
Smith Book November 1, 2007 3:3

16Hardware-Based Security

We worry about computer security because important social processes keep
migrating to distributed computerized settings. When considering security, it’s im-
portant to take a holistic view—because we care about the security of the social
process itself, not only some component. However, in this chapter, we take a reduc-
tionist point of view and look at one of the components in particular: the hardware.

Historically, probably the main path toward thinking about hardware security
came from considering the protection of computation from adversaries with direct
physical access to the computing machinery. We’ve always liked framing this ques-
tion in terms of dependency. Alice’s interests may depend on certain properties of
computation X—perhaps integrity of its action or confidentiality of some key pa-
rameters. However, if X occurs on Bob’s machine, then whether these properties
hold may depend on Bob. For example, if Bob’s machine is a standard PC and Bob
is root, then he pretty much has free reign over X. He can see and modify data
and code at will. As a consequence, preservation of Alice’s interests depends on the
behavior of Bob, since Bob could subtly subvert the properties that Alice depends
on. These circumstances force Alice to trust Bob, whether or not she wants to. If
Bob’s interests do not coincide with Alice’s, this could be a problem.

This main path—reducing Alice’s dependency by modifying Bob’s computer—
leads to several lines of inquiry. The obvious path is using hardware itself to
protect data and computation. Another path toward thinking about hardware se-
curity comes from considering that computing hardware is the underlying physical

411

Smith Book November 1, 2007 3:3

412 Hardware-Based Security

environment for computation. As such, the nature of the hardware can directly in-
fluence the nature of the computation it hosts. A quick glance at BugTraq [Sec06]
or the latest Microsoft security announcements suffices to establish that deploying
secure systems on conventional hardware has proved rather hard. This observation
raises another question: If we changed the hardware, could we make it easier to
solve this problem?

In this chapter, we take a long look at this exciting emerging space.

• Section 16.1 discusses how memory devices may leak secrets, owing to
physical attack.

• Section 16.2 considers physical attacks and defenses on more general
computing devices.

• Section 16.3 reviews some larger tools the security artisan can use when
considering the physical security of computing systems.

• Section 16.4 focuses on security approaches that change the hardware
architecture more fundamentally.

• Section 16.5 looks at some future trends regarding hardware security.

(The first author’s earlier book [Smi04c] provides a longer—but older—discussion
of many of these issues. Chapter 3 in particular focuses on attacks.)

16.1 Data Remanence
One of the first challenges in protecting computers against adversaries with direct
physical contact is protecting the stored data. Typically, one sees this problem framed
as how a device can hide critical secrets from external adversaries, although the true
problem is more general than this, as we discuss later. Potential attacks and defenses
here depend on the type of beast we’re talking about.

We might start by thinking about data remanence: what data an adversary might
extract from a device after it has intended to erase it.

16.1.1 Magnetic Media
Historically, nonvolatile magnetic media, such as disks or once ubiquitous tapes,
have been notorious for retaining data after deletion. On a physical level, the con-
tents of overwritten cells have been reputed to be readable via magnetic-force mi-
croscopy; however, a knowledgeable colleague insists that no documented case exists
for any modern disk drive. Nonetheless, researchers (e.g., [Gut96]) and government
standards bodies (e.g., [NCS91]) have established guidelines for overwriting cells

Smith Book November 1, 2007 3:3

16.1 Data Remanence 413

in order to increase assurance that the previously stored data has been destroyed.
(The general idea is to write a binary pattern, then its complement, then repeat
many times.)

A complicating factor here is the existence of many layers of abstraction between
a high-level request to delete data and what actually happens on the device in
question. In between, many things could cause trouble.

• For example, a traditional filesystem usually breaks a file into a series of
chunks, each sized to occupy a disk sector, and distributes these chunks on the
disk according to various heuristics intended to improve performance. Some
type of index table, perhaps in a sector of its own, indicates where each chunk
is. In such a system, when the higher-level software deletes or even shrinks a
file, the filesystem may respond by clearing that entry in that file’s index table
and marking that sector as “free.” However, the deleted data may remain on
the disk, in this now-free sector. (Issues such as this led to the object reuse
worries of the Orange Book world of Chapter 2.)

• Journaling filesystems, a more advanced technology, make things even worse.
Journaling filesystems treat the disk not as a place to store files so much as a
place to store a log of changes to files. As with Word’s Fast Save option (see
Chapter 13), the history of edits that resulted in a file’s current state may be
available to the adversary inspecting the disk itself.

• Computing hardware has seen a sort of trickle-down (or perhaps smarting-
down) effect, whereby traditionally “dumb” peripherals now feature their
own processors and computing ability. Disk controllers are no exception to
this trend, leading to yet another level of abstraction between the view the
computing system sees and what actually happens with the physical media.

16.1.2 FLASH
In recent years, semiconductor FLASH memory (e.g., in USB thumbdrives) has
probably become more ubiquitous than magnetic media for removable storage.
FLASH is also standard nonvolatile storage in most embedded devices, such as cell
phones and PDAs. The internal structure of a FLASH device is a bit more complex
than other semiconductor memories (e.g., see [Nii95]). FLASH is organized into
sectors, each usually on the order of tens or hundreds of kilobytes. When in “read”
mode, the device acts as an ordinary ROM. To write a sector, the system must put
the FLASH device into write mode, which requires writing a special sequence of
bytes, essentially opcodes, to special addresses in the FLASH device. Typically, the
stored bits can be written only one way (e.g., change only from 0 to 1). To erase a

Smith Book November 1, 2007 3:3

414 Hardware-Based Security

sector (e.g., clearing all the bits back to 0), another sequence of magic bytes must
be written. Often, FLASH devices include the ability to turn a designated sector
into ROM by wiring a pin a certain way at manufacture time.

FLASH gives two additional challenges for system implementers. First, writing
and erasing sectors both take nontrivial time; failure, such as power interruption,
during such an interval may lead to undetermined sector corruption. Second, each
FLASH cell has a relatively small (e.g., 10,000) lifetime of erase-write cycles.

These technical limitations lead to incredible acrobatics when designing a
filesystem for FLASH (e.g., [GT05, Nii95]). In order to avoid wearing out the
FLASH sectors, designers will use data structures that selectively mark bits to indi-
cate dirty bytes within sectors and rotate usage throughout the sectors on the device.
For fault tolerance, designers may try to make writes easy to undo, so that the old
version of a file can be recovered if a failure occurs during the nontrivial duration
of a write. Even relatively simple concepts, such as a directory or index table, get
interesting—if you decide to keep one, then you’ll quickly wear out that sector, even
if you’re clever with the rest of the files.

FLASH architecture has several consequences for security.

• Because of these log-structured and fault-tolerant contortions, old data may
still exist in the device even if the higher levels of the system thought it was
erased.

• Because an error in a product’s ROM can be expensive, at least one vendor
includes an undocumented feature to rewrite the ROM sector by writing a
magic series of bytes to the chip. (The complexity of the legitimate magic-byte
interface makes it hard to otherwise discover such back doors.)

• Because of the large market demand for low-cost thumbdrives and the
smarting down of computation into peripherals, much engineering has gone
into commercial FLASH drives, leading to a gap between even the API the
encapsulated device provides and the internal state.

16.1.3 RAM
Random-access memory (RAM) is the standard medium for memory during active
computation. Dynamic RAM (DRAM) stores each bit as an electrical charge in
a capacitor. Since these charges tend to be short-lived, data remanence is not as
much of an issue here. This short lifetime leads to additional functionality: The
devices need to continually read and restore the charges, before they decay. (One
wonders whether this continual processing of stored data might lead to side-channel
exposures.) However, the capacitors do not take much real estate on the chip;

Smith Book November 1, 2007 3:3

16.2 Attacks and Defenses 415

as a consequence, DRAM tends to be favored when large amounts of memory are
required.

In contrast, static RAM (SRAM) stores each bit via the state in a flip-flop, a small
collection of logic gates. This approach takes more real estate but does not require
the extra functionality and its extra power. As a consequence, when a device needs
memory with the properties of RAM (e.g., none of this sector business) but otherwise
nonvolatile, it may end up using battery-backed SRAM, which is sometimes referred
to as BBRAM.

SRAM, however, is not without remanence issues. Long-term storage of the
same bits can cause memory to imprint those values and retain them even after
power-up. Environmental factors, such as cold temperatures and radiation, can also
cause imprinting. (Gutmann [Gut01] and Weingart [Wei00] both provide more
discussion of these issues.)

16.1.4 The System
So far, we’ve discussed properties of the memory medium itself. However, the mem-
ory is embedded in the context of a larger system, and this larger context can lead
to issues. For example, at many levels in the software stack, software optimization
might decide that a write to a data location that will no longer be used is unnecessary
and silently eliminate it. This can undo a programmer’s efforts to clear sensitive data.
Researchers at Stanford recently used a form of virtualization (see Section 16.4.2)
to explore this issue of data lifetime in the context of an entire system—and uncov-
ered many surprising cases of data living longer than the designers or programmers
intended or believed [CPG+04].

16.1.5 Side Channels
Devices that instantiate computation in the real world must exist as physical ma-
chines in the real world. Because of this physical existence, computational actions
the device takes can result in real-world physical actions that the designer can easily
fail to foresee but that an adversary can exploit. We discussed many examples of
this in Section 8.4.

