Software Tamperproofing

’j[:) tamperproof a program is to ensure that it “executes as intended,” even in
the presence of an adversary who tries to disrupt, monitor, or change the execution.
Note that this is different from obfuscation, where the intent is to make it difficult
for the attacker to understand the program. In practice, the boundary between tam-
perproofing and obfuscation is a blurry one: A program that is harder to understand
because it’s been obfuscated ought also be more difficult to modify! For example,
an attacker who can’t find the decrypt O function in a DRM media player because
it’s been thoroughly obfuscated also won’t be able to modify it or even monitor it
by setting a breakpoint on it.

The dynamic obfuscation algorithms in Chapter 6 (Dynamic Obfuscation), in
particular, have often been used to prevent tampering. In this book, we take the
view that a pure tamperproofing algorithm not only makes tampering difficult but
is also able to detect when tampering has occurred and to respornd to the attack by in
some way punishing the user. In practice, tamperproofing is always combined with
obfuscation:

1. If you both obfuscate and tamperproof your code, an attacker who, in spite of
the tamperproofing, is able to extract the code still has to de-obfuscate it in
order to understand it;

2. Code that you insert to test for tampering or effect a response to tampering
must be obfuscated in order to prevent the attacker from easily discovering it.

401

402 Software Tamperproofing

Watermarking and tamperproofing are also related. In fact, if perfect tamper-
proofing were available, watermarking would be easy: Just watermark with any
trivial algorithm, tamperproof, and by definition the attacker will not be able to de-
stroy the mark! It’s precisely because we don’t have perfect tamperproofing that we
need to worry about watermarking stealth: We have to assume that an attacker who
can find a watermark will also be able to modify the program to destroy the mark.

The prototypical tamperproofing scenario is preventing an adversary from re-
moving license-checking code from your program. So ideally, if the adversary is able
to change your code on the left to the code on the right, the program would stop
working for him:

if (license_expired()) { if (false) {
printf("pay me!™); ﬁ> printf("pay me!™);
abort(); abort();

} }

One way of thinking about this is to note that the program consists of two pieces
of semantics: the piece that both you and the adversary want to maintain (because
it constitutes the core functionality of the program) and the piece that you want
to maintain but that the adversary wants to remove or alter (the license check).
Clearly, maintaining the core semantics and removing the checking semantics are
both important to the adversary. If not, it would be easy for him to destroy the
tamperproofing code: Simply destroy the program in its entirety! The adversary
may also want to add code to the program in order to make it perform a function
that you have left out, such as the print function in an evaluation copy of a program.

There are many kinds of invariants that yoz may want to maintain but that your
user may want to violate. For example, a free PDF reader might let you fill in a
form and print it but not save it for later use. This is supposed to act as an incentive
for buying the premium product with more functionality. However, from the user’s
point of view it’s also an incentive for hacking the code to add this “missing feature.”
Other products don’t allow you to print, games don’t provide you with an infinite
supply of ammunition, evaluation copies stop working after a certain period of
time, VoIP clients charge you money to make phone calls, DRM media players and
TV set-top boxes charge you to watch movies or listen to music, and so on. In all
these scenarios, someone’s revenue stream is depending on their program executing
exactly as they intended it to, and an adversary’s revenue stream (or debit stream)
depends on modifying the semantics of the program to execute the way they want
1t to.

Software Tamperproofing 403

While not technically a case of modifying the program, observing its execution
to steal algorithms, cryptographic keys, or any other proprietary code or data from
the program secrets is sometimes also considered a form of tampering. For example,
a common application of tamperproofing is to protect cleartext data or the crypto-
graphic keys themselves in a digital rights management system. If an attacker can
insert new code (shown here shaded) in the media player, he will be able to catch
and save the decrypted media:

encrypted
media

decrypt(data,key){ decrypt(data,key){

clear=data’key;
clear=data”key; . Z

printf clear;
return clear;

return clear;

digita
media

Observing the player under a debugger can achieve the same result without actually
modifying the code:

> gdb player
(gdb) break decrypt.c:3
commands
printf "%x\n",clear
continue

end

Here, we've set a breakpoint on the decrypt function such that, whenever we enter
it, the cleartext media gets printed and execution continues.

Technically, an attacker typically modifies the program with the intent to force it
to choose a different execution path than the programmer intended. He can achieve

this by:

1. Removing code from and/or inserting new code into the executable file prior
to execution;

2. Removing code from and/or inserting new code into the running program;

3. Affecting the runtime behavior of the program through external agents such
as emulators, debuggers, or a hostile operating system.

404 Software Tamperproofing

A protected program can try to detect that it’s running under emulation, on a
modified operating system, or inside a debugger, but this turns out to be hard to do
reliably. For example, how can you detect that a user has turned back the system
clock so as not to trigger your “license-expired” check? We will show a few popular
techniques, but in practice, tamperproofing algorithms tend to focus on making sure
that the program’s static code and data haven’t been changed, even if this certainly
isn’t enough to ensure it’s running properly.

Conceptually, a tamperproofing system performs two tasks. First, it monitors
the program (to see if its code or data have been modified), and the execution
environment (to see if this is hostile in any way). Second, once it has determined
that tampering has occurred or is likely to occur, a response mechanism takes over
and retaliates in a suitable manner. This can range from making the program exit
gracefully to punishing the user by destroying his home directory. In simple systems,
detection and response are tightly integrated, such as if (emulated()) abort(), but
this makes it easy for an attacker to work backwards from the point of response
to the point of detection and modify the program to bypass the tamperproofing
code. It’s therefore important to separate the checking and the response functions
as widely as possible, both spatially (they should be far away from each other in
the executable) and temporally (they should be far away from each other in the
execution trace).

Typical software tamperproofing approaches rely on self-checking code, self-
modifying code, or adding a layer of interpretation. In general, these techniques are
not suitable for type-safe distribution formats like Java bytecode—in Java it’s simply
not possible to stealthily examine your own code or generate and execute code on
the fly. In this chapter, therefore, you will mostly see algorithms that protect binary
executables.

Some algorithms are based on the idea of splitting the program into two pieces,
allowing most of the program to run without performance penalty in the clear
(open to user tampering) and the remainder to run slower, but highly protected.
The protected part could be run on a remote trusted machine, in a tamper-resistant
hardware module such as a smartcard, or in a separate thread whose code has been
heavily obfuscated.

This chapter is organized as follows. In Section 7.1+ 405, we give essential def-
initions. In Section 7.2» 412, we present algorithms based on the idea of introspec-
tion, i.e., tamperproofed programs that monitor their own code to detect modifi-
cations. In Section 7.3» 440, we discuss various kinds of response mechanisms. In
Section 7.4, 444, we cover so-called oblivious hashing algorithms that examine the
state of the program for signs of tampering. In Section 7.5» 453, we discuss remote

7.1 Definitions 405

tamperproofing, i.e., how we can determine that a program running on a remote
machine has not been tampered with. In Section 7.6 464, we summarize the chapter.

7.1 Definitions

An adversary’s goal is to force your program P to perform some action it wasn’t
intended to, such as playing a media file without the proper key or executing even
though alicense has expired. The most obvious way to reach this goal is to modify P’s
executable file prior to execution. But this is not the o7y way. The adversary could
corrupt any of the stages needed to load and execute P, and this could potentially
force P to execute in an unanticipated way. For example, he could force a modified
operating system to be loaded; he could modify any file on the file system, including
the dynamic linker; he could replace the real dynamic libraries with his own; he
could run P under emulation; or he could attach a debugger and modify P’s code
or data on the fly.

Your goal, on the other hand, is to thwart such attacks. In other words, you
want to make sure that P’s executable file itself is healthy (hasn’t been modified)
and that the environment in which it runs (hardware, operating system, and so on)
isn’t hostile in any way. More specifically, you want to ensure that P is running
on unadulterated hardware and operating systems; that it is not running under
emulation; that the right dynamic libraries have been loaded; that P’s code itself
hasn’t been modified; and that no external entity such as a debugger is modifying
P’s registers, stack, heap, environment variables, or input data.

In the following definition, we make use of two predicates, I;(P, E) and I, (P, E),
which respectively describe the integrity of the application (what the defender would
like to maintain) and what constitutes a successful attack (what the attacker would
like to accomplish):

Definition 7.1 (Tampering and Tamperproofing). Let I;(P, E) and I, (P, E)
be predicates over a program P and the environment E in which it executes.
P is successfully tamperproofed if, throughout the execution of P, I;(P, E)

holds. It is successfully attacked if, at some point during the execution of P,
I,(P, E) Anot I;(P, E), holds and this is not detectable by P.

For example, in a cracking scenario, I, could be, “ P executes like a legally purchased
version of Microsoft Word,” and I; could be, “The attacker has entered a legal
license code, and neither the OS nor the code of P have been modified.” In a DRM
scenario, I, could be, “P is able to print out the private key,” and I; could be,

406 Software Tamperproofing

“The protected media cannot be played unless a valid user key has been entered A
private keys remain private.”

Conceptually, two functions, CHECK and RESPOND, are responsible for the tam-
perproofing. CHECK monitors the health of the system by testing a set of invariants
and returning true if nothing suspicious is found. RESPOND queries CHECK to see if P
is running as expected, and if it’s not, issues a tamper response, such as terminating
the program.

7.1.1 Checking for Tampering

CHECK can test any number of invariants, but these are the most common ones:

code checking: Check that P’s code hashes to a known value:

if (hash(P's code) != ®xca7calls)

return false;

result checking: Instead of checking that the code is correct, CHECK can test that the
result of a computation is correct. For example, it is easy to check that a sorting
routine hasn’t been modified by testing that its output is correct:

quickSort(A,n);
for (i=0;i<(m-1);i++)
if (A[i1>A[i+1])

return false;

Checking the validity of a computed result is often computationally cheaper than
performing the computation itself. For example, while sorting takes O(7 log)
time, checking that the output of a sort routine is in sorted order can be done
in almost linear time. Result checking was pioneered by Manuel Blum [43] and
has been used in commercial packages such as LEDA [145].

environment checking: The hardest thing for a program to check is the validity
of its execution environment. Typical checks include, “Am I being run under
emulation?”, “Is there a debugger attached to my process?”, and, “Is the oper-
ating system at the proper patch level?” While it might be possible to ask the
operating system these questions, it’s hard to know whether the answers can

7.1 Definitions 407

be trusted or if we’re being lied to! The actual methods used for environment
checking are highly system-specific [166].

As an example, let’s consider how a Linux process would detect that it’s
attached to a debugger. As it turns out, a process on Linux can be traced only

once. This means that a simple way to check if you’re being traced is to try to
trace yourself:

#include <stdio.h>
#include <sys/ptrace.h>
int main() {
if (ptrace(PTRACE_TRACEME))
printf("I'm being traced!\n");

If the test fails, you can assume you've been attached to a debugger:

> gcc -g -0 traced traced.c
> traced

> gdb traced

(gdb) run

I'm being traced!

Another popular way of detecting a debugging attack is to measure the time,
absolute or wall clock, of a piece of code that should take much longer to
execute in a debugger than when executed normally. In the light gray code in
the example in Listing 7.15 408, a divide-by-zero exception is thrown that the
gdb debugger takes twice as long to handle as non-debugged code.

Here’s the output when first run normally and then under a debugger:

> gcc -o cycles cycles.c

> cycles

elapsed 31528: Not debugged!

> gdb cycles

(gdb) handle SIGFPE noprint nostop
(gdb) run

elapsed 79272: Debugged!

408

Software Tamperproofing

Listing 7.1 Code to detect if a Linux process is running under a debugger or not.
The code in light gray throws a divide-by-zero exception. The x86 rdtsc instruc-
tion returns the current instruction count, and the cpuid instruction flushes the
instruction pipeline to ensure proper timing results.

#include
#include
#include
#include
#include

<stdio.h>

<stdint.h>
<signal.h>
<unistd.h>
<setjmp.h>

jmp_buf env;

void handler (int signal) {
longjmp (env,1);
}

int main(Q) {
signal (SIGFPE, handler);
uint32_t start,stop;
int x 0;
if (setjmp(env)
asm volatile (
"cpuid\n"
"rdtsc\n"

0 {

"=a" (start)
J;
X = X/X;
} else {
asm volatile
"cpuid\n"
"rdtsc\n"

"=a" (stop)

N

uint32_t elapsed = stop

if (elapsed > 40000)
printf("elapsed %i:

else

printf("elapsed %i:

start;
Debugged!\n" ,elapsed);

Not debugged!\n",elapsed);

The bound on the instruction count will have to be adjusted depending on the
architecture and the debugger on which the program is run.

Depending on our needs, CHECK may be more or less precise, i.e., it could detect
tampering close in time to when the tampering occurred, or not. A really imprecise

7.1 Definitions 409

detector is unsafe, in that it may fail to detect tampering until after the tampered
program is able to cause permanent damage. Consider this timeline of the execution
of a program P:

precise accurate safe unsafe
| | | r--—-~-~--- [>
I I I L __—____ [-
to t ty
program tamper L execute L interact program
start end

At some time £y, a location L in P is modified by the attacker. The timeline doesn’t
show it, but this could either be prior to execution (if P’s executable file is modified),
during program start-up (if theloaderis doing the modification), or during execution
(if an attached debugger is doing the modification). At some later time #, the
program reaches location L and the modified code gets executed. At time %, the
first “interaction event” after #, occurs, i.e., this is the first time that the modified
P has the chance to cause permanent damage by writing to a file, play protected
content, send secret data back over the Internet, and so on.

