
D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

77

CHAPTER

3
Developing CLR Database

Objects
IN THIS CHAPTER

Understanding CLR and SQL Server 2005 Database Engine
Creating CLR Database Objects

Debugging CLR Database Objects

ch03.indd 77 11/14/05 2:21:27 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 7 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

The integration of the .NET Framework’s Common Language Runtime
(CLR) with SQL Server 2005 is arguably the most significant new develop-
ment featured in the SQL Server 2005 release. The integration of the CLR

brings with it a whole host of new capabilities, including the capability to create
database objects using any of the .NET-compatible languages, including C#,
Visual Basic, and managed C++. In this chapter you’ll learn about how Microsoft
has implemented the new .NET CLR integration with SQL Server as well as see how
to create CLR database objects.

Understanding CLR and SQL Server 2005
Database Engine
The integration of the CLR with SQL Server extends the capability of SQL Server
in several important ways. While T-SQL, the existing data access and manipulation
language, is well suited for set-oriented data access operations, it also has
limitations. Designed more than a decade ago, T-SQL is a procedural language, not
an object-oriented language. The integration of the CLR with SQL Server 2005
brings with it the ability to create database objects using modern object-oriented
languages like VB.NET and C#. While these languages do not have the same
strong set-oriented nature as T-SQL, they do support complex logic, have better
computation capabilities, provide access to external resources, facilitate code reuse,
and have a first-class development environment that provides much more power than
the old Query Analyzer.

The integration of the .NET CLR with SQL Server 2005 enables the development of
stored procedures, user-defined functions, triggers, aggregates, and user-defined types
using any of the .NET languages. The integration of the .NET CLR with SQL Server
2005 is more than just skin deep. In fact, the SQL Server 2005 database engine hosts
the CLR in-process. Using a set of APIs, the SQL Server engine performs all of the
memory management for hosted CLR programs.

The managed code accesses the database using ADO.NET in conjunction with
the new SQL Server .NET Data Provider. A new SQL Server object called an
assembly is the unit of deployment for .NET objects with the database. To create
CLR database objects, you must first create a DLL using Visual Studio 2005. Then
you import that DLL into SQL Server as an assembly. Finally, you link that assembly
to a database object such as a stored procedure or a trigger. In the next section you’ll
get a more detailed look at how you actually use the new CLR features found in SQL
Server 2005.

ch03.indd 78 11/14/05 2:21:27 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 7 9

CLR Architecture
The .NET Framework CLR is very tightly integrated with the SQL Server 2005
database engine. In fact, the SQL Server database engine hosts the CLR. This tight
level of integration gives SQL Server 2005 several distinct advantages over the .NET
integration that’s provided by DB2 and Oracle. You can see an overview of the SQL
Server 2005 database engine and CLR integration in Figure 3-1.

As you can see in Figure 3-1, the CLR is hosted within the SQL Server database
engine. A SQL Server database uses a special API or hosting layer to communicate
with the CLR and interface the CLR with the Windows operating system.

Hosting the CLR within the SQL Server database gives the SQL Server database
engine the ability to control several important aspects of the CLR, including

 Memory management

 Threading

 Garbage collection

The DB2 and Oracle implementation both use the CLR as an external process,
which means that the CLR and the database engine both compete for system
resources. SQL Server 2005’s in-process hosting of the CLR provides several
important advantages over the external implementation used by Oracle or DB2. First,
in-process hosting enables SQL Server to control the execution of the CLR, putting

SQL Server Engine

SQL Server OS

Windows

CLR

Hosting Layer

Figure 3-1 The SQL Server CLR database architecture

ch03.indd 79 11/14/05 2:21:28 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 8 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

essential functions such as memory management, garbage collection, and threading
under the control of the SQL Server database engine. In an external implementation
the CLR will manage these things independently. The database engine has a better
view of the system requirements as a whole and can manage memory and threads
better than the CLR can do on its own. In the end, hosting the CLR in-process will
provide better performance and scalability.

Enabling CLR Support
By default, the CLR support in the SQL Server database engine is turned off. This
ensures that update installations of SQL Server do not unintentionally introduce
new functionality without the explicit involvement of the administrator. To enable
SQL Server’s CLR support, you need to use the advanced options of SQL Server’s
sp_configure system stored procedure, as shown in the following listing:

sp_configure 'show advanced options', 1

GO

RECONFIGURE

GO

sp_configure 'clr enabled', 1

GO

RECONFIGURE

GO

CLR Database Object Components
To create .NET database objects, you start by writing managed code in any one of
the .NET languages, such as VB, C#, or Managed C++, and compile it into a .NET
DLL (dynamic link library). The most common way to do this would be to use Visual
Studio 2005 to create a new SQL Server project and then build that project, which
creates the DLL. Alternatively, you create the .NET code using your editor of choice
and then compiling the code into a .NET DLL using the .NET Framework SDK.
ADO.NET is the middleware that connects the CLR DLL to the SQL Server database.
Once the .NET DLL has been created, you need to register that DLL with SQL
Server, creating a new SQL Server database object called an assembly. The assembly
essentially encapsulates the .NET DLL. You then create a new database object such as
a stored procedure or a trigger that points to the SQL Server assembly. You can see an
overview of the process to create a CLR database object in Figure 3-2.

ch03.indd 80 11/14/05 2:21:28 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 8 1

SQL Server .NET Data Provider
If you’re familiar with ADO.NET, you may wonder exactly how CLR database
objects connect to the database. After all, ADO.NET makes its database connection
using client-based .NET data providers such as the .NET Framework Data Provider
for SQL Server, which connects using networked libraries. While that’s great for
a client application, going through the system’s networking support for a database
call isn’t the most efficient mode for code that’s running directly on the server. To
address this issue, Microsoft created the new SQL Server .NET Data Provider. The
SQL Server .NET Data Provider establishes an in-memory connection to the SQL
Server database.

Assemblies
After the coding for the CLR object has been completed, you can use that code to
create a SQL Server assembly. If you’re using Visual Studio 2005, then you can
simply select the Deploy option, which will take care of both creating the SQL
Server assembly as well as creating the target database object.

If you’re not using Visual Studio 2005 or you want to perform the deployment
process manually, then you need to copy the .NET DLL to a common storage
location of your choice. Then, using SQL Server Management Studio, you can
execute a T-SQL CREATE ASSEMBLY statement that references the location of the
.NET DLL, as you can see in the following listing:

CREATE ASSEMBLY MyCLRDLL

FROM '\\SERVERNAME\CodeLibrary\MyCLRDLL.dll'

Code database object using
managed code and compile to DLL

Register DLL with SOL Server using
T-SQL create assembly

Create database object using
T-SQL Create

Figure 3-2 Creating CLR database objects

ch03.indd 81 11/14/05 2:21:28 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 8 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

The CREATE ASSEMBLY command takes a parameter that contains the path
to the DLL that will be loaded into SQL Server. This can be a local path, but more
often it will be a path to a networked file share. When the CREATE ASSEMBLY is
executed, the DLL is copied into the master database.

