is passed back directly.

You now create the class to interact with Google. Begin by copying the GoogleSearch.wsdl file into the
GoogleProxy folder, and then open a command prompt, navigate to GoogleProxy, and run the following
(you can ignore warnings about a missing schema):

WSDL /namespace:GoogleService /out:GoogleSearchService.cs GoogleSearch.wsdl

The WSDL utility reads the GoogleSearch.wsdl file and creates the source code for a class to commu-
nicate with the service. The class will reside in the GoogleService namespace, as instructed by the first
parameter to WSDL. This source code needs to be turned into a DLL and to do this you need to use the
C# compiler as you did before. Enter the following at the command prompt or use the batch file named
MakeGoogleServiceDLL.bat from the code download:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll
/r:System.Web.dll /r:System.Web.Services.dll /t:library
/out:bin\GoogleSearchService.dll GoogleSearchService.cs

WSDL.exe seems to be installed in a number of different places, depending on what
other Microsoft components are on the machine. On machines with Visual Studio
.NET installed, it is likely to be in C:\Program Files\Microsoft Visual Studio
.NET 2003\SDK\v1.1\Bin, but you may need to search for it on your machine.

186

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 186

As before, the /r: parameters are telling the compiler which DLLs are needed to provide support
classes to the target DLL of GoogleSearchService.

The last stage is to compile the GoogleProxy class itself:

C:\WINDOWS\Microsoft.NET\Framework\v1.1.4322\csc.exe /r:System.dll
/r:System.Web.dll /r:System.Web.Services.dll /r:bin\GoogleSearchService.dll
/t:library /out:bin\GoogleProxy.dll GoogleProxy.asmx.cs

Notice that a reference is passed in for the GoogleSearchService.dll just created.

You are now ready to test the service by entering the following URL in your browser:

http://localhost/GoogleProxy/GoogleProxy.asmx

You should be greeted with the standard screen, as shown in Figure 6-8.

Figure 6-8

Click the doSpellingSuggestion link to try out the method using the built-in test harness, as shown in
Figure 6-9.

187

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 187

Figure 6-9

When you click the Invoke button, you will see the XML returned, as shown in Figure 6-10.

Figure 6-10

188

Chapter 6

09_777781 ch06.qxp 12/30/05 8:25 PM Page 188

Summary
This chapter introduced you to the concept of web services, an architecture allowing the transfer of data
from one location on the Internet to another. You learned about the evolution of web services and associ-
ated technologies, such as SOAP, WSDL, and REST. The similarities and differences between SOAP and
REST services were also discussed.

Next, you learned how to create your own web service using ASP.NET and C#. This involved download-
ing the .NET SDK and using the built-in web service creation and management tools. You learned how
to inspect and test your web service using the generated .NET test harness.

You then moved on to create a test harness client for Internet Explorer, and then one for Mozilla, using
different techniques to call the web service. You were introduced to the web service behavior for Internet
Explorer and the high-level SOAP classes in Mozilla. The last test harness created is intended to be uni-
versal, using XMLHttp to send and receive SOAP messages.

Last, you learned about cross-domain issues with web services and how to avoid them using a server-
side proxy.

In this chapter the SOAP specifications were used to pass arguments between the client and the server.
Although this is a robust and flexible method, it adds a lot of overhead to the process and means that the
client must be able to handle XML and all its attendant complexity. The next chapter shows a simpler
and less formal way of passing data between machines called JavaScript Object Notation (JSON).

189

Web Services

09_777781 ch06.qxp 12/30/05 8:25 PM Page 189

09_777781 ch06.qxp 12/30/05 8:25 PM Page 190

