EEEEERN 4

Creating a Simple Query

“Think like a wise man but communicate
in the language of the people.”
—William Butler Yeats

Topics Covered in This Chapter

Introducing SELECT

The SELECT Statement

A Quick Aside: Data versus Information
Translating Your Request into SQL
Eliminating Duplicate Rows

Sorting Information

Saving Your Work

Sample Statements

Summary

Problems for You to Solve

Now that you've learned a little bit about the history of SQL, it’s time to jump
right in and learn the language itself. As we mentioned in the Introduction,
we’re going to spend most of this book covering the data manipulation por-
tion of the language. So our initial focus will be on the true workhorse of
SQL—the SELECT statement.

mm 7

72

Chapter 4

Introducing SELECT

Above all other keywords, SELECT truly lies at the heart of SQL. It is the cor-
nerstone of the most powerful and complex statement within the language
and the means by which you retrieve information from the tables in your
database. You use SELECT in conjunction with other keywords and clauses to
find and view information in an almost limitless number of ways. Nearly any
question regarding who, what, where, when, or even what if and how many
can be answered with SELECT. As long as you've designed your database prop-
erly and collected the appropriate data, you can get the answers you need to
make sound decisions for your organization. As you’ll discover when you get
to Part V, Modifying Sets of Data, you’ll apply many of the techniques you learn
about SELECT to create UPDATE, INSERT, and DELETE statements.

The SELECT operation in SQL can be broken down into three smaller opera-
tions, which we will refer to as the SELECT statement, the SELECT expression,
and the SELECT query. (Breaking down the SELECT operation in this manner
will make it far easier to understand and to appreciate its complexity.) Each of
these operations provides its own set of keywords and clauses, providing you
with the flexibility to create a final SQL statement that is appropriate for the
question you want to pose to the database. As you'll learn in later chapters,
you can even combine the operations in various ways to answer very com-
plex questions.

In this chapter, we’ll begin our discussion of the SELECT statement and take a
brief look at the SELECT query. We’ll then examine the SELECT statement in
more detail as we work through to Chapter 5, Getting More Than Simple
Columns, and Chapter 6, Filtering Your Data.

% Note In other books about relational databases, you’ll sometimes see

he word relation used for table, and you might encounter tuple or record for
row and perhaps attribute or field for column. However, the SQL Standard
specifically uses the terms table, row, and column to refer to these particular
elements of a database structure. We’ll stay consistent with the SQL Standard
and use these latter three terms throughout the remainder of the book.

Creating a Simple Query 73

The SELECT Statement

The SELECT statement forms the basis of every question you pose to the data-
base. When you create and execute a SELECT statement, you are querying the
database. (We know it sounds a little obvious, but we want to make certain
that everyone reading this starts from the same point of reference.) In fact,
many RDBMS programs allow you to save a SELECT statement as a query,
view, function, or stored procedure. Whenever someone says she is going to
query the database, you know that she’s going to execute some sort of
SELECT statement. Depending on the RDBMS program, SELECT statements
can be executed directly from a command line window, from an interactive
Query by Example (QBE) grid, or from within a block of programming code.
Regardless of how you choose to define and execute it, the syntax of the
SELECT statement is always the same.

< Note Many database systems provide extensions to the SQL Standard to
allow you to build complex programming statements (such as If . . . Then . . .
Else) in functions and stored procedures, but the specific syntax is unique to
each different product. It is far beyond the scope of this book to cover even
one or two of these programming languages—such as Microsoft SQL
Server’s Transact-SQL or Oracle’s PL/SQL. You'll still use the cornerstone
SELECT statement when you build functions and stored procedures for your
particular database system. Throughout this book, we’ll use the term view to
refer to a saved SQL statement even though you might embed your SQL
statement in a function or procedure.

A SELECT statement is composed of several distinct keywords, known as
clauses. You define a SELECT statement by using various configurations of
these clauses to retrieve the information you require. Some of these clauses
are required, although others are optional. Additionally, each clause has one or
more keywords that represent required or optional values. These values are
used by the clause to help retrieve the information requested by the SELECT
statement as a whole. Figure 4-1 (on page 73) shows a diagram of the SELECT
statement and its clauses.

74 Chapter 4

SELECT Statement

o- SELECT column_name FROM —Etable_nie—,—b—
L ’ ——, ’
I— WHERE — Search Condiz‘ion—T I— GROUP BY fcolumn_namejJ
H

<
<

A\ 4

[

A\ 4

I— HAVING — Search Condiz‘ion—T

Figure 4-1 A diagram of the SELECT statement

% Note The syntax diagram in Figure 4-1 reflects a rudimentary SELECT
statement. We’ll continue to update and modify the diagram as we introduce
and work with new keywords and clauses. So for those of you who might
have some previous experience with SQL statements, just be patient and
bear with us for the time being.

Here’s a brief summary of the clauses in a SELECT statement.

e SELECT—This is the primary clause of the SELECT statement and is
absolutely required. You use it to specify the columns you want in the
result set of your query. The columns themselves are drawn from the
table or view you specity in the FROM clause. (You can also draw them
from several tables simultaneously, but we’ll discuss this later in Part III,
Working with Multiple Tables.) You can also use aggregate functions,
such as Sum(HoursWorked), or mathematical expressions, such as
Quantity * Price, in this clause.

« FROM—This is the second most important clause in the SELECT state-
ment and is also required. You use the FROM clause to specify the
tables or views from which to draw the columns you’ve listed in the
SELECT clause. You can use this clause in more complex ways, but we’ll
discuss this in later chapters.

Creating a Simple Query 75

« WHERE—This is an optional clause that you use to filter the rows
returned by the FROM clause. The WHERE keyword is followed by an
expression, technically known as a predicate, that evaluates to true,
false, or unknown. You can test the expression by using standard com-
parison operators, Boolean operators, or special operators. We'll discuss
all the elements of the WHERE clause in Chapter 6.