If an assembly is updated or becomes deprecated, then you can remove the
assembly using the DROP ASSEMBLY command as follows:

DROP ASSEMBLY MyCLRDLL

Because assemblies are stored in the database, when the source code for that
assembly is modified and the assembly is recompiled, the assembly must first
be dropped from the database using the DROP ASSEMBLY command and then
reloaded using the CREATE ASSEMBLY command before the updates will be
reflected in the SQL Server database objects.

You can use the sys.assemblies view to view the assemblies that have been added
to SQL Server 2005 as shown here:

SELECT * FROM sys.assemblies

Since assemblies are created using external files, you may also want to view
the files that were used to create those assemblies. You can do that using the sys.
assembly_files view as shown here:

SELECT * FROM sys.assembly_files

Creating CLR Database Objects
After the SQL Server assembly is created, you can then use SQL Server
Management Studio to execute a T-SQL CREATE PROCEDURE, CREATE
TRIGGER, CREATE FUNCTION, CREATE TYPE, or CREATE AGGREGATE
statement that uses the EXTERNAL NAME clause to point to the assembly that you
created earlier.

When the assembly is created, the DLL is copied into the target SQL Server
database and the assembly is registered. The following code illustrates creating the
MyCLRProc stored procedure that uses the MyCLRDLL assembly:

CREATE PROCEDURE MyCLRProc

AS EXTERNAL NAME

MyCLRDLL.StoredProcedures.MyCLRProc

The EXTERNAL NAME clause is new to SQL Server 2005. Here the
EXTERNAL NAME clause specifies that the stored procedure MyCLRProc will

ch03.indd 82 11/14/05 2:21:28 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 8 3

be created using a .SQL Server assembly. The DLL that is encapsulated in the SQL
Server assembly can contain multiple classes and methods; the EXTERNAL NAME
statement uses the following syntax to identify the correct class and method to use
from the assembly:

Assembly Name.ClassName.MethodName

In the case of the preceding example, the registered assembly is named
MyCLRDLL. The class within the assembly is StoredProcedures, and the method
within that class that will be executed is MyCLRProc.

Specific examples showing how you actually go about creating a new managed
code project with Visual Studio 2005 are presented in the next section.

Creating CLR Database Objects
The preceding section presented an overview of the process along with some
example manual CLR database object creation steps to help you better understand
the creation and deployment process for CLR database objects. However, while
it’s possible to create CLR database objects manually, that’s definitely not the most
productive method. The Visual Studio 2005 Professional, Enterprise, and Team
System Editions all have tools that help create CLR database objects as well as
deploy and debug them. In the next part of this chapter you’ll see how to create each
of the new CLR database objects using Visual Studio 2005.

NOTE

The creation of SQL Server projects is supported in Visual Studio 2005 Professional Edition and
higher. It is not present in Visual Studio Standard Edition or the earlier releases of Visual Studio.

CLR Stored Procedures
Stored procedures are one of the most common database objects that you’ll want to
create using one of the managed .NET languages. One of the best uses for CLR stored
procedures is to replace existing extended stored procedures. T-SQL is only able to
access database resources. In order to access external system resources, Microsoft has
provided support in SQL Server for a feature known as extended stored procedures.
Extended stored procedures are unmanaged DLLs that run in the SQL Server process
space and can basically do anything a standard executable program can do, including

ch03.indd 83 11/14/05 2:21:29 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 8 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

accessing system resources that are external to the database, such as reading and
writing to the file system, reading and writing to the Registry, and accessing the
network. However, because extended stored procedures run in the same process space
as the SQL Server database engine, bugs, memory violations, and memory leaks in the
extended stored procedure could potentially affect the SQL Server database engine.
CLR stored procedures solve this problem because they are implemented as managed
code and run within the confines of the CLR. Another good candidate for CLR stored
procedures is to replace existing T-SQL stored procedures that contain complex
logic and embody business rules that are difficult to express in T-SQL. CLR stored
procedures can take advantage of the built-in functionality provided by the classes in
the .NET Framework, making it relatively easy to add functionality such as complex
mathematical expressions or data encryption. Plus, since CLR stored procedure
are compiled rather than interpreted like T-SQL, they can provide a significant
performance advantage for code that’s executed multiple times. However, CLR stored
procedures are not intended to be used as a replacement for T-SQL stored procedures.
T-SQL stored procedures are still best for data-centric procedures.

To create a CLR stored procedure in Visual Studio 2005, first select the New | Project
option and then select the SQL Server Project template as is shown in Figure 3-3.

Give your project a name and click OK to create the project. In this example you
can see that I’ve used the name usp_ImportFile for my stored procedure. This stored

Figure 3-3 Creating a new SQL Server stored procedure project

ch03.indd 84 11/14/05 2:21:29 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 8 5

procedure shows how you can replace an extended stored procedure with a CLR
stored procedure. In this case the CLR stored procedure will read the contents of a
file and store it in a SQL Server column. After naming the project, click OK. Before
Visual Studio generates the project code, it displays the New Database Reference
dialog that you can see in Figure 3-4.

Visual Studio 2005 uses the New Database Reference dialog to create a connection
to your SQL Server 2005 system. That connection will be used to both debug and
deploy the finished project. Drop down the Server Name box and select the name
of the SQL Server that you want to use with this project. Then select the type of

Figure 3-4 The New Database Reference dialog

ch03.indd 85 11/14/05 2:21:29 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 8 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

authentication that you want to use and the database where the CLR stored procedure
will be deployed. In Figure 3-4 you can see that I’ve selected the SQL Server system
named SQL2005. The project will connect using Windows authentication, and the
stored procedure will be deployed to the AdventureWorks database. You can verify
the connection properties by clicking the Test Connection button. Once the connection
properties are set up the way you want, click OK. All of the required references will
automatically be added to your SQL Server project, and Visual Studio 2005 will
generate a SQL Server starter project.

NOTE

While Visual Studio 2005 lets you group multiple stored procedures, triggers, and other CLR database
objects in a single DLL, it’s really better to create each CLR database object as a separate DLL. This
gives you more granular control in managing and later updating the individual database objects.

Next, to create the CLR stored procedure, you can select the Project | Add Stored
Procedure option to display the Visual Studio installed templates dialog that’s shown
in Figure 3-5.

Figure 3-5 Adding a CLR stored procedure

ch03.indd 86 11/14/05 2:21:30 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 8 7

From the Add New Item dialog, select the Stored Procedure option from the list
of templates displayed in the Templates list and then provide the name of the stored
procedure in the Name field that you can see at the bottom of the screen. Here you can
see that the stored procedure will be created using the source file usp_ImportFile.vb.
Visual Studio 2005 will add a new class to your project for the stored procedure. The
generated class file is named after your stored procedure name and will include all of
the required import directives as well as the starter code for the stored procedure. You
can see the SQL Server CLR stored procedure template in Figure 3-6.

