
The full-text search built into SQL Server 2005 is a hugely powerful feature that can improve the
performance of your databases. With an index that’s remarkably like the one you’ll find in the back of a
reference book, your users can find the content they seek swiftly, by concept as well as by spelling. A search
for “color” can find “colour,” if you like, and the keyword “chocolate” can return results that include “cocoa.”

• 02 FTS
advantages

• 09 Create a full-
text catalog

• 11 Tables using
T-SQL

• 17 Indexes using
the Wizard

• 26 XML in FTS

• 33 Testing FTS

Search me:
 using SQL Server
 full-text search

INSIDE

SQL Server InsIder

Brought to you by

January 2007

�

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

ave you ever used the
like operator to search
columns for a string?
While the like opera-
tor is very accurate, it
simply is not scalable.

Should you use like to conduct
searches on your Web sites,
you will find that these searches
cause frequent timeouts and can
degrade overall database perfor-
mance.

Your customers may become
impatient with the length of time
their searches take. They might
leave for a competitor’s Web
site, where their search solution
performs much faster – probably

H
øSQL FTS allows

you to find the
database rows
which contain
the word or
phrase you are
looking for.

“Full-text
indexes are

conceptually
similar to

the indexes
you find at
the back of

a book; they
help you

find pages
where a word

or a phrase
occurs.”

using a full-text search engine,
such as SQL Full-Text Search
(SQL FTS), which is the focus of
this article.

Full-text indexes are
conceptually similar to the
indexes you find at the back
of a book; they help you find
pages where a word or a phrase
occurs. SQL FTS allows you to
find the database rows which
contain the word or phrase for
which you are looking.

SQL FTS is an optional
component which was first
available in SQL 7 Beta 3.
Technically speaking, the
component allows you to build

By Hilary Cotter

��

Search me:
 using SQL Server full-text search

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

indexes on columns of the char,
varchar, text, image (SQL 2000
and above), varchar(max) (SQL
2005), varbinary(max) (SQL
2005), and XML (SQL 2005)
data type columns. You can
query them in SQL Server using
the Contains, ContainsTable,
FreeText, or FreeTextTable
predicates.

Using full-text search gives
your applications several
advantages. Among them:

The queries are much
faster than if you were to
use the like predicate. For
larger SQL tables, full-
text search may be many
orders of magnitude
faster than using a like
predicate.

„

You can incorporate
language features in your
queries to incorporate
searches on all
generations of a word. By
“generations of a word,”
Microsoft means both
thesaurus features and
stemming for declensions
and conjugations of
a word. Declension
includes singular and
plural forms as well as
masculine and feminine
forms. For example, a
search for apple also
matches with apples.
Conjugation means all
tenses of a word; a search
on run matches ran and
running.
Multiple language
support. For example,
even in an English-
language version of SQL
Server, you could search
on Chinese characters.
You can incorporate wild-

„

„

„

carding and weighting of
phrases.
You can store documents
in SQL Server in their
binary form and search
for that data later. For
example, if you store
Word documents in your
tables, you can search
for words and phrases in
those documents, as if
they were pure text docu-
ments stored in the col-
umns.

Microsoft was an innovator
in delivering the first desk-
top search solution; it was Bill
Gates personal initiative, first
announced to the world in that
now-famous 1990 Comdex
keynote address, Information
at your Fingertips. As Microsoft
has been a player in the search
space for so long, they learned
important lessons.

One of the most important
lessons learned is that people
expect their searches to incor-

„

“ You can store documents
in SQL Server in their
binary form and search
for that data later.”

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

porate features of their spoken
and written language. They
expect their searches to return
results to the word, and also
to plural or other verb forms
of that word. So they expect a
search on book to return results
not only containing book, but
also books. Users also expect
searches on run to return re-
sults to ran, runs, running, etc.

Another lesson that Micro-
soft learned was the consider-
able variation in spelling within
the same language. Searches
have to be conceptual searches
as well as strict searches; a
search for center might miss

content where the author
spelled the word as centre, and
a search on pants might miss
content where the term trou-
sers was used.

Microsoft addressed these
language problems by develop-
ing rich language-aware fea-
tures in their search products,
including SQL FTS.

Before I explain how to use
SQL full-text search, let me give
you a short introduction to its
architecture.

SearCh arChITeCTure
It’s likely that you’ve encoun-
tered some parts of Microsoft’s
search features in other prod-
ucts. The architecture of SQL
FTS is based on Site Server
Search, which in turn was based
on Index Server (now known as
Indexing Services). The search
engine used in SQL FTS is simi-
lar to the engine used for Office
XP Search (MOSearch), Site
Server Search, SharePoint Portal

Search, Exchange Content In-
dexing, and Windows Desktop
Search. SharePoint Team Ser-
vices search uses SQL Server
Full-Text Search.

Site Server Search starts with
a URL to a Web page. It crawls
all hyperlinks in that Web page,
returning them to the indexing
component, which then creates
an index. SQL FTS still uses this
crawl concept, crawling your
tables to extract each row one
by one, then indexing them.
The crawl process is called a
population, as your index is
being populated with data.

SQL FTS has five primary
components. We’ll explore each
of them briefly.

Gatherer
Indexer
Filter Manager
Filter Daemon
Full-Text Catalog

1�
2�
3�
4�
5�

øMicrosoft has addressed
the problem of
discrepancies in language
by developing rich
language aware features
in their search products,
including SQL FTS.

http://www.searchsqlserver.com

�

An IT infrastructure based on Dell plat-
forms keeps the Kenton County School
District at the head of the class
The Kenton County School District is a big district with an even bigger reputation
for excellence. Located in northern Kentucky, it serves over 13,000 students through-
out 21 schools and has reaped many honors, including being selected as a spotlight
school district by the U.S. Department of Education in 1999 and 2000, and receiving
the national “What Parents Want” award for 12 years in a row.

Maintaining such a high level of excellence in academics requires excellent IT. In
order to support classroom activities, the district’s administrative functions, transpor-
tation, food service, and finance must run reliably and efficiently. Also, critical infor-
mation such as student records, class schedules, and other data must be collected,
maintained, and made readily available to teachers and other staff who require it.
“We need an IT infrastructure that can support all of our departments,” says Vicki
Fields, district technology coordinator for the Kenton County School District. “Plus, we
want our teachers to have instant access to student information so they can spend
their time teaching instead of chasing down student records.”— Vicki Fields, District Technology Coordinator

Kenton County School District

The Kenton County School DistrictA System of Excellence

Advertorial

�

Kenton County looks for a new platform
A few years ago, the district wanted to improve teacher and staff access to student
information and other types of data. “We have information distributed across a variety
of delivery systems,” says Fields. “We wanted to provide comprehensive access to that
information to better facilitate teaching, administrative functions, and decision making
throughout the district.”

Also, Fields wanted to standardize on a single hardware vendor. “We have many
different applications throughout the district, and we wanted to find one vendor that
could support them all,” says Fields. “In addition, we wanted a vendor with excellent
support and services that would be with us over the long haul.”