¢« GROUP BY—When you use aggregate functions in the SELECT clause
to produce summary information, you use the GROUP BY clause to
divide the information into distinct groups. Your database system uses
any column or list of columns following the GROUP BY keywords as
grouping columns. The GROUP BY clause is optional, and we’ll exam-
ine it further in Chapter 13, Grouping Data.

« HAVING—The HAVING clause filters the result of aggregate functions
in grouped information. It is similar to the WHERE clause in that the
HAVING keyword is followed by an expression that evaluates to true,
false, or unknown. You can test the expression by using standard com-
parison operators, Boolean operators, or special operators. HAVING is
also an optional clause, and we’ll take a closer look at it in Chapter 14,
Filtering Grouped Data.

We’re going to work with a very basic SELECT statement at first, so we’ll focus
on the SELECT and FROM clauses. We’ll add the other clauses, one by one,
as we work through the other chapters to build more complex SELECT
statements.

A Quick Aside: Data versus Information

Before we pose the first query to the database, one thing must be perfectly
clear: There is a distinct difference between data and information. In
essence, data is what you store in the database, and information is what you
retrieve from the database. This distinction is important for you to understand
because it helps you to keep things in proper perspective. Remember that a
database is designed to provide meaningful information to someone within
your organization. However, the information can be provided only if the
appropriate data exists in the database and if the database itself has been
structured in such a way to support that information. Let’s examine these
terms in more detail.

76

Chapter 4

The values that you store in the database are data. Data is static in the sense
that it remains in the same state until you modify it by some manual or auto-
mated process. Figure 4-2 shows some sample data.

[Katherine |[Ehrlich _][89931 _][Active _][79915]

Figure 4-2 An example of basic data

On the surface, this data is meaningless. For example, there is no easy way for
you to determine what 89931 represents. Is it a ZIP Code? Is it a part number?
Even if you know it represents a customer identification number, is it associ-
ated with Katherine Ehrlich? There’s no way to know until the data is
processed. After you process the data so that it is meaningful and useful
when you work with it or view it, the data becomes information. Information
is dynamic in that it constantly changes relative to the data stored in the data-
base and also in its ability to be processed and presented in an unlimited
number of ways. You can show information as the result of a SELECT state-
ment, display it in a form on your computer screen, or print it on paper as a
report. But the point to remember is that you must process your data in a
manner that enables you to turn it into meaningful information.

Figure 4-3 shows the data from the previous example transformed into infor-
mation on a customer screen. This illustrates how the data can be manipu-
lated in such a way that it is now meaningful to anyone who views it.

Customer Information

Name (F/L){Katherine |[Ehrlich D# (89931 |
Address: 7402 Taxco Avenue Status: (Active) |
City: [El Paso | Phone: [555-9284

State: zIP: (79915) Fax: 554-0099

Figure 4-3 An example of data processed into information

When you work with a SELECT statement, you use its clauses to manipulate
data,but the statement itself returns information. Get the picture?

There’s one last issue we need to address. When you execute a SELECT
statement, it usually retrieves one or more rows of information—the exact

Creating a Simple Query 77

number depends on how you construct the statement. These rows are collec-
tively known as a result set, which is the term we use throughout the remain-
der of the book. This name makes perfect sense because you always work
with sets of data whenever you use a relational database. (Remember that the
relational model is based, in part, on set theory.) You can easily view the infor-
mation in a result set and, in many cases, you can modify its data. But, once
again, it all depends on how you construct your SELECT statement.

So let’s get down to business and start using the SELECT statement.

Translating Your Request into SQL

When you request information from the database, it’s usually in the form of a
question or a statement that implies a question. For example, you might for-
mulate statements such as these:

“Whicbh cities do our customers live in?”
“Show me a current list of our employees and their phone numbers.”
“What kind of classes do we currently offer?”

“Give me the names of the folks on our staff and the dates they were
bired.”

After you know what you want to ask, you can translate your request into a
more formal statement. You compose the translation using this form:

Select <item> from the <source>

Start by looking at your request and replacing words or phrases such as “list,
“show me, “what,” “which, and “who” with the word “Select.” Next, identify
any nouns in your request, and determine whether a given noun represents an
item you want to see or the name of a table in which an item might be stored.
If it’s an item, use it as a replacement for <item> in the translation statement. If
it’s a table name, use it as a replacement for <source>. If you translate the first
question listed earlier, your statement looks something like this:

Select city from the customers table

After you define your translation statement, you need to turn it into a full-
fledged SELECT statement using the SQL syntax shown in Figure 4-4. The

78

Chapter 4

first step, however, is to clean up your translation statement. You do so by
crossing out any word that is not a noun representing the name of a column
or table or that is not a word specifically used in the SQL syntax. Here’s how
the translation statement looks during the process of cleaning it up:

Select city from ¢he customers table

Remove the words you've crossed out, and you now have a complete SELECT
statement.

SELECT City FROM Customers

SELECT Statement

o- SELECT column_name FROM table_name

Figure 4-4 The syntax of a simple SELECT statement

You can use the three-step technique we just presented on any request you
send to your database. In fact, we use this technique throughout most of the
book, and we encourage you to use it while you're beginning to learn how to
build these statements. However, you'll eventually merge these steps into one
seamless operation as you get more accustomed to writing SELECT statements.

Remember that you’ll work mostly with columns and tables when you’re
beginning to learn how to use SQL. The syntax diagram in Figure 4-4 reflects
this fact by using column_name in the SELECT clause and table_name in the
FROM clause. In the next chapter, you’ll learn how to use other terms in these
clauses to create more complex SELECT statements.