16.2 Attacks and Defenses
16.2.1 Physical Attacks
So far, we’ve discussed how a computing device may or may not keep secrets from
an adversary with physical access. We now discuss some ways an adversary may use
physical access to mount an attack. To start with, we might consider the security

Smith Book November 1, 2007 3:3

416 Hardware-Based Security

perimeter: what the designers regarded as the boundary between the internal trusted
part of the system and the external part under the potential control of the adversary.

Individual Chips. Perhaps the first model to consider is the single trusted chip.
The designer/deployer wants to trust the internal operation of the chip, but the
adversary controls the outside. Over the years, this model has received perhaps the
most attention—in the public literature, anyway—owing to the long and widespread
use of low-cost chip cards—often considered synonymous with smart cards—in com-
mercial applications, such as controlling the ability to make telephone calls or to
view licensed satellite TV. The ubiquity creates a large community of adversaries;
the applications give them motivation; and the cost makes experimentation feasible.

The work of Anderson and Kuhn provides many nice examples of attack tech-
niques on such single-chip devices [AK96, AK97]. Perhaps the most straightforward
family of attacks are the many variations of “open up the device and play with it.”
Various low-cost lab techniques can enable the adversary to open up the chip and
start probing: reading bits, changing bits, resetting devices back to special factory
modes by re-fusing fuses, and so on. Historically, we’ve seen a cycle here.

• The vendor community claims that such attacks are either not possible or are
far too sophisticated for all but high-end state-sponsored adversaries.

• The adversary community demonstrates otherwise.

• The vendor community thinks a bit, reengineers its defense technology, and
the loop repeats.

It’s anyone’s guess where we will be in this cycle—and whether the loop will
keep repeating—when this book is published.

By manipulating the device’s environment, the adversary can also use more
devious ways to influence the computation of such devices. For an amusing and
effective example of attacks, we refer back to Anderson and Kuhn. The device
may execute an internal program that brings it to a conditional branch instruc-
tion. Let’s say that the device compares a register to 0 and jumps to a different
address if the two are equal. However, in typical chip card applications, the de-
vice obtains its power from an outside source. This means that the adversary can
deviously manipulate the power, such as by driving it way out of specification. Gen-
erally speaking, the CPU will not function correctly under such conditions. If the
adversary applies such a carefully timed spike at the moment the device is executing
this comparison instruction, the adversary can cause the CPU to always take one
direction of the branch—whether or not it’s correct. Finding examples where such

Smith Book November 1, 2007 3:3

16.2 Attacks and Defenses 417

an attack lets the adversary subvert the correctness of the system is an exercise for
the reader.

In some sense, such environmental attacks are the flip side of side-channel at-
tacks. Rather than exploiting an unexpected communication path coming out of
the device, the adversary is exploiting an unexpected communication path going
into it. Another example of this family of attack is differential fault analysis (DFA),
sometimes also known as the Bellcore attack. Usually framed in the context of a chip
card performing a cryptographic operation, this type of attack has the adversary
somehow causing a transient hardware error: for example, by bombarding the chip
with some kind of radiation and causing a gate to fail. This error then causes the
chip to do something other than the correct cryptographic operation. In some situ-
ations, the adversary can then derive the chip’s critical secrets from these incorrect
results.

Bellcore attacks were originally suggested as a theoretical exercise (e.g.,
[BDL97]). However, they soon became a practical concern (e.g, [ABF+03]), to
the point where countermeasures became a serious concern. How does one design
a circuit to carry out a particular cryptographic operation but that also doesn’t yield
anything useful to the adversary if a transient error occurs? Some researchers have
even begun formally studying this model: how to transform a circuit so that an adver-
sary who can probe and perhaps alter the state of a limited subset of wires still cannot
subvert the computation [ISW03]. We touch on these attacks again in Section 16.5.

Larger Modules. Multichip modules provide both more avenues for the attacker
and more potential for defense.

Getting inside the chassis is the first step. Here we see another cat-and-mouse
game, featuring such defenses as one-way bolt heads and microswitches on service
doors, and corresponding counterattacks, such as using a pencil eraser as a drill bit
or putting superglue on the microswitch after drilling through the door.

An attacker who can get inside the chassis might start monitoring and manip-
ulating the connections on the circuit boards themselves. The attacker might hook
logic analyzers or similar tools to the lines or insert an interposer between a memory
or processor module and the circuit board, allowing easy monitoring and altering
of the signals coming in and out. Other potential attacks misusing debugging hooks
include using an in-circuit emulator (ICE) to replace a CPU and using a JTAG port
to suspend execution and probe/alter the internal state of a CPU.1

1. JTAG stands for Joint Test Action Group, but that’s not important. What is important is that the
name denotes an industry standard for physical interfaces to ease testing of hardware.

Smith Book November 1, 2007 3:3

418 Hardware-Based Security

The attacker might also exploit properties of the internal buses, without actually
modifying hardware. For one example, the PCI bus includes a busmastering feature
that allows a peripheral card to communicate directly with system memory, without
bothering the CPU. Intended to support direct memory access (DMA), occasionally
a desirably form of I/O, busmastering can also support malicious DMA, through
which a malicious PCI card reads and/or writes memory and other system resources
illicitly.

API Attacks. When focusing on these subtle ways that an adversary might access
secrets by sneakily bypassing the ways a system might have tried to block this access,
it’s easy to overlook the even more subtle approach of trying to use the front door
instead. The APIs that systems offer through which legitimate users can access data
are becoming increasingly complex. A consequence of this complexity can be extra,
unintended functionality: ways to put calls together that lead to behavior that should
have been disallowed. Bond and Anderson made the first big splash here, finding
holes in the API for the Common Cryptographic Architecture (CCA) application that
IBM offered for the IBM 4758 platform [BA01]. More recently, Jonathan Herzog
has been exploring the use of automated formal methods to discover such flaws
systematically [Her06].

16.2.2 Defense Strategies
As with attacks, we might start discussing defenses by considering the trust perime-
ter: what part of the system the designer cedes to the adversary.

Chips. As we observed earlier, attacks and defenses for single-chip modules have
been a continual cat-and-mouse game, as vendors and adversaries take turns with
innovation. In addition, some new techniques and frameworks are beginning to
emerge from academic research laboratories. Researchers have proposed physical
one-way functions: using a device’s physical properties to embody functionality that,
one hopes, cannot be accessed or reverse engineered any other way. The intention
here is that an adversary who tries to use some type of physical attack to extract
the functionality will destroy the physical process that generated the functionality
in the first place.

In an early manifestation of this concept, researchers embedded reflective ele-
ments within a piece of optical-grade epoxy [PRTG02]. When entering this device,
a laser beam reflects off the various obstacles and leaves in a rearranged pattern.
Thus, the device computes the function that maps the input consisting of the laser

Smith Book November 1, 2007 3:3

16.2 Attacks and Defenses 419

angle to the output consisting of the pattern produced by that input. Since the
details of the mapping follow randomly from the manufacturing process, we call
this a random function: the designer cannot choose what it is, and, one hopes, the
adversary cannot predict its output with any accuracy, even after seeing some rea-
sonable number of x, f (x) pairs. (Formalizing and reasoning about what it means
for the function to resist reverse engineering by the adversary requires the tools of
theoretical computer science—recall Section 7.1 or see the Appendix.)

It’s hard to use these bouncing lasers in a computing system. Fortunately,
researchers [GCvD02] subsequently explored silicon physical random functions
(SPUF), apparently from the earlier acronym silicon physical unknown functions.
The central idea here is that the length of time it takes a signal to move across
an internal connector depends on environmental conditions, such as temperature
and, one hopes, on random manufacturing variations. If we instead compare the
relative speed of two connectors, then we have a random bit that remains constant
even across the environmental variations. Researchers then built up more elaborate
architectures, starting with this basic foundation.

Outside the Chip. Even if we harden a chip or other module against the adversary,
the chip must still interact with other elements in the system. The adversary can
observe and perhaps manipulate this interaction and may even control the other
elements of the system. A number of defense techniques—many theoretical, so far—
may apply here. However, it’s not clear what the right answer is. Figuring out the
right balance of security against performance impact has been an area of ongoing
research; many of the current and emerging tools we discuss later in this chapter
must wrestle with these design choices.

For example, suppose that the device is a CPU fetching instructions from an
external memory. An obvious idea might be to encrypt the instructions and, of
course, check their integrity, in order to keep the adversary from learning details of
the computation. Although perhaps natural, this idea has several drawbacks. One
is figuring out key management: Who has the right to encrypt the instructions in
the first place? Another drawback is that the adversary still sees a detailed trace of
instruction fetches, with only the opcodes obfuscated. However, there’s nothing like
the real thing—the most damning indictment of this technique is the way Anderson
and Kuhn broke it on a real device that tried it [AK96].

We might go beyond this basic idea and think about using external devices
as memory, which makes sense, since that’s where the RAM and ROM will likely
be. What can the adversary do to us? An obvious attack is spying on the memory

Smith Book November 1, 2007 3:3

420 Hardware-Based Security

contents; encryption can protect against this, although one must take care with
using initialization vectors (IVs) or clever key management to prevent the same
plaintext from going to the same ciphertext—or the same initial blocks from going
to the same initial blocks. (Note, however, that straightforward use of an IV will
cause the ciphertext to be one block larger than the plaintext, which might lead to
considerable overhead if we’re encrypting on the granularity of a memory word.)