Kenton County decides on Dell
After evaluating several vendors, Fields was impressed with the flexibility of Dell of-
ferings. “Other off-the-shelf types of technologies didn’t have the flexibility that we
needed,” says Fields. “When I approached Dell, their willingness to comply with our
requirements was a key selling point. Dell told us we could set up our system however
we wanted, and that was just what we needed to hear.”

To view the entire story, go to www.dell.com/sql

The Kenton County School DistrictA System of Excellence

Advertorial

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

GaTherer
The Gatherer component con-
nects to SQL Server, extracts
the rows from the tables which
you are full-text indexing, and
sends them to the Indexer. In
SQL 2005, the Gatherer runs in
the SQL Server process. In SQL
2000, it is part of MSSearch.

IndeXer
As its name implies, the indexer
performs the index functions on
the text stream sent from the
Filter Daemon process (MS-
FTED: Microsoft SQL Full-Text
Engine Daemon) and stores it in
the catalog. The Indexer stores
temporary indexes in memory
until it can flush them to disk.

These indexes are called word
lists. When a specified number
of word lists are in RAM (you
can control this number with
sp_fulltext_service ‘resource_
usage’) they are consolidated
in a shadow index. When you
perform a reorganize, the
shadow indexes are merged
into a single index called a
master index. The master index
is stored in the catalog.

FILTer ManaGer
The Gathering Manager is a
supervisor: it manages the
indexing and crawl processes,
and keeps an error log. If the

Indexer cannot keep up with
the crawl process, the Filter
Manager throttles the crawling
process until the indexer can
catch up. The Filter Manager
then increases the crawl rate
until a happy medium is met.

FILTer daeMon
The Filter Daemon process ex-
tracts textual content from the
data stream emitted from the
Gatherer, and breaks this textu-
al content into words or tokens.
A token is a string of characters
which may or may not have
linguistic significance, such as
and, XXX, MSFT, qwerty, and
rytrrrt.

The Filter Daemon
(MSFTEFD) does this by
implementing a COM
component called an iFilter. The
iFilter discerns the content’s
file format, and emits only the
text to the Indexer; it breaks the
text apart at word boundaries,
using another COM component

“ The Gathering Manager is
a supervisor: it manages
the indexing and crawl
processes, and keeps an
error log. If the Indexer
cannot keep up with the
crawl process, the Filter
Manager throttles the
crawling process until the
indexer can catch up.”

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

called a word breaker. The word
breaker used is determined by:

The language type you
specified
The default full-text lan-
guage setting for your
copy of SQL Server (ob-
tainable by issuing a
sp_configure ‘default full-
text language’)
The embedded language
type in the document
you stored in SQL Server,
assuming that the iFilter

„

„

„

respects these language
types; HTML, Word, and
XML iFilters are lan-
guage-aware. You can
check for embedded lan-
guage tags by using the
FiltDump utility, which
ships with the Platform
SDK.

You can obtain more informa-
tion on Word Breakers and
iFilters by referring to “Imple-
menting a Word Breaker”
http://msdn2.microsoft.com/
en-us/library/ms693186.aspx.

I’ll go into more detail about
Word Breakers and Languages
in the section on setting up Full-
Text Search section .

FuLL-TeXT CaTaLoG
The full-text catalog contains
the indexes for one or more full-
text indexed tables. If you full-
text index a table, you can store
the full-text index in only one
catalog; it cannot span catalogs.

InSTaLLInG The FuLL-TeXT
ServICe
By default, SQL FTS is installed
in all editions of SQL 2005,
except SQL 2005 Express and
SQL Server Mobile editions. If it
is not installed, you have to run
setup again and select it in the
Database Engine component.
You also need to enable SQL
FTS using SQL Server 2005
Surface Area Configuration.
Click on Surface Area Configu-
ration for Services and Con-
nections, then choose Full-Text
Search. Change Startup Type to
Automatic.

If you are upgrading SQL
2000, the full-text components
are upgraded. The catalog is
repopulated as part of the up-
grade process.

Although it isn’t included
by default, you can install SQL
full-text search on SQL 2005
Express. To do so, download
the Advanced Services for SQL
2005 Express by clicking on

“ By default, SQL FTS is
installed in all editions of
SQL 2005, except SQL
2005 Express and SQL
Server Mobile editions.”

http://msdn2.microsoft.com/en-us/library/ms693186.aspx
http://msdn2.microsoft.com/en-us/library/ms693186.aspx
http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

this link http://go.microsoft.
com/fwlink/?LinkId=65109.

CreaTInG FuLL-TeXT In-
deXeS
Creating full-text indexes on
your tables is a three step pro-
cess:

Enabling your database
for full-text indexing
Creating a full-text
catalog
Creating full-text
indexes on your tables

There are two methods of
performing each step: through
the Wizard, and through TSQL.
We’ll go into each method in
turn.

1�

2�

3�

enabLInG daTabaSeS For
FuLL-TeXT IndeXInG
Before you create full-text in-
dexes on your tables, you must
enable the database for full-text
indexing. To do this, you can is-
sue the below SQL statement:

sp_fulltext_database ‘enable’

You can also achieve the
same thing by using SQL Server
Management Studio. Expand
the Databases folder, right click
on your database, then select
Properties. In the Files tab,
ensure that the “Use full-text
indexing” check box is checked.

CreaTInG a FuLL-TeXT
CaTaLoG
The next step in the process
is to create a full-text catalog;
the indexes have to have some-
where to go! To create the cata-
log, you can use a command
like the one below:

Create FullText Catalog
VictoriaSecret

Where my catalog name is
VictoriaSecret. (Naturally you
can call your catalog any name
you want, but the Victoria
Secret catalog is a very popular
one!)

The creation command has
a few options. For example, if
you want this catalog to be the
default catalog for all full-text
indexes in your database, you
would issue:

Create FullText Catalog
CatalogName As Default

If your tables are large, they
should have a dedicated catalog
for optimal performance. How
large is large? This depends on
your machine, and the amount
of content in each row. In a
multi-terabyte search solution,
we implemented, we found a
sweet spot exists for query-
ing and indexing performance
around 50 million rows on a
Quad (DL 585). We currently
have 8 full-text catalogs to de-

øIf your tables are large,
they should have a
dedicated catalog for
optimal performance.
This size depends on your
machine, and the amount
of content in each row.

http://go.microsoft.com/fwlink/?LinkId=65109
http://go.microsoft.com/fwlink/?LinkId=65109
http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�0

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

liver optimal performance. Your
mileage may vary.

By its default behavior, the full
text search is accent sensitive; it
recognizes cafŽ and cafe as two
different words. To instruct the
index function to ignore accents,
tell it so:

Create FullText Catalog
CatalogName with Accent_
Sensitivity=OFF

If you detach or backup
your database, you have the
option of storing the catalog
in your database. Query sys.
databasefiles, and you will
notice a row with a type_desc
value of FULLTEXT. This is
the database file in which the
catalog will be stored if you
backup the database or detach
it. The advantage of this is that
you can backup the catalogs at
a different frequency from your
databases if you backup your
database by file group, or you
can do file group backups which

will not include the full-text
catalog and consequently be
much smaller.