By default the SQL Server .NET Data Provider is added as a reference, along with
an include statement for its System.Data.SqlServer namespace. Plus, you can see the
System.Data reference, which provides support for ADO.NET and its data-oriented
objects such as the DataSet and the System.Data.SqlTypes namespace that provides
support for the SQL Server data types.

Figure 3-6 The CLR stored procedure template

ch03.indd 87 11/14/05 2:21:30 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 8 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

It’s up to you to fill in the rest of the code that makes the stored procedure work.
The following example illustrates the source code required to create a simple CLR
stored procedure that imports the contents of a file into a varchar or text column:

Imports System

Imports System.Data

Imports System.Data.Sql

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.IO

Partial Public Class StoredProcedures

 <Microsoft.SqlServer.Server.SqlProcedure()> _

 Public Shared Sub usp_ImportFile _

 (ByVal sInputFile As String, ByRef sColumn As String)

 Dim sContents As String

 Try

 Dim stmReader As New StreamReader(sInputFile)

 sContents = stmReader.ReadToEnd()

 stmReader.Close()

 sColumn = sContents

 Catch ex As Exception

 Dim sp As SqlPipe = SqlContext.Pipe()

 sp.Send(ex.Message)

 End Try

 End Sub

End Class

The first important point to note in this code is the directive that imports the
Microsoft.SqlServer.Server namespace. This enables the usp_ImportFile project to
use the SQL Server .NET Data Provider without always needing to reference the
fully qualified name. The second thing to notice is the <Microsoft.SqlServer.Server.
SqlProcedure()> attribute that precedes the method name; it tells the compiler this
method will be exposed as a SQL Server stored procedure. Next, you can see that
the default class name for this stored procedure is set to StoredProcedures. This
class contains a shared method named usp_ImportFile that accepts two parameters:
a string that specifies the name of the file that will be imported and a second input
parameter that specifies the name of a column that will contain the contents of the
file. For C#, the method must be defined as static. For VB.NET code, the method
would need to be defined as Shared.

Inside the usp_ImportFile method, a new string object named sContents is
declared that will contain the contents of the file. Next, a Try-Catch loop is used to

ch03.indd 88 11/14/05 2:21:30 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 8 9

capture any errors that may occur during the file import process. Within the Try-
Catch loop a new StreamReader named stmReader is created that will be used to
read the file from the operating system. The name of the file that will be read is
passed into the StreamReader’s instantiation call. Then the stmReader’s ReadToEnd
method is used to read the entire contents of the file into the sContent string variable.
After the contents of the file have been read, the stmReader StreamReader is closed
and the contents of the sContents variable are assigned to the SQL Server column.

If any errors occur while the input file is being read, then the code in the Catch
portion of the Try-Catch structure is executed. Within the Catch block a SqlPipe object
named sp is created and then used to send those errors back to the caller of the stored
procedure. This code block uses the SqlPipe object, which represents a conduit that
passes information between the CLR and the calling code. Here, the SqlPipe object
enables the stored procedure to pass error information to the external caller.

Setting the Stored Procedure Security
At this point the code is finished for the stored procedure, but because of security
concerns, it still can’t execute. By default SQL Server CLR objects can only access
database resources, and they cannot access external resources. In the case of the
usp_ImportFile example, the stored procedure needs to access the file system, so
the default security settings need to be changed. To enable external access, you need
to open the project’s properties and click the Database tab. Then in the Permissions
Level drop-down you need to change the value from Safe to External. More
information about the CLR security options is presented later in this chapter.

Deploying the Stored Procedure
After the CLR stored procedure source code has been compiled into an assembly,
you can then add that assembly to the database and create the CLR stored procedure.
You can do this in two ways. If you’re using Visual Studio 2005 to create the SQL
Server CLR database objects, then you can interactively deploy the CLR stored
procedure directly from Visual Studio. To deploy the stored procedure to SQL
Server, select the Build | Deploy Solution option from the Visual Studio menu.

You can perform the deployment manually as was shown in the earlier section
“Creating CLR Database Objects”. To do this, you essentially need to move the
compiled DLL to a directory or file share where it can be accessed by SQL Server.
Then run the CREATE ASSEMBLY statement to register the DLL and copy it into
the database.

create assembly usp_ImportFile

from 'C:\temp\usp_ImportFile.dll'

WITH PERMISSION_SET = EXTERNAL

ch03.indd 89 11/14/05 2:21:30 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 9 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

The CREATE ASSEMBLY statement copies the contents of the usp_ImportFile.dll
file in the c:\temp directory into the SQL Server database. The WITH PERMISSION
SET clause is used to specify that this assembly can access resources that are external
to the SQL Server database. That’s needed here because the stored procedure reads an
external file.

CREATE PROCEDURE usp_ImportFile

 @filename nvarchar(1024),

 @columnname nvarchar(1024) OUT

AS

EXTERNAL NAME usp_ImportFile.[usp_ImportFile.StoredProcedures]

.usp_ImportFile

The CREATE PROCEDURE statement is used to create a new SQL Server
stored procedure that uses the CLR assembly. This CLR stored procedure uses two
parameters. The first is an input parameter, and the second is an output parameter.
The EXTERNAL NAME clause uses a three-part name to identify the target method
in the DLL. The first part of the name refers to the assembly name. The second part
refers to the class. If the class is part of a namespace, as is the case here, then the
namespace must preface the class name and both should be enclosed in brackets.
Finally, the third part of the name identifies the method that will be executed.

Using the Stored Procedure
After the CLR stored procedure has been created, it can be called exactly like any
T-SQL stored procedure, as the following example illustrates:

DECLARE @myColumn ntext

EXEC usp_ImportFile 'c:\temp\testfile.txt' @myColumn

User-Defined Functions
Creating .NET-based user-defined functions (UDFs) is another new feature that’s
enabled by the integration of the .NET CLR. User-defined functions that return
scalar types must return a .NET data type that can be implicitly converted to a
SQL Server data type. Scalar functions written with the .NET Framework can
significantly outperform T-SQL in certain scenarios because unlike T-SQL functions,
.NET functions are created using compiled code. User-defined functions can also
return table types, in which case the function must return a result set.

To create a UDF using Visual Studio 2005, select the New | Project option and
then select the SQL Server Project template as shown in Figure 3-7.

ch03.indd 90 11/14/05 2:21:31 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 9 1

As in the Stored Procedure example that was presented earlier, first give your project
a name and click OK to create the project. In the example shown in Figure 3-7, you can
see that I’ve used the name ufn_GetDateAsString for my user-defined function. This
function returns a string value containing the system date and time. After naming the
project, click OK to display the New Database Reference dialog for the CLR Function
project, which will resemble the one shown in Figure 3-8.