Beyond this, two more subtle categories of attacks emerge:

1. Learning access patterns. The adversary who can see the buses or the memory
devices can see what the trusted chip is touching when. One potential
countermeasure here lies in aggregation: If it has sufficient internal storage,
the chip can implement virtual memory and cryptopage to the external
memory, treated as a backing store [Yee94].

The world of crypto and theory give us a more thorough and expensive
technique: oblivious RAM (ORAM) [GO96]. In a basic version, the trusted
device knows a permutation π of addresses. When it wants to touch location
i1, the device issues the address π (i1) instead. If it only ever touches one
address, then this suffices to hide the access pattern from the adversary. If it
needs to then touch an i2, then the device issues π (i1) and then π (i2)—
unless, of course, i2 = i1, in which case the device makes up a random i ′

2 and
issues π (i ′

2) instead. The adversary knows that two addresses were touched
but doesn’t know which two they were or even whether they were distinct.
To generalize this technique, the device must generate an encrypted shuffle of
the external memory; the kth fetch since the last shuffle requires touching k
memory addresses. (One might wonder whether we could turn around and
use the same technique on the k fetches—in fact, Goldreich and Ostrevsky
came up with an approach that asymptotically costs O(log4 n) per access.)

2. Freshness of contents. Earlier, we mentioned the obvious attack of spying on
the stored memory and the obvious countermeasure of encrypting it.
However, the adversary might also change memory, even if it’s encrypted. An
effective countermeasure here is less obvious. Naturally, one might think of
using a standard cryptographic integrity-checking technique, such as hashes
or MACs, although doing so incurs even more memory overhead. However, if
the device is using the external memory for both writing and reading, then we
have a problem. If we use a standard MAC on the stored data, then we can
replace the MAC with a new value when we rewrite the memory. But then
nothing stops the adversary from simply replacing our new value-MAC pair

Smith Book November 1, 2007 3:3

16.2 Attacks and Defenses 421

with an older one! We could stop this attack by storing some per location
data, such as the MAC, inside the trusted device, but then that defeats the
purpose of using external memory in the first place.

Two techniques from the crypto toolkit can help here. One is the use of
Merkle trees (recall Section 7.6 and Figure 7.19). Rather than storing a per
location hash inside the trusted device, we build a Merkle tree on the hashes
of a large set of locations and store only the root inside the device. This
approach saves internal memory but at the cost of increased calculation for
each integrity/freshness check. Another idea is to use incremental multiset
hashing, a newer crypto idea, whereby the device calculates a hash of the
contents of memory—“multiset”—but can do so in an incremental fashion.
(Srini Devadas’ group at MIT came up with these ideas—for example, see
[CDvD+03, SCG+03].)

The preceding approaches considered how the trusted device might use the rest
of the system during its computation. We might also consider the other direction:
how the rest of the system might use the trusted device. A general approach that
emerged from secure coprocessing research is program partitioning: sheltering inside
the trusted device some hard to reverse engineer core of the program but running
the rest of the program on the external system. Doing this systematically, for general
programs, in a way that accommodates the usually limited power and size of the
trusted device, while also preserving overall system performance, while also being
secure, appears to be an open problem.

However, researchers have made progress by sacrificing some of these goals.
For example, theoreticians have long considered the problem of secure function
evaluation (SFE), also known as secure multiparty computation. Alice and Bob
would like to evaluate a function f which they both know, on the input (xA, xB),
which they each know (respectively), but don’t want to share. In 1986, Yao pub-
lished an algorithm to do this—an inefficient algorithm, to be sure, but one that
works [Yao86]. 2004 brought an implementation—still inefficient, but we’re making
progress [MNPS04].

The economic game of enforcing site licenses on software also used to mani-
fest a version of this program-partitioning problem. Software vendors occasionally
provide a dongle—a small device trusted by the vendor—along with the program.
The program runs on the user’s larger machine but periodically interacts with the
dongle. In theory, absence of the dongle causes the program to stop running. Many
software vendors are moving toward electronic methods and are abandoning the

Smith Book November 1, 2007 3:3

422 Hardware-Based Security

hardware dongle approach. For example, many modern PC games require an orig-
inal copy of the game CD to be inserted into the machine in order to play the game;
a copied CD generally will not work.

Modules. Building a module larger than a single chip gives the designer more op-
portunity to consider hardware security, as a system. For example, a larger package
lets one more easily use internal power sources, environmental sensing, more robust
filtering on the power the device demands from external sources, and so on.

However, colleagues who work in building “tamper-proof hardware” will
quickly assert that there is no such thing as “tamper-proof hardware.” Instead,
they advocate looking at a systems approach interleaving several concepts:

• Tamper resistance. It should be hard to penetrate the module.

• Tamper evidence. Penetration attempts should leave some visible signal.

• Tamper detection. The device itself should notice penetration attempts.

• Tamper response. The device itself should be able to take appropriate
countermeasures when penetration is detected.

Integrating these concepts into a broader system requires considering many
tradeoffs and design issues. Tamper evidence makes sense only if the deployment
scenario allows for a trustworthy party to actually observe this evidence. Tamper
resistance can work in conjunction with tamper detection—the stronger the force
required to break into the module, the more likely it might be to trigger detection
mechanisms. Tamper response may require consideration of the data remanance
issues discussed earlier. What should happen when the adversary breaks in? Can
we erase the sensitive data before the adversary can reach it? These questions can in
turn lead to consideration of protocol issues—for example, if only a small amount
of SRAM can be zeroized on attack, then system software and key management
may need to keep larger sensitive items encrypted in FLASH and to be sure that the
sensitive SRAM is regularly inverted. The choice of tamper-response technology can
also lead to new tamper-detection requirements, since the tamper-response methods
may require that the device environment remain inside some operating envelope for
the methods to work.

Antitamper, Backward. Recently, a new aspect of tamper protection has entered
the research agenda. U.S. government agencies have been expressing concern about
whether the chips and devices they use in sensitive systems have themselves been
tampered with somehow—for example, an adversary who infiltrated the design and

Smith Book November 1, 2007 3:3

16.3 Tools 423

build process for a memory chip might have included (in hardware) a Trojan horse
that attacks its contents when a prespecified signal arrives. We can find ourselves
running into contradictions here—to protect against this type of attack, we might
need to be able to probe inside the device, which violates the other type of tamper
protection. (Some recent research here tries to use the techniques of side-channel
analysis—typically used to attack systems—in order to discover the presence of
hardware-based Trojan horses; the idea is that even a passive Trojan will still influ-
ence such things as power consumption. [ABK+07].)

Software. So far in this section, we’ve discussed techniques that various types
of trusted hardware might use to help defend themselves and the computation in
which they’re participating against attack by an adversary. However, we might also
consider what software alone might do against tamper. The toolkit offers a couple
of interesting families of techniques.

• Software tamper-resistance (e.g., [Auc96]) techniques try to ensure that a
program stops working correctly if the adversary tampers with critical
pieces—for example, the adversary might try to run the program without a
proper license. Effective use of dongles often requires some notions of
software tamper resistance. As noted earlier, if the program simply checks for
the dongle’s presence and then jumps to the program start, then the adversary
might simply bypass this check—so the tamper response needs to be more
subtle. Related to this topic are techniques to produce binary code that is
difficult to disassemble.

• Software-based attestation techniques (e.g., [SLS+05, SPvDK04]) try to assure
an external relying party that a piece of software is running on a particular
platform in a trustworthy way. The basic idea is that the relying party knows
full operational details of the target system and crafts a checksum program
that requires using all the resources of the system in order to produce a timely
but correct response; a trusted path between the relying party and the target
system is usually assumed. These techniques are still early but promising.

16.3 Tools
The previous section discussed foundations: basic issues of hardware attacks and
defenses. However, when putting together a secure system, one typically thinks of
larger-scale components. Rather than worrying only about how to build a chip that
resists an attacker, one might worry about how to use an attack-resistant chip to do

Smith Book November 1, 2007 3:3

424 Hardware-Based Security

something useful within a larger system. In this section, we take a look at some of
components in the toolbox.

16.3.1 Secure Coprocessors
If we’re thinking about trying to protect computation from an adversary with direct
physical access to the computer, the most “natural” approach might be to think
about putting armor around the entire computer. However, since effective physical
security raises issues about heat dissipation and internal maintenance, we usually
can’t count on armoring the entire computer system in question, so a more practical
compromise is to armor a smaller subsystem and use that in conjunction with a
larger host. This is the approach taken by secure coprocessors. Commercial examples
include the IBM 4758 [SW99] and its more recent follow-on, the IBM 4764 [AD04].
(As the reader may conclude from checking out the citations in the bibliography,
yes, the authors of this book had something to do with this.)

Generally, this type of device works by hiding secrets inside the armored device
and using an interleaving of tamper-protection techniques to ensure that, under
attack, the secrets are destroyed before the adversary can get to them. Owing
to the relative ease of zeroizing SRAM compared to other forms of storage, se-
cure coprocessors typically end up with a tiered memory architecture: a small
amount of battery-backed SRAM contains the nonvolatile but tamper-protected se-
cret; larger DRAM contains runtime data, and FLASH holds nonvolatile but non-
secret data.

As a consequence, perhaps the most natural application of a secure coprocessor
is to obtain confidentiality of stored data. This can be useful. However, one can also
use this “protected secret” architecture to provide other properties. For example:

• Integrity of public data. If the secret in question is the private half of a key pair,
then the coprocessor can use it to sign statements. A relying party that verifies
the signature and believes that the device’s physical security works and
software is trustworthy, can believe that this statement came from an
untampered device. If the statement pertains to the value of a stored data
item, then the relying party can trust in the integrity of that value. This
property may be useful in such scenarios as metering.