A precise checker detects the attack “immediately” after the modification has
taken place, perhaps within a window of a few instructions. With a precise detector,
you're able to immediately punish a user who is experimenting by making random
changes just to see “what happens.” An accurate checker detects at some later time,
but before ¢, which allows it to prevent the modified code from ever being executed,
for example, by patching L. A safe detector waits until after the modified code has
been executed, but before the first interaction event. At that point, the program is in
an unintended and indeterminate state, but the detector knows this and can prevent
any permanent damage by terminating the program. Finally, an u#safe detector
waits until after the interaction event at # or even until after program termination
(postmortem detection) to detect tampering. At this point, permanent damage may
have been inflicted, and the only remaining course of action may be to report the
violation.

Definition 7.2 (Detector precision). Let # be the time tampering occurs, # the
time the tampered code gets first executed, and % the time of the first interaction
event following the tampering. A precise detector detects tampering at time ¢,

410 Software Tamperproofing

an accurate during (%, t1), a safe detector during [#,), and an unsafe detector
during [...).

Some tamperproofing systems will run CHECK only once on start-up. Such szatic
systems catch modifications to the program’s executable file, but not tampering that
happens at runtime, for which a dynamic detector is necessary:

Definition 7.3 (Detector execution). A tamper-detector is static if detection
happens only once at program load time and dynanmzic if detection is continuous
throughout program execution.

7.1.2 Responding to Tampering

RESPOND executes a predetermined response to a detected attempt at tampering.
Here are some possible responses:

terminate: Terminate the program. Some time should pass between detection and
termination to prevent the attacker from easily finding the location of the de-
tection code.

restore: Restore the program to its correct state by patching the tampered code and
resetting any corrupted data structures.

degrade results: Deliberately return incorrect results. The results could deteriorate
slowly over time to avoid alerting the attacker that he’s been found out.

degrade performance: Degrade the performance of the program, for example, by
running slower or consuming more memory.

report attack: Report the attack, for example, by “phoning home” if an Internet
connection is available.

punish: Punish the attacker by destroying the program or objects in its environ-
ment. For example, if the DisplayEater program detects that you’re trying to
use a pirated serial number, it will delete your home directory [126]. More
spectacularly, the computer itself could be destroyed by repeatedly flashing the
bootloader flash memory.

7.1.3 System Design

There are many possible locations within a computing system for CHECK and
RESPOND. Most obviously, you could integrate them directly in the binary code of
your program:

7.1 Definitions 411

Dynamic Libs

Process space

input arguments, environment variables,
registers, static data, stack, heap

P’s binary code

I RESPOND () {

if (!CHECKQ)
report();
restore();
abort();

CHECK can check invariants over the binary code itself, over the static and dynamic
data of the process, or over the environment (hardware and operating system) in
which the program is running. We call this kind of organization a self-checking
system. Note that in this design it’s possible (and desirable!) for one of CHECK’s
invariants to be a check on the integrity of its own code and RESPOND’s code. Without
such a check, the adversary will start his attack by disabling CHECK or RESPOND, leaving
himself free to further tamper with the program itself.

It’s also possible for CHECK and RESPOND to run from within the hardware, the
operating system, the dynamic loader, or a separate process.

Definition 7.4 (Integration). A tamperproofing system is self-checking/self-
responding if the checker/responder is integrated within P itself. It is external-
checking/ external-responding if it runs in a different process from P but on the
same computing system as P, and it is remote-checking/remote-responding if it is
running on a different computing system than P.

A tamperproofing system can be self-checking but remote-responding, and so
on.

Remotely checking the health of a program is an important subproblem known
as remote tamperproofing. Here, you've put self-checkers in your program on the
user’s site:

412 Software Tamperproofing

Client

Server P’s process

network

CHECK P’s data
sespoin [

P’s binary code

In addition, checkers running on your own server site check for tampering by mon-
itoring the communication pattern for anomalies. You'll read more about remote
tamperproofing in Section 7.5 453.

7.2 Introspection

We will devote the remainder of the chapter to describing tamperproofing algo-
rithms from the literature. In this section, we will talk about two algorithms that use
introspection. This essentially means the program is augmented to compute a hash
over a code region to compare to an expected value. While this is a straightforward
idea, as always, the devil is in the details.

Introspection algorithms insert code like this into the instruction stream:!

start = start _address;
end = end_address;
h = 0;

while (start < end) {
h = h @ *start;
start++;

—

[

if (h != expected _value)
abort ();
goto *h;

1. We will call these functions hash functions. Some authors prefer the term checksumming, and others
prefer testing. The term guard is sometimes used to collectively refer to the hash function and the
response code.

7.2 Introspection 413

The light gray part (the initialization) sets up the code region that is to be checked.
The dark gray part (the loop) computes a hash value over the region using some
operation @. The light gray and dark gray parts together form the CHECK function,
while the dashed and dotted parts show two possible REsPoNDers. The dashed re-
sponder simply terminates the program if the loop computes the wrong value (i.e.,
if the code region has been tampered with). The dotted responder instead uses
the value computed by the loop to jump to the next program location. If the code
region has been tampered with, the program will jump to the wrong location and
eventually malfunction. This idea is used in the tamperproofing of the Skype client,
which you’ll learn more about in Section 7.2.4» 431. There are many possible vari-
ants of this idea. You could use the hash value as part of an arithmetic computation,
for example, causing the program to eventually produce the wrong output, or you
could use it in an address computation, eventually causing a segmentation fault.

Prototypical attacks on an introspective tamperproofing systems are based on
pattern matching. They run in two steps:

1. Find the location of the checker and/or responder, either by

(a) searching for suspicious patterns in the static code itself, or by

(b) searching for suspicious patterns in the dynamic execution.
2. Disable the response code, either by

(a) replacing the if-statement by if (8) ..., or by

(b) pre-computing the hash value and substituting it into the response code.

Static pattern matching could, for example, target the initialization section. If the
loop bounds are completely unobfuscated, it should be easy for the adversary to
look for two code segment addresses followed by a test:

start = Oxbabebabe;
end = 0xca75ca75;
while (start < end) {

A dynamic pattern matcher could look for data reads into the code segment, which
will be unusual in typical programs. Depending on the nature of the tamper response,
disabling means ensuring that the test on the hash value never succeeds or that
the jump goes to the correct location, regardless of what value the loop actually
computes:

414 Software Tamperproofing

if ()
abort ();

In this section, we’ll show you two algorithms that make these types of attacks
harder. The idea is to have multiple checkers and for checkers to check each other so
that it’s never enough to just disable one of them—you have to disable many or all of
them. The TPCA algorithm builds up a network of checkers and responders so that
checkers check each other and responders repair code that has been tampered with.
Algorithm TPHMST refines this further by hiding the expected value hash which,
because of its randomness, is an easy pattern-matching target.

Another strategy to make pattern-matching attacks harder is to use a library of
a large number of hash functions and to be able to obfuscate these thoroughly. We
discuss this in Section 7.2.25 418.

In Section 7.2.4» 431, we'll show you the heroic effort the Skype engineers went
through to protect their clients and protocol from attack (in part, using introspec-
tion), and the equally heroic effort two security researchers went through (in part,
using pattern matching) to crack the protection.

As it turns out, pattern matching is not the only possible attack against in-
trospection algorithms. We will conclude the section by showing you algorithm
REWOS, which is a generic and very clever attack that with one simple hack to the
operating system disables a// introspection-based algorithms! We’ll also show you
Algorithm TPGCK, which uses self-modifying code to counter this attack.

7.2.1 Algorithm TPCA: Checker Network

The TPCA [24,59] algorithm was invented by two Purdue University researchers,
Hoi Chang and Mikhail Atallah. The algorithm was subsequently patented and with
assistance from Purdue a start-up, Arxan, was spun off. The basic insight is that it’s
not enough for checkers to check just the code: they must check each other as well!
If checkers are not checked, they are just too easy to remove. The algorithm builds
up a network of code regions, where a region can be a block of user code, a checker,
or a responder. Checkers compute a hash over one or more regions and compare
it to the expected value. Responders in this algorithm are typically repazrers, and if
the checker has discovered that a region has been tampered with, a responder will
replace the tampered region with a copy stored elsewhere. Multiple checkers can

7.2 Introspection 415

Algorithm 7.1 Overview of algorithm TPCA. P is the program to be protected, in a
form that makes control explicit, such as a control flow graph or a call graph. G is
a directed guard graph describing the relationship between code regions, checkers,
and responders.

TAMPERPROOF(P, G):

1. Let P’s nodes be ng, 71, . . ., representing code regions.
2. Let G’s nodes be 7, 71, ... (representing code regions), c, c1, ... (checkers),
c . .
and rq, 1, ... (responders). G has a edge ¢; — 7, if ¢; checks region 7, and

an edge r; > n; if r; repairs region 7;.
3. Insert the responders in P so that they dominate the region they check.

4. Insert the checkers in P so that at least one checker dominates every
corresponding responder.

5. Connect checkers to responders by inserting variables, as necessary.

check the same region, and multiple responders can repair a tampered region. A
nice consequence of this design is that you can achieve arbitrary levels of protection
(at a concomitant increase in size and decrease in performance) by adding more
checkers and responders and more complex relationships between them.

Have a look at the example in Listing 7.2» 416, a program that implements a
simple DRM system. For simplicity, we’ve made code regions identical to functions,
but in general this isn’t necessary. A region could comprise multiple functions or
parts of functions, and regions could be overlapping. We’ve inserted the checkers (in
dark gray) and responders (light gray) so that they domzinate the call to the function
they check and repair. This way, you’ll know that when a function gets executed
it will be correct. For example, consider the decrypt function in Listing 7.2 416.
Before making the call to getkey, decrypt computes a hash of getkey’s code, and if it
doesn’t match (i.e., getkey has been tampered with), it repairs getkey by replacing
it with a stored copy (getkeyCOPY).

Algorithm 7.1 gives an overview of the technique. To tamperproof a program,
you need two graphs. P is the program’s control flow graph (if you want to protect
individual basic blocks) or a call graph (if you’re content protecting one function at
a time). A second graph G, the guard graph, shows the relationship between regions
to be protected and the checkers and responders that check them. Corresponding
to the example in Listing 7.2+ 416, here is P (left) and G (right):

416 Software Tamperproofing

Listing 7.2 DRM player tamperproofed with algorithm TPCA.

#define getkeyHASH 0Oxceld400a

#define getkeySIZE 14

uint32 getkeyCOPY[] = {0x83e58955,0x72b820ec ,0xc7080486,...};
#define decryptHASH 0x3764e45c

#define decryptSIZE 16

uint32 decryptCOPY[] = {0x83e58955,0xaeb820ec ,0xc7080486,...};
#define playHASH 0x4f4205a5

#define playSIZE 29

uint32 playCOPY[] = {0x83e58955,0xedb828ec ,0xc7080486,...1};

uint32 decryptVal;

int main (int argc, char *argv[]) {
{uint32 playVal = hash((waddr_t)play,playSIZE);
int user_key = Oxca7call5;
{decryptVal = hash((waddr_t)decrypt,decryptSIZE);
int digital_medial[] = {10,102};
if (playvVal != playHASH)
{memcpy ((waddr_t)play,playCOPY,playSIZE*sizeof(uint32));
play(user_key,digital_media,2);
}

int getkey(in® user_key) {
{decryptVal = hash((waddr_t)decrypt,decryptSIZE);
int player_key = 0xbabeca75;
return user_key ~ player_key;

int decrypt(int user_key, int media) {
{uint32 getkeyVal = hash((waddr_t)getkey,getkeySIZE);
if (getkeyVal != getkeyHASH)
{memcpy ((waddr_t)getkey,getkeyCOPY, getkeySIZE*sizeof (uint32));
int key = getkey(user_key);
return media " key;

}

float decode (int digital) {
return (float)digital;

}
void play(int user_key, int digital_media[], int len) {
if (decryptVal != decryptHASH)
{memcpy ((waddr_t)decrypt ,decryptCOPY ,decryptSIZE*sizeof (uint32));
int 1i;

for(i=0;i<len;i++)
printf("%f\n",decode (decrypt (user_key,digital_medial[il)));

7.2 Introspection 417

In G, edges 7 = n are black and represent 7z checking if 7 has been tampered

with. Edges # = (light gray) represent 7z responding to a crack of 7. In this

algorithm, responding usually means repairing, but this isn’t necessary, of course.
Here’s the corresponding code as it is laid out in memory:

main getkey decrypt decode play

C1 C3 Co
Co ry Iy rs

T

Again, dark gray represents checkers, and light gray represents repairers.

Problem 7.1 Ideally, you want no checker to be unchecked itself, but TPCA doesn’t
allow such circularity among checkers. Chang and Atallah [59] write, Fermat style,
“[Wle’ve solved the problem, but due to page limitation, we omit the discussion.”
Can you figure out what they had in mind?