You probably noticed that the request we used in the previous example is rel-
atively straightforward. It was easy to both redefine it as a translation state-
ment and identify the column names that were present in the statement. But
what if a request is not as straightforward and easy to translate,and it’s difficult
to identify the columns you need for the SELECT clause? The easiest course of
action is to refine your request and make it more specific. For example, you
can refine a request such as “Show me the information on our clients” by
recasting it more clearly as “List the name, city, and phone number for each

Creating a Simple Query 79

of our clients.” If refining the request doesn’t solve the problem, you still have
two other options. Your first alternative is to determine whether the table
specified in the FROM clause of the SELECT statement contains any column
names that can help to clarify the request and thus make it easier to define a
translation statement. Your second alternative is to examine the request more
closely and determine whether a word or phrase it contains implies any col-
umn names. Whether you can use either or both alternatives depends on the
request itself. Just remember that you do have techniques available when you
find it difficult to define a translation statement. Let’s look at an example of
each technique and how you can apply it in a typical scenario.

To illustrate the first technique, let’s say you’re trying to translate the follow-
ing request.

“I need the names and addresses of all our employees.”

This looks like a straightforward request on the surface. But if you review this
request again, you’ll find one minor problem: Although you can determine the
table you need (Employees) for the translation statement, there’s nothing
within the request that helps you identify the specific columns you need for
the SELECT clause. Although the words “names” and “addresses” appear in
the request, they are terms that are general in nature. You can solve this prob-
lem by reviewing the table you identified in the request and determining
whether it contains any columns you can substitute for these terms. If so, use
the column names in the translation statement. (You can opt to use generic
versions of the column names in the translation statement if it will help you
visualize the statement more clearly. However, you will need to use the actual
column names in the SQL syntax.) In this case, look for column names in the
Employees table shown in Figure 4-5 that could be used in place of the words
“names” and “addresses.”

EMPLOYEES

EmployeelD PK
EmpFirstName
EmpLastName
EmpStreetAddress
EmpCity

EmpState

EmpZipCode
EmpAreaCode

EmpPhoneNumber

Figure 4-5 The structure of the Employees table

80

Chapter 4

To fully satisfy the need for “names” and “addresses,” you will indeed use six
columns from this table. EmpFirstName and EmpLastName will both replace
“names” in the request, and EmpStreetAddress, EmpCity, EmpState, and
EmpZipCode will replace “addresses.” Now, apply the entire translation
process to the request, which we’ve repeated for your convenience. (We’'ll
use generic forms of the column names for the translation statement and the
actual column names in the SQL syntax.)

“I need the names and addresses of all our employees.”

Translation Select first name, last name, street address, city, state, and ZIP
Code from the employees table
Clean Up Select first name, last name, street address, city, state, and ZIP
Code from the employees table
SQL SELECT EmpFirstName, EmpLastName, EmpStreetAddress,
EmpCity, EmpState, EmpZipCode
FROM EmpToyees

% Note This example clearly illustrates how to use multiple columns in a
SELECT clause. We’ll discuss this technique in more detail later in this
section.

The next example illustrates the second technique, which involves searching
for implied columns within the request. Let’s assume you’re trying to put the
following request through the translation process.

“What kind of classes do we currently offer?”

At first glance, it might seem difficult to define a translation statement from
this request. The request doesn’t indicate any column names, and without
even one item to select, you can’t create a complete translation statement.
What do you do now? Take a closer look at each word in the request and
determine whether there is one that implies a column name within the
Classes table. Before you read any further, take a moment to study the request
again. Can you find such a word?

In this case, the word “kind” might imply a column name in the Classes table.
Why? Because a kind of class can also be thought of as a category of class. If
there is a category column in the Classes table, then you have the column

Creating a Simple Query 81

name you need to complete the translation statement and, by inference, the
SELECT statement. Let’s assume that there is a category column in the Classes
table and take the request through the three-step process once again.

“What kind of classes do we currently offer?”
Translation Select category from the classes table
Clean Up Select category from the classes table

SQL SELECT Category
FROM Classes

As the example shows, this technique involves using synonyms as replace-
ments for certain words or phrases within the request. If you identify a word
or phrase that might imply a column name, try to replace it with a synonym.
The synonym you choose might indeed identify a column that exists in the
database. However, if the first synonym that comes to mind doesn’t work, try
another. Continue this process until you either find a synonym that does iden-
tify a column name or until you're satisfied that neither the original word nor
any of its synonyms represent a column name.

< Note Unless we indicate otherwise, all column names and table names
used in the SQL syntax portion of the examples are drawn from the sample
databases in Appendix B, Schema for the Sample Databases. This convention
applies to all examples for the remainder of the book.

Expanding the Field of Vision

You can retrieve multiple columns within a SELECT statement as easily as you
can retrieve a single column. List the names of the columns you want to use
in the SELECT clause, and separate each name in the list with a comma. In the
syntax diagram shown in Figure 4-6, the option to use more than one column
is indicated by a line that flows from right to left beneath column_name. The
comma in the middle of the line denotes that you must insert a comma before
the next column name you want to use in the SELECT clause.

A 4

o— SELECT —fcolumn_name
H

Figure 4-6 The syntax for using multiple columns in a SELECT clause

82 Chapter 4

The option to use multiple columns in the SELECT statement provides you
with the means to answer questions such as these.

“Show me a current list of our employees and their phone numbers.”

Translation Select the last name, first name, and phone number of all our
employees from the employees table

Clean Up Select ke last name, first name, aned phone number efal-eus
employees from the employees table

SQL SELECT EmpLastName, EmpFirstName, EmpPhoneNumber
FROM EmpToyees

“What are the names and prices of the products we carry, and under
what category is each item listed?”

Translation Select the name, price, and category of every product from the
products table

Clean Up Select ke name, price, and category ef-every-produaet from the
products table

SQL SELECT ProductName, RetailPrice, Category
FROM Products

You gain the advantage of seeing a wider spectrum of information when you
work with several columns in a SELECT statement. Incidentally, the sequence
of the columns in your SELECT clause is not important—you can list the
columns in any order you want. This gives you the flexibility to view the same
information in a variety of ways.

For example, let’s say you're working with the table shown in Figure 4-7, and
you're asked to pose the following request to the database.

