
Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Chapter 1: Understanding
Mashup Patterns

Collaborators welcome!1

Introduction

When the World Wide Web was first unveiled, “collaborators” referred to one
small segment of the population: nerds.2 The first browser ran on a computer
that almost no one outside of a university or research lab used.3 The Web
itself consisted of a lone site4 (WWW Growth, Figure 1.1). Yet from this
singularity, a new universe would soon emerge.
Figure 1.1
The growth of the World Wide Web: number of Web sites, 1990–2000

The amount of content didn’ t grow much until two years later. That was
when the first of several “Big Bangs” would occur. In 1993, the first PC-
based program capable of browsing the Web was released.5 Its introduction
instantly put the Web within the reach of a far larger audience. Even so,

1From Tim Berners-Lee’s first public Usenet post announcing the public availability of

the first Web server and browser in 1991.

2A contingent of which I am proud to proclaim myself a member.

3The NeXT workstation, conceived by computer luminary Steve Jobs.

4Tim Berners-Lee invented the World Wide Web in 1989 while working at the CERN
Particle Physics Laboratory.

5NCSA Mosaic, released in 1993.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
Internet connectivity remained largely restricted to universities, research
institutes, and corporations. Consumers enjoyed online communities, but
generally did so via prepackaged, fenced-in services such as Compuserve,
Prodigy, and America Online (AOL). Connectivity was achieved through slow
“dial-up” connections over telephone lines. Access to content was typically
billed at an hourly rate.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

By 1994, the first independent Internet service providers (ISPs) had begun
to pop up. By installing special software on their computers, consumers could
access the entire content of the Web (almost 1,000 sites!). AOL began to
open up Web access for its millions of subscribers. Prices universally moved
to flat-rate monthly charges. WYSIWYG (“What you see is what you get”)
HTML editors appeared and made creating Web pages just a bit easier. In
response, the second explosion in Web growth occurred. By 1996,
corporations didn’ t see a Web presence as a luxury, but rather as a
necessity. What better way to instantly push content to the consumer? The
Web was viewed as a new media channel that offered endless opportunities
for commercial success.

If the waning years of the past century had a motto, it certainly wasn’ t
“Collaborators welcome” ; “Venture capital welcome” is probably more
accurate. Fueled by ill-conceived business plans and wild speculation, a
worldwide expansion of the Web’s underlying infrastructure took place.
Meanwhile, the browser jumped from home computers to cell phones and
mobile devices for the first time. High-speed cable and DSL “broadband”
connectivity options became ubiquitous. The third explosion was the popping
of the Web bubble, which saw these ventures implode en masse when they
failed to turn a profit. This event marked the end of the first wave of the
Web’s evolution, which in hindsight we label Web 1.0.

Web 2.0

In the aftermath of the Web 1.0 crash, the glut of infrastructure kept the costs
of going online low. That simple fact helped attract even more users to come
online. A few companies began to figure out how to leverage the Web
without going bankrupt. Collectively, their embrace of the Internet
represented the slow expansion of the Web from that last primordial blast.
New marketplaces evolved as sites like eBay linked buyers and sellers from
around the globe. These online flea markets, in turn, spawned communities
that helped pioneer the concepts behind new social networking sites like
MySpace and Facebook.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

By 2006, the firms that had simultaneously feared and tried to control Web
1.0 looked up from licking their wounds and saw the dawn of a new
paradigm. In a symbolic changing of the guard, “old media” giant Time
magazine announced the Person of the Year was “You.” 6 There was no
great single occurrence that made this milestone possible. Rather, the driving
force was the confluence of many events: the spread of cheap broadband
access, the Web-enabling of multiple devices, the arrival of new
communication environments, and the emergence of cooperative
environments for organizing information. Collaborators were finally running
the show.

Industry figurehead Tim O’Reilly is credited with popularizing the term
“Web 2.0” to define this new age:

Web 2.0 is the business revolution in the computer industry caused by the move to
the Internet as platform, and an attempt to understand the rules for success on
that new platform.7

A simpler working definition is that Web 2.0 is a shift from transaction-
based Web pages to interaction-based ones. This is how the power of “You”
is mashed, mixed, and multiplied to create value. Social-networking sites,
folksonomies (collaborative tagging, social bookmarking), wikis, blogs, and
mashups are just some of the components that make this possible. The
success of sites such as Facebook, wikipedia, flikr, and digg has
demonstrated that democratization of content creation and manipulation is
powering the latest wave of Internet growth.

The underlying driver of Web 2.0 is flexibility. The one trait technologies
slapped with the Web 2.0 moniker share is that they are extremely (and
perhaps sometimes unintentionally) malleable. The successful products don’ t
break when a user tries to extend them beyond their original design; they
bend to accept new uses. Two success stories of the new Web illustrate this
principle:

flickr was started by Caterina Fake and Stewart Butterfield as an add-on feature
for a video game they were developing. The idea was to allow players to save and
share photos during gameplay. When they realized that bloggers needed a
convenient way to store and share photos, Fake and Butterfield started adding

6Time magazine, December 13, 2006.

7http://radar.oreilly.com/archives/2006/12/web-20-compact-definition-tryi.html

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

blog-friendly features. Opening up their architecture to allow users of the site to
create custom enhancements fueled their viral spread. The original game was
ultimately shelved and flickr was sold to Yahoo! a year later for an undisclosed
sum.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Deli.cio.us grew from a simple text file that its founder, Joshua Schachter, used to
keep track of his personal collection of tens of thousands of Web site links. When
the site went public in 2003, it spawned a host of add-ons. The concept of
associating data with simple keywords to aid in organization wasn’ t new, but the
cooperative “social tagging” aspect of deli.cio.us resonated with the frustrations of
other Internet users.

Enterprise 2.0

Inevitably, when people discover a useful tool outside the workplace, they
want to use it at the office as well. This happened years earlier when
employees began sneaking personal computers into their offices to make it
easier to manage spreadsheets and documents. More recently, end users
have imported instant messaging and unlimited email8 services from external
sources.

User demand for Web 2.0 technologies within existing corporate
infrastructure is the catalyst for Enterprise 2.0.9 The challenge for firms is to
integrate these new peer-based collaboration models with legacy
technologies and mindsets. Figure 1.2 illustrates three areas that established
organizations have typically established to control how solutions are
delivered.
Figure 1.2
Typical organizational hierarchy

Enterprise 2.0 breaks down traditional divisional barriers and encourages
building bridges. The managerial structure does not change, but the ability to
conceive solutions and access the technology to deliver them is available to
everyone (as shown in Figure 1.3).
Figure 1.3
Traditional barriers to solution delivery are removed in Enterprise 2.0. Each segment
of an organization now has equal access to technology. To leverage this new
environment, powerful (yet user-friendly) tools are introduced. These tools enable
associates outside traditional IT to create their own solutions.