418 Software Tamperproofing

7.2.2 Generating Hash Functions

To prevent pattern-matching and collusive attacks, it’s important to be able to gen-
erate a large number of different-looking hash functions. If you’ve included more
than one hash computation in your tamperproofed program, you even have to
worry about self-collusive attacks. That is, an adversary who doesn’t know what
your hash functions look like can still scan through the program for pieces of
similar-looking code: Any two pieces that look suspiciously similar and include
a loop would warrant further study. In Chapter 10 (Software Similarity Analy-
sis), you'll see clone detectors that are designed to locate exactly this kind of self-
similarity.

In contrast to other applications that need hash functions, there’s no need for
ours to be “cryptographically secure,” or even to compute a uniform distribution of
values. Cryptographic hash functions such as SHA-1 and MD5 are large and slow,
and have telltale static and dynamic signatures that an attacker could exploit in
pattern-matching attacks. Once the attacker has located a hash function, disabling
it isn’t hard, and it matters little if it's SHA-1 or one of the trivial ones you’ll see be-
low. Therefore, the most important aspects of a hash function used in introspection
algorithms are size (you’ll include many of them in your program), speed (they may
execute frequently), and above all, stealth (they must withstand pattern-matching
attacks).

Here’s a straightforward function that computes the exclusive-or over a region
of words:

typedef unsigned int uint32;
typedef uint32#* addr-t;

uint32 hashl (addr_t addr,int words) {
uint32 h = xaddr;

int i;

for(i=1; i<words; i++) {
addr++;
h "= »addr;

3

return h;

7.2 Introspection 419

To increase stealth in an actual implementation, you should inline the function.
Any tamperproofing algorithm based on introspection will need a library of
different-looking hash functions. Here’s one simple variant of hash1 above:

uint32 hash2 (addr_t start,addr_t end) {
uint32 h = =#start;
while(1) {
start++;
if (start>=end) return h;

h "= #start;

You have to be careful, however, to make sure that superficial syntactic changes
at the source-code level actually lead to significantly different compiled code. It’s
entirely possible that a good optimizing compiler will generate very similar code for
hash1 and hash2. For this reason, some tamperproofing implementations generate
their hash functions directly at the assembly-code level.

You can add a parameter to step through the code region in more or less detail,
which allows you to balance performance and accuracy:

int32 hash3 (addr-t start,addr-t end,int step) {
uint32 h = *start;
while(1) {
start+=step;
if (start>=end) return h;
h "= =*start;

There’s, of course, no particular reason to scan forward, you can go backwards
as well, and you can complicate the computation by adding (and then subtracting
out) a random value (rnd):

420 Software Tamperproofing

uint32 hash4 (addr_t start,addr_t end,uint32 rnd) {
addr-t t = (addr-t) ((uint32)start + (uint32)end + rnd);

uint32 h = 0;
do {
h += *((addr-t) (-(uint32)end-(uint32)rnd+(uint32)t));
t++;
} while (t < (addr_t) ((uint32)end+(uint32)end+(uint32)rnd));
return h;

The following function is used by algorithm TPHMST, where C is a small
constant, odd multiplier:

uint32 hash5 (addr-t start, addr-t end, uint32 C) {
uint32 h = 0;
while (start < end) {
h = Cx(*start + h);
start++;
}

return h;

To prevent pattern-matching attacks, Horne et al. [168] describe how to gener-
ate a large number of variants of hashs. The variants are generated by reordering
basic blocks: inverting conditional branches; replacing multiplication instructions
by combinations of shifts, adds, and address computations; permuting instruc-
tions within blocks; permuting register assignments; and replacing instructions with
equivalents. This results in a total of 2,916,864 variants, each less than 50 bytes of
x86 code in length.

Problem7.2 s generating three million different hash functions enough to confuse
an attacker? Does knowing our hash function obfuscation algorithm help him, if the
number of generated functions is large but finite? Can you combine the obfuscation
ideas of hash5 with those of hash4 (adding redundant computations) to generate an
infinite number of functions without losing too much performance?

7.2 Introspection 421

This final hash function we're going to show you has been designed with
some very special properties. You will see it used in Algorithm TPSLSPDK, in
Section 7.5.4» 459, to verify that a client on a remote machine is actually running the
correct code. An important part of this check is to measure the time it takes the
client to compute a hash over the code. For this to work, it’s essential that the hash
function runs in very predictable time. A malicious user who can modify the func-
tion to run faster than you were expecting will be able to cheat you into believing
they’re running correct code when in fact they’re not. To accomplish predictability,
you must make sure that there are no ways for the user to optimize the code, for
example, by parallelizing it or rearranging it into a faster instruction schedule. To
make sure that the adversary can’t rearrange the code, you must make it strongly
ordered, i.e., each instruction must be data-dependent on previous ones. Specifically,
these functions interleave adds and xors.

Also, you need to make sure that the adversary can’t predict the order in which
you’re hashing the data. Therefore, rather than sweeping sequentially through the
data, as in the previous functions, you should generate a random sequence of probes
into the data segment. You can use a T-function [199] x < x + (x*> v 5) mod 22
to provide the necessary randomness. It’s enough to probe #log# times (7 is the
length of the segment), since this makes you visit each word with high probability.

To make sure that the user doesn’t try to save time by computing the function
in advance, you should initialize the hash value to a random number rnd that you
don’t give him until it’s time to compute the hash. Here, then, is the function:

#define ROTL(v) (((0xA0000000&v)>>31) | (v<<1))

// The segment should be a power of two long.
uint32 hash6 (addr_t start, addr-t end, uint32 rnd) {
uint32 h = rnd;
uint32 x = rnd;
uint32 len = end-start;
uint32 bits = ceil(log2(len));
uint32 mask = OxFFFFFFFF >> (32-bits);
uint32 n = len*ceil(log2(len))/2;
addr_t daddr = start;
while (n>0) {
X =x+ (x¥x | 5);
daddr = start+(((uint32)daddr x)&mask) ;
h =h " *daddr;

422 Software Tamperproofing

X=x+ (x*x | 5);
daddr = start+(((uint32)daddr”x)&mask);
h = h + *daddr;

h = ROTL(Ch);
n- -;

}

return h;

(The rotation makes the function immune to a particular attack [324].) To ensure
predictable execution time, you must also consider cache effects. First, the hash
function itself must be small enough to fit inside the instruction cache of the CPU,
and second, the region you're hashing must fit into the data cache.

The Skype VoIP client inserts hundreds of hash functions that check each
other and check the actual code. We’ll show you the details of their protection
scheme later, in Section 7.2.4» 431, but for now, here is the family of functions they’re
using:

uint32 hash7() {
addr_t addr;
addr = (addr_t) ((uint32)addr” (uint32)addr);
addr = (addr-t) ((uint32)addr + 0x688E5C);

uint32 hash = 0x320E83 0x1C4C4;
int bound = hash + OxFFCCS5AFD;

do {
uint32 data = *((addr-t) ((uint32)addr + 0x10));
goto bl;
asm volatile(".byte 0x19");
bl:
hash = hash @ data;
addr -= 1;
bound- -;
} while (bound!=0);
goto b2;

asm volatile(".byte 0x73");
b2:

7.2 Introspection 423

goto b3;
asm volatile(".word 0xC8528417,0xD8FBBD1,0xA36CFB2F");
asm volatile(".word OxE8D6E4B7,0xCOB8797A");
asm volatile(".byte 0x61,0xBD");

b3:

hash-=0x4C49F346;

return hash;

To prevent the address of the region we’re checking from appearing literally in the
code, the initialization section is obfuscated so that the address is instead computed.
The routine is further obfuscated by inserting random data within the code, selecting
a different operator @ (add, sub, xor, and so on) for the hash computation, and
stepping through the data in different directions and with different increments. As
you'll see, hash7 wasn’t obfuscated sufficiently: The Skype protocol was broken by
looking for a signature of the address computation.

7.2.3 Algorithm TPHMST: Hiding Hash Values

In real code, large literal integer constants are unusual. So a simple attack on a
hash-based tamperproofing algorithm is to scan the program for code that appears
to compare a computed hash against a random-looking expected value:

h = hash(start,end);
if (h != Oxca7babe5) abort();

If every copy of the program you’re distributing is different, perhaps because you’re
employing fingerprinting, then you leave yourself open to easy collusive attacks:
Since the code of every program is different, the hash values that your tamperproof-
ing code computes must also be different and will reveal the location of the hash
computation!

A simple fix is to add a copy of every region you’re hashing to the program and
then compare the hashes of the two regions:

h1
h2 = hash(copy-start,copy-end);
if (hl != h2) abort(Q;

hash(orig-start,orig-end);

424 Software Tamperproofing

Algorithm 7.2 Overview of algorithm TPHMST. P is the program to be obfuscated,
and 7 is the number of overlapping regions.

TAMPERPROOF(P, #):
1. Insert # checkers of the form if (hash(start,end)) RESPOND() randomly
throughout the program.
2. Randomize the placement of basic blocks.
3. Insert at least # corrector slots ¢y, ... , ¢,

4. Compute 7 overlapping regions I, ... , I,, each I; associated with one
corrector ¢;.

5. Associate each checker with a region I; and set ¢; so that I; hashes to zero.

An obvious disadvantage of this fix is that, in the worst case, your program has now
doubled in size! Also, () = f() may not be all that common in real code, in which
case the adversary might be able to guess what tricks you’re up to.

Algorithm TPHMST [167,168] uses a very clever way of hiding the expected
value literals. The idea is to construct the hash function so that unless the code has
been hacked, the function always hashes to zero. This yields much more natural
code:

h = hash(start,end);
if (h) abort();

To accomplish this, TPHMST [167,168] uses the hash5 hash function from Sec-
tion 7.2.2»418, which has the advantage of being znvertible. This allows you to
insert an empty slot (a 32-bit word, shown here in light gray) within the region
you're protecting, and later give this slot a value that makes the region hash to
zero:

start: O0xab01lcd02

0x11001100
slot: 0x???7?727777
Oxca7ca7ca
end: Oxabcdefab

h = hash(start,end);
if (h) abort(Q);

7.2 Introspection 425

7.2.3.1 System Design Algorithm 7.2 is also interesting, because the paper [167]
in which it was first presented, and the subsequent U.S. patent application [168],
describe a complete and practical system for tamperproofing and fingerprinting. To
build a functioning system, you have to solve many practical problems. For example,
when during the translation and installation process do you insert fingerprints and
tamperproofing code? Do you do it at the source-code level before compilation, at
the binary code level at post-link time, or during installation on the end user’s site?
Each has different advantages and problems. The more work you do on the user’s
site during installation, the more he can learn about your method of protection, and
the more you leave yourself open to attack. On the other hand, if all the work is
done before distribution (that is, every distributed copy has already been individu-
ally fingerprinted and tamperproofed), then the distribution process itself becomes
difficult: Are you only going to allow downloads and not sell shrink-wrapped CDs
in normal retail outlets? If so, are you going to generate and store thousands of
different copies of your program in anticipation of a surge of downloads? It’s also
important that the protection work doesn’t interfere with the normal development
cycle, including making debugging and quality assurance harder.

TPHMST spreads fingerprinting and tamperproofing work out over compile
time, post-link time, and installation time. To illustrate the process, let’s look at a
program P with three basic blocks, A, B, and ¢. At the source-code level, you insert
checkers of the form if (hash(start,end)) RESPOND():

| if Chash(...)) |

B

| if (hash(...)) |

)

You want to make sure that any protection code added at the source-code level
doesn’t interfere with the normal development process. In this particular case, you
can compile and link the program as usual, and you can set the [start,end] interval
so that during development the response mechanism isn’t triggered. Inserting the
testers at the source-code level also has the advantage that the compiler will take
care of register allocation for you.

Next, you randomize the placement of the basic blocks and checkers. This is
done on the binary executable. Randomization spreads the checkers evenly over the

426

Software Tamperproofing

program and also helps with preventing collusive attacks. You then insert empty
32-bit slots for correctors and fingerprints. They will be filled in with actual values
during installation. Finally, you create overlapping intervals and assign each checker
to a region by filling in start and end of each if (hash(start,end)) RESPOND():

H

fingerprint1
if (hash(...))

A /

if (hash(...))

Heﬂ

if (hash(...))

ot o

fingerprint1

if (hash(...))

Here, the first checker (in light gray) checks the dark gray region, and the second
checker (in dark gray) checks the light gray region.

The fingerprinting and corrector slots can be added between basic blocks or
after unconditional jump instructions. Finding suitable non-executed locations at
the source-code level is difficult (a good compiler will typically optimize away any
dead locations!), which is a good reason why this step is best done at the binary-code
level.

The final stage occurs on the customer’s site, during installation. In the form
the program is in after being downloaded or bought on a CD, it’s unusable. Since
all the corrector slots are still empty, every checker will always trigger the response
mechanism. Your first step during installation is to fill in the user’s fingerprint value,
possibly in multiple locations. Then you compute and fill in corrector values so that
each checker hashes to zero:

ﬂ]
ﬂ]

C
if (hash(...)) |
Oxbabeca75
if (hash(...))

D i

C
if (hash(...)) |
Oxbabeca75

if (hash(...))
[—

7.2 Introspection 427

Since the fingerprint slots are in the executable code, they are covered by the check-
ers (this is what makes them tamperproof!), but that also means that you cannot
compute corrector values until the fingerprints have been filled in. As a result, if you
want to fill in the fingerprints at installation time, you also must fill in the correctors
at installation time.