“Show me a list of subjects, the category each belongs to, and the code we
use in our catalog. But I'd like to see the name first, followed by the cate-
gory and then the code.”

SUBJECTS
SubjectID PK
CategorylD FK
SubjectCode

SubjectName
SubjectDescription

Figure 4-7 The structure of the Subjects table

Creating a Simple Query 83

You can still transform this request into an appropriate SELECT statement,
even though the person making the request wants to see the columns in a
specific order. Just list the column names in the order specified when you
define the translation statement. Here’s how the process looks when you
transform this request into a SELECT statement.

Translation Select the subject name, category ID, and subject code from
the subjects table

Clean Up Select the subject name, category ID, aad subject code from
the subjects table

SQL SELECT SubjectName, CategoryID, SubjectCode
FROM Subjects

Using a Shortcut to Request All Columns

There is no limit to the number of columns you can specify in the SELECT
clause—in fact, you can list all the columns from the source table. The follow-
ing example shows the SELECT statement you use to specify all the columns
from the Subjects table in Figure 4-7.

SQL SELECT SubjectID, CategoryID, SubjectCode,
SubjectName, SubjectDescription
FROM Subjects

When you specify all the columns from the source table, you'll have a lot of
typing to do if the table contains a number of columns! Fortunately, the SQL
Standard specifies the asterisk as a shortcut you can use to shorten the state-
ment considerably. The syntax diagram in Figure 4-8 shows that you can use
the asterisk as an alternative to a list of columns in the SELECT clause.

%
o— SELECT —Lfcolumn_name | l >
)

Figure 4-8 The syntax for the asterisk shortcut

Place the asterisk immediately after the SELECT clause when you want
to specify all the columns from the source table in the FROM clause. For

84

Chapter 4

example, here’s how the preceding SELECT statement looks when you use
the shortcut.

SQL SELECT *
FROM Subjects

You'll certainly do less typing with this statement! However, one issue arises
when you create SELECT statements in this manner: The asterisk represents
all of the columns that currently exist in the source table,and adding or delet-
ing columns affects what you see in the result set of the SELECT statement.
(Oddly enough, the SQL Standard states that adding or deleting columns
should not affect your result set.) This issue is important only if you must see
the same columns in the result set consistently. Your database system will not
warn you if columns have been deleted from the source table when you use
the asterisk in the SELECT clause, but it will raise a warning when it can’t find
a column you explicitly specified. Although this does not pose a real problem
for our purposes, it will be an important issue when you delve into the world
of programming with SQL. Our rule of thumb is this: Use the asterisk only
when you need to create a “quick and dirty” query to see all the information
in a given table. Otherwise, specify all the columns you need for the query. In
the end, the query will return exactly the information you need and will be
more self-documenting.

The examples we’ve seen so far are based on simple requests that require
columns from only one table. You'll learn how to work with more complex
requests that require columns from several tables in Part III.

Eliminating Duplicate Rows

When working with SELECT statements, you’ll inevitably come across result
sets with duplicate rows. There is no cause for alarm if you see such a result
set. Use the DISTINCT keyword in your SELECT statement, and the result set
will be free and clear of all duplicate rows. Figure 4-9 shows the syntax dia-
gram for the DISTINCT keyword.

As the diagram illustrates, DISTINCT is an optional keyword that precedes the
list of columns specified in the SELECT clause. The DISTINCT keyword asks
your database system to evaluate the values of all the columns as a single
unit on a row-by-row basis and eliminate any redundant rows it finds. The
remaining unique rows are then returned to the result set. The following

Creating a Simple Query 85

SELECT Statement

o- SELECT column_name FROM table_name
|-DISTINCTi - __ ’ _—,

Figure 4-9 The syntax for the DISTINCT keyword

example shows what a difference the DISTINCT keyword can make under
the appropriate circumstances.

Let’s say you’re posing the following request to the database.
“Which cities are represented by our bowling league membership?”

The question seems easy enough, so you take it through the translation
process.

Translation Select city from the bowlers table
Clean Up Select city from ke bowlers table

SQL SELECT City
FROM Bowlers

The problem is that the result set for this SELECT statement shows every
occurrence of each city name found in the Bowlers table. For example, if
there are 20 people from Bellevue and 7 people from Kent and 14 people
from Seattle, the result set displays 20 occurrences of Bellevue, 7 occurrences
of Kent, and 14 occurrences of Seattle. Clearly, this redundant information is
unnecessary. All you want to see is a single occurrence of each city name
found in the Bowlers table. You resolve this problem by using the DISTINCT
keyword in the SELECT statement to eliminate the redundant information.

Let’s run the request through the translation process once again using the
DISTINCT keyword. Note that we now include the word “distinct” in both the
Translation step and the Clean Up step.

“Which cities are represented by our bowling league membership?”
Translation Select the distinct city values from the bowlers table
Clean Up Select #ke distinct city ¥alaes from the bowlers table

SQL SELECT DISTINCT City
FROM Bowlers

86

Chapter 4

The result set for this SELECT statement displays exactly what you're looking
for—a single occurrence of each distinct (or unique) city found in the
Bowlers table.

You can use the DISTINCT keyword on multiple columns as well. Let’s mod-
ify the previous example by requesting both the city and the state from the
Bowlers table. Our new SELECT statement looks like this.

SELECT DISTINCT City, State FROM Bowlers

This SELECT statement returns a result set that contains unique records and
shows definite distinctions between cities with the same name. For example,
it shows the distinction between “Portland, ME,” “Portland, OR,” “Hollywood,
CA;” and “Hollywood, FL.” It’s worthwhile to note that most database systems
sort the output in the sequence in which you specify the columns, so you'll
see these values in the sequence “Hollywood, CA,;”“Hollywood, FL,”“Portland,
ME,” and “Portland, OR” However, the SQL Standard does not require the result
to be sorted in this order. If you want to guarantee the sort sequence, read on
to the next section to learn about the ORDER BY clause.