Changing the social structure of a firm is termed “soft reorganization.” Its

8When Gmail (Google Mail) was announced in April 2004, it offered 1 gigabyte of

message storage. This was well beyond the storage limit most corporate mail
systems impose on their employees.

9McAfee, Andrew. “Enterprise 2.0: The Damn of Emergent Collaboration.” Sloan
Management Review, Vol. 47, Spring 2006.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
consequence is movement away from fixed roles and responsibilities and
toward a more open and unrestricted workplace. The phrase “economies of
scale” refers to the cost advantages associated with large-scale production.
We term the benefits of Enterprise 2.0 the “economies of collaboration.” How
are they established?

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• Nontechnical users are empowered to create application solutions
without engaging management or IT personnel in the process. This
agility leads to shorter time-to-market cycles.

• Folksonomies replace strict taxonomies (see the “Folksonomies versus
Taxonomies” sidebar). Newly discovered connections between data and
processes can be exploited to add business value.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• New communication tools mine “ the wisdom of the crowd” to encourage
collaboration and innovation, a technique known as crowdsourcing (see
the “Crowdsourcing” sidebar).

Open interaction can help teams discover how the other lines of business
operate. This knowledge, in turn, leads to changes that strengthen
relationships across departments.

• IT must learn more about the business associates’ goals, and create an
environment that facilitates the rapid construction of products that they
require.

• Members of the business team must participate more directly in the
engineering process (either on their own or in partnership with IT), which
requires some knowledge about development best practices.

• Management needs to cede some control to other teams and should
work with all associates to encourage collaboration. This may entail:

π Funding the necessary infrastructure.

π Allowing cross-pollination between business teams.

π Being open to ideas from nontraditional sources.

Security becomes a universal concern as the lines between teams vanish.
The former “checks and balances” approach doesn’ t work when small teams
are creating end-to-end solutions. In this collaborative milieu, firms have to
strike a balance between technical controls10 and education to mitigate risk.

Folksonomies versus Taxonomies

Taxonomies describe the organization of data within a strict hierarchy.
In the business world, they are typically artifacts of established
corporate structures. The managerial chain of command establishes
processes for the composition, categorization, and flow of information.
The structure of a rigid taxonomy may be nonintuitive to outsiders and
consequently may restrict the sharing of useful information across the
firm.
In a folksonomy, the community takes responsibility for collectively
classifying and organizing information through a process known as

10For example, putting a formal development process with relevant checkpoints and

milestones in place.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

“tagging.” Tagging simply entails labeling content with a few relevant
keywords that describe the information or the ways in which it can be
used. As more reviewers add and refine tags, it becomes easier to
locate and navigate large amounts of information. The process of
tagging creates a dynamic knowledge base of material that is not
constrained by conventional organizational techniques.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Crowdsourcing

With crowdsourcing, a problem is framed so that it can be tackled by
multiple teams or individuals, working either competitively or as a group
effort. User-driven mashups can facilitate this type of mass
collaboration in the enterprise, thereby resulting in far more resources
contributing to solutions besides traditional IT.
A danger of this approach is that a “herd mentality” might develop that
stifles creativity. Some degree of oversight can offset this risk, but care
must be taken not to discourage participation.
Crowdsourcing success stories include the Ansari X-Prize, which was
designed to encourage low-cost space travel, and Wikipedia, which
benefits from the combined contributions of thousands of users.

The Birth of Mashups
You can have it “good,” “fast,” or “cheap.” Pick any two of the

three.
—Classic programmer’s adage

Quick, easy, and affordable application development has always been a goal
of software engineering. Reusing something that’s already been built, tested,
and paid for is one of the quickest ways to achieve this objective. From
subroutines, to external libraries, to object orientation, to templates, to Web
Services, each great advance in programming has been born from the desire
to reuse material instead of starting from scratch. The limitation inherent in
each of these milestones is that they were created by developers for the sole
use by others in their profession.

It seemed inevitable that with the vast amount of new material being
placed on the Web 2.0 every second, it could somehow evolve into raw
material for software development. Tim Berners-Lee envisioned this leap in
Web reusability in what he termed “ the semantic Web,” which describes a

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
platform for the universal exchange of data, knowledge, and meaning.11 And
while work continues to define new languages and protocols to realize Sir
Tim’s dream, mashups are making this vision a reality now.

11Berners-Lee, Tim, James Hendler, and Ora Lassila. “The Semantic Web.”

Scientific American, May 17, 2001.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Mashups are an empowering technology. In the past, resources had to be
designed for reuse. Application program interfaces (APIs) had to be created,
packages compiled, documentation written. The application developers and
solution architects who recycled resources were subject to the whims of the
original designers. With mashups, you aren’ t limited to reusing an existing
API; you can impose your own if none exists. So if an application or site
offers no API, or if you don’ t like the access methods that are already in
place, you can design and implement your own (see the API Enabler pattern
in Chapter 4 for several examples). The promise of achieving programmatic
access to almost unlimited data is intoxicating. Even more exciting is the
notion that the tools for constructing mashups have begun to reach a level of
usability where even nontechnical users can build their own solutions.

Many popular definitions of a mashup would have you believe the term is
limited to a combination of Web-based artifacts: published APIs, RSS/Atom
feeds (see the “RSS and Atom” sidebar), and HTML “screen scraping.”
Although there are certainly valuable solutions in that space, a broader world
of data can be mashed up, including databases, binary formats (such as
Excel and PDF), XML, delimited text files, and more. The rush of vendors
attempting to capitalize on the burgeoning market for enterprise solutions
hasn’ t helped bring clarity to the field. To turn a classic phrase on its head,
we have a ton of nails out there, and everyone is trying to tell us that they
have the best hammer.

RSS and Atom

RSS (also known as Rich Site Syndication or Real Simple Syndication)
and Atom are formats for publishing Web-based content in a manner
consumable by special applications termed “feed readers.” Feed
readers aggregate multiple feeds (or “subscriptions”) so that a user can
view updates to numerous Web pages from a single environment.
Before RSS and ATOM existed, users had to manually visit each site
and check for any new updates. Feeds also serve as a popular method
for allowing Web sites to dynamically incorporate content from external
information providers. Regardless of their originally intended purpose,
because feeds are created using a well-structured format (XML),
mashups can easily consume them as a data source.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Another common misconception is that mashups combine at least two
disparate sites to form a brand-new “composite” application, complete with a
neat new user interface. That’s certainly possible, but mashups need not be
an end in themselves. It is more accurate to say that all composite
applications are mashups, but not all mashups are composite applications.
The enterprise mashup creator can use the technology to transform the Web
into his or her own private information source. This data can be used for
strategic planning or analysis in systems like Excel or MATLAB. Mashups
may also be used to access a single resource at superhuman levels to mine
data or migrate content. Creating mashups is all about finding data,
functionality, and services and using them to both solve problems and create
opportunities.12

Types of Mashups

Mashups have several different colloquial interpretations, which has resulted
in some confusion regarding the term and its use. The word originated in the
music industry, where a mashup was a combination of two or more songs to
create a new experience. Typically, the vocal track of one song was
combined with the instrumental background of another in this process.