NOTE

The Add Database Reference dialog is shown instead of the New Database Reference dialog when
a database reference has already been created. This would be the case if you created the
ufn_GetDateAsString function immediately after the usp_ImportFile project.

The New Database Reference dialog defines the connection between your Visual
Studio project and SQL Server. The project will connect to the SQL Server system
named sql2005, and the function will be deployed to the AdventureWorks database.

Once the Visual Studio project has been created and the connection has been
defined, you use the Project | Add Function menu option to display the Add New
Item dialog that you can see in Figure 3-9.

Figure 3-7 Creating a new SQL Server UDF project

ch03.indd 91 11/14/05 2:21:31 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 9 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

Visual Studio uses the SQL Server Function project template to create a starter
project that includes the reference to the SQL Server .NET Data Provider and a
basic function wrapper for your source code. It’s up to you to fill in the rest of
the code. The following code listing shows the completed CLR function, ufn_
GetDateAsString, that performs a basic date-to-string conversion:

Imports System

Imports System.Data

Imports System.Data.Sql

Figure 3-8 The New Database Reference dialog

ch03.indd 92 11/14/05 2:21:31 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 9 3

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Partial Public Class UserDefinedFunctions

 <Microsoft.SqlServer.Server.SqlFunction()> _

 Public Shared Function ufn_GetDateAsString() As SqlString

 Dim dtDataTime As New DateTime

 Return dtDataTime.ToString()

 End Function

End Class

Here, the Microsoft.SqlServer.Server namespace is not needed, as this particular
function does not perform any data access. Next, Visual Studio 2005 generated
the UserDefinedFunctions class to contain all of the methods that this assembly
will expose as UDFs. You can also see that the <Microsoft.SqlServer.Server.
SqlFunction()> attribute is used to identify the ufn_GetDateAsString method as a
UDF. The code in this simple example just converts the system date to a string data
type that’s returned to the caller.

Figure 3-9 Adding a CLR user-defined function

ch03.indd 93 11/14/05 2:21:31 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 9 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

Deploying the Function
To create the function in a SQL Server database, the assembly must first be created,
as you saw in the stored procedure example. Then if you’re using Visual Studio
2005, you can simply select the Build | Deploy Solution option and you’re done.

If you’re doing this manually, you’ll need to copy the ufn_GetDataAsString.
dll file to a location that’s accessible by the SQL Server system and then create the
assembly, followed by the function. The following CREATE ASSEMBLY statement
can be used to copy the contents of ufn_GetDateAsString.dll into the SQL Server
database:

CREATE ASSEMBLY ufn_GetDataAsString

FROM '\\MyFileShare\Code Library\ufn_GetDataAsString.dll'

The CREATE FUNCTION statement is then used to create a new SQL Server
function that executes the appropriate method in the assembly. The following listing
illustrates how the CREATE FUNCTION statement can create a .CLR user-defined
function:

CREATE FUNCTION ufn_GetDateAsString()

RETURNS nvarchar(256)

EXTERNAL NAME

ufn_GetDateAsString.UserDefinedFunctions.ufn_GetDateAsString

For user-defined functions, the CREATE FUNCTION statement has been
extended with the EXTERNAL NAME clause, which essentially links the user-
defined function name to the appropriate method in the .NET assembly. In this
example, the ufn_GetDateAsString function is using the assembly named ufn_
GetDateAsString. Within that assembly, it’s using the UserDefinedFunctions class
and the ufn_GetDateAsString method within that class.

Using the Function
After the function has been created, it can be called like a regular SQL Server function.
You can see how to execute the GetDateAsString function in the following example:

SELECT dbo.GetDateAsString()

Triggers
In addition to stored procedures and user-defined functions, the new .NET integration
capabilities found in SQL Server 2005 also provide the ability to create CLR triggers.
To create a trigger using Visual Studio 2005, you start your project as you saw in the

ch03.indd 94 11/14/05 2:21:31 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 9 5

earlier examples. To create a trigger using Visual Studio 2005, select the New | Project
option, give your project a name, and click OK to create the project. For this project,
I used the name ti_ShowInserted for my trigger. This trigger essentially retrieves the
values of the row being inserted in a table and displays them. After naming the project
and clicking OK, I filled out the New Database Reference dialog using the same values
that were shown in the previous examples. Next, I used the Project | Add Trigger menu
option that you can see in Figure 3-10 to create a starter project for the CLR trigger.

As you saw in the earlier example of CLR database objects, you select the Trigger
option from the list of templates and then provide the name of the trigger in the
name prompt. Visual Studio 2005 will generate a starter project file that you can add
your code to. The starter project includes the appropriate import directives as well as
generating a class, in this case appropriately named Triggers, and a method named
ti_ShowInserted with its appropriate method attribute. The following code listing
shows the completed code for the CLR trigger named ti_ShowInserted:

Imports System

Imports System.Data

Imports System.Data.Sql

Imports System.Data.SqlTypes

Figure 3-10 Adding a CLR trigger

ch03.indd 95 11/14/05 2:21:32 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 9 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

Imports Microsoft.SqlServer.Server

Imports System.Data.SqlClient

Partial Public Class Triggers

 ' Enter existing table or view for the target and uncomment

 the attribute line

 <Microsoft.SqlServer.Server.SqlTrigger(Name:="ti_ShowInserted", _

 Target:="Person.ContactType", Event:="FOR INSERT")> _

 Public Shared Sub ti_ShowInserted()

 Dim oTriggerContext As SqlTriggerContext = _

 SqlContext.TriggerContext

 Dim sPipe As SqlPipe = SqlContext.Pipe

 If oTriggerContext.TriggerAction = TriggerAction.Insert Then

 Dim oConn As New SqlConnection("context connection=true")

 oConn.Open()

 Dim oCmd As New SqlCommand("Select * from inserted", oConn)

 sPipe.ExecuteAndSend(oCmd)

 End If

 End Sub

End Class

The example CLR trigger displays the contents of the data that is used for an
insert action that’s performed on the Person.ContactTypes table in the Adventureworks
database. The first thing to notice in this code listing is the Attribute for the ti_
ShowInserted subroutine (the code enclosed within the < > markers). The Attribute
is used to name the trigger and identify the table the trigger will be applied to as well
as the event that will cause the trigger to fire. When the Visual Studio 2005 trigger
template initially generates this Attribute, it is prefaced by a comment symbol—
essentially making the line a comment. This is because the trigger template doesn’t
know how or where you want the trigger to be used. In order for Visual Studio 2005
to deploy the trigger, you need to uncomment the Attribute line and then fill in the
appropriate properties. The following table lists the properties used by the Visual
Studio 2005 trigger template:

Property Name Description
Name The name the trigger will use on the target SQL Server system.

Target The name of the table that the trigger will be applied to.