• Integrity of executing program. Is the device still running the correct,
untampered software? A side effect of the private key approach just discussed
is that the relying party can also verify that the software inside the device is
still correct—if an adversary has tampered with it, then the private key would
have, in theory, been zeroized and thus not available to the modified software.

Smith Book November 1, 2007 3:3

16.3 Tools 425

This property can be useful in many scenarios, such as a trustworthy
SSL-protected Web server. With more complex devices that permit updates
and reinstallation of software and permit nontrivial software architectures,
making this scheme work can become rather tricky. This idea of outbound
authentication—enabling the untampered entity to authenticate itself as such
to the outside world—foreshadowed the subsequent emphasis on attestation.

• Privacy of program execution. Some scenarios call for the program itself to be
public but its execution to be private—that is, not only selected parameters
but also operational details, such as which branch is taken after a comparison.
For example, consider an auction. The program may need to be public, as all
participants need to trust that the program evaluating the bids works
correctly. However, exactly what it does when it runs on the secret bids should
be secret; otherwise, observers would know details of the bids.

Outbound authentication, combined with a self-contained computing
environment, can provide this property.

• Secrecy of program code. Typically, the device may store its software in internal
FLASH. However, the device could store much of this software in encrypted
form and use its protected secret to decrypt it into DRAM before
execution—thus using the protected-secret architecture to provide secrecy of
program executables. This property may be useful for protecting proprietary
pricing algorithms for insurance or pharmaceuticals.

Using a secure coprocessor in real-world applications may require dealing with
some subtle design and architecture issues, owing to the exigencies of commercially
feasible physical security. One basic problem is that the device may be too small to
accommodate the necessary data; this problem drives some current research, as we
discuss later. Another problem arises from the typical lack of human I/O on devices.
If an enterprise runs a stand-alone application that has one trusted coprocessor
installed but depends on input from an untrustworthy host, then the enterprise may
not be benefiting much from the physical security. Nearly anything the adversary
might have wanted to do by attacking the coprocessor can be achieved by attacking
the host. The true value of the physical security comes into play when other parties
and/or other trusted devices come into the picture: for example, remote clients
connecting to a coprocessor-hardened server.

Another real-world issue with using a commercial secure-coprocessor platform
is believing that it works. In our case, we had it validated against FIPS 140-1;
however, going from such a validation to the conclusion that a system using such a
device is sufficiently secure is a big step—see Chapter 11.

Smith Book November 1, 2007 3:3

426 Hardware-Based Security

16.3.2 Cryptographic Accelerators
As discussed earlier in the book, cryptography is a fundamental building block of
security in many modern computing scenarios. However, as Chapter 7 made clear,
it is based on tasks that are by no means easy for traditional computers. For a basic
example, RSA requires modular exponentiation: taking X and Y to XY mod N,
where X, Y, and N are all very large integers. By current standards, RSA requires
integers at least 1024 bits long to be deemed secure; currently, however, standard
desktop computers operate on 32-bit words. Implementing 1024-bit modular ex-
ponentiation on a 32-bit machine is rather inefficient; this inefficiency can become
an obstacle for applications, such as SSL Web servers, that must do this repeatedly.

These issues drive the idea of creating special-purpose hardware to accelerate
such otherwise inefficient operations. Hardware for such operations as symmetric
encryption and hashing can also be inserted in-line with data transmission (e.g.,
in a network card or in a disk drive) to make use of encryption in these aspects of
system operation more affordable. (For example, building hardware acceleration for
digital signature generation and verification into edge routers can greatly improve
the performance cost of S-BGP compared to standard BGP—recall Chapter 5.)

Both the nature and the applications of cryptography introduce issues of physi-
cal security for cryptographic accelerators. For one thing, cryptographic parameters,
such as private keys, may be long-lived, mission-critical data items whose compro-
mise may have serious ramifications. For another thing, application domains, such
as banking and the postal service, have a long history of relying on physical security
as a component of trying to assure trustworthiness. As a consequence, cryptographic
accelerators may tout tamper protection and feature APIs to protect installation and
usage of critical secrets. As we noted, such devices tend to be called hardware secu-
rity modules (HSMs) in the literature and in discussions of best practices for such
application installations as certification authorities. The same architecture issues we
noted earlier apply here as well. Physical security may protect against an adversary
directly extracting the keys from the device and may protect against more esoteric
attacks, such as subverting the key-generation code the device uses in the first place,
in order to make the “randomly” generated keys predictable to a remote adversary.
However, physical security on the HSM does not protect against attacks on its host.

For using cryptographic accelerators or HSMs in the real world, we advise
consideration of many questions.

• Should you trust that the HSM works? Researchers have shown that one can
build a crypto black box that appears to work perfectly but has adversarial
back doors, like the one discussed earlier [YY96]. Here, we recommend that

Smith Book November 1, 2007 3:3

16.3 Tools 427

you look for FIPS validations—both of the overall module (e.g., via
FIPS 140-N) and of the individual cryptographic algorithms used (recall
Chapter 11).

• Should you trust that the HSM works too well? From a perhaps a
straightforward security perspective, it’s better for a device to have false
positives—and destroy secrets even though no attack was occurring—than the
other way around. From a business perspective, however, this may be a rather
bad thing. The necessity to preserve the operational envelope in effective
tamper protection may create even more opportunities for such false positives
(e.g., if the building heat fails at Dartmouth College in the winter, an
IBM 4758 would not last more than a day). Using HSMs requires thinking
beforehand about continuity of operations.

• What if the manufacturer goes out of business or the device reaches its end of
life? In order to make its physical security mean something, an HSM design
may make it impossible to export private keys to another type of device.
However, what happens should the vendor cease supporting this HSM? (This
happened to colleagues of ours.)

• Exactly how can you configure the cryptographic elements? Having hardware
support for fast operations does not necessarily mean that you can do the
combination of operations you would like to. For example, the IBM 4758
Model 2 featured fast TDES and fast SHA-1, both of which could be
configured in-line with the buffers bringing data in or through the device.
Doing cryptography this way on large data was much faster than bringing into
the device DRAM and then using the relatively slow internal architecture to
drive the operation. However, in practical settings, one usually does not want
just encryption: One wants to check integrity as well. One natural way to do
this might be to hash the plaintext and then encrypt it along with its hash.
However, doing something like this with the fast IBM hardware requires
being able to bring the data through the TDES engine and then sneak a copy
of the plaintext into the hash engine on its way out. Unfortunately, our fast
hardware did not support this!

• What if new algorithms emerge? For example, the TDES engine in the IBM
4758 Model 2 includes support for standard chaining, such as CBC.
Subsequently, Jutla invented a slower chaining method that provided integrity
checking for free [Jut01]. We would have liked to use this chaining method,
but the hardware did not support it. For another example, one need only
consider the recent demise of MD5 hashing and fears of the future demise of
SHA-1.

Smith Book November 1, 2007 3:3

428 Hardware-Based Security

• Should you believe performance benchmarks? The problem here is that
cryptographic operations may feature several parameters; in practice, many
operations may be joined together (e.g., signatures or hybrid encryption); and
HSMs may include internal modules, thus confusing which boundaries we
should measure across.

For example, if one wants to attach a number to an implementation of a
symmetric cryptosystem, the natural measure might be bytes per second. IBM
did this for the DES engine in the IBM 4758. A customer complained; on
examination, we found that the touted speed was what one could get if
operations were done with very long data items. Informally, the device had a
per byte cost on the data as well as a per operation cost on the overhead of
setting up the keys and such. For small data, the per operation cost
dominates—and the effective per byte cost could drop an order of magnitude
or more.

16.3.3 Extra-CPU Functionality
These armoring approaches run into some fundamental limitations. It seems that the
computational power of what can fit inside the armor always lags behind the power
of a current desktop system. This delta is probably an inevitable consequence of
Moore’s Law (see Section 16.5.3) and the economics of chip manufacturing: What
gets packaged inside armor lags behind the latest developments.

This situation raises a natural question: Can we use hardware techniques to
improve the security of general systems without wrapping the CPUs in armor?
In the commercial and research space here, the general trend is to use hardware
to increase assurance about the integrity and correctness of the software on the
machine.

Boot-Time Checking. Currently, the dominant approach is to consider boot-time
protections. Figure 16.1 sketches an example sequence of what software gets exe-
cuted when a system boots. The time order of this execution creates a dependency
order: If software module S1 executes before software module S2, then correct ex-
ecution of S2 depends on S1; if the adversary attacks or modifies S1, then maybe it
will change S2 before loading it, or maybe it will load something else altogether.

BIOS
(ROM)

BIOS
(FLASH)

Boot
loader

OS
invokes invokes invokes

Figure 16.1 At boot time, a well-defined sequence of software modules get executed.

Smith Book November 1, 2007 3:3

16.3 Tools 429

BIOS
(ROM)

BIOS
(FLASH)

Boot
loader

OS
checks

and
invokes

checks
and

invokes

checks
and

invokes

Figure 16.2 In the typical approach to system integrity checking, each element in the boot
sequence checks the next before invoking it.

Boot-time approaches exploit the inductive nature of this sequence. By magic,
or perhaps by hardware, we check the integrity and correctness of the first element of
this chain. Then, before we grow the chain with a new element, a chain element that
has been already checked checks this next candidate element. Figure 16.2 sketches
an example. (In our 4758 work, we got rather formal about this and included
hardware elements in this “chain.”)