7.2.3.2 Interval Construction In algorithm TPCA, you insert checkers so that they
dominate the piece of code they’re checking. This way, you can be sure that before
control reaches a particular function or basic block, you’ve checked that it hasn’t
been tampered with. TPHMST instead randomly places large numbers of checkers
all over the program but makes sure that every piece of code is covered by mzultiple
checkers. To see how this works, have a look at Listings 7.3+ 428 and 7.4»429. The
checkers are in light gray, the responders in dark gray, and the corrector slots are
dashed. This is the same example program that we used to illustrate TPCA, but this
time it is tamperproofed using algorithm TPHMST. We’ve defined three overlapping
intervals, like this:

¢ C2 %

main RESPOND getkey decrypt decode play

Each interval has a checker that tests that interval, and each interval I; has a corrector
¢; that you fill in to make sure that the checker hash function hashes to zero. You must
compute the correctors in the order ¢y, ¢z, ¢3, ... to avoid circular dependencies.
That is, first you set ¢; so that interval I; hashes to zero, after which I, only has one
empty corrector slot, ¢2. You next fill in ¢; so that I, hashes to zero, and so on.

In this example, the overlap factor is 2, meaning most bytes in the program are
checked by at least two checkers. The authors of TPHMST suggest that an overlap
factor of 6 gives the right trade-off between resilience and overhead.

In the examples in Listings 7.3 428 and 7.4 429, we're inserting correctors at the
source-code level. This is complicated, because the corrector (not being executable
code, just a 32-bit data word inserted in the instruction stream) has to be inserted
in a dead spot. A smart compiler (one that is too smart for our needs!), however,

428 Software Tamperproofing

Listing 7.3 DRM player tamperproofed with algorithm TPHMST. Continues in
Listing 7.4» 429.

#define intervallK 3
#define intervallSTART (waddr_t)main
#define intervallEND (waddr_t)decode

#define intervallCORRECTOR "O®x2ele55ec™”

#define interval2K 5
#define interval2START (waddr_t)RESPOND
#define interval2END (waddr_t)play

#define interval2CORRECTOR "0x2cdbf568"

#define interval3K 7
#define interval3START (waddr_t)getkey
#define interval3END (waddr_t)LAST_FUN

#define interval3CORRECTOR "0x28d32bb6"

[/ === mmm e Begin interval 1 ---------------
uint32 main (uint32 argc, char *argv[]) {
uint32 user_key = 0xca7call5;

uint32 digital_media[] = {10,102};
play (user_key,digital_media,h2);

[/ - Begin interval 2 ---------------

void RESPOND(int i){
printf("\n*** interval%i hacked!\n",i);
abort ();

[/ - Begin interval 3 ---------------

uint32 getkey(uint32 user_key) {
uint32 player_key = Oxbabeca75;
if (hash5(intervallSTART,intervallEND, intervallK)) {
RESPOND (1) ;
lasm volatile (
" .align 4 \n\t"
" .long " intervallCORRECTOR " \n\t"
);

3

return user_key

player_key;

7.2 Introspection 429

Listing 7.4 DRM player tamperproofed with algorithm TPHMST. (Continued from
Listing 7.3»42s.)

uint32 decrypt(uint32 user_key, uint32 media) {
uint32 key = getkey(user_key);
return media ~ key;

[=== e - End interval 1 ---------------

float decode (uint32 digital) {

if (hash5(interval2START,interval2END,interval2K)) {
RESPOND (2) ;

iasm volatile (

.align 4 \t\n"

.long " interval2CORRECTOR " \t\n"

);

}
return (float)digital;

[] === m e - End interval 2 ---------------

void play(uint32 user_key, uint32 digital_media[], uint32 len) {

uint32 i;

for(i=0;i 1len;i++)
printf("%f\n",decode (decrypt (user_key,digital_medial[i]l)));

asm volatile (

" jmp L1 \t\n"
" .align 4 \t\n"
" .long " interval3CORRECTOR " \t\n"
"Ll: \t\n"

);
if (hash5(interval3START,interval3END, interval3K))
RESPOND (3) ;)

void LAST_FUN(Q){}

will remove dead code! In the example, therefore, we’ve either inserted the corrector
right after a call to RESPOND (which will never return), and where our compiler’s lack
of interprocedural analysis will stop it from removing the slot, or by adding a jump
around the slot.

430 Software Tamperproofing

7.2.3.3 Computing Corrector Slot Values Algorithm TPHMST uses the chained
linear hash function hashs from Section 7.2.2»41s. This function has the advantage
that you can hash an inzcomplete range (incomplete means that the corrector slot value
is unknown) and then later solve for the corrector slot. Let’s see how that’s done.

Let x = [x1, x2, ..., x,] be the list of 7 32-bit words that make up the region
you want to protect. The region can be made up of code and static data, and will
have one empty corrector slot. The region hashes to A (x):

n

b(X) _ Z Crzfz#lle

i=1

C is a small, odd, constant multiplier. All computations are done modulo 2°2. Let’s
assume that one of the values in the region, say xz, is the empty corrector slot. You
want to fill this in so that 5(x) = 0. Let z be the part of the hash value that excludes x:

n

7= E C”_HIXZ'

itk
This means you’re looking for a value for x; so that
C”_k“xk +2=0 (mod 2*?

This is a modular linear equation that you solve according to this theorem [94]:

Theorem 7.1: (Modular linear equation) The modular linear equation ax = &
(mod #) is solvable if d|b, where d = gcd(a, #) = ax’ + ny’ is given by Euclid’s
extended algorithm. If d|b, there are d solutions:

x0 = x'(b/d) mod »

x; =xo+7(n/d) where /=1,2,...,d—-1

You get,

Cﬂ—k+1xk = —z (mod 232)

d = gcd(cnfkﬁ—l, 232) — Cn7k+lx/ + 232y/
xo = x'(—z/d) mod 2°?

Since C is odd, d = 1, and you get the solution

xo = —zx’ (mod 2°?)

7.2 Introspection 431

To illustrate, given a region x = [1, 2, x3, 4] and a multiplier C = 3, let’s find a
value for x3 so that A(x) = 0:

4
2= C"l=1.3"42.37 +4.3' =147
i£3
32x; = —147 (mod 2*?)
d = ged(3%,2%%) =1 =3%.954437177 + 2°% . (-2)

x3 = 954437177 - (—147/1) mod 2°? = 1431655749
Thus you get
hlx)=(1-3*+2.3% + 1431655749 - 32 + 4 - 3!) mod 2% = 0

as expected.

Problem7.3 Like TPCA, TPHMST doesn’t allow circularity among checkers; some
region will always be unchecked! The authors state [167] that it’s possible to modify
the interval construction by solving “the resulting system of linear equations,” giving
no further details. Work out the details!

7.2.4 The Skype Obfuscated Protocol

Skype is a Voice-over-IP service that operates on a peer-to-peer model. Users can
make computer-to-computer voice calls for free but are charged for computer-to-
phone and phone-to-computer calls. Skype was bought by eBay in September 2005
for $2.6 billion.

The Skype client is heavily tamperproofed and obfuscated. The protocol by
which clients communicate with each other is proprietary and also obfuscated.
The clients remained unhacked for quite some time, but the protection techniques
were eventually revealed by some clever work by two researchers at the EADS
Corporate Research Center in France and subsequently published at the BlackHat
Europe conference in 2006. We'll sketch their attack algorithm REBD [41] below.

The client binary contains hard-coded RSA keys and the IP address and port
number of a known server that is used when the client first connects to the network.
If you could break the protection and build a new client binary with your own keys
and IP addresses, you could create your very own Voice-over-IP network and steal
Skype’s customer base by undercutting their calling rates.

432 Software Tamperproofing

Here, we’ll only concern ourselves with how Skype protects their secrets by
obfuscating and tamperproofing the client binary. This can give us interesting and
uncommon insights into how protection techniques are actually used in the field!
Equally interesting is how Skype obfuscates the network protocols; you can read
more about that in reference [41].

Here’s an overview of the initial execution stages of the Skype client:

. initialize ER ER
2. load dll:s | ASep Asep
PC —
3. erase 3. erase 3. erase
4. decrypt 4. decrypt 4. decrypt
PC —~
_____ ki ey key —— key
: Ene | I::> 15. load hiddeni< [::> |5. load hidden
I
! HYPTED ! ! dil table | | o |} dll table
! | 16. 1 1 6.
L e e e e e - — = 4 Lo e e e e e - — J S
dll table 4—'— dll table | dll table
hidden dll table

The client starts executing the light gray cleartext code, performing initializations
and loading any necessary dynamic linked libraries (dll:s). The execution continues
with the dark gray code, which first erases the light gray code and then decrypts
the remaining dashed code. The executable itself contains the decryption key, £ey.
The encryption is a simple xor with the key. Erasing the light gray code after it has
executed makes it difficult for the adversary to create a new binary by dumping the
in-memory process to a file. From this point on, the binary is in cleartext—it is never
re-encrypted. In the final step, the decrypted dashed code gets executed. It starts by
loading a hidden dll table (dotted), partially overwriting the original one. In total,
the client loads 843 dynamically linked libraries, but 169 of these are not included
in the original dll table. Hiding the dll table also makes it hard for the attacker to
create a new binary by writing out the memory image to a file.

The client continues by checking for the presence of debuggers, using tech-
niques similar to those you saw in Section 7.1.1»406: It checks for signatures of
known debuggers and also does timing tests to see if the process is being run under
debugging.

In the final tamperproofing stage, a network of nearly 300 hash functions checks
the client code, and also checks each other. Each hash function is different and

7.2 Introspection 433

is based on the hash7 family of functions you saw in Section 7.2.2»418. They are
executed randomly. The test on the hash function value is not a simple
if ChashQ) !=value) Instead, the hash function computes the address of the
next location to be executed, which is then jumped to.

You've seen the technique of hash functions checking each other before, namely,
in Algorithm TPCA. Here, however, the network is much simpler, with each real
region (light gray) checked by a large number of checkers (dashed), each of which,
in turn, is checked by one other checker (dark gray):

C

1 1
Cse 1 Cro 1

Also, unlike Algorithm TPCA, the Skype client doesn’t attempt to repair itself when
it has detected tampering. Instead, it simply crashes, but does so in a clever way.
On detection, the client allocates a random memory page, randomizes the register
values, and then jumps to the random page. This loses track of all the stack frames,
which makes it hard for the attacker to trace back to the location where the detection
took place.

In addition to the tamperproofing, the client code is also obfuscated. The target
address of function calls are computed at runtime, i.e., all function calls are done
indirectly. Dummy code protected by opaque predicates is also inserted. The code is
also obfuscated by occasionally raising a bogus exception only for the exception han-
dler to turn around, repair register values, and return back to the original location.

Problem 7.4 It is interesting to note that although Skype is a distributed appli-
cation, it doesn’t use any of the distributed tamperproofing techniques you’ll see
later in Section 7.5 453. The reason might be that much of the communication is
client-to-client rather than client-to-server. Can you think of a way for clients to
check each other in a peer-to-peer system without being able to collude?

7.2.4.1 Algorithm REBD: Attacking the Skype Client The ultimate goal of an at-
tack on the Skype client is to be able to build your own binary, complete with your
own RSA keys. To do that, you need to remove the encryption and tamperproofing.

434 Software Tamperproofing

The first steps of Algorithm REBD do the following:

1. Find the keys stored in the binary and decrypt the encrypted sections.

2. Read the hidden dll table and combine it with the original one, making
a complete table.

3. Build a script that runs over the decrypted binary and finds the beginning
and end of every hash function.

If you look at hash7 in Section 7.2.2» 418, you'll notice that the routine has a dis-
tinctive structure, consisting of initialization, looping, read memory, and compute
hash. Unfortunately (for Skype), there’s not enough variability in this code, and it’s
possible to build a pattern matcher that can reliably find the beginning and end of
all the functions.

The next step is to run every hash function, collect their output values, and
replace the body of the function with that value. You could just set software break-
points on every function header, but since software breakpoints change the ex-
ecutable by replacing an instruction with a trap, that is sure to trip the tamper
detectors! The solution is to use hardware breakpoints, which don’t affect the ex-
ecutable. However, processors only have a small number of such breakpoints, typ-
ically four. To get past that limitation, you can run Skype twice, in parallel, with
both processes under debugging but one using hardware breakpoints and the other
software breakpoints. Here’s the idea:

4. Run Skype to collect the values computed by all the hash functions, using
twin-processes debugging:

(a) Start one Skype process S, setting software breakpoints at the
beginning of every hash function.

(b) Start another Skype process Sp,4.

(¢) Run S,z until a breakpoint at the beginning of a hash function is reached
at some address start.

(d) Set a hardware breakpoint at szart in the Sy,,4 process and also at the end
of the hash function, at address eznd.

(e) Run Sp,,4 until end is reached.
(f) Record the result hash of the hash computation.

(g) Restart S, starting at address end and with the return value of the hash
function set to hash.

7.2 Introspection 435

5. Replace all hash function bodies with their computed values.

An alternative attack is to run each function in an emulator (see Section 3.2.4» 16s)
to find the value it computes.
The final step bypasses the obfuscation and removes the tamper response code:

6. Put a breakpoint on malloc and wait for a page with the special characteristics
of the random tamper response page to be created. Put a hardware breakpoint
on the pointer that stores the page address to locate the detection code.