Event The action that will fire the trigger. The following trigger events are supported:
FOR INSERT, FOR UPDATE, FOR DELETE, AFTER INSERT, AFTER UPDATE, AFTER
DELETE, INSTEAD OF INSERT, INSTEAD OF UPDATE, INSTEAD OF DELETE

ch03.indd 96 11/14/05 2:21:32 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 9 7

In this example, the resulting trigger will be named ti_ShowInserted. It will be
applied to the table named Person.ContactType, which is in the AdventureWorks
database, and the trigger will only be fired for an insert operation.

The primary code for the trigger is found within the ti_ShowInserted subroutine.
This code example makes use of another new ADO.NET object: SqlTriggerContext.
The SqlTriggerContext object provides information about the trigger action that’s
fired and the columns that are affected. The SqlTriggerContext object is always
instantiated by the SqlContext object. Generally, the SqlContext object provides
information about the caller’s context. Specifically, in this case, the SqlContext
object enables the code to access the virtual table that’s created during the execution
of the trigger. This virtual table stores the data that caused the trigger to fire.

Next, a SqlPipe object is created. The SqlPipe object enables the trigger to
communicate with the external caller, in this case to pass the inserted data values to
the caller. The TriggerAction property of the SqlContext object is used to determine
if the trigger action was an insert operation. Using the TriggerAction property is
quite straightforward. It supports the following values:

TriggerAction Value Description
TriggerAction.Insert An insert operation was performed.

TriggerAction.Update An update action was performed.

TriggerAction.Delete A delete action was performed.

If the TriggerAction property equals TriggerAction.Insert, then an insert was
performed and the contents of the virtual trigger table are retrieved and sent to the
caller using the SqlPipe object’s Execute method. In order to retrieve the contents
of the virtual table, a SqlConnection object and a SqlCommand object are needed.
These objects come from the System.Data.SqlClient namespace. You should note
that when used with server-side programming, the Connection String used by the
SqlConnection object must be set to the value of “context Connection=true”. Then
a SqlCommand object named oCmd is instantiated that uses the statement “Select *
from inserted” to retrieve all of the rows and columns from the virtual table that
contains the inserted values. Finally, the ExecuteAndSend method of SqlPipe object
is used to execute the command and send the results back to the caller.

Deploying the Trigger
Once the code has been created, you can either deploy it to the database using the
Visual Studio 2005 Build | Deploy solution option or manually drop and re-create
the assembly and any dependent objects you saw in UDF examples earlier in this
chapter.

ch03.indd 97 11/14/05 2:21:32 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 9 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

To manually deploy the code, you’d need to copy ti_ShowInserted.dll to the SQL
Server system or to a share that’s accessible to the SQL Server system and then
execute the following T-SQL Server commands:

Use AdventureWorks

create assembly ti_showinserted

from 'C:\temp\ti_ShowInserted.dll'

go

CREATE TRIGGER ti_ShowInserted

ON Person.ContactType

FOR INSERT

AS EXTERNAL NAME ti_ShowInserted.[ti_ShowInserted.Triggers].ti_ShowInserted

go

This example assumes that ti_ShowInsert.dll was copied into the c:\temp directory
on the SQL Server system. First, the Create Assembly statement is used to copy the
DLL into the SQL Server database and then the Create Trigger statement is used with
the As External Name clause to create a trigger named ti_ShowInserted and attach it
to the Person.ContactTypes table. As in the earlier examples, the As External Name
clause identifies the assembly using a three-part name: asssembly.class.method. Pay
particular attention to the class portion of this name. For triggers you must bracket the
class name and include the namespace just before the class name. In this example, the
assembly is named ti_ShowInserted. The Namespace is ti_ShowInserted. The class is
named Triggers, and the method is named ti_ShowInserted.

Using the Trigger
After the CLR trigger has been deployed, it will be fired for every insert operation
that’s performed on the base table. For example, the following INSERT statement will
add a row to the Person.ContactType table, which will cause the CLR trigger to fire:

INSERT INTO Person.ContactType VALUES(102, 'The Big Boss',

 '2005-05-17 00:00:00.000')

The example trigger, ti_ShowInserted, performs a select statement on the inserted
row value. Then it uses the SqlPipe object to send the results back to the caller. In this
example the trigger will send the contents of the inserted row values back to the caller:

ContactTypeID Name ModifiedDate

------------- -- --------------

21 The Big Boss 2005-05-17

00:00:00.000

(1 row(s) affected)

(1 row(s) affected)

ch03.indd 98 11/14/05 2:21:32 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 9 9

User-Defined Types
Another important new feature in SQL Server 2005 that is enabled by the integration
of the .NET CLR is the ability to create true user-defined types (UDTs). Using
UDTs, you can extend the raw types provided by SQL Server and add data types that
are specialized to your application or environment.

In the following example you’ll see how to create a UDT that represents a gender
code: either M for male or F for female. While you could store this data in a standard
one-byte character field, using a UDT ensures that the field will accept only these
two values with no additional need for triggers, constraints, or other data validation
techniques.

To create a UDT using Visual Studio 2005, select the New | Project option, give
your project a name, and click OK to create the project. For this project I used the
name of Gender for the new UDT. After naming the project and clicking OK, I filled
out the New Database Reference dialog using the required connection values to
deploy the project to the appropriate SQL Server system and database. Next, I used
the Project | Add User-Defined Type option to display the Add New Item dialog that
you can see in Figure 3-11.

Figure 3-11 Creating a .NET SQL Server UDT

ch03.indd 99 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 0 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

Select User-Defined Type from the list of SQL Server templates. Enter the name
that you want to assign to the class and then click Open to have Visual Studio
generate a starter project file for the UDT. The starter project file implements the
four methods that SQL Server 2005 requires for all UDTs. These methods are needed
to fulfill the SQL Server UDT contract requirements—it’s up to you to add the code
to make the UDT perform meaningful actions. The four required UDT methods are
listed in Table 3-1.

You can see the completed Gender class that is used to implement a UDT for M
(male) and F (female) codes in this listing:

Imports System

Imports System.Data

Imports System.Data.Sql

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

Imports System.IO

<Serializable()> _

<Microsoft.SqlServer.Server.SqlUserDefinedType _

 (Format.UserDefined, _

 IsFixedLength:=True, MaxByteSize:=2)> _

Public Structure Gender

 Implements INullable, IBinarySerialize

 Public Sub Read(ByVal r As BinaryReader) _

 Implements IBinarySerialize.Read

 m_value = r.ReadString.ToString()

 End Sub

Method Description
IsNull This required method is used to indicate if the object is nullable. SQL

Server 2005 requires all UDTs to implement nullability, so this method
must always return true.

Parse This required method accepts a string parameter and stores it as a UDT.

ToString This required method converts the contents of the UDT to a string.

Default constructor This required method creates a new instance of the UDT.