At the end of the process, we might have some assurance that the system is run-
ning correct, unaltered software—that is, if we have some way of knowing whether
this verification process succeeded. (One will see the terms trusted boot and secure
boot used for this process—sometimes as synonyms, sometimes to denote slightly
different versions of this idea.)

One way to know whether verification succeeded is to add hardware that re-
leases secrets depending on what happens. In the commercial world, the Trusted
Computing Group (TCG) consortium2 has developed—and still is developing, for
that matter—an architecture to implement this idea in standard commercial ma-
chines. The TCG architecture adds a trusted platform module (TPM)—a small,
inexpensive chip—to the motherboard. At the first level of abstraction, we can
think of the TPM as a storehouse that releases secrets, depending on the state of
the TPM’s platform configuration registers (PCRs). Each PCR can contain an SHA-1
hash value but has some special restrictions regarding how it can be written.

• At boot time, the PCRs are reset to 0s.3

• If a PCR currently contains a value v, the host can extend a PCR by providing
a new value w. However, rather than replacing v with w, the TPM replaces v

with the hash of the concatenation of v with w:

PCR ←− H(PCR || w).

2. The TCG succeeded the Trusted Computing Platform Alliance (TCPA); sometimes, one still sees the
acronym of the predecessor consortium used to denote this architecture.
3. The latest specification of the TPM explores some other special conditions under which a PCR can
be reset; expect further developments here.

Smith Book November 1, 2007 3:3

430 Hardware-Based Security

This approach to “writing” PCRs allows the system to use them to securely
measure software and other parameters during the boot process (see Figure 16.1).
At step i − 1, the system could hash the relevant software from module i and
store this hash in PCR i . Suppose that module 3 is supposed to hash to h3 but
that, in fact, the adversary has substituted an untrustworthy version that hashes
instead to h′

3. If the PCRs permitted ordinary writing, nothing would stop ad-
versarial software later from simply overwriting h′

3 with h3 in PCR 3. However,
because the PCRs permit writing only via hash extension, the PCR will contain
H(0 || h′

3); if the hash function is secure, the adversary will not be able to calculate a v

such that

H
(

H(0 || h′
3) || v

)
= H(0 || h3).

In fact, this hash-extension approach allows the system to measure platform
configuration into the PCRs using two dimensions. The system could use each PCR
i to record the hash of a critical piece of the boot process. However, the system could
also record a sequence of measurements within a single PCR, by successively hash-
extending in each element of the sequence. By the properties of cryptographically
secure hash functions, the end result of that PCR uniquely reflects that sequence of
values, written in that order.

As mentioned, we can think of the TPM as essentially a place to store secrets.
When we store a secret here, we can tie it to a specified subset of the PCRs and
list a value for each. Subsequently, the TPM will reveal a stored secret only if each
PCR in that subset has that specified value. (Note that we qualify this statement
with “essentially”: The actual implementation of this functionality is a bit more
convoluted.) If such a secret is an RSA private key, then it can be stored with a
further provision: When the PCRs are correct, the TPM will use it on request from
the system but will never actually release its plaintext value.

The ability of the PCRs to reflect system configuration and the ability of the
TPM to bind things such as RSA private keys to specific configurations enables
several usage scenarios.

• Binding a key to a software configuration on that machine enables us to do
similar things to what we did with secure coprocessors. The entity consisting
of that software on that device can now authenticate itself, make verifiable
statements about things, and participate in cryptographic protocols.

• If we cook things up so that we have a trusted entity that is much smaller than
the entire platform, we can use a TPM-bound private key to make signed
attestations about the rest of the platform configuration, as expressed by the

Smith Book November 1, 2007 3:3

16.3 Tools 431

PCRs. In the TCG architecture, this entity is part of the TPM itself, but it
could also be a separate software module protected by the TPM.

Moving from a rather special-purpose and expensive device (a secure copro-
cessor) to a generic, ubiquitous platform (standard desktops and laptops)
changes the flavor of potential applications, as well. For example, moving Yee’s
partitioned-computation idea from a coprocessor to an encrypted subsystem or ta-
bles (protected by a TPM) can enable a software vendor to lock an application to a
particular machine or OS. Attestation can enable an enterprise to shunt unpatched
machines to a remedial network, thus promoting better network hygiene—this is
called trusted network connect (TNC). Attestation might also enable a powerful cor-
poration to monitor everything on your machine. (Of course, all these scenarios
are based on the assumption that the adversary cannot subvert the TPM’s security
protections!)

Realizing this approach in the real world requires worrying about exactly how to
map platform configuration into the PCRs. This part of the design is rather complex
and keeps changing, so we won’t bother going through it all here. The initial BIOS
reports itself to a PCR; as a consequence, the BIOS can break everything and
thus is called the root of trust measurement (RTM).4 Subsequently, things already
measured turn around and measure other things; what they are and which PCR they
get measured into appear to be determined both by platform-specific specifications
and random vendor choices. Platform elements also factor into the hashes; we
discovered that doing things as simple as removing a keyboard or replacing a memory
card caused the PCRs to change.

As Chapter 4 described, however, the software that comprises a particular ap-
plication running on a contemporary operating system is by no means a monolithic
entity or even a simple stack. How to glue TPM measurements to this complex
structure is an area of ongoing research. In our early work here, we introduced a
level of indirection—the TPM protects a trusted kernel-based module, which in
turn evaluates higher-level entities [MSMW03, MSWM03]. In contrast, our col-
leagues at IBM Watson extended the hash-extension idea all the way up into Linux
application environments [SZJv04].

We stress again that this is an area of active research by many parties. Stay tuned.
In particular, as this book goes to press, researchers have developed ways to break
the security of current TPM-based PCs simply by using a wire to ground the reset
line on the Low Pin Count (LPC) bus that connects the TPM to the rest of the system.

4. So no, in this case, the acronym RTM does not stand for Read the Manual or Robert Tappan Morris.

Smith Book November 1, 2007 3:3

432 Hardware-Based Security

This fools the TPM into thinking that the system has rebooted, at which point, the
TPM resets all its PCRs, and the host can feed it measurements that simulate booting
of the system it would like to impersonate. It looks as though Bernard Kauer [Kau07]
got there first, but we were the first to do it on YouTube [Spa].

Runtime Checking. Using hardware to assist with runtime checks of platform
integrity is an area that has also received renewed interest lately. CoPilot, an academic
project currently being commercialized, is good example of this [PFMA04]. One
adds to the standard platform a separate PCI card with busmastering capabilities,
so it can take over the PCI bus and probe system memory. At regular intervals,
this auxiliary card probes the system memory and looks for signs of malware and
corruption.

Realizing this approach in the real world requires intricate knowledge of what
the system memory image should look like and requires that what image the card sees
is the same reality the host CPU sees. Neither of these tasks is trivial. For example,
rootkits typically attack systems not by inserting themselves into something big and
relatively static, like executable code, but rather by making subtle modifications to
dynamic data structures. The fact that these data structures are supposed to change
makes it hard for the coprocessor to determine when bad changes have occurred.
For another example, malware might restore correct-looking data structures when
the coprocessor examines memory or might even maintain a decoy set of structures
where the coprocessor expects to find them. Combating this latter set of issues may
require using the software-based attestation ideas from earlier to establish a dynamic
root of trust within the host CPU.

Strictly speaking, the runtime approach is not necessarily disjoint from the
boot-time approach. As the experimental approaches we just discussed illustrate,
a boot-time-verified module can easily turn around and verify changes and events
during runtime. Even standard uses of a TPM can update PCRs during runtime.
As we also mentioned earlier, the TCG is currently examining approaches whereby
some PCRs can be reset during special conditions at runtime; such an approach
could also extend to doing regular remeasurements during runtime.

Other Approaches. So far, we’ve looked at approaches that use hardware either
to directly harden the traditional computing platform or to detect tampering af-
terward. Ongoing research has been looking at more unconventional approaches:
transforming the computation somehow so that a conventional, untrusted host does
most of the work, but a smaller, trusted unit participates in such a way as to still
provide the overall security property. We offer some examples.

Smith Book November 1, 2007 3:3

16.3 Tools 433

• Cryptographic operations can lend themselves to situations in which part of
the work can be blinded and then outsourced to a less trusted host. This
approach might provide higher throughput and lower latency, while still
protecting the private keys within a small hardware TCB.

• Our own tiny trusted third party project (e.g., [IS06]) builds on ORAM and
Yao’s secure multiparty computation to compile a program into a blinded
circuit, which a fast untrusted host can execute with the assistance of a small
piece of special-purpose hardware. This approach might provide privacy of
computational details, even if the computation doesn’t fit inside a small
hardware TCB.

• In general, one might speculate about the space of functions in which
calculating an answer requires significant resources, but verifying it requires
very little. Can we build a method to provide integrity in such calculations,
with only limited trusted hardware?

At some point, this approach starts to merge into the partitioned computation
model with secure coprocessors.

16.3.4 Portable Tokens
It’s almost a cliche that computing hardware has been getting small enough and
cheap enough that substantial computing power now fits in a pocket. The truth
that underlies this cliche also affects hardware-based security. Putting substantial
computing and memory, perhaps with physical security, in a package that users can
carry around is economically feasible in many situations; the near-ubiquity of USB
slots on PCs and laptops—and the emerging ubiquity of Bluetooth and other forms
of near-field communication (NFC)—make interaction with the standard computing
environment rather easy.