7.2.5 Algorithm REWOS: Attacking Self-Hashing Algorithms

When you think about attacking a tamperproofed program, what first comes to
mind is directly removing any tamperproofing code from the executable. This, of
course, means that you first have to analyze the code, then locate the checkers or
responders, and finally remove or disable them without destroying the remainder
of the program. But an attack can just as well be external to the program, modifying
the environment in which it is executed. Algorithm REWOS [379], which we’ll
show you next, does exactly that. By adding just a few instructions to the memory
management routines of the operating system kernel, you can craft an attack that is
successful against a// hash-based tamperproofing algorithms!

The basis for the attack is that modern processors treat code and data differ-
ently. Code and data have different access patterns (a small region of contiguous
instructions might constitute a loop that fits easily in the cache but which accesses a
large scattered data set that doesn’t), and hardware designers have taken advantage
of this by splitting TLBs (Translation Lookaside Buffers) and caches in separate
parts for code and data. In the hash-based algorithms you’ve seen, code is accessed
in two different ways: as code (when it’s being executed) and as data (when it’s being
hashed). So sometimes a function will be read into the I-cache and sometimes into
the D-cache. The hash-based algorithms assume that the function, regardless of how
it’s read, will be the same—i.e., that the code being executed through the I-cache
is the same as that hashed through the D-cache. By a simple hack to the operating
system, REWOS violates that assumption! The idea is this: Redirect reads to the
code to the original, unmodified program (this ensures that the hash values will be
computed as expected) and redirect execution of the code to the modified program
(this will ensure that the modified code gets executed). You can see a sketch of this
idea in Algorithm 7.3 436.

The actual implementation of the attack depends on the capabilities of the
processor and the design of the memory management system of the operating system.

436 Software Tamperproofing

Algorithm 7.3 Overview of algorithm REWOS.
ATTACK(P, K):

1. Copy program P to Poy,.
2. Modify P as desired to a hacked version P’.

3. Modify the operating system kernel K so that data reads are directed to
Posig, instruction reads to P’.

What we’ll show you here is the implementation for the UltraSparc processor,
because it displays the basic idea very simply. The details for other architectures will
be different, but the principle will remain the same.

Here’s a sketch of a typical memory management system:

Virtual Address

| Page Index | Offset
TLB miss TLB hit
Page Tables TLB
Page Frame Offset

Physical Address

Each process operates within its own seemingly contiguous and large virtual address
space. The operating system or the CPU maintains a set of page tables that map
the virtual addresses seen by the process to physical addresses of the underlying
hardware. To avoid having to look up every memory access in the page tables, you
first consult a translation lookaside buffer, which caches recent lookups. On a TLB
hit (which is very fast), you don’t have to do anything else, but on a TLB mziss
you must walk the page tables (slow) and update the TLB with the new virtual-
to-physical address mapping. Depending on the system architecture, these lookups
and updates can be done in hardware or in the operating system kernel.

On the UltraSparc, the hardware gives the OS control on a TLB miss by throw-
ing one of two exceptions depending on whether the miss was caused by a data or

7.2 Introspection 437

an instruction fetch. The OS then looks up the virtual address in the page tables and
either updates the instruction TLB or the data TLB with the new virtual-to-physical
mapping.

To implement the attack against a self-hashing algorithm, you need to do four
things:

1. Copy P to Pyig.
2. Modify P however you like.

3. Arrange the physical memory so that frame 7 comes from the hacked P and
frame 7 + 1 is the corresponding original frame from Poig.

4. Modify the kernel so that if a page table lookup yields a v — p
virtual-to-physical address mapping, I-TLB is updated with v — p and
D-TLB withv — p + 1.

Here’s an example to illustrate this:

Virtual Address Physical
[0 [05 02] 00] frames
1
TLB I-TLB
miss Instruction 2
fetch 253
Page Tables \ if (false)
/ 8
abort(Q);

if (expired)

D-TLB / 455 ety
\ 254 5

Data
fetch 6

Here, the attacker has modified the program to bypass a license-expired check. The
original program pages (dark gray) are interleaved with the modified program pages
(light gray) in physical memory. Page 3 and page 4 are actually the same page, except
that in page 3 the license check has been hacked. When the program tries to read
its own code in order to execute it, the processor throws an [-TLB-ziss exception,
and the OS looks up the correct mapping in the page tables and updates the I-TLB
to refer to the modified page. When the program tries to read its own code in order
to hash it, the processor throws a D-TLB-ziss exception, and the OS updates the
D-TLB to refer to the original, unmodified page. The result is that during hashing
the original dark gray pages will be read and the tamper-response code won’t be
triggered, and during execution the light gray code that the attacker has modified
to his heart’s content will be run.

438 Software Tamperproofing

7.2.5.1 Algorithm TPGCK: Detecting Memory Splits Algorithm REWOS attacks
tamperproofing through self-hashing by essentially splitting the memory into sep-
arate pieces, one for code and one for data. Algorithm TPGCK [138,139] uses a
self-modifying code trick to detect this split—if a program detects that it’s being
run in an environment where writes to the code segment don’t affect the data seg-
ment, it can invoke its normal tampering response.

Have a look at this self-modifying C and assembly code:

char result;
asm volatile (
" movb $1,A+1\n\t"
" movb A+1,\%[output]\n\t"
i"A: andb $0,\%[output]\n\t" |
" movb $0,A+1\n\t"
[output] "=r" (result));

if (result != 1) {
printf ("UNDER ATTACK!\n\t");
abort ();

}

Let’s first assume that the operating system hasn’t been hacked, i.e., code and data
share the same address space. Then, the light gray instruction overwrites the 0 value
in the dashed instruction with a 1. The dark gray instruction reads that value back
into the result variable, and thus result=1. The modified dashed instruction, finally,
executes, setting result = result & 1,i.e., result=1, The last instruction resets
the dashed instruction back to its original.

But what if you’re under attack from algorithm REWOS? Assume, as before,
that the attacker has duplicated an original memory page Mg as a new page M.
Instructions are executed from the modified M page and data reads are redirected
to the unmodified Moyig:

movb $1,A+1

mo A+1l,result

M: |, x
{A: apdb $®,;e\\ult
|

movb $1,A+

movb A+1,re¢sult
Mo‘—igZ |

I

iA: angk\$®/fgsult

7.2 Introspection 439

The light gray write into the instruction stream will propagate through the data
cache and alter the dashed instruction on M. When the dark gray instruction
tries to read data from the instruction stream, it accesses Moo and the correct
value 1. However, the dashed instruction will execute from page M, which was not
modified by the light gray instruction. The program will execute result = result
&& 0, resulting in result=9.

On modern processors, self-modifying code inflicts a performance overhead:
Caches and processor pipelines may have to be flushed whenever the processor
detects that the code segment has been modified. In reference [138], the authors
estimate that the worst-case cost of the check above will be similar to a lightweight
system call.

7.2.6 Discussion

The nice thing about both TPCA and TPHMST is that security is tied to easily
modified parameters. In the case of TPCA, you adjust the number of guards and the
complexity of the guard graph. In the case of TPHMST, the interval overlap serves
the same purpose.

We have no hard performance numbers for either algorithm. Obtaining mean-
ingful numbers is actually difficult, because these will always depend on the number
of checkers you insert, where in the executable you insert them, and therefore how
often they will run. It’s certainly possible to say, “Using the SPEC benchmark suite,
we're inserting # checkers, each hashing £ kilobytes of code, at random locations,
and we get the following reduction in performance.” However, the resulting num-
bers will tell you very little, since you have no way of relating that to how much
security this actually buys you! TPHMST suggests an interval overlap of 6 but gives
no support for why this results in the right level of protection.

Checkers are typically small in size, less than 50 x86 code-bytes for TTHMST
and more than 62 bytes for TPCA.

In practical situations, you will not want to insert checkers in random locations,
since that may land you inside a tight loop. Instead, you will need some way for
the user to specify where checkers should be inserted, what range of code they
should check, and how often they should be executed. TPCA’s guard graph serves
this purpose. They also suggest using a graphical user interface to allow users to
interactively select regions to be protected. TPHMST, on the other hand, avoids
hot spots by having programmers insert testers manually at the source-code level. If
you don’t anticipate dynamic attacks (i.e., the code being changed as it is running),
then you can reduce the performance penalty by hashing each segment of code only
once, right before it is first executed or when it is first loaded into memory.

440 Software Tamperproofing

Problem 7.5 Neither TPCA nor TPHMST has public implementations. It would be
interesting to develop a complete implementation that combines the best features of
each: the automatic repairs of TPCA and the watermarking and implicit hash values

of TPHMST.

Algorithm REWOS is interesting because it is clearly a class attack—in one fell
swoop it makes a// self-hashing algorithms impotent. Its one drawback is that it
requires an operating system patch, which the average user might be reluctant to or
find difficult to install. Algorithm TPCA is the cornerstone of Arxan’s (arxan.com)
GuardIT product line. If GuardIT becomes prevalent for desktop applications, it
will be interesting to see how long it will take for REWOS-style operating system
hacks to become available, and how long it will take Arxan to add TPGCK-style
counterattacks.

7.3 Algorithm reTCJ: Response Mechanisms

So far, we've told you that tamperproofing happens in two stages, implemented
by the functions CHECK and RESPOND. CHECK tests whether the program has been
tampered with, sets a flag if it has, and some time later RESPOND takes action, making
the program fail, phone home, and so on. Actually, however, in a real system you
want a three-pronged approach, where CHECK checks for tampering, later RESPOND
takes action, and later still, the program actually fails:

| | | [| | >
[I I L] I I -

program tamper CHECK() RESPOND() fail program
start end

This is the basic premise behind algorithm TPTC]J [344]. The idea is that RESPOND
corrupts program state so that the actual failure follows much later:

boolean tampered = false;
int global = 10;

if (hash(...)!=0xblacca75) tampered = true;

if (tampered) global = 0;

iprintf("%i",10/global); |

1
i

Here, cHECK (light gray) and RESPOND (dark gray) communicate through the variable
tampered, and RESPOND manipulates the variable global so that the program will

7.3 Algorithm RETCJ: Response Mechanisms 441

eventually fail on a divide-by-zero exception (dashed). It is, of course, possible to
merge CHECK and RESPOND so that CHECK sets the failure variable directly.

You could also introduce a number of failure sites and probabilistically choose
between them at runtime:

#include <time.h>
int global = 10;

if (time(®) % 2 == 0)
printf("%i" ,10/global);

if (getpid() % 2 == 0)
x = 5/global;

x = 3/global;

In this way, every time the attacker runs the hacked program, it is likely to fail in one
of the two dashed spots. You will need to add a “catchall” failure site (light gray) to
make sure that, no matter what, if the program has been hacked it w/l eventually
fail.

In general, you want the response mechanism to display the following charac-
teristics:

spatial separation: There should be as little static and dynamic connection between
the RESPOND site and the failure site as possible. To accomplish this, you could
make them be statically far away from each other by reorganizing the executable.
You could also make them be dynamzically separated by ensuring that RESPOND
is not on the call stack when the failure occurs, or by ensuring that as many
function calls have occurred between them as possible.

temporal separation: A significantlength of time should pass between the execution
of RESPOND and the eventual failure, since this will make it harder for the attacker
to trace back from the failure site to the response that caused it. At the same
time, not 0o much time must pass, or the attack code will be able to cause
damage before the program exits.

stealth: The test, response, and failure code you insert in the program should ex-
hibit both local stealth (they have to fit in with the code in their immediate
surroundings) and global stealth (they can’t be too different from code found
in typical programs).

predictability: Once the tamper response has been invoked, the program should
eventually fail.

442 Software Tamperproofing

Algorithm 7.4 Overview of algorithm TPTC]J. P is the program to be protected, I
is the profiling input, § is the desired threshold distance between corruption and
failure sites, and T is a function-distance matrix. SELECT computes a set of good
corruption sites C for each global variable v.

ProT1ECT(P, I, 8): SELECT(P, T, §):
1. Execute P with I as input and V < set of P's global variables
construct matrix T so that T[£, g] G < P's call graph
he di . £ for veV do
expresses the distance (in terms o C < set of functions of P
elapsed time and number of function F « set of functions of P in
calls) between functions f and g. which v is used

for each f € F do

2. Let R < SELECT(P, T, 8) be a set of .
)])) for each ancestor g of f in
possible variable/corruption sites. the call graph G do
3. Let R’ < be a set of random C <« C—{g}

for each function ¢ € C do
if Tlc, f1 <8 then
4. Modify P by adding a layer of C < C —{c}

indirection to any non-pointer global return (v, C)

variable/corruption sites from R.

variables in R’.

5. Modify P by inserting
tamper-detection code that corrupts
the global variables in R’.

It’s important that you keep any legal implications of your tamper-response mech-
anism in mind. Deliberate destruction of user data is likely to invite legal reper-
cussions, particularly if the user can show that the tamper response was issued
erroneously (“I forgot my password, and after three tries the program destroyed my
home directory!”) But what about data that gets destroyed as an unintended conse-
quence of the tamper response? If the tamper response is the least bit probabilistic
(which you would like it to be!), then how can you ensure that the eventual failure
happens in a “safe” place? It’s easy to imagine a scenario where the program crashes
with a file open and the last write still pending, leaving user data in a corrupted and
unrecoverable state.