Table 3-1 Required UDT Methods

ch03.indd 100 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 0 1

 Public Sub Write(ByVal w As BinaryWriter) _

 Implements IBinarySerialize.Write

 w.Write(m_value.ToString())

 End Sub

 Public Overrides Function ToString() As String

 If m_value.IsNull = False Then

 Return m_value.Value

 Else

 Return Nothing

 End If

 End Function

 Public ReadOnly Property IsNull() As Boolean _

 Implements INullable.IsNull

 Get

 If m_value.IsNull = True Then

 Return True

 Else

 Return False

 End If

 End Get

 End Property

 Public Shared ReadOnly Property Null() As Gender

 Get

 Dim h As Gender = New Gender

 h.m_Null = True

 Return h

 End Get

 End Property

 Public Shared Function Parse(ByVal s As SqlString) As Gender

 If s.IsNull Then

 Return Null

 End If

 Dim u As Gender = New Gender

 u.Value = s

 Return u

 End Function

ch03.indd 101 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 0 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

 ' Create a Value Property

 Public Property Value() As SqlString

 Get

 Return m_value

 End Get

 Set(ByVal value As SqlString)

 If (value = "M" Or value = "F") Then

 m_value = value

 Else

 Throw New ArgumentException _

 ("Gender data type must be M or F")

 End If

 End Set

 End Property

 ' Private members

 Private m_Null As Boolean

 Private m_value As SqlString

End Structure

To create a UDT, the code must adhere to certain conventions. The class’s
attributes must be serializable, the class must implement the INullable interface,
and the class name must be set to the name of the UDT. You can optionally add the
IComparable interface. In this example, Gender is the class name. Near the bottom
of the listing you can see where a private string variable named m_value is declared
to hold the value of the data type.

Like the other CLR database objects, the Attribute plays an important part in the
construction of the CLR UDT. The SQL Server UDT Attribute accepts the property
values shown in Table 3-2.

The first thing to notice in the code is the use of the INullable and IBinarySerialize
interfaces. The INullable interface is required for all UDTs. The IBinarySerialize
interface is required for UDTs that use the Format.UserDefined attribute. Because
this example uses a String data type, the Format.UserDefined attribute is required,
which means that this UDT also needs code to handle the serialization of the UDT. In
practical terms, this means that the class must implement the IBinarySerialize Read
and Write methods, which you can see in the following section of code.

At first it may seem a bit intimidating to use the IBinarySerialize interfaces, but
as you can see in the Read and Write subroutines, it’s actually pretty simple. The
Read subroutine simply uses the ReadString method to assign a value to the UDT’s

ch03.indd 102 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 0 3

m_value variable (which contains the UDT’s value). Likewise, the Write subroutine
uses the Write method to serialize the contents of the m_value variable.

The ToString method checks to see if the contents of the m_value variable are
null. If so, then the string “null” is returned. Otherwise, the m_value’s ToString
method returns the string value of the contents.

The next section of code defines the IsNull property. This property’s get method
checks the contents of the m_value variable and returns the value of true if m_value
is null. Otherwise, the get method returns the value of false. Next, you can see the
Null method, which was generated by the template to fulfill the UDT’s requirement
for nullability.

The Parse method accepts a string argument, which it stores in the object’s Value
property. You can see the definition for the Value property a bit lower down in the
code. The Parse method must be declared as static, or if you’re using VB.NET, it
must be a Shared property.

The Value property is specific to this implementation. In this example, the Value
property is used to store and retrieve the value of the UDT. It’s also responsible for

Property Description
Format.Native SQL Server automatically handles the serialization of the UDT. The

Format.Native value can only be used for UDTs that contain fixed-sized
data types. The following data types are supported: bool, byte, sbyte,
short, ushort, int, uint, long, ulong, float, double, SqlByte, SqlInt16,
SqlInt32, SqlInt64, SqlDateTime, SqlSingle, SqlDouble, SqlMoney. If this
property is used, the MaxByteSize property cannot be used.

Format.UserDefined The UDT class is responsible for serializing the UDT. The format.
UserDefined value must be used for variable-length data types like
String and SQLString. If this value is used, the UDT must implement
the IBinarySerialize interface and the Read and Write routines. If this
property is used, the MaxByteSize property must also be specified.

MaxByteSize Specifies the maximum size of the UDT in bytes.

IsFixedLength A Boolean value that determines if all instances of this type are the
same length.

IsByteOrdered A Boolean value that determines how SQL Server performs binary
comparisons on the UDT.

ValidationMethodName The name of the method used to validate instances of this type.

Name The name of the UDT.

Table 3-2 UDT Attribute Properties

ch03.indd 103 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 0 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

editing the allowable values. In the set method, you can see that only the values of
M or F are permitted. Attempting to use any other values causes an exception to be
thrown that informs the caller that the “Gender data type must be M or F”.

Deploying the UDT
Very much like a CLR stored procedure or function, the UDT is compiled into
a DLL after the code is completed. That DLL is then imported as a SQL Server
assembly using the CREATE ASSEMBLY and CREATE TYPE statements or by
simply using the Visual Studio 2005 Deploy option. You can see the T-SQL code to
manually create the CLR UDT in the following listing:

create assembly Gender

from 'C:\temp\Gender.dll'

go

CREATE TYPE Gender

EXTERNAL NAME Gender.[Gender.Gender]

go

This listing assumes that gender.dll has been copied into the c:\temp that’s on the
SQL Server system. One thing to notice in the CREATE TYPE statement is the class
parameter. As in the earlier CLR examples, the first part of the External Name clause
specifies the assembly that will be used. In the case of a UDT, the second part of the
name identifies the namespace and class. In the Gender example, the Namespace
was Gender and the UDT’s class was also named Gender.

Using the UDT
Once the UDT is created, you can use it in T-SQL much like SQL Server’s native
data types. However, since UDTs contain methods and properties, there are
differences. The following example shows how the Gender UDT can be used as a
variable and how its Value property can be accessed:

DECLARE @mf Gender

SET @mf='N'

PRINT @mf.Value

In this listing the UDT variable is declared using the standard T-SQL DECLARE
statement, and the SET statement is used to attempt to assign the value of N to
the UDT’s Value property. Because N isn’t a valid value, the following error is
generated:

ch03.indd 104 11/14/05 2:21:33 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 0 5

 .Net SqlClient Data Provider: Msg 6522, Level 16, State 1, Line 2

A CLR error occurred during execution of 'Gender':

System.ArgumentException: Gender data type must be M or F

at Gender.set_Value(SqlString value)

Just as UDTs can be used as variables, they can also be used to create columns.
The following listing illustrates creating a table that uses the Gender UDT:

CREATE TABLE MyContacts

(ContactID int,

FirstName varchar(25),

LastName varchar(25),

MaleFemale Gender)