Note that if you are using
change tracking your catalog
may be considerably out of date
from your database, so this op-
tion only works if you are doing
incremental or full populations.
If you are using change track-
ing you should do full database
backups, which will include all of
your file groups along with your
full-text catalogs.

To enable the separate file
store, issue this command:

Create FullText Catalog
CatalogName with on
FileGroup ‘FullText’

Where FullText is the name of
the filegroup to dedicate for the
full-text backup.

By default, your full-text cata-
logs are created in the full-text
path for SQL Server, generally
C:\Program Files\Microsoft SQL
Server\MSSQL.X\MSSQL\FTDa-

øBy its default behavior, the
full text search is accent
sensitive; it recognizes
café and cafe as two
different words. But you
can instruct the index
function to ignore accents.

ta. You can change the default
location by modifying the reg-
istry entry FullTextDefaultPath
in the key HKEY_LOCAL_MA-
CHINE\SOFTWARE\Microsoft\
Microsoft SQL Server\MSSQL.
X\MSSQLServer.

To place your full-text catalog
in a different location, select the
path using the following com-
mand:

Create FullText Catalog
CatalogName in path ‘c:\
temp’

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

For performance reasons, you
should place your catalog on
the fastest disk subsystem pos-
sible – ideally on a dedicated
RAID 10 array with a dedicated
controller.

CreaTInG FuLL-TeXT IndeX-
eS on TabLeS uSInG T-SQL
Creating full-text indexes on
your tables in SQL Server 2005
is symmetrical with creating ta-
ble or indexed view statements;
you use the same Create, Al-

ter, and Drop statements. For
backwards compatibility, the
sp_fulltext_table and sp_full-
text_column from SQL 2000
and SQL 7 are still supported.

The syntax to create an index
looks like this:

Create FullText Index on
TableName (ColumnName1,
ColumnName2) Key Index
TableNamePrimaryKey

Where TableName is the
table name to index, and
ColumnName1 and Column-
Name2 are the char, varchar,
XML, or text datatype columns
to index. TableNamePrima-
ryKey identifies the name of
the primary key or the name of
a unique index on your table.
The index you select must be a
single column index or a unique
index. (We will cover how to in-
dex Image and VarBinary(max)
datatype columns shortly.)
The example above only works
if you already have a full-text

catalog defined by default for
this database. Otherwise, you
get the following error message:

Msg 7623, Level 16, State 1,
Line 1

A default full-text catalog
does not exist in database ‘Da-
tabaseName’ or user does not
have permission to perform this
action.

Without a default full-text
catalog defined, your syntax
has to look like this:

Create FullText Index on
TableName (ColumnName1,
ColumnName2) Key Index
TableNamePrimaryKey on
CatalogName

In all the examples above,
all columns are indexed using
the word breakers for the lan-
guage you set for SQL Server, or
whatever you specified as the
default full-text language for
SQL Server. That is, if you had
performed a default installation

“ In these examples, all
columns are indexed
using the word breakers
for the language you
set for SQL Server, or
whatever you specified
as the default full-
text language for SQL
Server.”

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

of SQL Server using US English,
the US English word breakers
would be used.

You can, of course, change
the value for the default full-
text language setting on this
server. To set the default full-
text language setting, issue the
following command:

Sp_configure ‘show advanced
options’,1

reconfigure

sp_configure ‘default full-text
language’,1033

GO

In this example, we set the
default language for indexing
full-text indexed columns to US
English. The final value is the
language code identifier (LCID),
1033 in the example—which
may not be a number that
springs immediately to mind.

To correlate the LCID with the
language you are using, query
syslanguages:

SELECT alias, LCID FROM sys.
syslanguages

Or, you can consult Table 1
for a list of the most common
languages supported. I obtained
this list form querying:

select * from sys.fulltext_
languages

If you need additional lan-
guage support - there are six
I didn’t include here - consult
“Licensed Third-Party Word
Breakers” http://support.micro-
soft.com/kb/908441/en-us
To index columns in your tables

using different language word
breakers, you can specify the
language in the full-text index
creation statement. Here is an
example:

lcid language
2052 Simplified Chinese

1028 Traditional Chinese

1031 German

2057 British English

1033 English

3082 Spanish

1036 French

1040 Italian

1041 Japanese

1042 Korean

0 Neutral

1043 Dutch

1053 Swedish

1054 Thai

3076 Chinese (Hong Kong SAR, PRC)

5124 Chinese (Macau SAR)

4100 Chinese (Singapore)

TabLe �:
SupporTed LanGuaGeS In SQL �00�

øTo index columns in your
tables using different
language word breakers,
you can specify the
language in the full-text
index creation statement.

http://support.microsoft.com/kb/908441/en-us
http://support.microsoft.com/kb/908441/en-us
http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

CREATE FULLTEXT
INDEX on TableName
(USEnglishColumn
LANGUAGE 1033,
JapaneseColumn
LANGUAGE 1041)

The final part of the full-text
index creation statement we
examine is the population type
clause. The population is the
process which extracts the
textual data from your table

and creates the full-text index.
By default, whenever you cre-
ate a full-text index on a table
using T-SQL, a population is run
and change tracking is enabled.
Change tracking is a back-
ground process which keeps
your full-text index updated
with inserts, updates, or deletes
that occur on the table during
the time it takes for the full-text
indexing.

 The full-text population op-
tions are:

auto: change tracking
with update full-text in-
dex in background. This is
the default.
manual: change track-
ing is turned on, but you
update the full-text index
according to your sched-
ule.
off: change tracking is
not enabled, but a full
population is started
when the full-text index is
created.

„

„

„

off, no population:
change tracking is not
enabled, and a full popu-
lation is not performed as
soon as the full-text index
is created.

That’s a little dry. Let’s look at
an example of each type:

AUTO

CREATE FULLTEXT INDEX on
MyTable (charcol) KEY INDEX
PrimaryKey ON Catalog_
Name WITH CHANGE_
TRACKING AUTO

or

CREATE FULLTEXT INDEX on
MyTable (charcol) KEY INDEX
PrimaryKey ON Catalog_
Name

ManuaL
Sometimes change tracking
causes locking on the tables
you are full-text indexing. In this
case, you may want to schedule
manual population:

„

“ Change tracking is a
background process
which keeps your full-
text index updated
with inserts, updates,
or deletes that occur
on the table during the
time it takes for the
full-text indexing. “

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

CREATE FULLTEXT INDEX on
MyTable (charcol) KEY INDEX
PrimaryKey ON Catalog_
Name WITH CHANGE_
TRACKING MANUAL

After the full-text index is
created, SQL Server will run a
population, but the catalog is
not updated with changes to
your table after the popula-
tion is complete. If you choose
the manual option, you have to
update the index to keep it up
to date. Use the following com-
mand for this:

ALTER FULLTEXT INDEX
ON MyTable START UPDATE
POPULATION

oFF
In some cases, you use tables
with static data which do not
change, such as a list of U.S.
states. Or, if a large portion of
the table is updated in a batch,
you may wish to disable change
tracking completely. Nonethe-
less, you still want a full popu-

lation to be run immediately.
Here is the syntax to do that.