Such devices have many security applications. They can be one factor for mul-
tifactor authentication. In enterprise-wide PKI installations, users might carry and
wield private keys from a portable device rather than trying to bring data around.
Perhaps a user’s portable device could verify the integrity of a broader and untrusted
system (e.g., [SS05]).

Such devices can also enable another type of security application: honey-
tokens. Black-hat teams have penetrated enterprises by distributing “abandoned”
USB memory sticks—with Trojan horses—in the parking lot. Employees of the tar-
get enterprise find the memory sticks, bring them inside the enterprise, insert them
into computers, and unintentionally invoke the Trojan; the testers thus succeed in

Smith Book November 1, 2007 3:3

434 Hardware-Based Security

running their own code with insider privileges on inside-the-firewall systems. (See
[Sta06] for more information and some commentary by such a pen tester.)

16.4 Alternative Architectures
So far, we’ve considered hardware additions for security that start with a computing
environment based on a traditional CPU and then either put armor around it or
put armored devices next to it. However, many active areas of current research—
and also current industrial development—are exploring changing the traditional
CPU instead. Some of this work is explicitly motivated by security; some has other
motivations but still has relevance to security.

16.4.1 The Conventional Machine
In Section 4.1.1, we reviewed the basic architecture of a conventional system. As
Figure 4.1 showed, memory is an array of indexed locations; let’s say that each loca-
tion is 1 byte wide. The CPU interacts with a memory location by issuing the address
of that location on the address bus and indicating the nature of the interaction (e.g,
read or write) on a control line. The data in question is then transferred on the data
bus; the direction of this transfer depends on whether the operation is a read or
a write.

Programs are stored in memory like anything else. The CPU fetches an in-
struction from memory, internally decodes it, and carries out its operation, which
may involve additional reads or writes. The CPU then proceeds to fetch the next
instruction.

Current conventional architectures differ from this simple one in three funda-
mental ways.

1. Memory management. In this naive model, the address that the CPU issues is
the address that the memory sees. As a consequence, when multitasking, each
separate program or process must be aware of the addresses the other ones are
using. This clearly creates problems for security and fault tolerance, as well as
general ease of programming.

To avoid these problems and to enable lots of other flexibility, modern
systems introduce a level of indirection: A memory-management unit (MMU)
translates the virtual or logical addresses the CPU issues into physical
addresses the memory sees (see Figure 4.2). The MMU can also enforce
restrictions, such as read-only, by failing to translate the address, for a write
request. The MMU, in conjunction with OS trickery, can enforce more exotic

Smith Book November 1, 2007 3:3

16.4 Alternative Architectures 435

models as well, such as copy on write, whereby memory is shared between two
processes until one tries to write to it.

When changing the process or memory domain currently active, the CPU
can also instruct the MMU to change address spaces: the memory image seen
by the CPU.

2. Privileged instructions. This is a security book, so our natural inclination is to
look at everything—including address translation—from a security
perspective. From this perspective, a natural question is: What’s the point of
using memory management to protect address spaces from rogue programs on
the CPU, if the CPU itself is responsible for controlling and configuring the
MMU?

This line of thinking led to the introduction of privilege levels. (a) The
CPU has some notion of its current privilege level. (b) What an instruction or
operation does or whether it’s even permitted depends on the current
privilege level. (c) Transitions between privilege levels—in particular,
translations to greater privilege—must be carefully controlled.

In the standard textbook model today, a CPU has two5 privilege levels:
user and kernel—or, sometimes, unprivileged and privileged, respectively.
Typically, important protection-relevant tasks, such as changing MMU
settings, can be done only in kernel mode. As discussed in Chapter 4, user-
level code can transition to kernel mode only via a system call, or trap, that, via
hardware, changes mode but also transfers control to specially designated,
and one hopes, trusted code. The standard model uses the terms user and
kernel for privileges because of the general intention that operating system
code runs in kernel mode, that code from ordinary users runs in user mode,
and that the operating system protects itself (and the users) from the users.

3. Caching. In the naive model, a memory location, once translated, “lives” at
some place in ROM or RAM; in this simple model, the CPU does one thing at
a time and accesses memory as needed. Modern systems have achieved
significant performance improvements, however, by throwing these
constraints out the window. Memory no longer needs to be bound to exactly
one physical device; rather, we can try to cache frequently used items in faster
devices. Consequently, CPUs may have extensive internal caches of
memory—and then play various update games to make sure that various

5. Many variations have been explored throughout history; even the standard x86 architecture today has
four levels, ring 0 through ring 3. As discussed earlier, in practice, only ring 0 and ring 3 get used—as
user and kernel, respectively.

Smith Book November 1, 2007 3:3

436 Hardware-Based Security

devices, such as other CPUs, see consistent views of memory. Caching enables
a CPU to execute sequences of instructions without touching external
memory. Caching also motivates the development of fancy heuristics, such as
prefetching, to attempt to make sure that the right items are in the cache when
needed. Processors sometimes separate instruction caches from data caches.

Systems achieve additional performance improvement by doing away with
the notion that the CPU execute the instructions one at a time, as written in
the program. One way this is done is via pipelining: decomposing the
execution of an instruction into several stages and making sure that the
hardware for each stage is always busy. Another innovation is superscalar
processing—after decomposing the instruction execution into stages, we add
extra modules for some of the stages (e.g., a second arithmetic unit). Since idle
hardware is wasted hardware, processors also use aggressive heuristics for
speculative execution (e.g., guessing the result of a future branch and filling the
pipeline based on that assumption) and out-of-order execution (e.g., shuffling
instructions and registers around at runtime to improve optimization).

(For more information on modern system architectures, consult one of
the standard books in the area. Patterson and Hennessy [PH07] is considered
the default textbook; Stokes [Sto07] provides a lighter introduction that
focuses more directly on the machines you probably use.)

Privilege levels, syscall traps, and memory management all clearly assist in se-
curity. (Indeed, consider how susceptible a modern Internet-connected computer
would be if it lacked kernel/user separation.) Sometimes, the lack of sufficient con-
trol can be frustrating. For example, if the MMU knew when a CPU’s memory read
was really for an instruction fetch, we could cook up a system in which memory
regions had “read but do not execute” permission—thus providing a line of de-
fense against stack-code injection attacks (recall Section 6.1). Indeed, this relatively
straightforward idea was touted as the revolutionary NX feature by the technical
press in recent years.

However, features such as internal caching and pipelining/out-of-order execu-
tion make things a bit harder. The relationship between what the internal system is
doing and what an external device (such as a PCI card verifying integrity of kernel
memory structures) can perceive is much less well defined. For example, suppose
that we wanted to ensure that a certain FLASH device could be reprogrammed only
when the system was executing a certain trusted module within ROM. Naively, we
might add external hardware that sensed the address bus during instruction fetches
and enabled FLASH changes only when those fetches were from ROM addresses.

Smith Book November 1, 2007 3:3

16.4 Alternative Architectures 437

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

operating
system

hardware

Figure 16.3 In the conventional system model, the OS provides protection between separate
processes.

However, if we can’t tell which cached instructions are actually being executed at
the moment (let alone whether other code is simply “borrowing” parts of ROM as
subroutines or even whether a memory read is looking for data or an instruction),
then such techniques cannot work.

16.4.2 Virtualization
As Chapter 4 discussed, in the standard software architecture, an operating system
provides services to user-level processes and enforces separation between these
processes. As Section 16.4.1 discussed, hardware architecture usually reinforces
these features. The aspiration here is that we don’t want processes interfering with or
spying on each other or on the OS, unless it’s through a channel explicitly established
and monitored by the OS. Figure 16.3 sketches this model.

In many scenarios, this approach to controlled separation may not be sufficient.
Rather than providing separation between userland processes, one may prefer sepa-
ration at the machine level. Rather than an OS protecting processes from each other,
an OS and its processes are hoisted from a real machine up to a virtual machine, and
another software layer—-usually called a virtual machine monitor (VMM)—protects
these virtual machines from each other. Figure 16.4 shows one approach—although,
as Section 16.5.1 discusses, many approaches exist here.

This idea of creating the illusion of multiple virtual machines within one machine
is called virtualization. Initially explored in the early days of mainframe computing,
virtualization has become fashionable again. What’s the motivation for virtualiza-
tion? Since this is a book about security, we tend to think about security first. And
indeed, some reasons follow from security.

• For one thing, the API between the OS and userland applications can be
extraordinarily rich and complicated. This complexity can make it hard to
reason about and trust the properties one would like for this separation.

Smith Book November 1, 2007 3:3

438 Hardware-Based Security

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

hardware

hypervisor/virtual machine monitor

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

guest operating
system #1

guest operating
system #2

guest operating
system #3

Figure 16.4 In virtualization models, processes are partitioned among virtual machines.
Here, we sketch the type I approach, whereby the VMM runs on the hardware and provides
separation between separate OS instances. In this case, the VMM is often called a hypervisor.
Other models exist—see Section 16.5.1.

Complexity of API will also likely lead to complexity of implementation:
increasing the size and likely untrustworthiness of the TCB.

• For another example, modern platforms have seen a continual bleeding of
applications into the OS. As a consequence, untrustworthy code, such as
device drivers and graphics routines, may execute with kernel privileges.
(Indeed, some researchers blame this design choice for Windows’ endless
parade of vulnerabilities.)

Other reasons follow from basic economics.