The technology industry extended this definition to encompass a new
application genus that described the combination of two or more sources into
an integrated site. This technique of development hybridization can be
roughly split into two separate categories: consumer mashups and enterprise
mashups.

Consumer mashups are generally associated with Web 2.0. They require
a lesser amount of programming expertise because they rely on public Web
sites that expose well-defined APIs and feeds (see Figure 1.4).
Figure 1.4
A small number of sites with public APIs account for the majority of consumer-created
mashups. Source: http://www.programmableweb.com/apis

The output is usually created by one of the sites participating in the
mashup. In the classic “show craigslist listings on a Google map,” 13 the API
of Google Maps is used to plot and present the feed obtained from
craigslist.com. The limitation of this approach was that resources had to be

12This naturally presents potential legal complications, as discussed in Chapter 10.

13http://housingmaps.com

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
“mashup ready.”

Enterprise 2.0 mashups (sometimes referred to as data mashups) are
more complex. Depending on which solution a firm deploys, enterprise
mashups can emerge in several ways:

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• Mashups are used solely by IT to rapidly deliver products. Application
developers use both internal and external sources to create data
mashups and employ traditional coding techniques to create the user
interface around them. Users aren’ t directly involved in the construction
process but they benefit from IT’s ability to provide solutions more
quickly.

• IT creates a set of “mashable” components and gives end users a
sand-box environment where they can freely mix and match the pieces
together themselves. If users need new components, they have to solicit
IT help to create them.

• An organization deploys an environment that lets anyone create and
combine his or her own mashups. This approach is the most difficult
implementation to manage, but probably has the greatest impact. To
understand the challenge of this approach, consider the use of Microsoft
Excel in many firms. Users can create spreadsheet-based applications
and pass them around without any central oversight of what exists, how
it is used, or if it was tested. This friction-free creation and distribution
model spreads good solutions as quickly as bad ones.

Whether mashups are used by IT, business associates, or both, their agile
nature makes them a key enabler of Enterprise 2.0. Unfortunately, they are
not without potential downsides. In an attempt to “deconstruct” the success
of Google, the Harvard Business Review points out several pitfalls14 that can
hinder success in a culture of open development:

14Iyer, Bala, and Thomas H. Davenport. “Reverse Engineering Google’s Innovation

Machine.” Harvard Business Review, April 2008.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• As people spend more time experimenting, productivity in other areas
can suffer.

• Poor coordination across groups can lead to duplication of efforts and
repeated mistakes.

• A constant stream of new products may confuse the organization and its
employees.

Despite these potential hazards, the authors indirectly identify the virtuous
circle of Enterprise 2.0 (Figure 1.5). As diverse products are combined to
create useful new resources, they themselves become fodder for the next
generation of useful products. In principle, this process isn’ t very different
from the long-standing goal of reusability that firms have strived for in their
applications and architecture. Three important differences arise this time
around, however:
In the age of mashups “ reuse” is no longer an ivory-tower concept restricted

to the purview of application architects. Because end users and
developers alike will be creating solutions, everyone will engage in the
practice of reuse.

The existing approach to reuse front-loads development efforts with
additional planning and coding to create open APIs and extra
documentation that may never be used. Because mashups impose
reusability “after the fact,” their creators will build their own APIs and
include only the minimum functionality needed.

Traditional reuse practices don’ t require that a system that leverages existing
code or libraries is itself reusable. This leads to implementations that are
essentially “dead ends.” Mashups are implicitly reusable, which creates
a never-ending cycle of potential associations and recombination.

Figure 1.5
The virtuous circle of mashups

Acquiring Data from the Web
Need input, More Input, MORE INPUT!

—Johnny Five, Short Circuit, 1986

As we saw in the last section, the majority of consumer mashups use the
public APIs of a handful of Web sites. In the enterprise model, the best
potential sources for mashup data may not be as forthcoming. In these

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
situations, it becomes necessary to employ creative techniques to extract
information. One of the most common and controversial techniques is often
referred to as “screen scraping.” This derogatory phrase carries a long
sullied history and is thrown around by detractors seeking to undermine this
approach.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Traditional “screen scraping” owes its origins to the early days of desktop
computing, when IT departments developed various techniques to migrate
“dumb terminal” mainframe applications to end-user computers. Rather than
tackle the costly and time-consuming task of rewriting or replacing existing
applications, many IT departments used special PC-based applications that
emulated the original terminals.15 These applications could receive the data
from the mainframe and extract the contents of the forms presented on the
old green-screen systems. User keystrokes were likewise emulated to send
input back to the original application. This technique relied on developer-
created templates and was both highly position-sensitive and extremely
unforgiving. The smallest alteration in the mainframe display would break the
predefined template and break the new application.

15Such as an IBM 3270 or VT220.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Because of these drawbacks, screen scraping was generally viewed as a
hack and a last resort. The negative experiences associated with this
approach continue to haunt any solution that promises to extract raw data
from a user interface. Before organizations feel comfortable with mashups,
users will need to understand how modern methods differ from the brittle
approaches of the past.

Too many of us have forgotten that the “L” in HTML stands for
“Language.” In HTML, the description of the presentation and the
presentation itself are inexorably bound in most people’s minds. Many view
HTML and what is displayed in their browser as two sides of the same coin.

In fact, it is the underlying Document Object Model (DOM) that makes
mashup “screen scraping” something that should more appropriately be
referred to as “Web harvesting” or “DOM parsing.” When HTML is read by a
browser, it is internally organized into a hierarchal structure. The underlying
data structure is tree based and much more organized than what the user
sees (see “The Structure of HTML” sidebar). HTML elements may contain
additional nonvisual information such as the id and class attributes (see “The
class and id Attributes” sidebar).

The Structure of HTML

Consider the following simple Web form:
This is the underlying HTML:
<form method="POST">
<table border="0" width="250">
 <tr>
 <td width="85">User Name</td>
 <td><input id="user1" type="text" name="user_field" size="20"></td>
 </tr>
 <tr>
 <td width="85">Password</td>
 <td><input id="pw" type="password" name="password_field" size="20"></td>
 </tr>
</table>
<input type="submit" value="Logon" name="B1">

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

</form>
When parsed by a browser, this HTML is internally organized into a
hierarchical structure known as the Document Object Model (DOM).
The DOM is more conducive to automated analysis than the
presentation users receive.

The class and id attributes

The ubiquitous use of id and class in HTML make them ideal markers for
Web scrapers to identify document elements.