CREATE FULLTEXT INDEX on
MyTable (charcol) KEY INDEX
PrimaryKey ON Catalog_
Name WITH CHANGE_
TRACKING OFF

oFF, no popuLaTIon
After you create your full-text
index, a full population is run.
This may cause locking on the
base table and you may want to
disable the initial full population
and have it run during a quiet
time. Here is the syntax to do
this:

CREATE FULLTEXT INDEX
on MyTable (charcol)
KEY INDEX PrimaryKey
ON Catalog_Name WITH
CHANGE_TRACKING OFF, NO
POPULATION

When you are readywant to
run the full population, issue
the statement:

ALTER FULLTEXT INDEX
ON MyTable START FULL
POPULATION

aLTer FuLLTeXT IndeX
We’ve already seen the Alter
FullText index statement. How-
ever, some of its additional fea-
tures can be useful. You can use
the Alter FullText index com-
mand to:

Add/drop columns
Enable/disable the index
on a full-text indexed table
Control your population

addInG/droppInG
CoLuMnS
You can use the Alter FullText
Index statement to add ad-
ditional columns to full-text
index, or to drop columns you
no longer wish to have full-text
indexed.

Here is an example of how to
add a column:

ALTER FULLTEXT INDEX
MyTable ADD (NewCol)

„

„

„

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

And to drop a column:

ALTER FULLTEXT INDEX
MyTable Drop (Col)

enabLe/dISabLe
You can also use the Alter Full-
Text Index statement to enable
or disable a table’s full-text
index.

When you issue a disable
command, any population in
progress pauses. If you re-en-
able the full-text index, change
tracking resumes. However, full
and incremental populations do
not continue; you have to re-
start them manually. Here’s an
example:

ALTER FULLTEXT INDEX ON
MyTable ENABLE

ConTroLLInG popuLaTIon
Population control sounds like
a theme from a science fiction
book like Stand on Zanzibar. But
in this context, we’re talking
about the SQL Server process
to update full-text indexes.

Use Alter FullText Index to
control your populations. For
example, to stop a population:

ALTER FULLTEXT INDEX on
MyTable Stop Full Population

To start a full population, use
this command.

ALTER FULLTEXT INDEX on
MyTable Start Full Population

Or to run an incremental
population:

ALTER FULLTEXT INDEX on
MyTable Start

InCreMenTaL popuLaTIon
An incremental population is
similar to a full population. In
an incremental population,
every row is extracted from the
table and compared with what
is in the catalog. New entries
are added, deleted rows are
removed from the catalog, and
updated rows are updated in
the catalog.

An incremental population

requires a timestamp column
on the table you are full-text
indexing; otherwise, a full popu-
lation is run. If at all possible,
use change tracking, because
an incremental population takes
almost as long as a full popula-
tion—and in some cases, it may
take longer.

drop FuLLTeXT IndeX
The final command is the Drop
FullText Index statement. Use
this statement to drop your full-
text indexes:

Drop FullText Index on
TableName

øIf at all possible, use
change tracking, because
an incremental population
takes almost as long as
a full population—and in
some cases, it may take
longer.

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

FuLL-TeXT IndeXInG
IndeXed vIeWS
In SQL Server 2005, it is pos-
sible to create a full-text index
for views. This is a very valuable
feature, particularly if you work
with large datasets. When a
table gets large, you may need
to partition it into ranges when
you need to trim your queries.
For example, consider this
query:

Select * from Resumes
where Location=’NE’ and
Contains(Skills,’SQL’)

In this query, the full-text en-
gine returns all results from the
full-text catalog to SQL server
and then trims the results to re-
cords where the location is NE.

Full-text queries perform best
for small results sets, typically
under 2,000. For large results
sets, the query may take a long
time. The length of the query
depends on the complexity of
the query and the number of

CREATE Database Resumes

GO

Use Resumes

GO

CREATE TABLE Resumes (PK int identity constraint ResumesPK
primary key, Skills VARCHAR(100), Location char(2))

GO

INSERT Resumes (Skills, Location) VALUES (‘SQL’,’NE’)

INSERT Resumes (Skills, Location) VALUES (‘SQL’,’NW’)

INSERT Resumes (Skills, Location) VALUES (‘NT’,’NE’)

INSERT Resumes (Skills, Location) VALUES (‘NT’,’NW’)

GO

CREATE fulltext catalog cat1

GO

CREATE VIEW myview WITH SCHEMABINDING AS

SELECT PK, Skills, Location FROM dbo.Resumes

matches. Some of my more complex queries which have returned
a large amount of rows (40,000) have taken up to 45 minutes.
In general, if you limit your results to 200 rows, you will get sub-
second response for most queries. If you could create a index
view which only returns locations of NE, and full-text index this
view, performance would be much better:

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

WHERE

Location=’NE’

GO

-- create the index on the view to be used as fulltext key index

CREATE UNIQUE CLUSTERED INDEX idx ON myview(PK)

GO

CREATE fulltext INDEX ON myview(Skills) KEY INDEX idx ON cat1

GO

WHILE fulltextcatalogproperty(‘cat1’,’populatestatus’) <> 0

BEGIN

 WAITFOR DELAY ‘00:00:01’

END

GO

-- note only resulsts are returned where skill=sql and location=ne

SELECT * FROM myview WHERE CONTAINS(Skills,’SQL’)

GO

CreaTInG FuLL-TeXT IndeX-
eS uSInG The WIzard
Microsoft spends millions
consulting with UI design en-
gineers to make their products
as simple and intuitive to use
as possible. SQL FTS is no
exception. Microsoft selected
defaults which provide optimal
performance for most of their
customers. Chances are very
good that the SQL FTS Wizard
will work well for you!

The Wizard is simple to use
and quite intuitive—as long as
you have a vague idea of what
you are doing. However, not all
of the features are exposed in
the Wizards. For a higher de-
gree of control, you should use
the TSQL commands covered
above.

The first step, before you
index tables using the Full-text
Index Wizard in SQL Server
2005 Management Studio, is
to make sure your database has
the feature enabled. To do this,

The SQL FTS Wizard is simple to use and quite intuitive—
as long as you have a vague idea of what you are doing.
For a higher degree of control, you should use the T-SQL
commands covered above.

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

1
connect to your SQL Server in
SQL Server Management Stu-
dio, expand your server node,
expand the databases node,
and right click on your the da-
tabase; select properties; select
the Files tab; and ensure the
“use full-text indexing” check
box is checked.

After this has been done,
right click on the table to full-
text index, and select Full-Text
index. Then select Define Full-
Text Index. After you see the
full-text index splash screen
(click on Next), you are prompt-
ed to select a unique index to
use as the key. The Wizard will
auto detect candidate keys.
This dialog is illustrated in Fig-
ure 1.

Select the appropriate index.
Ideally, choose the narrowest
one which will be as static as
possible. Click on Next.
In the Select Table Columns
dialog box (shown in Figure
2), select the columns to full

FIGure �: SeLeCTInG an IndeX

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

2
text index. Notice that you can
select the word breaker that
SQL Server should use to index
this column. You do not have
to make a language selection if
you want SQL Server to use its
default full-text language set-
ting.