The DISTINCT keyword is a very useful tool under the right circumstances.
Use it only when you really want to see unique rows in your result set.

+ Caution For database systems that include a graphical interface, you
can usually request that the result set of a query be displayed in an up-
datable grid of rows and columns. You can type a new value in a column on
a row, and the database system updates the value stored in your table. (Your
database system actually executes an UPDATE query on your behalf behind
the scenes—you can read more about that in Chapter 15, Updating Sets of
Data.)

However, in all database systems that we studied, when you include the
DISTINCT keyword, the resulting set of rows cannot be updated. To be able
to update a column in a row, your database system needs to be able to
uniquely identify the specific row and column you want to change. When
you use DISTINCT, the values you see in each row are the result of evaluat-
ing perhaps dozens of duplicate rows. If you try to update one of the
columns, your database won’t know which specific row to change. Your
database system also doesn’t know if perhaps you mean to change all the
rows with the same duplicate value.

Creating a Simple Query 87

Sorting Information

At the beginning of this chapter, we said that the SELECT operation can be
broken down into three smaller operations: the SELECT statement, the
SELECT expression, and the SELECT query. We also stated that you can com-
bine these operations in various ways to answer complex requests. However,
you also need to combine these operations in order to sort the rows of a
result set.

By definition, the rows of a result set returned by a SELECT statement are
unordered. The sequence in which they appear is typically based on their
physical position in the table. (The actual sequence is often determined
dynamically by your database system based on how it decides to most effi-
ciently satisfy your request.) The only way to sort the result set is to embed
the SELECT statement within a SELECT query, as shown in Figure 4-10. We
define a SELECT query as a SELECT statement with an ORDER BY clause. The
ORDER BY clause of the SELECT query lets you specify the sequence of rows
in the final result set. As you'll learn in later chapters, you can actually embed
a SELECT statement within another SELECT statement or SELECT expression
to answer very complex questions. However, the SELECT query cannot be
embedded at any level.

SELECT Query

o- SELECT Statement

A\ 4

I— ORDER BY column_name
|EASC%
DESC

Figure 4-10 Tbhe syntax diagram for the SELECT query

88

Chapter 4

« Note Throughout this book, we use the same terms you'll find in the
SQL Standard or in common usage in most database systems. The 2003 SQL
Standard, however, defines the ORDER BY clause as part of a cursor (an
object that you define inside an application program), as part of an array (a
list of values that form a logical table such as a subquery, discussed in Chap-
ter 11, Subqueries), or as part of a scalar subquery (a subquery that returns
only one value). A complete discussion of cursors and arrays is beyond the
scope of this book. Because nearly all implementations of SQL allow you to
include an ORDER BY clause at the end of a SELECT statement that you can
save in a view, we invented the term SELECT query to describe this type of
statement. This also allows us to discuss the concept of sorting the final out-
put of a query for display online or for use in a report. It’s our understanding
that the draft 2007/2008 standard does allow using ORDER BY in more
places, but we’ll use this separate construct in this book to cover the topic.

The ORDER BY clause allows you to sort the result set of the specified
SELECT statement by one or more columns and also provides the option of
specifying an ascending or descending sort order for each column. The only
columns you can use in the ORDER BY clause are those that are currently
listed in the SELECT clause. (Although this requirement is specified in the SQL
Standard, some vendor implementations allow you to disregard it completely.
However, we comply with this requirement in all the examples used through-
out the book.) When you use two or more columns in an ORDER BY clause,
separate each column with a comma. The SELECT query returns a final result
set once the sort is complete.

« Note The ORDER BY clause does not affect the physical order of the
rows in a table. If you do need to change the physical order of the rows,
refer to your database software’s documentation for the proper procedure.

First Things First: Collating Sequences

Before we look at some examples using the SELECT query, a brief word on
collating sequences is in order. The manner in which the ORDER BY clause
sorts the information depends on the collating sequence used by your data-
base software. The collating sequence determines the order of precedence
for every character listed in the current language character set specified by

Creating a Simple Query 89

your operating system. For example, it identifies whether lowercase letters
will be sorted before uppercase letters, or whether case will even matter.
Check your database software’s documentation, and perhaps consult your
database administrator to determine the default collating sequence for your
database. For more information on collating sequences, see the subsection
Comparing String Values: A Caution in Chapter 6.

Lets Now Come to Order

With the availability of the ORDER BY clause, you can present the information
you retrieve from the database in a more meaningful fashion. This applies to
simple requests as well as complex ones. You can now rephrase your requests
so that they also indicate sorting requirements. For example, a question such
as “What are the categories of classes we currently offer?” can be restated as
“List the categories of classes we offer and show them in alpbabetical order”

Before beginning to work with the SELECT query, you need to adjust the way
you define a translation statement. This involves adding a new section at the
end of the translation statement to account for the new sorting requirements
specified within the request. Use this new form to define the translation
statement.

Select <item> from the <source> and order by <column(s)>

Now that your request will include phrases such as “sort the results by city,”
“show them in order by year,” or “list them by last name and first name,” study
the request closely to determine which column or columns you need to use
for sorting purposes. This is a simple exercise because most people use these
types of phrases, and the columns needed for the sort are usually self-evident.
After you identify the appropriate column or columns, use them as a replace-
ment for <column(s)> in the translation statement. Let’s take a look at a sim-
ple request to see how this works.

“List the categories of classes we offer and show them in alpbabetical
order”

Translation Select category from the classes table and order by category
Clean Up Select category from the classes table-and order by category

SQL SELECT Category
FROM Classes
ORDER BY Category

20

Chapter 4

In this example, you can assume that Category will be used for the sort
because it’s the only column indicated in the request. You can also assume
that the sort should be in ascending order because there’s nothing in the
request to indicate the contrary. This is a safe assumption. According to the
SQL Standard, ascending order is automatically assumed if you don’t specify a
sort order. However, if you want to be absolutely explicit, insert ASC after Cat-
egory in the ORDER BY clause.