• The API an OS gives to the application is highly specialized and may thus be
unsuitable—for example, one can’t easily run a mission-critical Win98
application as a userland process on OSX.

• According to rumor, this practice of giving each well-tested legacy
application/OS its own machine leads to CPU utilization percentages in the
single digits. Being able to put many on the same machine saves money.

Section 16.5.1 discusses old and new approaches to virtualization and security
implications in more detail.

16.4.3 Multicore
Another trend in commercial CPUs is multicore: putting multiple processors (cores)
on a single chip. The vendor motivation for this trend is a bit murky: increased
performance is touted, better yield is rumored. However, multicore also raises the
potential for security applications: If virtualization can help with a security idea,

Smith Book November 1, 2007 3:3

16.4 Alternative Architectures 439

then wouldn’t giving each virtual machine its own processor be much simpler and
more likely to work rather than mucking about with special modes?

One commercial multicore processor, CELL, touts security goals; it features
an architecture in which userland processes get farmed off to their own cores, for
increased protection from both other userland processes and the kernel. (We discuss
this further in Section 16.5.3.)

16.4.4 Armored CPUs
Modern CPUs cache instructions and data internally and thus fetch code and data
chunks at a time, instead of piecemeal. As we noted earlier, this behavior can make
it hard for external security hardware to know exactly what the CPU is doing.
However, this difficulty can be a feature as well as a bug, since it also can be hard
for an external adversary to observe what’s happening.

Consequently, if we assume that the adversary cannot penetrate the CPU itself,
we might be able to achieve such things as private computation, by being sure that
code lives encrypted externally; integrity of code and data, by doing cryptographic
checks as the chunks move across the border; and binding data to code, by keeping
data encrypted and decrypting it only internally if the right code came in.

Several research projects have built on this idea. XOM (Stanford) explored this
idea to implement execute-only memory via simulators. AEGIS (MIT) made it all
the way to real FPGA-based prototypes, which also incorporate the SPUF idea, to
provide some grounds for the physical-security assumption.

16.4.5 Tagging
When lamenting the sad state of security in our current cyberinfrastructure, some
security old-timers wistfully talk about tagged architectures, which had been ex-
plored in early research but had been largely abandoned. Rather than having all
data items look alike, this approach tags each data item with special metadata.
Implemented in hardware, this metadata gets stored along with the data in mem-
ory, gets transmitted along with it on buses—and controls the ways in which
the data can be used. Systems in which permissions are based on capabilities
(recall Chapter 4) might implement these capabilities as data items with a special
tag indicating so; this keeps malicious processes from simply copying and forging
capabilities.

Some of these ideas are finding expression again in modern research. For ex-
ample, many buffer overflow attacks work because the adversary can enter data, as
user input, which the program mistakenly uses as a pointer or address. Researchers

Smith Book November 1, 2007 3:3

440 Hardware-Based Security

at the University of Illinois have built, via an FPGA (field-programmable gate ar-
ray) prototype, a CPU retrofit with an additional metadata line to indicate that a
data item is tainted [CXN+05]. The CPU automatically marks user input as tainted.
Attempts to use a tagged data item as an address throw a hardware fault. How-
ever, certain comparison instructions—as code does when it sanity checks user
input—clear the taint tags. Stanford’s TaintBochs project uses software-based vir-
tualization to explore further uses of taintedness and tagging in security contexts
[CPG+04].

16.5 Coming Trends
So far, we have looked at the basic foundations of physical security and some of the
ways it is embodied in tools available for system design. We close the chapter by
looking at some new trends.

16.5.1 Virtualization and Security
Much security research—both old and new—is driven by a basic challenge. It can
be useful to have separate compartments within a machine, with high assurance that
malicious code in one compartment cannot spy on or disrupt the others. However,
we often don’t want complete separation between the compartments—but we want
to make sure that only the right types of interaction occur. How do we provide this
separation? How do we mediate the interaction? How do we provide assurance that
this all works, that this all provides the desired properties, and that it doesn’t kill
performance?

In some sense, the challenge motivated the notion of separate processes within
an operating system. However, most of the field has accepted the unfortunate no-
tion that the standard OS model will not provide an appropriate solution here. This
conclusion comes from several beliefs. Standard operating systems provide too rich
and complex an interaction space between processes; standard operating systems
are written too carelessly; target applications require more than simply the OS-level
interface.

As we discussed in Section 16.4.2, these drawbacks have led to renewed thinking
about virtualization: other ways to provide these separate virtual compartments and
to mediate interaction between them. However, it’s not clear what the “right” way
to do this is. Right now, in both academia and industry, we see lots of approaches
swirling around to enable machines to have highly compartmented pieces. This
exploration raises many issues.

Smith Book November 1, 2007 3:3

16.5 Coming Trends 441

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

guest operating
system #1

hardware

virtual machine monitor

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

guest operating
system #2

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

guest operating
system #3

host operating system

Figure 16.5 In the type II approach to virtualization, the VMM runs above the host operating
system.

• What’s the right level to split the machine into compartments?

• Should we use hardware-based support?

• Should we use a virtual machine monitor/hypervisor running above the
hardware? (This is called a type I virtual machine—recall Figure 16.4.)

• Should we use a virtual machine monitor running within or above the host
OS? (This is called a type II virtual machine—see Figure 16.5.)

• Should we instead virtualize some image above the OS? (Examples here
include UML, BSD Jails, and Solaris Zones—see Figure 16.6.) We have seen
some researchers call this approach paenevirtualization.

• Does the guest software—in particular, the OS—need to be rewritten in order
to accommodate the virtualization, or it can be run unmodified? Para-
virtualization refers to the former approach.

Some projects to watch in this space include VMWare [VMW07] and XEN
[BDF+03, Xen07].

Another set of issues arise pertaining to the mediation between the compart-
ments. How do we define the APIs? How do we have assurance that the APIs, if
they work as advertised, work as intended? How do we have assurance that they are
implemented correctly? Furthermore, an often neglected issue is how easily human
designers and programmers can craft policies that capture the intended behavior.
One might remember that these same issues vexed OS design—and one might
cynically ask why virtualization research will do any better.

As we discussed earlier, one can take many approaches to providing this illu-
sion. However, if the goal is to provide the illusion of the conventional architecture,

Smith Book November 1, 2007 3:3

442 Hardware-Based Security

container
pr

oc
es

s

pr
oc

es
s

pr
oc

es
s

host operating
system

hardware

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

hardware

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

container container

host operating system, with zone/container support

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

host operating
system

hardware

pr
oc

es
s

pr
oc

es
s

pr
oc

es
s

host operating
system

hardware

Figure 16.6 In yet another approach to virtualization, an enhanced OS groups processes
into sets called zones or containers (above). One OS installation manages all the containers—
however, from the perspective of the userland processes, each container appears to have its
own instance of the OS and the machine (below).

doing so with conventional architecture is problematic. The guest system running
inside a virtual machine expects to have user and kernel privileges. If guest kernel
mode runs inside real user mode, then kernel-mode instructions won’t necessarily
operate properly. But if guest kernel mode runs inside real kernel mode, then noth-
ing stops the guest from interfering with other virtual machines. (Indeed, the hacker
community celebrates its red pills:6 techniques to determine whether a program is
running in a virtualized environment, via exploiting such differences. These prop-
erties were well known in the security literature, however.) For that matter, even
if we could straighten out the privileges for virtual machines, how do we manage
them all? Which code should do that, and how does the architecture enforce that?
([U+05] provides a nice overview of these challenges.)

Hardware vendors have been developing a new generation of processor archi-
tectures to address these issues. Intel’s Vanderpol technology (VT), sometimes de-
fined as virtualization technology, removes the privilege and address space obstacles
to virtualization. Intel’s LaGrande technology (LT) adds support for secure manage-
ment of virtualization; essentially, turning the kernel/user model into a quadrant:

6. Named after an instrument in the Matrix film series.

Smith Book November 1, 2007 3:3

16.5 Coming Trends 443

kernel/user for VM and kernel/user for hypervisor, which has special privileges. As
of this writing, LT details are still limited to innuendo; according to rumor, the rea-
son VT and LT seem to overlap somewhat in functionality is that they were rival, not
complementary, projects. (Also, new marketing terms, such as TXT, appear to be
supplanting these older project names.) AMD’s Pacifica and Presidio architectures
correspond to VT and LT, respectively.

Although not necessarily designed for security, these virtualization-friendly ar-
chitectures have security applications. Such platforms as an IE/Windows Web-
browsing installation, which typically are lost causes for security, can be safely con-
fined in a VM. Watchdog modules that check system integrity no longer have to be
constrained to looking at RAM and guessing at the internal state of the CPU; they
can run inside the CPU, with their fingers inside the target VM. (Virtual machine
introspection is a term used for this sort of thinking.) On the other hand, the SubVirt
project illustrates another type of security application: malware that inserts itself
as a malicious hypervisor (wags suggested calling it a “hypervirus”) and shifts the
victim system into a virtual machine, where it can’t easily detect or counteract the
malware [KCW+06].

16.5.2 Attestation and Authentication
We began our discussion of hardware-based security by considering how hardware
can bind secrets to the correct computational entity. We see the potential for much
industrial churn and ongoing research here.

One of the first issues to consider is which a-word applies: attestation or au-
thentication or perhaps even authorization. When considering the general scenario
of interacting with a remote party, the primary security question is: Who is it? Is
it the party I think it is? Resolving this question is generally considered the do-
main of authentication. As discussed in Section 9.7.2, some dissidents instead see
authentication as addressing the binding between entity and name and preach that
authorization, as the binding of entity to property, is the true goal.