In the table shown in this
example, the document column
is varbinary. Thus, the wizard
does not let you click Next until
you select a Type column. This
is because the column type is
an Image or VarBinary data
type column, and contains a
blob. (We will cover this in
more detail in the next section,
Indexing Blogs.)

Click on Next to select Popu-
lation options, as illustrated in
Figure 3.

Normally, the best option
to choose for change tracking
is “Automatically.” However,
change tracking can cause lock-
ing, so you might want to select
Manual; it does not provide the

FIGure �: SeLeCTInG TabLe CoLuMnS

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�0

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

real time full-text indexing that
change tracking does.

Changes are still tracked, but
the index is only updated when
you specify it. Use the Apply
Tracked Changes menu option,
as shown in Figure 4.

If you select “Do not track
changes,” a full population is
performed as soon as you com-
plete this dialog. However, a full
population can cause locking,
so you might want to delay the
full population to a quiet time.

4

3
FIGure �: The SeLeCT ChanGe TraCkInG dIaLoG boX.

FIGure �: SeLeCTInG appLy
TraCked ChanGeS

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

5
If so, uncheck the “start full
population when index is cre-
ated” check box.

Returning to the Select
Change Tracking dialog box,
click on Next to advance to the
Select a Catalog dialog box, as
illustrated in Figure 5.

In this dialog, click in the
drop down list box to choose
an existing full-text catalog in
which to place your full-text
index. Alternatively, you can
create a new full-text index
by clicking the Create a new
catalog dialog box. This option
allows you to:

Name the catalog,
Select where you want to
place the catalog,
Choose the filegroup in
which you wish to place
the catalog,
Set the newly created
catalog as the default
catalog, and
Set the accent sensitivity.

„

„

„

„

„

FIGure �: SeLeCT a CaTaLoG dIaLoG boX

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

6
When you have selected or

created the catalog to use, click
Next to advance to the next dia-
log box.

This dialog, shown in Fig-
ure 6, allows you to define the
frequency with which your
full-text indexed table should
populated (using the New Table
Schedule button), and how
frequently you wish all tables
in your catalog populated (us-
ing the New Catalog Schedule
button).

With change tracking, you do
not need to define a population
schedule. You only need to do
so if you use the “do not track
changes” option in the Select
Change Tracking dialog illus-
trated in Figure 3.

Click on Next for a summary
page dialog, and then Finish to
build your full-text index. Once
you click Finish, your full-text
index is created. Depending
on the population option you
selected, your population may

FIGure �: The deFIne popuLaTIon SCheduLeS dIaLoG

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

7
FIGure �: FuLL-TeXT IndeX properTIeS be started. You can start query-

ing your full-text indexes mo-
mentarily, but they may not be
completely populated yet.

To check the population
status, right click on the table
in SQL Server Management
Studio and select Full-Text
index and then Properties. You
will see the dialog illustrated in
Figure 7.

To find out how far your pop-
ulation process has progressed,
examine the Table Full-Text
Populate Status column and
the Table Full-Text Docs Pro-
cesses. In this example, the
Table Full-Text Populate Status
reads “none,” indicating that
the population is not active.
Possible values are idle, pro-
cessing, background, and none.

The Table Full-Text Docs Pro-
cessed shows the number of
rows indexed. You can compare
this value with the number of
rows in your table to determine
your population status.

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

IndeXInG bLobS
WITh IFILTerS
As previously mentioned, you
can store documents in their
native format in varbinary(max)
(in SQL 2005) and image (in
SQL 2000 and SQL 2005) data
type columns and have them
indexed. For example, you can
store Word, Excel, or PDF docu-
ments in these columns, and
SQL Server Full-Text will index
them.

You must establish another
column in the table to contain
the extension the document
would have if you were stor-
ing it in the file system; that
is, a Word document could
be stored in the blob, and the
secondary column could store

“doc”. If you do so, you can tell
the full-text index to reference
the file-type column to deter-
mine the document type and
to load the correct iFilter. If you
don’t, the Indexer (actually the
Filter Daemon) will try to index
the contents of the row using
the default (text) iFilter.

Remember: iFilters are COM
components which the In-
dexer uses to extract textual
data from binary file formats,
such as like TIFFs, PDFs, and
Word documents. To get a list
of the iFilters which ship with
SQL Server issue the following
query:

select * from sys.fulltext_
document_types

Remember: iFilters are COM components, which the
Indexer uses to extract textual data from binary file
formats, such as like TIFFs, PDFs, and Word documents.

If the document type to index
is not there, you need to install
it on your SQL Server computer.
For a list of available iFilters,
consult http://www.index-
serverfaq.com/iFilters.htm
Once you acquire the new
iFilters, you need to issue these
two commands so that SQL
Server can use them:

sp_fulltext_service ‘load_os_
resources’

 sp_fulltext_service ‘verify_
signature’, 1

Let’s look at an example. Con-
sider this table:

CREATE TABLE Resumes(PK
int not null identity
constraint ResumesPK
primary key, VarbinaryCol
varbinary(max),
DocExtension varchar(5))

In this table, the Varbinary-
Col holds Word and PDF docu-
ments, and the DocExtension
column holds the document

http://www.indexserverfaq.com/iFilters.htm
http://www.indexserverfaq.com/iFilters.htm
http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

8
extension. I use the varchar(5)
data type; it is wide enough to
hold five characters, and the
varchar datatype ensures that
there is no trailing white space.

Here is the index creation
statement to use:

CREATE FULLTEXT INDEX ON
Resumes (VarBinaryCol TYPE
COLUMN DocExtension)
KEY INDEX ResumesPK ON
catalog_name

When you run this command,
you get the following warning
message in Query Analyzer:

Warning: Table ‘NativeTable’
does not have the option
‘text in row’ enabled and has
full-text indexed columns
that are of type image, text,
or ntext.

Full-text change tracking
cannot track WRITETEXT
or UPDATETEXT operations
performed on these columns.

FIGure �: ConFIGurInG The doCuMenT Type CoLuMn

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

Despite the ominous note of
the warning, this only applies
if you are inserting or updating
your binary data using WRITE-
TEXT or UPDATETEXT.

To full-text index Image or
Varbinary(MAX) data type
columns using the Full-Text
Wizard, you need to specify
the document extension in the
Select Full-Text Table columns,
as illustrated in Figure 8.

Here’s one cool feature: when
you click in the type column,
the columns which could pos-
sibly serve as document type
columns are “auto-sensed.”

The rest of the wizard is iden-
tical to that of other document
types.

XML In FTS
You can create a full-text in-
dex on XML documents if they
are stored in the XML data
type column or in the Image or
Varbinary(Max) columns. You
can query the entire column

looking for XML documents
which contain the search token
you are looking for.

However, real life is some-
what more complex. You may
issue such relational queries
against XML documents, and at
the same time incorporate the
hierarchical features of XML.
This is important, as XML docu-
ments are often very large; they
may contain many elements,
and sometimes even multiple
XML documents in a single col-
umn in a row!