Uses of id:

A style sheet selector
<P id=”bigheader”>Important Update</P>
A target anchor for hypertext links:
<H1 id=”news”>Today’s Top Stories</H1>
A means to identify an element in JavaScript:
document.getElementById("news");
Used to name a declared OBJECT element:
<OBJECT declare
 id="newyork.declaration"
 data="city.mpeg"
 type="application/mpeg">
 A tour of Manhattan.
</OBJECT>

Uses of class:

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Assign one or more CSS styles to an element:
p.error {font-size: 18px; color: red;}
<p class="error">Incorrect Password</p>

Beyond their original intent within HTML, id and class attributes can also
serve as “markers” for general-purpose processing by other
applications/agents (e.g., mashups). Unlike the screen scrapers of the past
that relied solely on positional information to parse screen content, mashups
are able to examine the underlying attributes used to build the presentation.
Although not a foolproof approach, this data changes much less frequently
than the look and feel of a site, as demonstrated in the sidebar “Presentation
Changes Don’ t Break Object Discovery.” While consumer mashup builders
queue up and wait for content providers to expose an API, enterprise teams
are using Web harvesting to grab whatever data they want.

Presentation Changes Don’t Break Object Discovery

This example shows a sample Web page before and after a radical
redesign. Although a visitor might be disoriented by the drastic
changes, similarities in the underlying HTML (and resulting DOM tree)
will not slow down a mashup that examines the site.

Before

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

As part of a larger system, a mashup is created to sign in to a Web site
by supplying a “Sign On ID” and a “Password.” The form attributes and
DOM information are displayed following the screenshot.
...
<td width=”74” height="25"><div class="fixedfont">Sign On ID: </div></td>
<td width=”89” height="25">
<p align=”right”><input maxlength=”20” name=”username” size=”10”
 style="font-family: courier"> </p></td></tr>
<p align=”center”>
<tr>
<td width=”74” height="5"><div class="fixedfont"> </div></td>
<td width=”89” height="5"><div class="fixedfont"> </div></td></tr>
<tr>
<td width=”74” height="25"><div class="fixedfont">Password:</div></td></p>
<td width=”89” height="25">
<p align=”right”><input maxlength=”20” name=”password” size=”10”
 style="font-family: courier" type=”password”> </p></td></tr>
<tr>
...

After

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Even though the site has been radically redesigned, it still contains form
elements for “Sign On ID” and “Password.” A peek at the underlying
HTML and DOM shows that these fields retain the same attributes. A
mashup most likely will not have a problem recognizing the new design,
even though a human might take some time to become accustomed to
the new interface.
...
<tr> <td width="70" class="text_boxsubtitle">Sign-On ID:</td> <td><input type="text" maxLength="20"
name="username" size="10" style='width:122px;FONT-F AMILY: Courier'/> </td> </tr> <tr> <td
width="70" class="text_boxsubtitle">Password:</td> <td><input maxLength="20" name="password"
size="10" type="password" style=”width:122px;FONT-F AMILY: Courier”/> </td> </tr>
...

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Enterprise mashups are not restricted to skimming content from HTML:
They can leverage more structured formats such as XML (RSS, ATOM),
Web Services, or even binary formats such as Excel and PDF (as shown in
Figure 1.6). Nevertheless, the great promise of enterprise mashups derives
from their ability to treat the entire World Wide Web as a first-class data
source.
Figure 1.6
Enterprise mashups can consume a variety of different data sources.

The Long Tail

Although first coined to describe customers who purchase hard-to-find
items,16 the phrase “ the Long Tail” has come to have a special meaning in
the world of software. Traditionally, application development dollars are
directed toward those projects and enhancements demanded by the largest
group of users. This practice of catering to the masses doesn’ t necessarily
lead to an outcome with the greatest positive impact on productivity.
Unfortunately, because of the huge effort involved in developing applications,
it is often impractical to provide custom solutions to a lone employee or a
small team, even if it would greatly increase their efficiency (Figure 1.7).
Thus only the “head” of the application demand curve is ever addressed.
The exact cutoff point isn’ t fixed and will vary by organization, although the
Pareto principle17 or “80-20” rule suggests that 80% of application
development efforts will benefit only 20% of your users.

16Anderson, Chris. “The Long Tail.” Wired, October 2004.

17The Pareto principle is based on empirical observation and isn’ t a mathematical
certainty in all cases.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
Figure 1.7
The Long Tail

The cumulative potential of unfulfilled Long Tail opportunities exceeds that
of the “head” of the curve. Alas, fulfilling the requirements of the remaining
80% of your staff might seem an impossible goal. Most technology
departments do not have enough staff to meet the needs of each individual
user. Unless there is a way for developers to become drastically more
productive or for end users to solve their own problems, the prospects for
meeting unmet demand seem bleak.

Meeting User Demand
Give me a place to stand on, and I will move the Earth.

—Archimedes

Enter the mashup. Armed with powerful new tools that leverage the
resources of the Internet, developers and power users can quickly assemble
products to target the Long Tail. We are witness to the dawn of a new era in
technology. Mashups are making IT more agile and empowering individuals
to create their own solutions.

The Long Tail is useful from an analysis standpoint only if it represents the
universe of possible solutions that can be constructed. Consider the mashup
example in “A Sample Mashup Use Case.”

A Sample Mashup Use Case

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

 There are countless examples where mashups can benefit an
enterprise, and they needn’t be complex. Consider the following
example.
Every day, the employees of a firm have numerous conference calls to
discuss project planning, resource management, and corporate
strategy. Whenever someone new joins the conference, there is a
“beep” that announces that individual’s presence. The first ten minutes
of every call go something like this:

“Beep.”
“Hi, who’s on the line?”
“It’s me, Rob.”

“Beep.”
“Hi, who’s on the line?”
“It’s me, Maureen.”

On each call, valuable time is wasted while the moderator takes
attendance and furiously scribbles down names. Later on, he may try
and match those (frequently misspelled) names to an email address or
telephone number.
We can save time and expedite the meeting with a simple mashup.
First, we visit the conference call Web site and grab the participant’s
caller ID directly from the Web page. Next, we look up those numbers in
the firm’s online corporate directory (where we also get the
corresponding email addresses). Finally, in case someone is dialing in
from his or her home telephone, we use the search form on a public
Internet site (such as whitepages.com) to look up any unresolved
numbers.
The entire process is hidden behind a simple Web front end with a
single button, labeled “Get Attendees.” No more misspelled names or
missed participants. No more pausing to ask latecomers to introduce
themselves. Meetings start on time and everyone is happy.
As if this capability wasn’t enough of a breakthrough, it opens up new
possibilities for behavior tracking (also known as reality mining). You
can click the “Get Attendees” button multiple times during the call to see
not only who is present, but for how long. Perhaps you can tie that
“duration” data to other sources. You might find that callers drop off the
line in coordination with weather, traffic patterns, or surf reports.

Although the “conference call attendance” issue was experienced by
almost all employees of the firm, it was never identified as a business
problem. This is because developers and business users are conditioned to

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
view their actions in discrete, isolated chunks:

• First, I sign into Application A to locate a customer’s account.

• Second, I sign into Application B to check item inventory.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• Third, I sign into Application C to create a purchase order for the client.

If you accept that Applications A, B, and C are immutable (perhaps because
they were purchased from an external vendor), then you will never envision a
solution where you can sign into Application D once and perform these three
actions in a single step. The opportunity never appears on the Long Tail.