Algorithm 7.4 shows an overview of TPTCJ [344]. The basic idea is for RESPOND to
set a global pointer variable to NULL, causing the program to crash when the pointer
is later de-referenced. If the program doesn’t have enough pointer variables, TPTCJ
creates new ones by adding a layer of indirection to non-pointer variables. The
algorithm assumes that there are enough global variables to choose from; while this

7.3 Algorithm RETC]: Response Mechanisms 443

may be true for procedural programming languages like C, it may be less true for
object-oriented languages like Java.

Problem 7.6 In their example program, the authors of TPTCJ found 297 globals
over 27,000 lines of code, or one global for every 90 lines of code. Is this normal?
How many usable global variables can you find in real code? For cases where there
are not enough global variables, can you develop a static analysis algorithm that
allows you to create new usable globals, either by “globalizing” local variables or
by creating completely bogus new ones?

Here’s an example where main sets the variable tampered to 1 if it detects that
the program is under attack:

int tampered=0;
- int tampered=0; int v;
int tampered=0; int v: int *p_v = &v;
int v; int *p_v = &v;
. void £ {
void f(i@? void £O { *p_v = 10;
v = ; *p_v = 10; }
¥ }
. void g {
v01i(§F) { void g0 { £0O;
) ; lj> £0; I::> ¥
}
O void h() {
\;01 void h() { if (tampered)
} p_v = NULL;
int main(® { int main() { :
if i) oy if (.. int main() {
hO .ampere =1, tampered=1; if ..
O; hO; tampered=1;
) g0; gQ; h(;
1 g0;
}

In the first transformation step, the algorithm creates a global pointer variable pv
that references a global v indirectly. This is the code in light gray. Variable v is
assigned to function £, so one way to make the program crash if it’s been tampered
with is to set p_v to NULL before £ is called. But where? You could set p_v=NULL in
g or main, but this would be a bad idea. You want to avoid g and main, since they
will be on the call stack when £ throws the pointer-reference-to-nil exception. Most
systems will provide a backtrace of what was on the stack when the program failed,

444 Software Tamperproofing

and it would be easy for the attacker to trace back to the cause of the crash using a
debugger. Instead, you should choose to insert the failure-inducing code in h, which
is “many” calls away (dark gray code), and not in the same call chain as f.

Problem 7.7 Can you think of interesting ways to construct stealthy tamper-
response mechanisms for different classes of programs, such as concurrent pro-
grams, distributed programs, database programs, programs with complex graphical
user interfaces, and so on? For example, would it be useful to make a concurrent
program deadlock or the buttons of a user interface stop responding?

Problem 7.8 Can you find any statistical anomalies for the kind of code that
TPTCJ adds that could be used to stage a counterattack? What do real pointer
manipulations look like in a C/C++ program? Is p=NULL all that common? Does this
usually occur under very special circumstances, such as close to a malloc, where a
new data structure node is created?

Comparatively little work has been done developing stealthy tamper-response
mechanisms. This is a shame, because when the response 757’ stealthy, it gives hack-
ers a really straightforward entry point for exploring the tamperproofing mecha-
nisms in a program: Run the program until it crashes, use a debugger to examine
the call stack, and then trace backwards. Similar techniques can be used to dis-
able TPTCJ: Find the offending pointer variable that caused the failure, restart the
program, set a data breakpoint on the variable, run with the same input as before,
and then find the location that last changed it. This tells you that a straightforward
implementation of TPTCJ may not be enough. You may have to add multiple levels
of indirection, and above all, make sure that the program has multiple failure points
and multiple locations where RESPOND induces the failure.

7.4 State Inspection

There are two fundamental problems with the introspection algorithms in Sec-
tion 7.2»412:

1. They perform operations that are highly unusual—real programs typically
don’t read their own code segment!
2. They only check the validity of the code itself—the user can still affect the

program by modifying runtime data, for example, by using a debugger to
change a function’s return value right before it returns.

7.4 State Inspection 445

So what’s the alternative? If you can’t check that your program is intact by verifying
the correctness of the code, what can you do? Well, you can try to verify the cor-
rectness of the data or the control flow! The idea is that you might be able to detect
tampering of the code by the side effects the code produces, i.e., in the way that the
code makes data change and in the way it forces control to take different execution
paths.

In addition to being more stealthy than introspection, these techniques have the
advantage that you can use them not only on binary code but also on type-safe code
like Java bytecode. You might want to think of this as an advanced form of assertion
checking—you’ll be adding checks to the program to ensure that at no point does
it get into an unacceptable state. You're not checking, “Is this code correct?” but
rather, “Is the program in a reasonable state?” The state is a combination of all your
static data, the stack, the heap, and the program counter, and you can access all of
these whether you’re running a binary executable or Java bytecode. (The PC you
can’t access directly from Java, of course, but you know where in the code you are
when you’re doing the assertion check, which amounts to the same thing.)

Unfortunately, automatically adding assertion checks to a program isn’t easy.
The current state of a program depends on all previous states, so how could you
possibly analyze your user’s program to come up with non-trivial invariants to add
as checks?

An alternative to adding assertions on the entire state of the running program
is to call, say, a function at a time, feeding it challenge data and checking that the
result is as expected:

int challenge = 5;
int expected = 120;
int result = factorial(challenge);
if (result != expected)
abort();

“Hash values” (the expected results of the functions, given the challenge inputs)
are easy to compute at protection time—just generate random challenge inputs,
call the functions, and record the results! Just like you saw in Algorithm TPHMST,
however, you have to be careful not to generate suspicious-looking hash values or
challenge data that the attacker could easily spot as unusual:

if (factorial(17) !'= 355687428096000)
abort();

Neither 17 nor 355687428096000 is likely to occur frequently in real programs.

446 Software Tamperproofing

If you’re willing to sacrifice code space, you could make copies of every func-
tion, forcing the adversary to hack two functions simultaneously in order to avoid
detection. This will hide the hash value but not the challenge data:

int challenge = 17;
if (factorial_orig(challenge) != factorial_copy(challenge))
abort();

Automatically generating challenge data that actually exercises important aspects
of a function is not easy, particularly for functions that take complex data structures
as input. Hiding that data in your program is also an issue. Imagine inserting tests
in your program for an all-pairs-shortest-path algorithm:

int[][] challenge = {{1,1,0},{0,1,1},{0,0,1}};
int[][] expected = {{1,1,1},{0,1,1},{0,0,1}};
int[]J[] result = warshall(challenge);
for(int i=0;i<3;i++)
for(int j=0;3<3;j++)
if (result[i][j]!=expected[i][j])
abort();

It wouldn’t be hard for an adversary to pick out this code as being suspicious—
real programs typically don’t build many large, complex, literal data structures.
Functions that get their inputs externally, such as reading from a file or accepting
network packets, will also be difficult to challenge.

Another problem when trying to automate this technique is that it’s hard to pre-
dict what side effects a function might have—if you call it an extra time on challenge
data to verify that it hasn’t been tampered with, it might have the undesirable side
effect of destroying valuable global data or allocating extraneous dynamic memory
that will never be properly freed. Have a look at this class:

class Widget {
String thing;
static List all = new List();
public Widget(String thing) {
this.thing = thing;
all.add(thing);

3

If you make many challenges to this class without realizing that it keeps track of
every instance ever created, you might get into nasty memory problems. To avoid

7.4 State Inspection 447

(some of) these problems, you could challenge functions only at certain times during
execution, such as at start-up time, when changes to global state are less likely to have
ill effects. Of course, this gives the adversary more opportunities to attack your code.

Finally, what should you do about functions that have non-deterministic behav-
ior? If you’re lucky, you'll at least discover this at protection time, by running the
function multiple times on the same challenge input and realizing it doesn’t always
generate the same output. But then what? You can always rely on programmer code
annotations, but as programs evolve these are notoriously difficult to maintain.

In the remainder of this section, you will see two oblivious hashing algorithms.
They’re called oblivious because the intent is that the adversary should be unaware
that his code is being checked. The first algorithm, TPCVCPS]J, inserts hash com-
putations at the source-code level (although there’s no reason why it couldn’t be
done at lower levels). The hash is computed based on the values of variables and
the outcome of control flow predicates. The second algorithm, TPJJV, very cleverly
hashes binary instructions without actually reading the code!

7.4.1 Algorithm TPCVCPS]J: Oblivious Hash Functions

To verify that a program is executing correctly, you could, conceptually at least,
collect the entire execution trace, compress it, and compare it to the expected
trace. For example, in Section 3.2.3» 163 you saw how Algorithm RELJ compresses
a trace into a context-free grammar. In practice, even these compressed traces are
too large for our purposes, and as is always the case when you add protection code
to a program, you also have to worry about stealth. Algorithm TPCVCPS]J [61,178]
computes a hash over the execution trace by inserting instructions that monitor
changes to variables and control flow. You can balance the level of protection against
the amount of overhead by varying the number of hash computations that you insert.

At the source-code level, you can imagine defining a global hash variable and a
macro UPDATE (h, v), which uses some combination of arithmetic and logical opera-
tions to include a value v into the hash:

int hash;
#define UPDATE(h,v) (h+=v)

You’d then transform assignment statements like this:?

2. The expression (e,ez, - . . ,e¢,) uses C’s comma operator to evaluate the ¢;s in order and then returns
the value of e,,.

448 Software Tamperproofing

ﬁ> S
X = expr
x = (tmp=expr,UPDATE (hash, tmp), tmp)

To hash the outcome of a conditional expression, you’d perform this transformation:

('f)) 1 [:> int tmp;

if (expr) ...

\ P) if (tmp=expr,UPDATE (hash,tmp),tmp) ...

J

Have a look at this example, an extract from a DRM system:

int play (int user_key, int player_key,
int digital_media[], int len) {
int i=0;
while(i<len) {
printf£("%f\n", (float) (user_key player_key”
digital_medialil));

it++;

The procedure unlocks an encrypted media file by decrypting it with a user and a
player key. To protect play, you first modify it to compute a hash value using the
transformations above to insert calls to the UPDATE macro:

int play (int user_key, int player_key,
int digital-media[], int len) {

int i=0;

int t;

while(t=i<len,UPDATE (hash,t),t) {
printf("%f\n",(float)(t:user_key,UPDATE(hash,t),

t"player_key“digital_media[i]));

i=(t=i+1,UPDATE (hash,t),t);

}

You then generate some challenge input for play, run it on that input, and record
the result. At some appropriate places in the program, you then insert a challenge

7.4 State Inspection 449

call and check the result against the expected hash value:

int player_main (int argc, char *argv[]) {

int user_key = 0xca7call5;
int player_key = 0xbabeca75;
int digital-medial[] = {10,102};
hash = 0;
play(user_key, player_key, digital-media, 2);
if (hash != -1795603921) {
printf(""HACKED!™);
abort();

}

Regardless of whether you call play as part of the regular computation or as a
challenge, the hash is still computed, so there will be a general slowdown, depending
on how many hash computations you add.

Global variables are quite uncommon, so to avoid inserting code that is too
unstealthy you can pass the hash variable as an extra argument to the function:

int player-main (int argc, char =argv[]) {
int hash = 0;
play(user_key, player_key, digital-media, 2, &hash);

int play (int user_key, int player_key,
int digital_media[], int len, int* hash) {

Also for stealth reasons, you should vary the operators used in the hash computa-
tion to match those found in the function you’re protecting. This is easy to do by
providing a collection of UPDATE macros:

#define UPDATE1(Ch,v) (h+=v)
#define UPDATE2(h,v) (h"=v)
#define UPDATE3(h,v) (h-=v)

450 Software Tamperproofing

A serious issue is what to do with functions that have side effects. You could
always add an extra parameter to functions that access a global variable and pass a
reference to the global variables along to all calls. This assumes you can do an accu-
rate static analysis to determine which functions need access to which global vari-
ables (either to use themselves or to pass along to functions they call that may need
them), and this becomes difficult in the presence of function pointers, for example.

An even worse problem is functions that are non-deterministic because they
depend on the time of day, network traffic, thread scheduling, and so on. You
could try to statically detect such locations in the code, you could rely on code
annotations provided by the programmer, or you could try to run the program
a few times on the same data and find locations where the computed hash varies.
None of these solutions is particularly attractive. Static analysis of non-deterministic
programs is likely to be hard and produce overly conservative results, programmer
annotations are notoriously unreliable, and dynamic analysis is unlikely to catch all
non-deterministic locations in the program.

7.4.2 Algorithm TP[JV: Overlapping Instructions

The x86 architecture has some interesting properties that allow you to play cute
tricks unavailable on a RISC architecture. In particular, the x86 uses a variable-
length instruction encoding (instructions can be anywhere from one to fifteen bytes
long) and has no alignment requirements for instructions (an instruction can start
at any address). This allows you to have one instruction zzside another, or one in-
struction overlapping another, and to share instructions between two blocks of code.
Overlapping two blocks in itself adds a level of tamperproofing, since modifying
one instruction will affect both pieces of code.