When the entity in question is a computational device, both identity and prop-
erties depend in part on the basic configuration of the device: what the hardware is
and what the software is. However, as some of our own work demonstrated (e.g.,
[Smi04a]), the question is more subtle. The “correct” device can and perhaps should
change software while remaining the same entity; the same hardware with a fresh
reinstallation of the same software may in fact be a different entity. Consequently,
consideration of the a-words in this realm often leads to an initial focus on attesting
to a manifest of software and hardware configuration.

Smith Book November 1, 2007 3:3

444 Hardware-Based Security

Some colleagues insist that, if checking software configuration is involved, then
it must be attestation. We disagree.

• One cannot have meaningful attestation without authentication. An entity can
claim any configuration it wants to; without authentication, the relying party
has no reason to believe this claim.

• On the other hand, one can easily have authentication without attestation.
When connecting to a hardware-hardened Web server, what the relying party
cares about is the fact that it’s a hardened Web server. The relying party does
not necessarily need to know the full state of libraries and Apache
versions—just that they’re okay.

Whichever a-word one uses, we see two current sets of unresolved problems.
The first is the “right” way to implement this structure within a multicompartmented
machine. (We use the general term multicompartmented because we see this applying
to a range of beasts, from SELinux boxes with TPMs to advanced virtualization
and multicore.) Should a hardware-based root provide a full manifest for each
compartment? Should a hardware-based root provide a manifest for a software-
based root that in turn certifies each compartment? (And for that matter, why not
other combinations of one or more hardware roots with one or more software roots?)

The second set of unresolved problems pertains to what should get listed in
a manifest. What is it that the relying party really wants to know about a remote
machine? We often joke that giving a TCG-style set of hashes is akin to the uniformed
person at the door providing a DNA sample when asked to prove that he or she
is really a bona fide police officer—it’s a detailed answer that does not really give
the right information. Current researchers are exploring property-based attestation,
based on third parties’ providing bindings, and semantic remote attestation, based
on programming language semantics. This space will be interesting.

16.5.3 The Future of Moore’s Law
In 1965, Gordon Moore observed that the number of tranistors on an integrated
circuit doubles every 2 years. Subsequently blurred and transformed (e.g., the time-
line is often presented as every 18 months), this curve has now entered popular
folklore as Moore’s Law,7 usually stated as “every N years, the number of transistors
on chips will double.”

7. We have encountered a student who confused Moore’s Law with Murphy’s Law. The implications
are worth considering.

Smith Book November 1, 2007 3:3

16.5 Coming Trends 445

So far, industry has stayed true to Moore’s Law. However, insiders (e.g., [Col05])
observe that the causality is a bit more complicated than might meet the eye. Yes,
Moore’s Law was a good predictor of the trend of technology. But also, the industry
came to use Moore’s Law as a road map for its business model. For example, the
generation N processor might currently be manufactured and the generation N + 1
almost ready to fab; however, the design for the generation N + 2 processor, to be
fabbed k years later, was already under way and was counting on the fact that chip
technology supporting far more transistors would be ready when the processor was
ready to be manufactured.

Recently, hardware researchers have begun to express concern about the future
of Moore’s Law. Among many, the conventional wisdom is that, in order for Moore’s
Law to continue to hold, the transistors themselves will become less reliable—in
terms of increased failure rate during manufacture and also, perhaps, in terms of
increased failure rate in the field.

Some conjecture that the increased failure rate at manufacture will lead to a
stronger emphasis on multicore devices. Committing to one large monolithic pro-
cessor is risky, since faulty transistors might render the entire chip useless. An
architecture that instead consisted of many smaller, somewhat independent mod-
ules is safer—the vendor can include a few extra modules in the chip, and sufficiently
many should turn out to be good, even with faulty transistors.

However, we might also conjecture that an increased failure rate in the field
might lead to a resurgance of work on Bellcore attacks and countermeasures (recall
the discussion in Section 16.2.1).

16.5.4 Personal Tokens of the Future
The personal tokens common in the past decade were smart cards: credit-card-sized
pieces of plastic with small chips on them, typically used in small-value commercial
transactions. As we observed in Section 16.3.4, USB devices are common now.
What’s coming next?

Personal digital assistants (PDAs) are one possible candidate. For designers of
security protocols, PDAs offer the advantage of having an I/O channel the user
trusts, thus avoiding some of the problems of traditional smart cards. However, one
might be cynical as well. As PDAs become more like general-purpose computing
environments, the greater their risk of contamination—and the less advantage they
offer over a risky general-purpose platform. Some economic observers predict that
cell phones will displace PDAs. For the security designer, cell phones offer the
challenge that it can be harder to experiment and deploy new applications; vendors

Smith Book November 1, 2007 3:3

446 Hardware-Based Security

tend to keep things locked up. (Looking at the students and young professionals
who surround us, we might wonder whether iPods might be usable as a personal
token.)

16.5.5 RFID
The burgeoning use of RFID (radio frequency identification) devices also offers po-
tential for security applications and abuses. Of course, the first step in this discussion
is to nail down exactly what RFID devices are. Everyone agrees that these are elec-
tronic devices that use some type of close-range radio to communicate. However, the
sophistication assigned to these devices varies, from simple replacements for optical
barcodes to more complex devices that are armed with environmental sensors, state,
and batteries and that participate in interactive protocols with “reader” devices.

Anyone who has tried to wrestle groceries into the right position for a laser
to read the barcode printed on them can immediately appreciate the advantages
of inexpensive RFID tags that can be read from any orientation, without line-of-
sight. Indeed, discussions of application scenarios often begin on such use cases:
replacing clumsy optically read tags with easy and efficient RF-read ones, on items
such as groceries, library books, warehouse inventory, and passports. No need to
manually wrestle the item into the right position—the RF makes the connection
automatically!

Of course, the same ease of use that motivates the application of RFID tech-
nology is also the source of its security and privacy worries. A machine-readable
barcode is typically big enough for a human to see as well—so humans can be aware
of its presence. The physical manipulation required for a barcode to be scanned
is typically big enough for a human to notice—so humans can make judgments
about what’s being scanned and when. Humans also understand the notion of
“sight” and thus have a good intuition of how to keep an optical tag from being
seen.

These artifacts, which made it possible for human end users to control and
understand the use of optical identifiers, disappear with RFID. Which objects have
tags? Who is reading them and when and from how far away? What are the privacy
implications of this quantum leap in automated information gathering?

Of course, the general notion of an inexpensive device communicating over an
open medium raises the more standard security questions of physical security of the
end device and communications security between them.

Juels’s survey [Jue06] and the Garfinkel-Rosenberg anthology [GR05] provide
more discussion of this problem space. Recently, NIST even published guidelines
for RFID security [KEB+07].

Smith Book November 1, 2007 3:3

16.7 Project Ideas 447

16.6 The Take-Home Message
We often think of our system as the software we’ve written. However, a complete
view of “the system” includes the hardware that executes the instructions we’ve
written. As we’ve been discussing throughout this chapter, the set of hardware
components that we rely on to run our applications can make or break the security
of the system. Hardware can aid us in building more secure and resilient systems; it
can also make that job much more difficult.

Even if you never design or build a hardware component, understanding the
features and limitations of hardware will help you design better systems. Where can
we store secrets? Does the hardware protect computation and data? What types of
adversaries are they protected from? These types of questions should be part of the
standard checklist when it comes to building secure systems; they are certainly part
of any good attacker’s.

There’s something strangely Gödellian in thinking that we can make software
more secure by simply writing more, perhaps better, software. If we end up with
either incompleteness or inconsistency, there’s a good chance that some security
trouble is lurking just around the corner. If designed and used correctly, hardware
might be able to help. As with anything else, it’s no magic bullet. It’s a tool that,
when applied appropriately, can solve certain issues.

16.7 Project Ideas
1. In Section 16.1.1, we noted that a colleague insists that it’s impossible to read

data from disks once the cells themselves have been overwritten. Nonetheless,
rumors persist (e.g., “just hack the disk controller code to change the head
alignment so it reads the edges of the tracks instead!”). Prove our colleague
wrong!

2. In Section 16.2.1, we discussed how an attack that forces the CPU to take one
direction of the branch—whether or not it’s correct—could let the adversary
subvert the correctness of the system. Can you find some real code examples
of this?

3. Learn a bit about how dongles are used to protect software. Can you think of
ways to break them? Can you design a better scheme?

4. Implement modular exponentiation for 1024-bit integers on a 32-bit machine.
Time the result of your software-only implementation, and compare it to
numbers given by your favorite cryptographic accelerator’s hardware
implementation.

Smith Book November 1, 2007 3:3

448 Hardware-Based Security

5. Assume that we had a TPM whose PCRs used MD5 as a hash algorithm
instead of SHA1. Knowing that MD5 has some problems (see Chapter 8),
think about ways that you can exploit MD5 weaknesses to hack a TPM.

6. Sketch a design for new CPU interfaces that would make it easier to
determine what code was being executed in what context. (Extra credit:
Prototype your design with OpenSPARC.)

7. One popular use of virtualization is in Linux honeypots that rely on user-mode
linux (UML). Design (and code, for extra credit) a red pill to determine
whether your program is running on UML. How does “real” virtualization
(i.e., under the OS) improve the situation?