While creating columns with the UDT type is the same as when using a native
data type, assigning values to the UDT is a bit different than the standard column
assignment. Complex UDTs can contain multiple values. In that case you need to
assign the values to the UDT’s members. You can access the UDT’s members by
prefixing them with the (.) symbol. In this case, since the UDT uses a simple value,
you can assign values to it exactly as you can any of the built-in data types. This
example shows how to insert a row into the example MyContacts table that contains
the Gender UDT:

INSERT INTO MyContacts VALUES(1, 'Michael', 'Otey', 'M')

To retrieve the contents of the UDT using the SELECT statement, you need to use
the UDT.Member notation as shown here when referencing a UDT column:

SELECT ContactID, LastName, MaleFemale.Value FROM MyContacts

To see the UDTs that have been created for a database, you can query the
sys.Types view as shown here:

SELECT * FROM sys.Types

Aggregates
The CLR aggregate is another new type of .NET database object that was introduced
in SQL Server 2005. Essentially, a user-defined aggregate is an extensibility function
that enables you to aggregate values over a group during the processing of a query.
SQL Server has always provided a basic set of aggregation functions like MIN,
MAX, and SUM that you can use over a query. User-defined aggregates enable you

ch03.indd 105 11/14/05 2:21:34 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 0 6 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

to extend this group of aggregate functions with your own custom aggregations. One
really handy use for CLR aggregates is to enable the creation of aggregate functions
for CLR UDTs. Like native aggregation functions, user-defined aggregates allow
you to execute calculations on a set of values and return a single value. When you
create a CLR aggregate, you supply the logic that will perform the aggregation. In
this section you’ll see how to create a simple aggregate that calculates the maximum
variance for a set of numbers.

To create an aggregate using Visual Studio 2005, select the New | Project option,
give your project a name, and click OK to create the project. This example uses the
name of MaxVariance. After naming the project and clicking OK, complete the New
Database Reference dialog using the required connection values for your SQL Server
system and database. Next, to create the aggregate I used the Project | Add Aggregate
option to display the Add New Item dialog that you can see in Figure 3-12.

Select Aggregate from the list of SQL Server templates and then enter the
name for the class and click OK. As you can see in Figure 3-12, I used the name
MaxVariance. Visual Studio will generate a starter project for the aggregate class.
Much as with a UDT, the template for a SQL Server CLR aggregate implements four
methods that SQL Server 2005 requires for all CLR aggregates. The four required
methods are listed in Table 3-3.

Figure 3-12 Creating a CLR aggregate

ch03.indd 106 11/14/05 2:21:34 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 0 7

You can see the code to implement the MaxVariance aggregate in the following
listing:

Imports System

Imports System.Data

Imports System.Data.Sql

Imports System.Data.SqlTypes

Imports Microsoft.SqlServer.Server

<Serializable()> _

<SqlUserDefinedAggregate(Format.Native)> _

Public Structure MaxVariance

 Public Sub Init()

 m_LowValue = 999999999

 m_HighValue = -999999999

 End Sub

 Public Sub Accumulate(ByVal value As Integer)

 If (value > m_HighValue)

 m_HighValue = value

 End If

 If (value < m_LowValue)

 m_LowValue = value

 End If

 End Sub

 Public Sub Merge(ByVal Group as MaxVariance)

 If (Group.GetHighValue() > m_HighValue)

 m_HighValue = Group.GetHighValue()

 End If

Method Description
Init This required method initializes the object. It is invoked once for each aggregation.

Accumulate This required method is invoked once for each item in the set being aggregated.

Merge This required method is invoked when the server executes a query using parallelism.
This method is used to merge the data from the different parallel instances together.

Terminate This required method returns the results of the aggregation. It is invoked once after all
of the items have been processed.

Table 3-3 Required Aggregate Methods

ch03.indd 107 11/14/05 2:21:34 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 0 8 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

 If (Group.GetLowValue() < m_LowValue)

 m_LowValue = Group.GetLowValue()

 End If

 End Sub

 Public Function Terminate() As Integer

 return m_HighValue - m_LowValue

 End Function

 ' Helper methods

 Private Function GetLowValue() As Integer

 return m_LowValue

 End Function

 Private Function GetHighValue() As Integer

 return m_HighValue

 End Function

 ' This is a place-holder field member

 Private m_LowValue As Integer

 Private m_HighValue As Integer

End Structure

At the top of this listing you can see the standard set of Imports statements used by
CLR objects, followed by the serialization attribute that’s required by CLR aggregate
objects. After that, in the Init method the two variables, m_LowValue and m_
HighValue, are assigned high and low values, ensuring that they will be assigned values
from the list. These two variables are declared near the bottom of the listing, and they
serve to hold the minimum and maximum values that are encountered by the aggregate
routine. The Init method is called one time only—when the object is first initialized.

While the Init method is called just once, the Accumulate method is called once
for each row in the result set. In this example, the Accumulate method compares
the incoming value with the values stored in the m_HighValue and m_LowValue
variables. If the incoming value is higher than the current high value, it is stored in the
m_HighValue variable. If the value is lower than the value of m_LowValue, it is stored
in m_LowValue. Otherwise, no action is performed by the Accumulate method.

NOTE

Because aggregates are serialized, you need to be aware of the total storage requirements
for some uses. The aggregate’s value is serialized following each invocation of the Accumulate
method, and it cannot exceed the maximum column size of 8000 bytes.

ch03.indd 108 11/14/05 2:21:34 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 0 9

The Merge method is used when the aggregate is processed in parallel, which
typically won’t be the case for most queries. If the Merge is called, its job is to
import the current aggregation values from the parallel instance. You can see here
that it does that using two helper methods that essentially export the values in the
m_HighValue and m_LowValue variables. These values are compared to the existing
values, and if they are higher or lower, they will replace the current values in
m_HighValue and m_LowValue.

The Terminate method is called once after all of the results have been processed.
For this example, the Terminate method simply subtracts the lowest value found
from the highest value found and returns the difference to the caller.

Deploying the Aggregate
After compiling the class into a DLL, you can import the DLL as a SQL Server
assembly using either the Visual Studio 2005 Deploy option or manually using the
CREATE ASSEMBLY statement and CREATE AGGREGATE statement as is shown
in the following listing:

create assembly MaxVariance

from 'C:\temp\MaxVariance.dll'

go

CREATE AGGREGATE MaxVariance (@maXVar int)

RETURNS Int

EXTERNAL NAME MaxVariance.[MaxVariance.MaxVariance]

go

Like the earlier examples, this listing assumes that maxvariance.dll has been
copied into the c:\temp directory on the local SQL Server system. In the CREATE
AGGREGATE statement and the EXTERNAL NAME clause the first part of the
name specifies the assembly that will be used, and the second part of the name
identifies the namespace and class. Here all of these values are named MaxVariance.