Algorithm TPJJV [178,179] takes the tamperproofing to another level by over-
lapping basic blocks of x86 instructions so that when one block executes, as a side
effect it also computes a hash over the second block. The hash value can then be
compared to the expected value, much as you’ve seen in previous algorithms. The
real advantage of this technique is that (unlike Algorithms TPHMST and TPCA) the
hash is computed without explicitly reading the code. This makes the algorithm
invulnerable to memory-splitting attacks like REWOS.

Here are two basic blocks with entry points By and Bj:

B()I Bl:
shll 2,%eax decl %eax
incl %eax shrl 3,%eax
ret ret

7.4 State Inspection 451

The easiest way to merge them is to interleave the instructions and insert jumps to
maintain semantics:

BO:
shll 2,%eax
jmp L
Bll
decl %eax
jmp Iy
IIZ
incl %eax
jmp I3
12:
shrl 3,%eax
IS:
ret

The merged block has two entry points, By and B;. This merging by itself doesn’t
accomplish much. What you really want is for the two blocks to also share instruction
bytes. To accomplish this, you replace the jump instructions with bogus instructions
that take a (large) immediate value as one of its operands. This operand will 7zask
out the instruction from the other basic block by including the instruction in its
immediate operand. Look here:

Boi

shll 2,%eax

xorl %ecx,next 4 bytes // used to be jmp I
BIZ

decl %eax

jmp I

nop

incl %eax

What happened? Well, we replaced the jump from By’s first instruction to its second
with an xorl instruction. This instruction takes a four-byte immediate operand, the

452 Software Tamperproofing

first byte of which will be the decl %eax instruction, the second and third byte
will be jmp I, and the fourth will be a nop that we had to add as padding. What
does this mean? Well, at runtime when you jump to Bj, you will execute the decl
instruction just as before and then jump to B1’s second instruction, also as before. In
other words, the B; block will execute unchanged. When you jump to By, however,
things are a little different. You start by executing the shll instruction as before,
and then proceed to execute the new xorl instruction, which has embedded in its
immediate operand the four bytes from decl; jmp;nop! After the xor1, you go straight
to By’s second instruction, incl. If you had properly initialized register %ecx, the
xorl instruction would compute a hash over the instructions from block B;. You
could test this value later, and if it’s incorrect execute the appropriate response.

Let’s look at this example in more detail. Here are the two blocks again, but
this time we give the x86 code bytes explicitly:

By B,
\: |
shll $2,%eax incl %eax ret decl %eax shrl $3,%eax ret
—_——— ~~ —~~ ~~ —_———————
C1 E® 02 40 c3 48 C1 E8 03 (C3
0 1 2 3 4 0 1 2 3 4

Each block has three instructions, which translates into five code bytes each. We’ve
given the offset of each code byte below the byte and indicated the start of execution
for each block with an arrow.

After merging the two blocks and inserting hashing and padding instructions,
you get the following seventeen code bytes:

By

shll $2,%eax xorl $90E98148, %ecx incl %eax addl $9003E8C1,%ecx ret
=~ N
Cl E0O 02 81 F1 48 81 E9 90 40 81 C1 C1 E8 03 90 C3
01 2 504 5 6 7 8 9 0 ouo12 1B 14 15 16

~—~— N
decl %eax subl $C1814090, %ecx shrl $3,%eax nop ret
4
B,

On top of the bytes, we indicate what instructions we execute when we start at offset
0 in order to execute block By. Below the code bytes, we show what gets executed
when you start at offset 5 in order to execute block By . In either case, as you execute
one block, you also compute a hash over the other block into register %ecx. If the
adversary were to change the byte at offset 9, for example, changing the incl %eax

7.5 Remote Tamperproofing 453

instruction to something else, this will be caught when you execute B; and use the
subl instruction to compute the hash.

One problem with this algorithm is that it’s hard to predict its precision. When
will you actually detect tampering? In our example, you won’t detect any tampering
of By until you execute B; and when that occurs will, of course, depend on the flow
of control.

Whether this algorithm as state inspection or introspection is debatable. Since
you’re hashing instructions, this makes the algorithm closer in flavor to TPHMST and
TPCA, but on the other hand when you’re actually computing the hash you’re work-
ing on runtime values (or, at least, runtime immediate operands of instructions)!
Classification aside, this is a clever use of the x86’s architectural (mis-)features.

The overhead depends on the level of overlap. Jacob et al. [178] (from where
the example above has been adapted) report that the protected binary can be up to
three times slower than the original.

7.5 Remote Tamperproofing

Remote tamperproofing is an important special case of tamperproofing. In this sce-
nario, the program you want to protect (which we’ll call C) runs remotely on the
adversary’s untrusted site (the clzent site) but is in constant communication with
a trusted program § on your (server) site. In addition to providing services to the
client, the server wants to detect and respond to any tampering of C:

Server-side service service
reques response

Client-side

if (tampered(C))

F—)» ! -

cease_communication() : o
tamper , tamper
request ' response

As in typical client-server scenarios, the client sends request-for-service packets (dot-
ted) over the network to the server, which returns service-response packets (dark
gray). In a computer game, for example, the client may tell the server, “I just en-
tered dungeon 372!” to which the server responds with a list of the nearby monsters.
The server may also ask the client for information about the state it’s in (or deduce
that state from the service-request messages it receives) in order to detect if C is
under attack.

454 Software Tamperproofing

There are many applications that fit neatly into this model. In networked com-
puter games, for example, the game server provides continuous information to the
player clients about their surroundings. Players will often try to hack the clients to
gain an unfair advantage over other players, for example, by being able to see parts
of a map (which, for performance reasons, is being held locally) that they’re not
supposed to see.

7.5.1 Distributed Check and Respond

Just like in single-processor tamperproofing, in the client-server scenario you need
two functions, CHECK and RESPOND. As you've seen, responding to tampering can take
many forms, including reporting violations back to you. In the client-server scenario,
response is even simpler: Just terminate communication! The assumption here is
that the server is providing a service without which the client can’t make progress,
and this means that refusing to provide that service is the ultimate punishment.

Unfortunately, while responding is easy, the CHECK function is harder to imple-
ment. The reason is that you have no direct access to C’s code—it’s running on a
remote site! For example, while it’s certainly possible for you to ask the client to
send you a hash of C’s code to verify he hasn’t tampered with it, there’s nothing
stopping him from lying about the hash value!

There are four classes of attacks:

1. The attacker can reverse engineer and modify C’s code.

2. The attacker can modify the running environment of C, for example, by
running it under debugging or emulation, or under a modified operating
system.

3. The attacker can execute multiple simultaneous instances of C, some of which
might have been modified.

4. The attacker can intercept and replace network messages.

7.5.2 Solution Strategies

Many solutions to the remote tamperproofing problem are variants of various levels
of “sharing” the C code and data between the server and the client. At one extreme,
all of the C code and data resides on and is executed by the server. This is sometimes
known as software as a service. Whenever the client wants to make progress, it has to
contact the server, passing along any data it wants the server to process, and wait for
the server to return computed results. This kind of server-side execution can lead to

7.5 Remote Tamperproofing 455

an unacceptably high compute load for the server and unacceptably high latency for
the client. On the other hand, since all the sensitive code resides server-side, there
is no risk of the client tampering with it. At the other extreme, the client runs all its
own code and does all the work. This requires the server to share all its data with the
client, which can be bandwidth-intensive. Since all computation is done client-side,
it’s more difficult for the server to guarantee that the client has not tampered with the
code. Most systems will settle on an intermediate level solution: Some computation
is done server-side, some client-side, and this balances computation, network traffic,
and tamper-detection between the two. In Section 7.5.3 we’ll show you Algorithm
TPZG, which automatically splits the computation of a sequential program over
the client and the server. It was originally designed to protect against piracy, but
subsequent development [57] has extended this idea to the remote tamperproofing
scenario.

A second idea is to extend the introspection algorithms of Section 7.2» 412 to the
client-server scenario. The idea is for the server to ask the client to compute a hash
over its code and compare it to the expected value. However, this isn’t enough,
since there’s nothing stopping the client from lying about the hash! Algorithm
TPSLSPDK (Section 7.5.4» 459) solves this problem by measuring the time it took for
the client to compute the hash, making sure that it didn’t have time to tamper with
the code.

Finally, Algorithm TPCNS (Section 7.5.5» 462) extends the idea of dynamic ob-
fuscation from Chapter 6 to the client-server scenario. The idea is for the server to
force the client to accept newly obfuscated versions of its code, ideally at such a
quick pace that it can’t manage to keep up its reverse engineering efforts.

7.5.3 Algorithm 1PZG: Slicing Functions

Algorithm TPZG [382] was developed to prevent piracy. The idea is to slice the
program into an open part that resides on the client and a hidden part that resides
on the server. Extra communication is added so that the client can access those parts
of the code that reside on the server. Assuming that this extra communication doesn’t
leak too much information, it should be difficult for the adversary to reconstitute
the hidden parts. This prevents piracy (if the adversary can’t get access to all the
code, he can’t copy it!) but also prevents tampering with the part of the code that
is hidden on the server.

There are three main obstacles that make this idea impractical. First, being
tied to a server works well when you’re connected to a network but less well when
you’re on an airplane. This is a problem for piracy prevention, but not for remote
tamperproofing, where the assumption is that you are always connected. The second

456 Software Tamperproofing

Algorithm 7.5 Overview of algorithm TPZG. £ is a function selected for splitting,
and v is a local variable in f.

PROTECT(£, v):

1. Compute a forward slice of £, starting with the statements that define v.

2. Determine which variables should be completely hidden (i.e., should reside
only on the server) and which should be partially hidden (i.e., should reside
both on the client and the server).

3. Examine each statement in the slice and split it between the client function of
and the server function Hf;.

4. If x is a partially hidden variable, then

o translate x < rhs to x < rhs; Hf;(x) where Hf,(x) updates x on the
server.

e translate

Ihs < ...x ...
to

x <« HE();

hs <« ...x...

where Hf;(x) gets the current value of x from the server.

problem is /atency. Networked applications are carefully designed to tolerate high
latency—functions where high latency is unacceptable are kept on the client side,
and the remaining functions can be kept on the server. If you move additional
functions to the server side, latency may become intolerable. The final problem is
bandwidth. If the client keeps large data structures and some of the operations on
these structures are moved to the server, there may not be enough bandwidth to
move the data back and forth.

Algorithm TPZG bypasses the network latency and bandwidth problems by
only considering scalar data (functions on arrays and linked structures are kept on
the client) and restricting the client and server to both run on the same local area
network.

Algorithm 7.5 sketches how to split a function £ into one part, 0f, which runs
on the client, and several parts, Hf;, which run on the server and which the client
accesses through remote procedure calls.

7.5 Remote Tamperproofing 457

Let’slook at asimple example toillustrate the algorithm. Below left is the original
function f that runs client-side. You’ve determined that you want to hide variable
a on the server. You start by computing a forward slice on a (see Section 3.1.5» 141).

We show this in light gray to the right:

static int f(int x, int y) {

int a = 4%x + y;
int c;
if (y < 5)

C = a¥*x+4;

int sum = 0;
for(int i=a;i<10;i++)
sum += 1i;

return x*(sum+c);

else
C = 2%x+4; [::>

static int f(int x, int y) {
int a = 4%x + y;

int c;
if (y < 5)

C = a¥*x+4;
else

c = 2%x+4;

int sum = 0;
for(int i=a;i<10;i++)

sum += 1i;

return x*(sum+c);

You want to protect all the light gray code, so you put it server-side in the six

functions Hf1 ... Hf6:

static int Ha = 5;
static int Hc = 0;

static int Hsum = 0;

static void Hf1(int x, int y) {

Ha=4+*x+y;
}
static boolean Hf2(int y, int x) {
if (y <5) {
Hc = Ha*x + 4;
return true;
} else
return false;
}

s ~
static void Hf3(int c) {

Hc = c;
}
static void Hf4(int sum) {
Hsum = sum;
}
static void Hf5() {
for(int i=Ha;i<10;i++)
Hsum += i;
3
static int Hf6 () {

return Hsum+Hc;

458 Software Tamperproofing

Finally, you rewrite f to 0f, the new function that will run client-side:

.]] static int 0f(int x, int y) {
static int f(int x, int y) {

. Hf1(x,y);
int a = 4*%X + y;
int c; i
AP int c;
1

y if (Hf2(y,x)) {

C = a*x+4;

c = 2#x+4; Hf3(0);

else

C = 2%X+4; I::> }

int sum = 0;
int sum = 0; Hf4(sum);

for(int i=a;i<10;i++)
Hf5Q0);

sum += 1ij;

return x*(sum+c);
return x*Hf6(Q);

= J

The client accesses the hidden functions by making remote procedure calls to the
server. The variable c is partially hidden. This means that, for performance reasons,
it resides both on the client and the server, and the code that updates it is split
between the two.

Zhang and Gupta [382] report runtime overhead from 3% to 58%, but as
always, this depends on the amount of protection that is added, in this case, how
much of the program is hidden on the server and the amount of extra communication
overhead this introduces. Zhang and Gupta’s measurements were done over a local
area network. In many scenarios, it is more likely that the server and client are farther
away on the network and the extra latency that is introduced may well make this
method too slow, or at the very least, will significantly reduce the size of the slice
that can remain hidden. Here’s a rough measurement of packet turnaround times,
as reported by tracepath, starting at york.cs.arizona.edu:

target site # hops ms
rorohiko.cs.arizona.edu 1 0.2
cse.asu.edu 10 5
www.stanford.edu 12 25
www.usp.ac.fj 12 153
www.eltech.ru 23 201
www.tsinghua.edu.cn 19 209

www.stanford.edu
www.usp.ac.fj
www.eltech.ru
www.tsinghua.edu.cn

7.5 Remote Tamperproofing 459

Going to www.stanford.edu from york.cs.arizona.edu is 125 times slower than
staying within the local area network, even though Stanford is geographically in the
state next to Arizona.

7.5.4 Algorithm TPSLSPDK: Measuring Remote Hardware

If you find yourself in a very restricted environment, it should be possible to mzeasure
aspects of the untrusted client to verify that it is running the correct software. This is
the premise behind Algorithm TPSLSPDK [322-324], known as the Pioneer system.
After the Pioneer protocol has run, the server can be sure that

1. a particular executable E on the client hasn’t been modified,
2. the client has executed E, and

3. E was not tampered with during execution.

To get these guarantees, you have to assume a system configuration with some very
limiting properties:

1. The server knows the exact hardware configuration of the client, including
CPU model, clock speed, memory latency, and memory size. The client only

has one CPU.

2. The communication latency between the server and the client is known,
for example, as a result of their being on the same LAN segment of the
network.

3. The network is configured so that during verification the client is unable to
communicate with any system other than the server.

4. The executable the server wants the client to run should not need to invoke
any other software on the client, and it can execute at the highest processor
privilege level with interrupts turned off.

Given these restrictions, the server can ask the client to compute a hash over its own
code and return the value to the server. The hash function is carefully constructed
so that if the client tries to cheat, he will either return the wrong hash value or
the hash computation will take longer than expected to compute. This explains the
very strict requirements above: If the server doesn’t know the client’s computational
power and the speed of communication, it can’t estimate what is a reasonable time in
which to compute the hash, and if the client isn’t prevented from arbitrary network
activity, it could farm out the hash computation to a faster machine. A successful

www.stanford.edu

460 Software Tamperproofing

cheat by the client means that he is able to return the correct hash value within the
expected time while at the same time running tampered code.

7.5.4.1 Applications In spite of such a restricted scenario, there are potential ap-
plications. For example, say that you want to check a small device such as a cell
phone, PDA, or smartcard for viruses. You could plug it in directly to your com-
puter over a dedicated wire and use the Pioneer protocol to verify that the phone
is running uncompromised code. Similarly, if you’re a network administrator, you
could configure the routers on your LAN so that the machine you want to check
for malware cannot communicate with any other machine during the verification
process. Or say you're an inspector of voting machines. You could unplug a ma-
chine from its network connection, connect it to your laptop, and then use Pioneer
to check that the machine is running the correct certified code.

In all these cases, it is reasonable to assume that you have perfect knowledge of
the computing power of the client—you just have to make sure that your communi-
cation with it has predictable latency and that there is no way for it to communicate
with other systems. Given that, Pioneer guarantees that the desired executable is
loaded into memory and executed, and that there is no rogue code on the client
that can interfere with the execution.

7.5.4.2 The Pioneer Protocol Have alook at this overview of the Pioneer protocol
(numbers indicate the order of events):

Server Client
(R (A

1. t; <—currentTime() r 2. receive nonce
nonce «—random() / c <hashé6(nonce, V)
send nonce — | | __ send(c)

3. receive ¢ <«— | v:
ty <—currentTime()
if to—t;> At or

c is wrong then
FAIL

. SHA-10)
5. receive h<— |
if h is wrong then | —— | 4. h «<-SHA-1(nonce||E)
FAIL [send(h)

hash6Q)

send()

6. r<execute E
—— send(r)

7. receive 1 -— 1 @@ |
. J

On the client-sideis the executable E, which the server wants the client to run untam-
pered. At the heart of the system is the verifier V, which the client will use to prove
its trustworthiness to the server. V includes the three functions hash6 (), send(), and

7.5 Remote Tamperproofing 461

SHA-1Q). The send() function is used for data transfer with the server, hash6() we
defined in Section 7.2.2 418, and SHA-1() is a cryptographic hash function.

In the first steps of the protocol, the client must convince the server that none of
the functions in V has been tampered with. The client can then use these functions
to send the server a SHA-1 hash over E. If the hash matches, the server can be
sure that E has not been tampered with. The final step is for the client to run E and
return the result to the server.

To convince the server that he hasn’t tampered with V, the client sends him a
hash (computed by hash6()) over the verifier code. Notice that hash6() computes
the hash over itself, thus verifying itself! The server then compares the hash against
the expected value.

There are several potential problems here. First, the client could pre-compute
the hash value, tamper with the code, and when challenged, send the server the
value it expects. The protocol, therefore, starts with the server creating a nonce
(a random value) and sending it to the client. The client is forced to use the nonce to
initialize hash6 (), and this makes it impossible for him to cheat by pre-computing
the hash value.

The second problem is that the client can cheat by executing extra instructions.
To prevent this, the server measures the time it takes for the client to compute
the hash over V. This leads to a third problem: The client could run an optimized
version of hash6() that allows him to slip in extra instructions and still return the
hash value within the expected time! For this reason, hash6 () has been designed to
be time optimal, i.e., there should be no way to speed it up by reordering instructions,
replacing one instruction with another, and so on.

In step 3 of the protocol, the server verifies that the client has computed the
expected hash value over V within the expected amount of time. In steps 4 and 5,
the client computes a SHA-1 hash of the executable E and the server compares
it against the expected value. Again, the client has to factor in a nonce to prevent
precomputation. At this point, the server knows that E hasn’t been tampered with.
In steps 6 and 7, finally, the client runs E and transfers its return value to the
server.

You must also make sure that no other process is running on the system until
after V and E have finished executing. To accomplish this, you must require V and
E to run at the highest CPU privilege level with all maskable interrupts disabled.
We don’t show it in the protocol sketch above, but the hash computation in step
2 also includes processor state in order to assure the server that the V and E run
unperturbed. During step 2, you therefore install new handlers for all non-maskable
interrupts and exceptions.

462 Software Tamperproofing

Problem 7.9 This algorithm extends the code-hashing idea to the remote tam-
perproofing scenario. Can you do the same for the oblivious hashing idea from
Section 7.4 444?

7.5.5 TPCNS: Continuous Replacement

The final idea to prevent tampering of remotely executing code that we’re going
to show you we call remote tamperproofing by continuous replacement. The ba-
sic idea is to make the client code difficult to analyze by keeping it in constant
flux, i.e., by continuously obfuscating the client code. Ideally, the adversary will
find that the client code is changing so quickly that before he has managed to
analyze and modify the current version, the server has generated a new one. Algo-
rithm TPCNS [83] presents this high-level overview of a continuous replacement

system:

Server-side ! Client-side

service | service C
interpreter

'
request | response
'

block
response ! request

if (tampered(C)) H /
cease_communication() I —— N

In this design, both the server and the client maintain a representation of the C code
(the code run by the client) in what we’ll call a bag of blocks. The client executes
out of its bag by selecting a block to run, jumping to it, selecting the next block,
and so on. The server, on the other hand, has a mzutator process that continuously
modifies its bag of blocks and shares any modified blocks with the client. Sharing
can happen if the client asks the server for a block it doesn’t have (at any one point
in time, the client might hold only a subset of all the code blocks), sending a request-
block packet (in dashed) to the server, and getting a new block (in light gray) in
return. The server may also push blocks onto the client. A block scheduler process
on the server determines which blocks to return or push to the client and at what
time.

7.5 Remote Tamperproofing 463

The level of tamperproofing you achieve through this setup is determined by

1. the rate at which the server generates mutated blocks and pushes them onto
the client, and

2. the rate at which the adversary can analyze the client code by monitoring the
continuously changing bag of blocks.

To reduce network traffic, you want to keep the block replacement rate as low as
possible. At the same time, you want to make the rate high enough to be sure the
client doesn’t have enough time to analyze the program between updates!

The obfuscating block transformations should have the following properties:

e The server must be able to apply the transformations over and over again,
creating an infinite stream of differently obfuscated blocks.

e It should be more resource-consuming for the client to analyze new blocks
than for the server to generate them.

e The client shouldn’t be able to simply ignore new blocks pushed to it.

The last point is important. An adversary can simply monitor the bag of blocks, and
once it has received all of C’s code, just take a snapshot of the bag and analyze it
off-line.

Several of the obfuscating transformations you saw in Chapter 4 (Code Obfus-
cation) can be applied multiple times. A simple implementation of TPCNS could,
for example, have only two transformations, one that splits a block in two and an-
other that merges two blocks together. Together these two transformations would
generate an infinite sequence of different blocks.

Unfortunately, such transformations won’t stop the adversary from ignoring new
blocks sent to it and simply executing old blocks it has already seen, analyzed, and
tampered with. To prevent such attacks, TPCNS requires the server to support a third
type of transformation, znterface obfuscation. The idea is to continuously modify the
remote procedure call (RPC) interfaces by which the server provides services to
the client. The server can transform these RPCs by, for example, renaming them,
reordering their arguments, adding bogus arguments, changing argument types,
and splitting and merging calls. An adversary who chooses to ignore block updates
will eventually execute an old block that issues an expired RPC. This will alert the
server that the client is under attack.

The main advantage of continuous replacement tamperproofing is that you
have several knobs that you can tweak to balance the level of protection versus
performance degradation:

464 Software Tamperproofing

1. You can increase the rate of block push (the server telling the client to
invalidate an old block and replace it with a new one) in order to increase the
amount of analysis work the client has to do, at the cost of increased network

traffic.

2. You can make blocks more or less obfuscated using any of the algorithms in
Chapter 4 (Code Obfuscation), with more obfuscation leading to longer
analysis times but worse client performance.

There’s no known implementation of the continuous replacement idea. We there-
fore don’t yet know the push rate and level of obfuscation necessary to ward off
attacks. It seems reasonable to believe, however, that “reasonable” replacement and
obfuscation rates would be enough to defend the client against manual attacks, i.e.,
attacks where the adversary analyzes the client code by executing it interactively un-
der a debugger. Whether it’s enough to protect the client against automated attacks
(where the adversary attaches a static analysis tool to the client in order to analyze
new blocks automatically as they appear in the block bag) is an entirely different
question.

7.6 Discussion

Tamperproofing addresses the trustworthiness of a piece of code and the environ-
ment in which it executes. As the producer of a program, you want to include certain
restrictions on how it’s used—maybe it can’t be executed after a certain period of
time—and you include code in the program to check that the conditions of use are
met. If a user changes the program in any way, you can no longer trust it, since these
usage checks may have been disabled. To trust a program, you have to be sure that
absolutely nothing about it has changed: code can be neither removed nor added.
If, for example, you have removed pieces of the program—to distribute a partially
functional trial version, for example—you want to be sure that no one adds the
missing pieces back in.

We’ve shown you five basic methods for making a program difficult to tamper
with:

1. You can add code to the program that checks that the original bits have not
been changed (Algorithms TPCA and TPHMST, and for remote
tamperproofing, TPSLSPDK);

2. You can add code to the program to check that it’s not running in a hostile
environment (Algorithm TPGCK);

7.6 Discussion 465

3. You can check that the program’s runtime data structures are always in
acceptable states and that the control flow follows reasonable paths

(Algorithms TPCVCPSJ and TPJJV);

4. You can split the program into two pieces, where one piece is protected from
the attacker by running it remotely or on tamper-resistant hardware

(Algorithm TPZG).

5. You can use the obfuscation algorithms from Chapter 4 (Code Obfuscation)
and Chapter 6 (Dynamic Obfuscation) to make the program harder to
understand and hence tamper with (Algorithm TPCNS uses this for remote
tamperproofing).

In practice, these algorithms are often combined. For example, we normally don’t
think of obfuscation as a tamperproofing technique in its own right, since it lacks the
ability to execute a response when an attack has been discovered. However, obfusca-
tion plays an important role in making tamperproofing code more stealthy. You saw
this in Section 7.2.2 418, where we obfuscated the hash functions used in introspec-
tion algorithms in order to make them less susceptible to pattern matching attacks.
Introspection algorithms like TPCA and TPHMST are also commonly augmented
with code to check if the program is running under a debugger or emulator.

In Section 2.2.10» 110, we presented the detect-respond defense model primi-
tive. In the model, an object is protected by monitoring a desirable invariant and
executing a response if the check fails. Algorithms TPCA, TPHMST, TPSLSPDK,
TPCVCPSJ, and TPJJV all fit in this primitive. For TPCA and TPHMST, the invariant
is a simple hash of the code, whereas for TPCVCPSJ and TPJJV, the invariant is the
hash of runtime data values.

The TPZG algorithm first applies the split primitive, breaking up the application
into two parts and making one part inaccessible to the attacker. Since the hidden
part is protected by running it on a remote server or on tamperproof hardware, the
attacker can’t tamper with it at all. TPZG can combine splitting with tamperproofing
by monitoring the communication between the two parts of the program, reporting
any suspicious exchanges as possible tampering.

Problem 7.10 None of the algorithms in this chapter has public implementations,
so it would be interesting to develop working systems that could be compared for
efficiency and resilience to attack.

This page intentionally left blank