The greatest benefit of mashups may be their influence on our thought
process. When we cast off our biases about the role of technology in the
workplace, we discover the folly in applying IT to only the most obvious and
well-understood problems. Once the blinders have been removed, you’ ll
discover a world of missed and previously unknown challenges that you can
tackle. Recognizing these opportunities is just the first stage. If you don’ t do
something about them, then you’ve simply added to the tangle of unmet
expectations. To achieve continuous innovation, it is essential to look outside
the existing methods of measuring and meeting user demand.

Mashups and the Corporate Portal

The concept of aggregating data from multiple sites inside and outside the
workplace isn’ t new. As companies struggled to share all of their disparate
applications and information resources directly with their employees, many
embarked upon a quest to create a single corporate portal. An organization’s
portal typically provides several features:

• Single sign-on (SSO), which allows users to authenticate only once to
obtain access to multiple applications.

• Multiple “portlets” or “ islands” that expose information and functionality
from disparate systems.

• Interaction (or integration), which allows portals to influence one
another’s behavior. For example, a search portlet may cause the
contents of other portlets to be filtered.

• Access control, which provides for the centralized administration of
which information a user may access. A user’s permissions on the
portal are at least as restrictive as what the user would receive if he or
she logged into the underlying application directly. Portals are unique in
that they may bring content together from multiple sources wherein the
user has varied entitlements.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

• Personalization, which allows the user limited ability to customize the
layout and presentation of the site to suit his or her own specific tastes
and needs.

Of course, as our examination of the “80-20” rule suggests, portals will
never meet the requirements of all users, all of the time. At best, they may
meet the lowest set of common requirements across a broad audience (the
80%). The most specific requirements are typically the least general (the
20%), which explains why most corporate portals typically confine
themselves to broadcasting company news, managing health and benefits
information, and tracking the holiday calendar. Personalization, the latecomer
to the portal infrastructure, was a desperate attempt to address this
shortcoming. Unfortunately, users typically don’ t get a say in choosing which
content can be personalized or how it can be manipulated.

At my daughters’ nursery school, their teacher maintains order by telling
the children, “You get what you get and you don’ t get upset.” Those days in
computing are pass . Whether we are talking about the corporate business
user who wants to come to the office each day to a personalized workstation
or a customer who wants to view your company’s information in a certain
fashion that suits his Web-based applications, this is the age of individualized
construction.

When the popular social networking sites MySpace and Facebook
published open APIs to leverage their data and create interfaces around it,
thousands of users became bona fide developers. They quickly learned to
build their own personal portals. This same demographic is just now
beginning to enter the Enterprise 2.0 workforce. They won’ t be content to
operate within the confines of a single, stoic portal that restricts how they
consume and manipulate information.

A new metaphor for user interaction has recently emerged that, combined
with mashups, threatens the relevance of the enterprise portal. Whether you
know them as widgets, gadgets, or snippets, they are the small plug-in
components that originated on the Web and have migrated to the desktop
(e.g., Apple Dashboard, Yahoo Widgets, Google Gadgets, Microsoft Vista
Desktop Widgets). The tools for creating these “mini-applications” have
become easier to use and more familiar to a much broader audience.

If enterprise mashups are the path to user-created data and widget
platforms are the environment for presenting that information, the
combination of the two represent the death knell for the corporate portal. At
best, it will morph into a set of core services that provide information to
mashup-powered personal environments.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Mashups and Service-Oriented Architecture

Service-oriented architecture (SOA) has come to be associated with Web
Services, but at its core it is more mindset than methodology. The “service”
in SOA shouldn’ t be thought of in terms of a particular technology, but rather
as a business task. The tasks are implemented in an environment that
facilitates loose coupling with other services. This combination, in turn,
fosters an atmosphere where developers can create new applications that
reuse and recombine existing functionality. Because the services are based
on open standards, they can be consumed equally well across independent
development platforms.

The promise of SOA is that it addresses the Sisyphean18 labor of building
duplicate, siloed functionality across the enterprise. Better yet, you don’ t
have to build services yourself; you can discover and use third-party
solutions. SOA is the equivalent of a home improvement store for application
development. You simply fill up your shopping cart with all the raw materials
and glue and nail them together in your basement to create a shiny new
product. Using a traditional development mindset would place the burden on
you to chop down trees for lumber or smelt the iron for nails.

The Common Object Request Broker Architecture (CORBA) was an early
stab at implementing SOA—so early, in fact, that it predates the Internet
explosion of the mid-1990s and even the SOA acronym itself. The level of
complexity required to work with this technology was often found to outweigh
its benefits, and while CORBA struggled to find its footing, newer
technologies such as SOAP, XML, and Java (Enterprise Java Beans) arrived
on the scene. They began to address the problems associated with
CORBA’s steep learning curve and security shortcomings.

Web Services emerged as a technology-agnostic interoperable solution
based on open standards such as XML, WSDL, UDDI, and SOAP. Although
far from perfect,19 SOAP-based Web Services have become the industry-
preferred method for implementing SOA. The most popular method for
exposing SOAP services across the enterprise is via a custom infrastructure

18Sisyphus was a Greek who was condemned by the gods to ceaselessly roll a rock

to the top of a mountain, only to have it fall back of its own weight.

19Problems include interoperability issues and platform-specific implementation,
testing, and security challenges.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
known as an enterprise service bus (ESB). The ESB can provide additional
data transformation capabilities, security, transaction support, and scalability,
all while simultaneously reducing the degree of complexity exposed to
service reusers. In an attempt at product differentiation, some ESB offerings
service-enabled existing corporate resources (such as databases) and were
themselves progenitors of the data mashup.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

One point should be clear: SOA is not a revolutionary milestone but an
evolutionary one. Open communication and technology standards, combined
with the ubiquity of the protocols that power the Web, have finally helped
SOA reach a level of maturity where its benefits exceed its costs.

Mashups represent the next leap in reuse. They initially came about when
developers combined the published APIs of different Web applications to
create interesting new content. The limitation of this approach was that
resources had to be “mashup ready.” Robust SOA environments were a
hothouse for mashup growth, as they exposed componentized functionality
that could be mixed together to provide new services.

You may be wondering if mashups are the latest harbinger of SOA, or the
beneficiary of it. The answer is a resounding “Both!” With most vendors now
using the terms “SOA” and “Web Services” interchangeably, it has become
obvious that for most corporations, implementing a successful SOA will
require the service-enablement of their existing applications. Mashups are a
completely valid method of accomplishing this (see the “API Enabler” section
in Chapter 4 and the discussion of the Quick Proof-of-Concept pattern in
Chapter 7). Most mashup products allow you to create and publish Web
Services either directly or via a third-party application container (e.g.,
WebSphere or JBoss). Likewise, mashups are voracious consumers of Web
Services. Mashups gladly leverage the Web Services that SOA-centric
organizations already have in place. Because mashups can produce services
with the same agility that they consume them, they are a valuable addition to
any service-oriented environment.