Using the Aggregate
You can use the aggregate just like SQL Server’s built-in aggregate functions. One
small difference is that the UDAGG needs to be prefixed with the schema name to
allow the system to locate it. The following line illustrates using the MaxVariance
Aggregate:

SELECT dbo.MaxVariance(MinQty) FROM Sales.SpecialOffer

ch03.indd 109 11/14/05 2:21:34 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 1 0 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

The result of this statement will show the difference between the high and low
values found in the Sales.SpecialOffer column as is shown here:

61

(1 row(s) affected)

Debugging CLR Database Objects
One of the coolest features found in the integration of the .NET Framework,
Visual Studio 2005, and SQL Server 2005 is the ability to debug the CLR database
objects that you create. This tight level of integration sets SQL Server way ahead
of competing database products like Oracle and DB2 that offer the ability to create
stored procedures and functions using .NET code. While the other database products
provide for the creation of these objects, they do not support the ability to provide
integrated debugging. Visual Studio 2005 enables you to set breakpoints in your
CLR database objects and then seamlessly step through your code and perform
all of the debugging tasks that you would expects for a standard Windows or Web
application, including the ability to set breakpoints, single-step through the code,
inspect and change variables, and create watches—even between T-SQL and CLR
code. Visual Studio 2005 automatically generates test scripts that are added to your
projects. You can customize and use these test scripts to execute the CLR database
objects that you create.

NOTE

You must compile and deploy the CLR database object before you can debug it.

To debug a SQL Server project using Visual Studio 2005, first open the project
that you want to debug and then go to the Servers window and right-click the
database connection. From the pop-up menu select the option Allow SQL/CLR
Debugging as is shown in Figure 3-13.

Next, set up the script that you want to use to run the database object. Using the
Solution window, open the Test Scripts folder and then the Test.sql file. You can set
up multiple test scripts, but the Test.sql script is provided by default. If you want to
change the script that Visual Studio 2005 uses to run the CLR database object, you
simply right-click the desired script listed under the Test Scripts folder and select the
Set As Default Debug Script option as is shown in Figure 3-14.

ch03.indd 110 11/14/05 2:21:35 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 1 1

To use the default Test.sql script, open the file using the Visual Studio editor. Here
you can see T-SQL boilerplate code for testing each of the different CLR database
object types. Go to the section that you want and edit the code to execute the
database object. You can see the test code for the usp_ImportFile stored procedure in
the following listing:

-- Examples for queries that exercise different SQL objects

 -- implemented by this assembly

-- Stored procedure

--

declare @MyColumn varchar(30)

exec usp_ImportFile 'c:\temp\testfile.txt',@MyColumn

Select @MyColumn

Figure 3-13 Setting the Allow SQL/CLR Debugging option

ch03.indd 111 11/14/05 2:21:35 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 1 2 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

When the test script is ready to go, use Visual Studio’s Debug | Start option or
simply press F5 to launch the Test.sql that will execute your CLR database object.
You can see an example of using the Visual Studio 2005 debugger to step through a
SQL Server project in Figure 3-15.

At this point you can step through the code, set new breakpoints, and change and
inspect variables.

NOTE

Debugging should be performed on a development system, not on a production system. Using the
SQLCRL debugger from Visual Studio causes all SQLCLR threads to stop, which prevents other CLR
objects from running.

.NET Database Object Security
No discussion of the new CLR features would be complete without a description of
the security issues associated with using .NET assemblies and the SQL Server CLR.

Figure 3-14 Setting the default debug script

ch03.indd 112 11/14/05 2:21:35 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 1 3

Unlike T-SQL, which doesn’t have any native facilities for referencing resources
outside the database, .NET assemblies are fully capable of accessing both system
and network resources. Therefore, securing them is an important aspect of their
development. With SQL Server 2005, Microsoft has integrated the user-based SQL
Server security model with the permissions-based CLR security model. Following
the SQL Server security model, users are able to access only database objects—
including those created from .NET assemblies—to which they have user rights.
The CLR security model extends this by providing control over the types of system
resources that can be accessed by .NET code running on the server. CLR security
permissions are specified at the time the assembly is created by using the WITH
PERMISSION_SET clause of the CREATE ASSEMBLY statement. Table 3-4
summarizes the options for CLR database security permissions that can be applied to
SQL Server database objects.

Figure 3-15 Debugging Visual Studio 2005 SQL Server projects

ch03.indd 113 11/14/05 2:21:35 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 1 1 4 M i c r o s o f t S Q L S e r v e r 2 0 0 5 D e v e l o p e r ’ s G u i d e

Using the SAFE permission restricts all external access. The EXTERNAL_
ACCESS permission enables some external access of resources using managed
APIs. SQL Server impersonates the caller in order to access external resources. You
must have the new EXTERNAL_ACCESS permission in order to create objects with
this permission set. The UNSAFE permission is basically an anything-goes type of
permission. All system resources can be accessed, and calls to both managed and
unmanaged code are allowed. Only system administrators can create objects with
UNSAFE permissions.

In addition to using the CREATE ASSEMBLY statement, you can also set the CLR
database object permission using the project properties as is shown in Figure 3-16.

CRL Security External Access Allowed Calls to Unmanaged Code
SAFE No external access No calls to unmanaged code

EXTERNAL_ACCESS External access permitted via management APIs No calls to unmanaged code

UNSAFE External access allowed Calls to unmanaged code allowed

Table 3-4 CLR Database Object Security Options

Figure 3-16 Setting the CLR permission

ch03.indd 114 11/14/05 2:21:36 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3

 C h a p t e r 3 : D e v e l o p i n g C L R D a t a b a s e O b j e c t s 1 1 5

To interactively set the CLR permission level, open the project properties by
selecting the Project | Properties option from the Visual Studio 2005 menu. Then
open the Database tab and click the Permission Level drop-down. The project must
be redeployed before the changes will take place.

Managing CLR Database Objects
As shown in Table 3-5, SQL Server 2005 provides system views that enable you to
see the different CLR objects that are being used in the database.

Summary
Database objects created using the CLR are best suited for objects that replace
extended stored procedures, require complex logic, or are potentially transportable
between the database and the data tier of an application. They are not as well
suited to raw data access and update functions as T-SQL. By taking advantage of
CLR database objects, you can add a lot of power and flexibility to your database
applications.

System View Description
sys.objects Contains all database objects. CLR database objects are identified in the typ_desc

column.

sys.assemblies Contains all of the assemblies in a database.

sys.assembly_files Contains all of the filenames that were used to create the assemblies in a database.

sys.assembly_types Contains all of the user-defined types that were added to a database.

sys.assembly_references Contains all of the assembly references in a database.

Table 3-5 System Views to Manage CLR Database Objects

ch03.indd 115 11/14/05 2:21:36 PM

D_Base / Microsoft SQL Server 2005 Developer’s Guide / Otey / 226099-8 / Chapter 3
Blind folio 116

ch03.indd 116 11/14/05 2:21:36 PM