For example, consider this
XML document:

<document>

<book><title>

Search Me: Using SQL Server
Full-Text Search

</title>

 <author title=”Ms”
name=”Hilary Cotter”/>

 <chapter>

 <title>XML</title>

 </chapter>

</book>

</document>

If you were to search XML
you would find this document
in the chapter title. But suppose
you wanted to search on rows
where the chapter title element
contained XML?

A simple contains query like
this one:

Select * from XMLTable
where Contains(*,’XML’)

would return rows which con-
tain the above document, but
also this one:

<document>

<book><title>

The Essential XML

</title>

 <author title=”Ms”
name=”Aaron Skonnard”/>

 <chapter>

 <title>ADO.Net</title>

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

 </chapter>

</book>

</document>

The second document shows
up in the search results because
the Contains operator can’t dis-
tinguish in which XML element
the search term occurs in the
XML document. To restrict which
element contains the search
term, you have to combine SQL
FTS Contains predicates with
XPATH queries. To do this:

Store your XML docu-
ments in columns of the
XML data type
Create an XML Schema on
your XML data type col-
umn

Let’s look at an example. This
example consists of several parts,
in part A we are querying the ta-
ble in relationally. In parts B and C
we combine SQL FTS with XPATH
queries which allow us to incor-
porate the hierarchical aspects of
XML in our full-text queries.

1�

2�

create database FullTextXML

GO

use FullTextXML

GO

--Creating our schema

CREATE XML SCHEMA COLLECTION PlaysSchema AS ‘

<xsd:schema targetNamespace=”http://www.plays.com/plays”

 xmlns =”http://www.plays.com/plays”

 elementFormDefault=”qualified”

 attributeFormDefault=”unqualified”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema” >

<xsd:element name=”plays”><xsd:complexType><xsd:
complexContent>

<xsd:restriction base=”xsd:anyType”><xsd:choice

maxOccurs=”unbounded”><xsd:element name=”folder”>

<xsd:complexType><xsd:complexContent><xsd:restriction

base=”xsd:anyType”><xsd:sequence>

<xsd:element name=”page” minOccurs=”0”

maxOccurs=”unbounded”><xsd:complexType>

<xsd:complexContent><xsd:restriction base=”xsd:anyType”><xsd:
sequence>

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

<xsd:element name=”submitdate” type=”xsd:
string” minOccurs=”0” />

<xsd:element name=”pagetext” type=”xsd:
string” minOccurs=”0” />

</xsd:sequence><xsd:attribute name=”id”
type=”xsd:string”

/></xsd:restriction></xsd:complexContent>

</xsd:complexType></xsd:element></xsd:
sequence><xsd:attribute name=”id”

type=”xsd:string” />

</xsd:restriction></xsd:complexContent></xsd:
complexType></xsd:element></xsÂd:choice></
xsd:restriction>

</xsd:complexContent></xsd:complexType></
xsd:element></xsd:schema>’

GO

--Creating our table

Create Table XMLFULLText (pk int not null
identity constraint XMLFULLTEXTPK

primary key, XMLDOC XML(PlaysSchema))

GO

--inserting a document

--here’s our document

declare @XMLDOC XML

set @XMLDOC =’<plays xmlns=”http://www.
plays.com/plays”> <folder id=”681”><page id=
”3155”> <submitdate>12-10-02</
submitdate>

<pagetext>Horatio says ‘’tis but our fantasy,</
pagetext>

</page>

<page id=”9267”>

<submitdate>09-04-04</submitdate>

<pagetext>And will not let belief take hold of

him</pagetext>

</page>

</folder>

<folder id=”902”>

<page id=”1853”>

<submitdate>22-11-05</submitdate>

<pagetext>Touching this dreaded sight, twice
seen of

us:</pagetext>

</page>

<page id=”8423”>

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

<submitdate>31-05-02</submitdate>

<pagetext>Therefore I have entreated him along</
pagetext>

</page>

</folder></plays>’

--here’s the insert

insert into XMLFULLText (XMLDOC) values(@
XMLDOC)

GO

--creating our full-text index

sp_fulltext_database ‘enable’

GO

create fulltext catalog test as default

GO

create fulltext index on XMLFULLText (XMLDOC)
key index XMLFULLTextPK

GO

--PART A - searching relationally using SQL FTS

select * from XMLFULLText where
contains(*,’belief’)

GO

--1 row returned.

--OK, let’s make this a little more interesting

GO

--adding another document – this time belief
occurs in a

--different element

declare @XMLDOC XML

set @XMLDOC =’<plays xmlns=”http://www.plays.
com/plays”> <folder id=”681”>

<page id=”3155”>

<submitdate>12-10-02</submitdate>

<pagetext>Horatio says ‘’tis but our

fantasy,</pagetext>

</page>

<page id=”9267”>

<submitdate>09-04-04</submitdate>

<pagetext>And will not let beliefs take hold of

him</pagetext>

</page>

</folder>

<folder id=”902”>

<page id=”1853”>

<submitdate>22-11-05</submitdate>

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

�0

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

<pagetext>Touching this dreaded sight, twice
seen of

us:</pagetext>

</page>

<page id=”8423”>

<submitdate>31-05-02</submitdate>

<pagetext>Therefore I have entreated him
along</pagetext>

</page>

</folder>

</plays>’

--inserting a new document

insert into XMLFULLText (XMLDOC) values(@
XMLDOC)

GO

select * from XMLFULLText where
CONTAINS(*,’belief’)

GO

--1 row returned.

select * from XMLFULLText where
FREETEXT(*,’belief’)

GO

--2 row returned. lement

--PART B - searching combining Full-Text with
XPath

--combining SQL FTS queries with xpath to
search only the submitdate element

WITH XMLNAMESPACES (‘http://www.plays.
com/plays’ AS pd)

SELECT pk,*

FROM XMLFulltext

where contains(XMLDOC, ‘belief’)

and

xmldoc.exist(‘/pd:plays[1]/pd:folder[1]/pd:
page[1]/pd:submitdate[contains(.,”belief”)]’)=1

GO

--Part C - combining SQL FTS queries with xpath
to search only the pagetext element

WITH XMLNAMESPACES (‘http://www.plays.
com/plays’ AS pd)

SELECT pk,*

FROM XMLFulltext

where contains(XMLDOC, ‘belief’)

and

xmldoc.exist(‘/pd:plays[1]/pd:folder[1]/pd:

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

page[2]/pd:pagetext[contains(.,
”belief”)]’)=1

GO

noISe WordS and
The TheSauruS opTIon
Noise words are words which oc-
cur frequently in text but are not
useful in searches. These include
personal pronouns, such as my,
her, his; articles the, is, at; and
also words specific to a business,
such as the company name. Con-
sider searching on the Microsoft
Web site for Microsoft; Microsoft
is on each page at least once. If
you were designing Microsoft’s
databases, the word Microsoft
would not help anyone find use-
ful data, so it is considered to
be noise. In another context,
of course — such as your own
company’s accounts payables
database — it certainly would
have relevance.

You can add or remove noise
words from the default noise
word lists, which are stored in
a group of files in the directory

C:\Program Files\Microsoft SQL
Server\MSSQL.X\MSSQL\FTData.
Table 2 illustrates the noise word
file and which language applies
to it.