How do SOA patterns and mashup patterns relate to each other? SOA
generally focuses on server-side architecture and internal corporate
resources, whereas everything is fair game with mashups. Because of
SOA’s maturity and association with Web Services, it has achieved greater
clarity regarding its capabilities, protocols, implementation, and use. This
allows SOA pattern discussions to focus on high-level abstractions. Indeed,
several excellent Web sites and books20 discuss the process of SOA-
enabling the enterprise. Mashup patterns, which remain in a nascent stage of
development, must focus on more practical examples. This will drive broader

20Author Thomas Erl has written several good books on this subject, including SOA

Design Patterns.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
adoption, which in turn should to lead to consolidation and standardization
similar to what SOA has achieved.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Mashups and EAI/EII

Enterprise application integration (EAI) is the practice of connecting
corporate systems at the application level rather than at the data level. EAI
solutions seek to streamline business processes and transactions, whereas
mashups typically combine applications with the goal of providing new
functionality. EAI tools rely on support for open standards such as Web
Services or CORBA. If an application doesn’ t expose an API, one needs to
be constructed programmatically. As systems and requirements evolve, there
is an inevitably large carrying cost to maintain the custom integration code.
When managed and funded correctly, EAI can provide the most rock-solid
method of application integration. For business-critical solutions, EAI is
recommended over mashups, which permit some fragility as a trade-off for
the benefit of agility.

Enterprise information integration (EII) is a data management strategy for
providing uniform access to all the data within an organization. The rise of
“big box” stores that sell everything from baby clothing to car tires has
demonstrated that patrons appreciate the convenience of one-stop shopping.
Collecting data from multiple sources and providing a single point of access
has similar appeal in the enterprise. EII is often easier to achieve than EAI
because it simply attempts to unify information and not applications. If you
think this approach sounds similar to a data mashup, you’ re correct. A
mature EII implementation can provide new insights into data associations
and facilitate rapid solution delivery. EII tools have historically focused only
on back-end databases,21 which limits the range of information that can be
collected. By comparison, mashups surpass EII in their ability to obtain data
from both structured and unstructured sources.

The knowledge requirement for successfully applying EII technology is
higher than that for mashups, but as with EAI the advantage is stability. You
can measure the benefits of a complex EAI/EII project empirically by
developing a quick mashup-based prototype (see “Quick Proof-of-Concept,”

21These databases include relational databases, message queues, and data

warehouses.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
Chapter 7). This effort may help determine whether the potential benefits
justify the considerable cost and time required to carry out a formal
implementation.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Mashups and Software as a Service

In contrast to the architectural style and Web Service implementation
strategy of SOA, software as a service (SaaS) is a business model. SaaS is
the latest incarnation of the Internet-boom idea of an application service
provider (ASP). Under the SaaS plan, businesses do not invest money to
develop and host applications internally, but instead rent the functionality
they need from an external service provider. End-user interaction with
applications typically occurs via a prebuilt Web interface. The customer’s
business data is then fed into the system manually, using Web forms, or
programmatically, using a Web Service API.

To appeal to as broad a market base as possible, most SaaS providers
have focused on generic services and priced them competitively (a fee of
less than $100 per service is not uncommon). Exposing macro capabilities
and parameterizing functionality allows customers to achieve some degree of
customization.

One of the most prominent success stories in SaaS is Salesforce.com.
This “zero-infrastructure” customer relationship management (CRM) platform
provides services to thousands of businesses worldwide. Small and large
customers alike are able to start using the hosted service almost immediately
without deploying custom hardware. The success of Salesforce.com has led
many to assume SaaS is particularly well suited to CRM and sales force
automation. In reality, this isn’ t the case. WebEx, a Web-based conference
and collaboration solution, has achieved adoption on an even larger scale.
Google Apps is an example of a viable alternative to traditional desktop
software. It serves up a business-focused mail, spreadsheet, and word
processing suite at a fraction of the cost of Microsoft Office. Many
commercial vendors are exploring SaaS to create new revenue streams.

Assuming SaaS products can meet technical and functional user
requirements, two key challenges must be overcome before SaaS can
succeed as a general distribution model. First, firms must be comfortable
with the notion that their data is housed externally to the organization. It
seems that there’s a new story almost every day in the press about missing
hard drives or accidentally leaked personal information. SaaS providers may
have better security than many of their clients, but the abdication of data
management to a third party is still a tough pill for many corporations to
swallow. The second obstacle for SaaS is availability. For mission-critical

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
applications, the network remains a potentially dangerous point of failure.22

22Service level agreements (SLAs) should be in place to ensure your applications

are available when needed.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Mashups are a natural complement to SaaS. Perhaps there are SaaS
solutions that appeal to your organization, but you have held back on
implementing them because you couldn’ t get exactly the functionality you
required from a single provider. Maybe the SaaS product is extensible, but
you don’ t want to invest time and money in duplicating functionality you’ve
already built internally. Mashup patterns such as Workflow (see Chapter 5)
and Content Integration (see Chapter 6) can be used to link an external
solution and internal products together. With SaaS and mashups, you may
be able to maintain the bulk of your confidential data internally and send the
hosted application only small subsets of data for processing. If the network
link to the SaaS vendor fails, at least you will still have local access to your
data.

If you’ re thinking about testing the SaaS waters as a vendor, then
applying SOA via mashups can help you get started. The API Enabler (see
Chapter 4) and Quick Proof-of-Concept (see Chapter 7) patterns are
excellent means of creating a Web interface to your existing resources. You
can use the Load Testing pattern (see Chapter 8) to see how your systems
scale under heavy user activity.

SaaS shares another characteristic with mashups: It may already be in
use in your company without your knowledge. Because this model requires
only a Web browser and no special infrastructure, it is easy for end users to
circumvent IT and obtain applications directly. It is crucial that an IT
department doesn’ t have a monitoring and enforcement policy based solely
on policing internal data centers. IT personnel need to engage with the
business users and educate them about the risks and rewards of SaaS and
the effects these decisions will have on future growth. Internal checkpoints
with purchasing and legal departments are a necessity, too. All service level
agreements (SLAs) should be reviewed and signed by appropriate parties,
and attempts to expense software purchases that have not been vetted by IT
should raise a warning flag. Otherwise, SaaS can sneak into your
organization on a corporate credit card.

Mashups and the User

Make no mistake about it—despite the recent buzz around Enterprise 2.0,
people have been creating mashups for many years. Of course, the process
to this point has been overwhelmingly manual. Microsoft Excel is arguably

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
the father of the corporate data mashup. For years, Excel end users have
cut-and-pasted data to feed their calculation engines. Spreadsheet-based
solutions have spread throughout the enterprise without the involvement of
IT. Mashup tools enable the automation of this aggregation process, and a
new clan of users is poised to run wild with the technology.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

A culture of individualism is clearly emerging in today’s world. People no
longer plan their evenings around what TV networks schedule for them to
watch, for example. Instead, they record their favorite shows onto digital
video recorders (DVRs) or watch movies and shows on their computers and
mobile devices. Similarly, the recording industry no longer has a stranglehold
over music distribution. Newspaper readership is down, as more individuals
choose to consult RSS feeds and blogs instead of purchasing the printed
documents. People can even create personalized clothing and sneakers
online.23 Members of the public have evolved from docile consumers into
“prosumers.” 24 Products and services are moving away from mass markets
and being shaped by the people who consume them. Likewise, a
fundamental shift has occurred in software development. Armed with new
tools and the skills to use them, users aren’ t waiting for IT to build
solutions—they’ re doing it themselves.

Should organizations facilitate these individuals’ efforts, or rein them in?
For years, the mantra of professional software development was “Separate
business logic from presentation logic.” Programmers religiously structured
their code around that principle but ignored the logical conclusion: The best
shepherd of business expertise is not the IT department, but the business
users themselves.

The inclination for IT departments to view user-led efforts in an adversarial
light increases when IT experts believe that their “home turf”—application
development—is threatened. IT needs the occasional reminder that in any
development effort, it is the users who are the key to defining metrics for
success. Besides, users are already creating mashups anyway, albeit
human-_powered ones.

Gartner has said mashups will make IT even more critical to business
operations,25 so a knee-jerk rejection to their emergence is not necessarily in
the best interests of the firm. Rather than deny business users the tools that
can increase their productivity, IT needs to embrace a new model. Besides,
starting with a mashup product won’ t get you a business solution any more
than staring at a word processor will get you the next great novel.26 Because
IT personnel clearly cannot scale to meet the requirements of each particular
user, they should leverage the potential of mashups and work in partnership
with the business associates to train a new class of self-serve builders. This

23Nike iD lets you design custom shoes and clothing (http://nikeid.nike.com).

24Toffler, Alvin. The Third Wave. 1980.

25David Cearley, Gartner analyst.

26Or a Mashup Patterns book—trust me, I’ve tried.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
effort is akin to adding hundreds of new developers at virtually no additional
cost.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

It’s a common assumption that the latest generation of developers is
intuitively suited to filling this role. Affectionately termed the “Millennials” or
“Generation Y,” these individuals came of age during the Internet boom of
the last decade and are inherently comfortable with technology. Millennials,
green with inexperience and giddy about tinkering, question everything. This
behavior stands in stark contrast to that of the entrenched workforce, whose
habits of working in a particular manner condition them to no longer question
the “why.”

Many companies are rushing to embrace Web 2.0 ideals such as
mashups, social networks, wikis, and blogs not because they have inherent
value, but rather because the firms think this practice will attract the “new
thinkers.” In reality, instead of abdicating responsibility for innovation to a
younger generation or applying technology Band-Aids, firms need to cultivate
an environment of creativity and collaboration for their employees regardless
of their physical age. Any firm can realize the value of mashups and
Enterprise 2.0 so long as its managers are capable of taking a critical look at
their workplace and realizing they don’ t need to settle for “good enough” any
more.

The “guerrilla-style” approach of mashup development is not without its
drawbacks, of course. Most business users do not fully grasp the challenges
in providing scalability, reliability, business continuity, disaster recovery,
security, and fault tolerance. If users are permitted to develop ad hoc
solutions, IT must provide an environment that cultivates these best
practices.

A Patterns Primer

The benefits of enterprise mashups are communicated through a concept
known as a pattern. If you’ve ever baked holiday cookies, then you already
have some idea of what a pattern is and how it works. Suppose you want to
make a tray of chocolate-chip heart-shaped cookies. After you mix the
dough, you roll it out and grab your cookie cutter. You use the cutter to press
out a series of identical shapes. Afterward, you decide some oatmeal raisin
hearts would be nice, so you mix a fresh batch of ingredients and cut out
another series of hearts. The cookie cutter is a form of pattern. The different
types of dough are the specific situations, or “use cases,” where the pattern
is applied. A pattern doesn’ t solve a problem in itself. It’s just a general form
that helps you think about the structure of the solution (what shaped cookie,
in this example).

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

The remaining chapters of this book present a number of patterns, along
with some examples to illustrate how they work in an enterprise context.
Don’ t throw out the pattern if you don’ t like the dough! Every business has a
different flavor, and the key to success with patterns is figuring out which one
is yours. You can use the samples that fill out this book to help identify the
mashup ingredients your organization already has. Apply the appropriate
mashup pattern and you have a recipe for success.27

27The classic reference for pattern-based design is Christopher Alexander’s seminal

text The Timeless Way of Building (Oxford Press, 1979). Buildings, like software
components and cooking ingredients, can be combined in an almost endless
variety. Nevertheless, certain basic concepts govern which elements work well
together and which don’ t.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

The Fragility Factor

It may seem that the title of this book is an oxymoron. How can something as
ad hoc and unstructured as Web scraping be coupled with something so
formal and structured as a pattern? Ideally, the previous discussion of how
mashups work under the hood will have made you more comfortable with the
technology.

If you think reverse-engineering Web pages still doesn’ t sound like the
type of rock-solid approach that a professional developer should be using, I
don’ t blame you. One of the core tenets of software engineering is that
applications should behave in a reliable and predictable manner. Web
harvesting—although a great deal more reliable than screen scraping—is
inherently unstable if you don’ t control the Web sites from which you extract
data. Because you can’ t determine when a scrape-based solution might
break, you should never employ this approach on a mission-critical system.

If you have the chance to help your firm gain a competitive advantage or
reduce costs—even if just for a limited time—you should explore the
opportunity. There is nothing wrong with an application that has a short
lifespan, so long as you don’ t create a situation where the cost of
remediating or retiring the solution exceeds the achieved benefit. The rapid
speed with which mashups can be developed means occasional remediation
isn’ t a time-consuming task. Plus, quick release cycles translate into more
chances for exploratory development, which in turn can lead to the discovery
of new uses or solutions.

The patterns in this book all adhere to this basic premise. You won’ t find
examples of settling stock trades or sending online payments, even though
mashups can facilitate those tasks. It’s simply irresponsible to use the
technology in this manner. Like any development effort, a mashup solution
will require regular maintenance over its lifetime. Unlike with traditional
applications, you may not be able to determine the time when this work will
be required. Web Service APIs can change, RSS feeds can be restructured,
or site redesigns may temporarily toss a monkey-wrench into your
application’s internal workings. Because of these possibilities, you should
implement mashup-based solutions only where you can tolerate temporary
downtime that may occur at unexpected intervals.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

The fragility score is an ad hoc28 rating based on a number of factors:
• A mashup pattern that relies on a single Web site (e.g., Infinite

Monkeys, Time Series, Feed Factory, Accessibility, API Enabler, Filter,
Field Medic) is less fragile because there is only a single point of
potential failure.