In the following request, the column needed for the sort is more clearly
defined.

“Show me a list of vendor names in ZIP Code order”

Translation Select vendor name and ZIP Code

from the vendors table and order by ZIP Code
Clean Up Select vendor name and ZIP Code

from the vendors table-and order by ZIP Code
SQL SELECT VendName, VendZipCode

FROM Vendors
ORDER BY VendZipCode

In general, most people will tell you if they want to see their information in
descending order. When this situation arises and you need to display the
result set in reverse order, insert the DESC keyword after the appropriate col-
umn in the ORDER BY clause. For example, here’s how you would modify the
SELECT statement in the previous example when you want to see the infor-
mation sorted by ZIP Code in descending order.

SQL SELECT VendName, VendZipCode
FROM Vendors
ORDER BY VendZipCode DESC

The next example illustrates a more complex request that requires a multi-
column sort. The only difference between this example and the previous two
examples is that this example uses more columns in the ORDER BY clause.
Note that the columns are separated with commas, which is in accordance
with the syntax diagram shown in Figure 4-10.

Creating a Simple Query 21

“Display the names of our employees, including their phone number and

ID number;, and list them by last name and first name.”

Translation Select last name, first name, phone number, and employee ID
from the employees table and order by last name and first
name

Clean Up Select last name, first name, phone number, aad employee ID
from #he employees table-and
order by last name age first name

SQL SELECT EmpLastName, EmpFirstName,
EmpPhoneNumber, EmployeelD
FROM EmpToyees
ORDER BY EmpLastName, EmpFirstName

One of the interesting things you can do with the columns in an ORDER BY
clause is to specity a different sort order for each column. In the previous
example, you can specify a descending sort for the column containing the last
name and an ascending sort for the column containing the first name. Here’s
how the SELECT statement looks when you make the appropriate modifica-
tions.

SQL SELECT EmpLastName, EmpFirstName, EmpPhoneNumber,
EmployeelD
FROM EmpTloyees
ORDER BY EmpLastName DESC, EmpFirstName ASC

Although you don’t need to use the ASC keyword explicitly, the statement is
more self-documenting if you include it.

The previous example brings an interesting question to mind: Is any impor-
tance placed on the sequence of the columns in the ORDER BY clause? The
answer is “Yes/” The sequence is important because your database system will
evaluate the columns in the ORDER BY clause from left to right. Also, the
importance of the sequence grows in direct proportion to the number of
columns you use. Always sequence the columns in the ORDER BY clause
properly so that the result sorts in the appropriate order.

92

Chapter 4

% Note The database products from Microsoft (Microsoft Office Access
and Microsoft SQL Server) include an interesting extension that allows you
to request a subset of rows based on your ORDER BY clause by using the
TOP keyword in the SELECT clause. For example, you can find out the five
most expensive products in the Sales Orders database by requesting:

SELECT TOP 5 ProductName, RetailPrice
FROM Products
ORDER BY RetailPrice DESC

The database sorts all the rows from the Products table descending by price
and then returns the top five rows. Both database systems also allow you to
specify the number of rows returned as a percentage of all the rows. For
example, you can find out the top 10 percent of products by price by
requesting:

SELECT TOP 10 PERCENT ProductName, RetailPrice
FROM Products
ORDER BY RetailPrice DESC

In fact, if you want to specify ORDER BY in a view, SQL Server requires that
you include the TOP keyword. If you want all rows, you must specify TOP
100 PERCENT. For this reason, you’ll see that all the sample views in SQL
Server that include an ORDER BY clause also specify TOP 100 PERCENT.
There is no such restriction in Microsoft Access.

Saving Your Work

Save your SELECT statements—every major database software program pro-
vides a way for you to save them! Saving your statements eliminates the need
to recreate them every time you want to make the same request to the data-
base. When you save your SELECT statement, assign a meaningful name that
will help you remember what type of information the statement provides.
And if your database software allows you to do so, write a concise description
of the statement’s purpose. The value of the description will become quite
clear when you haven’t seen a particular SELECT statement for some time and
you need to remember why you constructed it in the first place.

A saved SELECT statement is categorized as a query in some database pro-
grams and as a view, function, or stored procedure in others. Regardless of its

Creating a Simple Query 23

designation, every database program provides you with a means to execute,
or run, the saved statement and work with its result set.

« Note For the remainder of this discussion, we’ll use the word guery to
represent the saved SELECT statement and execute to represent the method
used to work with it.

Two common methods are used to execute a query. The first is an interactive
device (such as a command on a toolbar or query grid), and the second is a
block of programming code. You’ll use the first method quite extensively.
There’s no need to worry about the second method until you begin working
with your database software’s programming language. Although it’s our job to
teach you how to create and use SQL statements, it’s your job to learn how to
create, save, and execute them in your database software program.

Sample Statements

Now that we’ve covered the basic characteristics of the SELECT statement
and SELECT query, let’s take a look at some examples of how these operations
are applied in different scenarios. These examples encompass each of the
sample databases, and they illustrate the use of the SELECT statement, the
SELECT query, and the two supplemental techniques used to establish
columns for the translation statement. We’ve also included sample result sets
that would be returned by these operations and placed them immediately
after the SQL syntax line. The name that appears immediately above a result
set has a twofold purpose: It identifies the result set itself, and it is also the
name that we assigned to the SQL statement in the example.

In case you’re wondering why we assigned a name to each SQL statement, it’s
because we saved them! In fact, we’ve named and saved all the SQL state-
ments that appear in the examples here and throughout the remainder of the
book. Each is stored in the appropriate sample database (as indicated within
the example), and we prefixed the names of the queries relevant to this chap-
ter with “CHO4.” You can follow the instructions in the Introduction of this
book to load the samples onto your computer. This gives you the opportunity
to see these statements in action before you try your hand at writing them
yourself.