If you search on a word which
is in your noise word list you get
the following error:

Informational: The full-text
search condition contained
noise word(s).

pk charcol

----------- --------------------

(0 row(s) affected)

You can disable this behavior
by clearing the noise word list
and rebuilding your catalog, or by
issuing the following commands:

sp_configure ‘show advanced
options’, 1

RECONFIGURE

GO

sp_configure ‘transform noise
words’, 1

filename language
NoiseCHS.txt Chinese Simplified

NoiseCHT.txt Chinese Traditional

noiseDAN.txt Danish

noiseDEU.txt German

noiseENG.txt International English

noiseENU.txt United States English

noiseESN.txt Spanish

noiseFRA.txt French

noiseITA.txt Italian

noiseJPN.txt Japanese

noiseKOR.txt Korean

noiseNEU.txt Neutral

noiseNLD.txt Dutch

noisePLK.txt Polish

noisePTB.txt Portuguese - Brazilian

noisePTS.txt Portuguese – Iberian

noiseRUS.txt Russian

noiseSVE.txt Swedish

noiseTHA.txt Thai

noiseTRK.txt Turkish

TabLe �: noISe Word FILeS and
TheIr reSpeCTIve LanGuaGeS

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

RECONFIGURE

GO

If a word occurs too frequent-
ly in your text and is not helpful
in resolving queries (as with
our example of Microsoft on the
Microsoft Web site), you can
add it to your noise word list,
and it will no longer be indexed.
You must restart MSFTESQL
before the noise word changes
take effect.

Another option you have in
word control is the thesaurus.
The thesaurus option allows
you to expand your search term
to synonyms (words which
have similar meanings to an-
other word). For example, you
could use the thesaurus option
to indicate that a search on col-
or should also search on colour.
This is termed an expansion.

You can also replace a word
using the replacement feature;
such as when you want the
word sex to be replaced by a
search for gender.

The thesaurus option is au-
tomatic using the FreeText
predicate, but you can also use
the Contains predicate with the
FormsOf operator, like this:

Select * from Mytable where
Contains(*,’formsof(thesauru
s,’’test’’)’)

The thesaurus files are locat-
ed in C:\Program Files\Micro-
soft SQL Server\MSSQL.X\MS-
SQL\FTdata. Table 3 shows a
list of each language file.

A thesaurus file stores the
data in XML, and looks like this:

<XML ID=”Microsoft Search
Thesaurus”>

<!-- Commented out
 <thesaurus xmlns=”x-

schema:tsSchema.xml”>
 <diacritics_sensitive>0</

diacritics_sensitive>
 <expansion>
 <sub>Internet Explor-

er</sub>
 _{IE}
 _{IE5}

filename language
tsCHS.xml Chinese Simplified

tsCHT.xml Chinese Traditional

tsDAN.xml Danish

tsDEU.xml German

tsENG.xml International English

tsENU.xml United States English

tsESN.xml Spanish

tsFRA.xml French

tsGLOBAL.xml Global: entries here are
effective in all languages

tsITA.xml Italian

tsJPN.xml Japanese

tsKOR.xml Korean

tsNLD.xml Dutch

tsPLK.xml Polish

tsPTB.xml Portuguese - Brazilian

tsPTS.xml Portuguese – Iberian

tsRUS.xml Russian

tsSVE.xml Swedish

tsTHA.xml Thai

tsTRK.xml Turkish

TabLe �: TheSauruS FILeS naMeS
and TheIr LanGuaGeS

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

 </expansion>
 <replacement>
 <pat>NT5</pat>
 <pat>W2K</pat>
 <sub>Windows 2000</

sub>
 </replacement>
 <expansion>
 _{run}
 _{jog}
 </expansion>
 </thesaurus>
-->
</XML>:
To use the thesaurus option,

remove the comment tags. In
this example, Internet Explorer
has the expansions to IE and
IE5. A search on Internet Explor-
er will return Internet Explorer,
IE and IE5. A search on IE re-
turns results that include IE, In-
ternet Explorer, and IE5. You can
define your own expansions by
wrapping substitutions in an
expansion tag. Wrap substitu-
tions in a sub tag.

To create a replacement,

wrap the replacement in a
replacement tag, each pattern
you want replaced by a pat tag,
and then wrap the replacement
with a sub tab.

Note the diacritic sensitive
tag (<diacritics_sensitive>0</
diacritics_sensitive>). Set-
ting this to a value of 1 tells
SQL Server to be insensitive
to accents when applying the
thesaurus. Assuming that you
want cafŽ replaced by coffee,
your replacement tag looks like
this:

 <replacement>
 <pat>cafŽ</pat>
 _{coffee}
 </replacement>
If the diacritics_sensitive set-

ting is 0, the word cafe would
not be replaced by coffee; but
cafŽ would be.

TeSTInG FuLL-TeXT SearCh
IMpLeMenTaTIonS
Once you create your full-text
index and populate your cata-
logs, you can test your solution
by issuing full-text queries.

By now, you should be famil-
iar with the basic types of que-
ries. Here is an example:

Select * from TableName
where contains(*,’test’)

Where you know the word
“test” is in your content. Fur-
ther coverage of the search SQL
syntax will be covered in an-
other ebook.

SearCh
If the above query does not
return any results or it give you
results you didn’t expect, check
the following:

Ensure full text in installed.
Issue the below query:

SELECT fulltextserviceproper
ty(‘IsFulltextInstalled’)

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

A value of 1 means it is in-
stalled.

Then check the status of your
population. First, verify your
catalog name. The easiest way
to do this is to issue this query
to determine the catalogs are in
your database:

sp_help_fulltext_catalogs

and then check to see which
table your catalog is in. To do
this, issue this query:

sp_help_fulltext_tables

Next, check the catalog
population state and finally the
status of the population of your

table. Use the following com-
mands to do this:

--the number of documents
in the catalog CatalogName
select FULLTEXTCATALOG-
PROPERTY(‘ CatalogName’,’it
emcount’)
--the population status of
the catalog CatalogName
select FULLTEXTCATALOG-
PROPERTY(‘ CatalogName’,’P
opulateStatus’)
--the number of unique
words indexes in the catalog
CatalogName
select FULLTEXTCATALOG-
PROPERTY(‘ CatalogName’,’U
niqueKeyCount’)
--the number of rows pro-
cessed in the table you are
full-text indexing. In this
case the table is called full-
text
select
OBJECTPROPERTYEX(object_i
d(‘fulltext’),’TableFulltextDoc
sProcessed’)

--the status of the full-text
population of the table full-
text
select
OBJECTPROPERTYEX(object_i
d(‘fulltext’),’TableFulltextPop
ulateStatus’)
SQL FTS keeps a log of the

population in C:\Program Files\
Microsoft SQL Server\MSSQL.
X\MSSQL\Log. The log nam-
ing convention is +db_id()+
0000X.log.Y where db_id() is
your database id. X is an identi-
fier corresponding to the num-
ber of full-text catalogs in your
database, and Y is the log ver-
sion number.