• A multisite-based pattern (e.g., Workflow, Super Search, Location
Mapping, Content Migration) is more fragile with each additional site that
it leverages.

• Mashups that employ Web harvesting are generally more fragile than
those that use feeds (RSS, Atom). Feeds are, in turn, more fragile than
Web Service APIs. APIs are the most stable integration point because
they reflect a site’s commitment to expose data and functionality.

• Mashups that mine data from “hobby” sources have a greater risk of
failing. For example, obtaining local weather data from the U.S.
government-funded National Oceanic and Atmospheric Administration’s
(NOAA) weather site (http://www.nws.noaa.gov/) is probably a safer bet
than obtaining the information from your local high school or radio
station. For-profit sites may exert legal pressure to halt mashups (see
the Sticky Fingers anti-pattern).

• Mashups that use boutique data not widely available on the Internet are
at high risk. What are your alternatives if the site suddenly vanishes one
day?

Each pattern template described in this book contains a fragility score
ranging from 1 glass (the least fragile) to 5 glasses (the most fragile). No
pattern receives a score of zero, because even the most rigorously tested
mashup-backed application always has some degree of brittleness.

28Translation: “Your mileage may vary.” The fragility score is based on unpublished

observations of the technology and will vary according to the resources you
incorporate in your specific implementations.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

The fragility score is ultimately intended to encourage thought about
mashup stability. It’s possible to have five sites in a multisite pattern that
change less frequently than an individual Web page used in a single-site
pattern. This is particularly true when vendor products and internally created
systems are involved. The user interfaces of commercial and in-house
applications aren’ t frequently redesigned. Public Web sites, in contrast, must
constantly reinvent themselves in the battle to attract eyeballs.

If you create a mashup-based solution and don’ t acknowledge that it
encapsulates some degree of uncertainty, you are just kidding yourself.
Worse, you are deceiving your users, who will not be pleased when the
system “mysteriously” fails one day.

In case you think only mashups have this Achilles’ heel, keep in mind that
any distributed system (which is what a mashup is) contains an inherent level
of risk. Each additional component and the infrastructure that connects it
represent another potential point of failure. So before you think, “Why the
heck would I build something that might break?” consider how you have
handled similar situations in the past. You can address many of these fragility
issues by thinking about redundancy, monitoring, and notification up front.

The Future of Mashups
Mashups aren’t just about mixing Web sites together to

create new solutions—they’re a tool for unlocking the treasure chest of data right
under your nose.

The primary goal of this book is for the reader to scan at least one pattern
and realize, “ I never thought you could do that!” The examples that
accompany the patterns are aimed at both the business end user and the
technical user. When you understand how mashups can be used to mine
new information or automate traditionally manual activities, you’ ll never look
at your workplace in quite the same way. The morass of daily problems
suddenly becomes visible—but now you’ ll have the inspiration and
knowledge to tackle them. As with the classic Design Patterns text, Mashup
Patterns is intended to provide a general language that developers and the
business can use to succinctly communicate about a solution (“Oh, we can
use a Time Series mashup here”).

It’s not every day that we witness a groundbreaking advancement in
application development. Most improvements occur gradually and can take
years to snowball into something useful. They may require costly new

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.
investments in infrastructure or reengineering of existing resources. Or they
may be confined to a narrow niche in our industry. Only the naive overlook
the dangers that come with any great leap; only the foolish cite those risks as
reason enough to ignore the potential benefits.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

Don’ t let the hype surrounding mashups cause you to abandon the best
practices that guide good development. Likewise, be open to thinking
creatively about the problems that exist around you. Employees who face
seemingly intractable problems or whose careers have trained them to ignore
the breakdowns in their organization will be delighted to discover that
practical solutions are now available. The patterns in this book will help you
get started by demonstrating how mashups can help you achieve the
following goals:

• Make money for your organization

• Fill gaps not met by the existing IT infrastructure

• Create a quick proof-of-concept to explore new solutions

• Gain a competitive advantage

• Avoid “ information overload”

• Expose your applications to a wider audience

and more!
Enterprise 2.0 is all about You. And the potential benefits from mashups

are as big as anything you can imagine.

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

1. From Tim Berners-Lee’s first public Usenet post announcing the public
availability of the first Web server and browser in 1991.

2. A contingent of which I am proud to proclaim myself a member.

3. The NeXT workstation, conceived by computer luminary Steve Jobs.

4. Tim Berners-Lee invented the World Wide Web in 1989 while working at the
CERN Particle Physics Laboratory.

5. NCSA Mosaic, released in 1993.

6. Time magazine, December 13, 2006.

7. http://radar.oreilly.com/archives/2006/12/web-20-compact-definition-tryi.html

8. When Gmail (Google Mail) was announced in April 2004, it offered 1 gigabyte
of message storage. This was well beyond the storage limit most corporate mail
systems impose on their employees.

9. McAfee, Andrew. “Enterprise 2.0: The Damn of Emergent Collaboration.”
Sloan Management Review, Vol. 47, Spring 2006.

10. For example, putting a formal development process with relevant checkpoints
and milestones in place.

11. Berners-Lee, Tim, James Hendler, and Ora Lassila. “The Semantic Web.”
Scientific American, May 17, 2001.

12. This naturally presents potential legal complications, as discussed in Chapter
10

13. http://housingmaps.com

14. Iyer, Bala, and Thomas H. Davenport. “Reverse Engineering Google’s
Innovation Machine.” Harvard Business Review, April 2008.

15. Such as an IBM 3270 or VT220.

16. Anderson, Chris. “The Long Tail.” Wired, October 2004.

17. The Pareto principle is based on empirical observation and isn’ t a
mathematical certainty in all cases.

18. Sisyphus was a Greek who was condemned by the gods to ceaselessly roll a
rock to the top of a mountain, only to have it fall back of its own weight.

19. Problems include interoperability issues and platform-specific implementation,
testing, and security challenges.

20. Author Thomas Erl has written several good books on this subject, including
SOA Design Patterns.

21. These databases include relational databases, message queues, and data
warehouses.

22. Service level agreements (SLAs) should be in place to ensure your
applications are available when needed.

23. Nike iD lets you design custom shoes and clothing (http://nikeid.nike.com).

24. Toffler, Alvin. The Third Wave. 1980.

25. David Cearley, Gartner analyst.

26. Or a Mashup Patterns book—trust me, I’ve tried.

27. The classic reference for pattern-based design is Christopher Alexander’s

Mashup Patterns: Designs and Examples for the Modern Enterprise
by Michael Ogrinz; ISBN 032157947x, Copyright 2009 Pearson
Education, Inc.

seminal text The Timeless Way of Building (Oxford Press, 1979). Buildings, like
software components and cooking ingredients, can be combined in an almost
endless variety. Nevertheless, certain basic concepts govern which elements
work well together and which don’ t.

28. Translation: “Your mileage may vary.” The fragility score is based on
unpublished observations of the technology and will vary according to the
resources you incorporate in your specific implementations.