924 Chapter 4

+ Note Just a reminder: All the column names and table names used in
these examples are drawn from the sample database structures shown in
Appendix B.

Sales Orders Database

“Show me the names of all our vendors.”
Translation Select the vendor name from the vendors table
Clean Up Select ke vendor name from ke vendors table

SQL SELECT VendName
FROM Vendors

CHO4 _Vendor_ Names
(10 Rows)

VendName

Shinoman, Incorporated

Viscount

Nikoma of America

ProFormance

Kona, Incorporated

Big Sky Mountain Bikes

Dog Ear

Sun Sports Suppliers

Lone Star Bike Supply

Armadillo Brand

“What are the names and prices of all the products we carry?”
Translation Select product name, retail price from the products table
Clean Up Select product name, retail price from ke products table

SQL SELECT ProductName, RetailPrice
FROM Products

Creating a Simple Query

25

Translation

CHO4_Product_Price_List (40 Rows)

ProductName Retail Price
Trek 9000 Mountain Bike $1,200.00
Eagle FS-3 Mountain Bike $1,800.00
Dog Ear Cyclecomputer $75.00
Victoria Pro All Weather Tires $54.95
Dog Ear Helmet Mount Mirrors $7.45
Viscount Mountain Bike $635.00
Viscount C-500 Wireless Bike Computer $49.00
Kryptonite Advanced 2000 U-Lock $50.00
Nikoma Lok-Tight U-Lock $33.00
Viscount Microshell Helmet $36.00

<< more rows here >>

“Which states do our customers come from?”

SELECT DISTINCT CustState
FROM Customers

Select the distinct state values from the customers table
Select #he distinct state ¥alaes from Hhe customers table

CHO4_Customer_States

(4 Rows)

CustState

CA

OR

TX

WA

Chapter 4

Entertainment Agency Database

“List all entertainers and the cities they're based in, and sort the results by

city and name in ascending order”

Translation Select city and stage name from the entertainers table and
order by city and stage name

Clean Up Select city and stage name from ke entertainers table-asnd
order by city aad stage name

SQL SELECT EntCity, EntStageName

FROM Entertainers
ORDER BY EntCity ASC, EntStageName ASC

CHO4_Entertainer_Locations
{13 Rows)

EntCity | EntStageName

Auburn Caroline Coie Cuartet
Auburn Topazz

Bellevue Jazz Persuasion
Bellevue Jim Glynn

Bellevue Susan McLain

Redmond Carol Peacock Trio

Redmond | JV & the Deep Six

Seattle Coldwater Cattle Company
Seattle Country Feeling
Seattle Julia Schnebly

<< more rows here >>

Creating a Simple Query 97

“Give me a unique list of engagement dates. I'm not concerned with how
many engagements there are per date.”

Translation Select the distinct start date values from the engagements table
Clean Up Select ke distinct start date ¥alaees from the engagements table

SQL SELECT DISTINCT StartDate
FROM Engagements

CHO04_Engagement_Dates
(64 Rows)

StartDate

2007-09-01

2007-09-10

2007-09-11

2007-09-15

2007-09-17

2007-09-18

2007-09-24

2007-09-29

2007-09-30

2007-10-01

<< more rows here >>

28

Chapter 4

School Scheduling Database

“Can we view complete class information?”

Translation Select all columns from the classes table

Clean Up Select alt-eotamns * from the classes table

SQL

SELECT =
FROM Classes

CHO4_Class_Information (76 Rows)

ClassiD | SubjectlD | ClassRoomiD | Credits | StartTime | Duration | <<other columns>>
1000 11 1231 5 10:00 50
1002 12 1619 4 15:30 110
1004 13 1627 4 08:00 50
1006 13 1627 4 09:00 110
1012 14 1627 4 13:00 170
1020 15 3404 4 13:00 110
1030 16 1231 5 11:00 50
1031 16 1231 5 14:00 50
1156 37 3443 5 08:00 50
1162 37 3443 5 09:00 80

<< more rows here >>

“Give me a list of the buildings on campus and the number of floors for
each building. Sort the list by building in ascending order”

Translation Select building name and number of floors from the buildings

Clean Up

SQL

table, ordered by building name

table; ordered by building name
SELECT BuildingName, NumberOfFloors

FROM Buildings

ORDER BY BuildingName ASC

Select building name aad number of floors from the buildings

Creating a Simple Query 29

CHO4_Building_List (6 Rows)

BuildingName NumberOfFloors
Arts and Sciences 3
College Center 3
Instructional Building 3
Library 2
PE and Wellness 1
Technology Building 2

Bowling League Database
“Where are we bolding our tournamenits?”
Translation Select the distinct tourney location values from the tourna-
ments table
Clean Up Select #ke distinct tourney location valaes
from #he tournaments table

SQL SELECT DISTINCT TourneylLocation
FROM Tournaments

CHO4_Tourney_Locations
(7 Rows)

TourneyLocation

Acapulco Lanes

Bolero Lanes

Imperial Lanes

Red Rooster Lanes

Sports World Lanes

Thunderbird Lanes

Totem Lanes

100

Chapter 4

“Give me a list of all tournament dates and locations. I need the dates in
descending order and the locations in alphabetical order”

Translation Select tourney date and location from the tournaments table
and order by tourney date in descending order and location in
ascending order

Clean Up Select tourney date asd location from ke tournaments table
and order by tourney date it descending erder-and location i
ascending erder

SQL SELECT TourneyDate, Tourneylocation

FROM Tournaments
ORDER BY TourneyDate DESC, TourneylLocation ASC

CHO4_Tourney_Dates (14 Rows)

TourneyDate | TourneylLocation
2008-08-15 Totem Lanes
2008-08-08 Imperial Lanes
2008-08-01 Sports World Lanes
2008-07-25 Bolero Lanes
2008-07-18 Thunderbird Lanes
2008-07-11 Red Rooster Lanes
2007-12-04 Acapulco Lanes
2007-11-27 Totem Lanes
2007-11-20 Sports World Lanes
2007-11-13 Imperial Lanes

<< more rows bere >>

Creating a Simple Query 101

Recipes Database

“What types of recipes do we bhave, and what are the names of the recipes
we bave for each type? Can you sort the information by type and recipe
name?”