The log file is plain text and
can be read by any text editor.
Use the error messages logged
in that file to help you diagnose
the problem.

opTIMIzInG FuLL-TeXT
SearCh
SQL FTS offers orders of mag-
nitude performance advantages

øThe log file is plain text
and can be read by any
text editor. Use the error
messages logged in that
file to help you diagnose
the problem.

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

querying over the like operator.
However, it does cause some
performance degradation,
especially while indexing, and
can cause locking on live tables.
Querying also can be problem-
atic, and we have covered some
of the techniques you can use
to offer better querying perfor-
mance above.

The bulk of the next section
covers how to improve indexing
speed so that you can deliver
a search solution which has
minimal performance impact on
your SQL Server, and everyone

comes running and say “Wow,
performance is great, what did
you do?”

There are several factors
to deliver an optimal full-text
search solution.

arChITeCTure
Avoid using the Image or Varbi-
nary data type columns for your
content; binary content indexes
slower than does pure text con-
tent . When possible, convert
all content to text, and store the
data in the varchar(max) data
type columns.

If you have a large table,
break the table into parti-
tions, and dedicate a separate
catalog to each partition. With
partitioned tables (not to be
confused with table partition-
ing) you can now issue full-text
queries across linked servers.
That is, if you issue a full-text
query against a remote server,
the processing is performed on
that remote server, and then the

results are sent back to the call-
ing server.

SQL FTS does not take ad-
vantages of table partitioning
as the full-text queries do not
align themselves with the table
partitions, but if you do break
large monolithic tables into
smaller tables, you will notice
radical performance increase in
your full-text querying. Another
advantage is that if only one of
your partition tables is live (i.e.
undergoing inserts, update, and
deletes), the other partitions
can be set with change tracking
off, which frees up more re-
sources for your SQL Server.

hardWare
Use the fastest disk subsystem
for your catalogs. Ideally, use a
RAID 10 array on its own con-
troller. SQL FTS benefits from
multiple processors, preferably
four or more. 64-bit hardware
also offers substantial perfor-
mance benefits.

“ When possible,
convert all content
to text, and store
the data in the
varchar(max) data
type columns.”

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

envIronMenT
Here are some environment
tips that you can use to config-
ure your SQL Server or optimal
performnace:

Dedicate a least 512MB
to 1GB of RAM to MSFT-
ESQL by setting max serv-
er memory to 1GB less
than installed memory.
Set Resource Usage to
run at 5 to give a per-
formance boost to the
indexing process (sp_full-
text_service ‘resource_us-
age’,5).
Set ft crawl bandwidth
(max) and ft notify band-
width (max) to 0.
Set max full-text crawl
range to the number of
CPUs on your system.

Use sp_configure to perform
these changes.

baCkInG up SQL
FTS CaTaLoGS
As mentioned previously, in

„

„

„

„

SQL 2005, full-text catalogs are
stored with a backup and with
the database files if you detach
them. This offers considerable
advantages, as building the
catalogs can be a time-consum-
ing processes.

In SQL 2000, the catalogs re-
main in the file system. This Mi-
crosoft Knowledgebase article
details the process necessary to
backup and restore your full-
text catalogs http://support.
microsoft.com/kb/240867/

SuMMary
I hope you leave this article
with a good understanding of
SQL FTS. It’s a hugely powerful
feature that can improve both
the performance of your data-
bases and the quality of results
for the end-user.

Central to your understanding
should be that SQL FTS builds
an index just like the one you
find at the back of most books,
so you can find all rows which

contain a word or a term. You
should also know, by now, when
and where to use change track-
ing (use it all the time, except
when the bulk of your content
changes at regular intervals),
over full or incremental popu-
lations. You should also know
that when your search solution
gets big, it’s time to limit your
results set and to think about
partitioning your tables.

With the Internet we now
have global markets, so it’s
more important than ever to
find better ways to communi-
cate and to find information.
Most importantly, you should
be able to deliver an optimal
search solution that offers ex-
tremely fast performance.

Happy searching, I hope you
find what you are looking for!

http://support.microsoft.com/kb/240867/
http://support.microsoft.com/kb/240867/
http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

Hilary Cotter has been involved in IT for
more than 20 years as a Web and database
consultant. Microsoft first awarded Cotter the
Microsoft SQL Server MVP award in 2001.
Cotter received his bachelor of applied science
degree in mechanical engineering from the
University of Toronto and studied economics
at the University of Calgary and computer
science at UC Berkeley. He is the author of a
book on SQL Server transactional replication
and is currently working on
books on merge replication and
Microsoft search technologies.

Ø
about the author

SQL FTS is a hugely
powerful feature that
can improve both the
performance of your
databases and the
quality of results for the
end-user.

Remember these
guidelines when
using SQL FTS:

• Always use change tracking
over full or incremental
populations, except, when
the bulk of your content
changes at regular intervals.

• When your search solution
gets big, limit your results
set and partition your tables.

Enjoy your new fast
performing, optimal search
solution.

http://www.searchsqlserver.com

SearchSQLServer.com Search me: using SQL server full-text search

��

FTS
advantages

Create a full-text
catalog

Tables using
T-SQL

Indexes using the
Wizard

XML
in FTS

Testing
FTS

Additional Resources from Dell

Ø System of Excellence: IT Infrastructure Keeps the Kenton School System at the Head of the Class
www.dell.com/sql

Ø SQL Server 2005: Preparing for a Smooth Upgrade
http://www.dell.com/downloads/global/power/ps1q06-20060126-Microsoft.pdf

Ø Maximizing SQL Server Performance
http://www.dell.com/downloads/global/power/ps4q05-20050272-Symantec.pdf

Ø The Scalable Enterprise Technology Center
http://www.dell.com/content/topics/global.aspx/power/en/setc?c=us&cs=555&l=en&s=biz

Ø Microsoft SQL Server 2005 Virtualization
http://www.dell.com/downloads/global/power/ps4q06-20060405-Muirhead.pdf

Ø The Definitive Guide to Scaling Out SQL Server 2005
http://www.dell.com/content/topics/global.aspx/alliances/en/ebook_landing?c=us&cs=555&l=en&s=biz

http://www.searchsqlserver.com

	p1 tt sql 2:
	nextpage 2:
	Button 69:
	prevpage:
	Page 2: Off
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:

	nextpage:
	Page 2: Off
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:

	Button 68:
	Page 2: Off
	Page 3:
	Page 4:
	Page 7:
	Page 8:
	Page 9:
	Page 10:
	Page 11:
	Page 12:
	Page 13:
	Page 14:
	Page 15:
	Page 16:
	Page 17:
	Page 18:
	Page 19:
	Page 20:
	Page 21:
	Page 22:
	Page 23:
	Page 24:
	Page 25:
	Page 26:
	Page 27:
	Page 28:
	Page 29:
	Page 30:
	Page 31:
	Page 32:
	Page 33:
	Page 34:
	Page 35:
	Page 36:
	Page 37:
	Page 38:

	prevpage 1:
	nextpage 1:
	prevpage 3:
	Page 5: Off
	Page 6:

	nextpage 3:
	Page 5: Off
	Page 6:

