
Information Security Decisions | © TechTarget

Android Security Overview

Mike Arpaia
iSEC Partners

Agenda

● Background
- Android applications
- Android security model

● Application Components – Part 1
- Intents & Activities

● Application Components – Part 2
- BroadcastReceivers, Services, and ContentProviders

● Android Gotchas
- Other issues to worry about

● Mobile-optimized Linux distribution
● Introduced in 2008
● “Open” Platform
● 100,000+ Applications

Android Background Intro

Application

Linux Kernel Drivers

Native
Code

Dalvik
(JVM)

Application

Native
Code

Dalvik
(JVM)

Android App Packaging

● Android PacKage (.APK)
- Just a ZIP file (like a JAR)

● Contents listed in manifest
- AndroidManifest.xml

● Android apps can have both:
- Java
- Native (C/C++) code

Android Application Components

 Activities – Screens that do something, e.g. the Dialer

 Services – Background features, like the IM service

 Broadcast Receivers –Actionable notifications (startup!)

 Content Providers – Shared relational data

 Instrumentations – Rare, useful for testing

Securable with Android Permission:

"android.permission.READ_CONTACTS"
or

"android.permission.BRICK"

A Sample Android Application

● AndroBuzz – Android client for Google Buzz

- Activities
● BuzzActivity, BuzzNearby, FeedActivity, SettingsActivity,

SyncProviderLoginActivity
- BroadcastReceivers

● BootLauncher
- Services

● AccountAuthenticator, ContactsSync, BuzzService
- ContentProviders

● None defined, but uses Android contact database

Android Security Model
● Linux + Android’s Permissions
● Application isolation

- Note editor can’t read E-Mail
● Distinct UIDs and GIDs assigned on install

Android Security Model
● Android is not the Java security model:

- No Java Security Manager, no Java Sandbox
- Dalvik NOT a security barrier

● This is not the iPhone security model:
- Platform permissions restrict applications
- Very open for development & customization

● Closest to OS user isolation, but each app is a user
● Usually supports OTA updates

Android Security Model
● Rights expressed as Permissions & Linux groups!

Permissions

● Based on Linux, UIDs, File permissions

● Each app assigned own user and group

● Permissions granted in the manifest

● Declared at Install time and are static
- Permission changes during update prompt the user

UID1 UID2

Manifest Permissions

● .INTERNET
● .ACCESS_FINE_LOCATION
● .ACCESS_COARSE_LOCATION
● .ACCESS_FINE_LOCATION
● .ACCESS_DOWNLOAD_MANAGER
● .ACCESS_NETWORK_STATE
● .ACCESS_WIFI_STATE
● .SET_WALLPAPER
● .WAKE_LOCK
● .WRITE_EXTERNAL_STORAGE
● .SEND_DOWNLOAD_COMPLETED_INTE

NTS

android.permission.
● .INTERNET
● .ACCESS_FINE_LOCATION
● .VIBRATE
● .READ_CONTACTS
● .WRITE_CONTACTS
● .GET_ACCOUNTS
● .MANAGE_ACCOUNTS
● .AUTHENTICATE_ACCOUNTS
● .READ_SYNC_SETTINGS
● .WRITE_SYNC_SETTINGS
● .GET_TASKS
● .USE_CREDENTIALS

android.permission.

Browser Permissions Twitter Permissions

Requesting Permissions

Permission Groups
● Optional, helps display permissions to the user

android:permissionGroup=
"android.permission‐group.LOCATION“

android:name=
“android.permission.ACCESS_COARSE_LOCATION

android:name=
“android.permission.ACCESS_FINE_LOCATION

Application Signing

● Certificates determine identity
- Set the Application’s UID and the GID

● Market can use this to identify trusted developers
- Identity X has produced good apps for Y years

● Most certificates are self-signed! Not a CA trust
model.

● Two applications can share data with:
android:sharedUserId="aexp.share.sharedapp"

Key Management

● Protect your Android application signing key
● Store on a secure build server
● Audit access and use
● Backup in a secure location

● Protect like a SSL certificate, but perhaps better

Android Background Takeaways

● Mobile optimized Linux distribution

● Android apps are distributed as APKs
- Similar to jar files, but can contain native code
- Sandboxed at the OS level

● Rich permission model
- Obtain access to resources by requesting permissions
- Permissions are organized into groups
- Signed to determine identity
- Most applications can use standard permissions

● Protect your signing certificate!

Android Application Components

● Intents & Activities

17Information Security Decisions | © TechTarget

Permissions Refresher

<manifest xlmns:android...>
...
<uses-permission

android:name="android.permission.INTERNET">
</uses-permission>

</manifest>

Permissions Refresher

Securable Object Effect

Activity Who can start the activity?

Service Who can start, stop or bind to the service?

BroadcastReceiver Who can send broadcasts to the receiver?
Rights needed by the receiver of a broadcast

ContentProvider Who can access data in the ContentProvider?

Defining New Permissions
● Exposing a service to other applications
● Frequently accessed, dangerous
● Difficult for users to permit
● Want to go “on the record” about what apps expose

● New permissions are rare

Custom Permissions
<manifest xmlns:android="http://schemas.android.com/apk/res/android"

package="com.me.app.myapp" >
<permission

android:name="com.me.app.myapp.permission.DEADLY_ACTIVITY"
android:label="@string/permlab_deadlyActivity"
android:description="@string/permdesc_deadlyActivity"
android:permissionGroup="android.permission-group.COST_MONEY"
android:protectionLevel="dangerous" />

</manifest>

• name: The permission’s name used in code
• label: The localizable name shown to the user
• description: Description text shown to the user
• permissionGroup: A group of permissions to associate this permission with
• protectionLevel: Determines how to prompt the user (normal & dangerous)

Intents: Android IPC Messages

● Used for Activities, Broadcasts, Services, and More

Contacts App

User Clicks

Sends Intent

Dialer App

Intents As Weapons

● Intents are used every Android application

● All applications can send intents
- Even malicious ones!

● Intents carry data
- Data can be malicious
- Your app could leak data!

● Must handle malicious intents
- Or use permissions to restrict who can send them to you

Activities

● “An activity is a single thing that the user can do.”

● Example activities:
- ATM locator screen
- Dialer interface
- Foursquare “checkin” page

● Can receive intents
- E.g. a Dialer intent with a phone #

Protecting Activities

Does your Activity perform
actions on behalf of the user?

IntentFilters: Not Authoritative

// The browser's intent filter isn't interested in this action
Intent i = new Intent("Cat-Farm Aardvark Pidgen");

// The browser's intent filter isn't interested in this Uri scheme
i.setData(Uri.parse("marshmaellow:potatochip?"));

// The browser activity is going to get it anyway!
i.setComponent(new ComponentName("com.android.browser",

"com.android.browser.BrowserActivity"));

Two Way to Secure Activities

Confirm (every time) Permission (applied once)

How to Avoid Custom Permissions
● Custom permissions can be clumsy

● Instead:
1. Start an activity
2. Confirm the action with the user

● Example:
1. Dialer application launches
2. Shows # and asks user to dial
3. User must confirm before dial

How to Get Confirmation
AlertDialog.Builder builder = new

AlertDialog.Builder(this);
builder.setMessage("Do you want to self-destruct?")

.setCancelable(false);

builder.setPositiveButton("Yes", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {
MyActivity.this.finish(); }

});

builder.setNegativeButton("No", new
DialogInterface.OnClickListener() {
public void onClick(DialogInterface dialog, int id) {

dialog.cancel();
}

});

AlertDialog alert = builder.create();

How to Apply Activity Permissions

<activity

android:name=".BlankShoppingList"
android:permission =

"com.isecpartners.ACCESS_SHOPPING_LIST">

<intent-filter>

<action
android:name=
"com.isecpartners.shopping.CLEAR_LIST" />

</intent-filter>

</activity>

Intent Reflection

● Don’t let malicious apps push you around!

● PendingIntents store the identity of the original caller

Malicious Intent

Reflected Intent

Android App Component Takeaways

● Android components communicate via Intents
● Intents can be malicious & must be handled with care
● Be careful what activities you support
● Permissions can restrict who can send intents

Android Application Components

● BroadcastRecievers, Services, and ContentProviders

33Information Security Decisions | © TechTarget

BroadcastReceivers

● Let apps and system communicate via intents
● Android handles:

- dispatching,
- starting receivers,
- and enforcing permissions

● Broadcasts may be malicious
● Apps could sniff broadcasts

Protecting BroadcastReceivers
● Don’t export if possible
● Set permissions on send and on receive
● For receive (who can send Intents to me):
<receiver android:enabled="true"
android:exported="false"
android:name="com.isecpartners.Sample"
android:permission="android.permission.RECEIVE_MMS">

</receiver>

 For Send (who can receive my broadcasts):
Context().sendBroadcast(intentObject,

"android.permission.RECEIVE_MMS“);

Sticky Broadcasts
● Sticky Broadcasts are usually informational

- For example, system state like the battery
● You can’t apply permissions to them

Intent intent = new Intent(“com.bank.checkcleared");
intent.putExtra(“Check 01234”, true);
sendStickyBroadcast(intent); // everyone can read me!

Don’t use StickyBroadcasts for exchanging information

Services

● Background Processes

● Sample Services:
- Schedule MP3s
- Store passwords or Private Messages
- Retrieve e-mail periodically

● Permissions can apply to services

ServiceClient

● Be careful when sending sensitive data to a service
- E.g. Passwords, Credentials

● Must check the service’s identity

Service Mutual Authentication

How to Authenticate Services

● Option 1: Specify the service explicitly in the Intent

● Option 2: Verify against name provided by
onServiceConnected event

● Option 3: Use the component name to validate permissions
(to dynamically allow replacement services)
res = getPackageManager().

checkPermission(permToCheck, name.getPackageName());

Intent svc = new Intent(AndroBuzzActivity.this,
AndroBuzzService.class);

startService(svc);

ContentProviders

● SQL databases that store text, images, sounds…
● Permissions determine who can read or write

- Caveat: Anyone with write effectively has read access

<provider android:authorities="list"
android:enabled=true
android:exported=false
android:grantUriPermissions=["true" | "false"]
android:name="string"
android:permission="string"
android:process="string"
android:readPermission="string"
android:syncable=["true" | "false"]
android:writePermission="string" >

. . .
</provider>

Querying ContentProviders
● Use a URI

- "content://com.example.travel/trains/122"
● “Give the me the train with ID #122”

- Tables can have sub-tables
● "content://com.example.travel/trains/baltimore"

● Don’t do this:
- "content://com.example.travel/trains/" + id
- What if user controlled id and accessed a sub-table?

● Use:
- ContentUris.withAppendedId()

Android Component Takeaways

● Permission BroadcastReceivers
● Permission broadcast intents
● Do not use private data in sticky intents
● Keep ContentProviders private

- Use permissions for exported providers
- Careful when assembling URIs

● Mutually authenticate services

Android Component Summary

● Lots of different attack surfaces to watch
● Export a small attack surface
● Be aware of:

- Where you send intents
- Where you receive intents from

● Use pre-defined permissions if possible
- May not be granular enough

Android “Gotchas”

● Specific issues to watch out for

44Information Security Decisions | © TechTarget

Access Level Modifiers Don’t Work

 We see @hide on classes, or individual methods

• NOT a security boundary, trivially bypassed

Storing Data Locally

● Don’t use external storage, it’s FAT32

● External storage is readable by all processes
- Write requires permission as of Donut

● Avoid storing data locally!

GetExternalFilesDir()

Storing Data Locally

● Use internal storage, it has strong permissions

String FILENAME = “pubkey";
String string = “---BEGIN PUBLIC KEY---…";

FileOutputStream fos = openFileOutput(FILENAME,
Context.MODE_PRIVATE);

fos.write(string.getBytes());
fos.close();

Avoiding Cache Issues

● Embed the “WebView” control carefully

● When working with sensitive pages:

WebView.WebSettings.setSaveFormData() = False;

● Set Cache-Control HTTP Headers:

Cache-Control: no-cache no-store

Creating SSL Connections
● Use SSL, for everything
● Default HTTPS Class Checks:

● Sample:

Name
Expiration

Issuance
Revocation

URL url = new URL("https://www.isecpartners.com");
URLConnection urlConn = url.openConnection();

Native Code

● Good for games; avoid otherwise
● Subject to standard C language issues
● Still running as the application’s UID
● Avoid if at all possible

Gotcha Takeaways

● Careful when using internal storage
● Control caching
● Default HTTPS class performs proper certificate checks
● Avoid native code

Android Summary

Information Security Decisions | © TechTarget 52

Android Takeaways

● Rich security model
● Robust IPC mechanism
● Potential for large attack surface

Android Secure Coding Checklist

● Use least privilege
● Do not unnecessarily export components
● Handle intents carefully
● Justify any custom permissions
● Use PendingIntents to protect against Intent Reflection
● Mutually authenticate services
● Use APIs to construct ContentProvider URIs
● Watch WebView caching
● Avoid Native Code (and review what you write)
● Use HTTPS
● Store very little data locally

Mike Arpaia
mike@isecpartners.com

iSEC Partners

Information Security Decisions | © TechTarget

Featured Member of the
TechTarget Editorial
Speaker Bureau