Translation Select recipe class ID and recipe title from the recipes table
and order by recipe class ID and recipe title

Clean Up Select recipe class ID and recipe title from ¢he recipes table
and order by recipeclass ID and recipe title

SQL SELECT RecipeClassID, RecipeTitle

FROM Recipes
ORDER BY RecipeClassID ASC, RecipeTitle ASC

CHO4_Recipe_Classes_And_Titles (15 Rows)

RecipeClassiD RecipeTitle

1 Fettuccini Alfredo

1 Huachinango Veracruzana
(Red Snapper, Veracruz style)

1 Irish Stew

1 Pollo Picoso

1 Roast Beef

1 Salmon Filets in Parchment Paper
1 Tourtiere

(French-Canadian Pork Pie)

2 Asparagus
2 Garlic Green Beans
3 Yorkshire Pudding

<< more rows here >>

102

Chapter 4

“Show me a list of unique recipe class IDs in the recipes table”
Translation Select the distinct recipe class ID values from the recipes table
Clean Up Select ke distinct recipe class ID wataes from the recipes table

SQL SELECT DISTINCT RecipeClassID
FROM Recipes

CHO4_Recipe_Class_Ilds

{6 Rows)
RecipeClassiD
1
2
3
4
5
6

SUMMARY

In this chapter, we introduced the SELECT operation,and you learned that it is
one of four data manipulation operations in SQL. (The others are UPDATE,
INSERT, and DELETE, covered in Part V.) We also discussed how the SELECT
operation can be divided into three smaller operations: the SELECT state-
ment, the SELECT expression, and the SELECT query.

The discussion then turned to the SELECT statement, where you were intro-
duced to its component clauses. We covered the fact that the SELECT and
FROM clauses are the fundamental clauses required to retrieve information
from the database and that the remaining clauses—WHERE, GROUP BY, and
HAVING—are used to conditionally process and filter the information
returned by the SELECT clause.

We briefly diverged into a discussion of the difference between data and
information. You learned that the values stored in the database are data and
that information is data that has been processed in a manner that makes it
meaningful to the person viewing it. You also learned that the rows of infor-
mation returned by a SELECT statement are known as a result set.

Creating a Simple Query 103

Retrieving information was the next topic of discussion,and we began by pre-
senting the basic form of the SELECT statement. You learned how to build a
proper SELECT statement by using a three-step technique that involves taking
a request and translating it into proper SQL syntax. You also learned that you
could use two or more columns in the SELECT clause to expand the scope of
information you retrieve from your database. We followed this section with a
quick look at the DISTINCT keyword, which you learned is the means for
eliminating duplicate rows from a result set.

Next, we looked at the SELECT query and how it can be combined with a
SELECT statement to sort the SELECT statement’s result set. You learned that
this is necessary because the SELECT query is the only SELECT operation that
contains an ORDER BY clause. We went on to show that the ORDER BY
clause is used to sort the information by one or more columns and that each
column can have its own ascending or descending sort specification. A brief
discussion on saving your SELECT statements followed, and you learned that
you can save your statement as a query or a view for future use.

Finally, we presented a number of examples using various tables in the sample
databases. The examples illustrated how the various concepts and techniques
presented in this chapter are used in typical scenarios and applications. In the
next chapter, we'll take a closer look at the SELECT clause and show you how
to retrieve something besides information from a list of columns.

The following section presents a number of requests that you can work out
on your own.

Problems for You to Solve

Below, we show you the request statement and the name of the solution
query in the sample databases. If you want some practice, you can work out
the SQL you need for each request and then check your answer with the
query we saved in the samples. Don’t worry if your syntax doesn’t exactly
match the syntax of the queries we saved—as long as your result set is the
same.

Sales Orders Database

1. “Show me all the information on our employees.”
You can find the solution in CHO4_Employee_Information (8 rows).

104

Chapter 4

2. “Show me a list of cities, in alpbabetical order, where our vendors are
located, and include the names of the vendors we work with in each
city”

You can find the solution in CHO4_Vendor_Locations (10 rows).

Entertainment Agency Database

1. “Give me the names and pbone numbers of all our agents, and list them in
last name/first name order”
You can find the solution in CHO4_Agent_Phone_List (9 rows).

2. “Give me the information on all our engagements.”
You can find the solution in CHO4_Engagement_Information (111 rows).

3. “List all engagements and their associated start dates. Sort the records
by date in descending order and by engagement in ascending order”
You can find the solution in CHO4_Scheduled_Engagements (111 rows).

School Scheduling Database

1. “Show me a complete list of all the subjects we offer”
You can find the solution in CHO4_Subject_List (56 rows).
2. “What kinds of titles are associated with our faculty?”
You can find the solution in CHO4_Faculty_Titles (3 rows).
3. “List the names and pbone numbers of all our staff, and sort them by

last name and first name.”
You can find the solution in CHO4_Staff Phone_List (27 rows).

Bowling League Database
1. “List all of the teams in alphabetical order”
You can find the solution in CHO4_Team_List (8 rows).
2. “Show me all the bowling score information for each of our members.”
You can find the solution in CHO4_Bowling_Score_Information (1,344 rows).

3. “Show me a list of bowlers and their addresses, and sort it in alphabeti-
cal order”
You can find the solution in CHO4_Bowler_Names_Addresses (32 rows).

Recipes Database

1. “Show me a list of all the ingredients we currently Reep track of”
You can find the solution in CH04_Complete_Ingredients_List (79 rows).

2. “Show me all the main recipe information, and sort it by the name of
the recipe in alpbabetical order”
You can find the solution in CHO4_Main_Recipe_Information (15 rows).

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for submission to RR Donnelley Book plants. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

