
87

 From denial-of-service to Smurf attacks, hackers that perpetrate exploits have 
captured both the imagination of the public and the ire of victims. There is 
some reason for indignation and ire. A survey by the Computer Security Institute 
placed the cost of computer intrusions at an average of $970,000 per company 
in 2000. 

 Thus there is a growing market for  intrusion detection , a fi eld that consists of 
detecting and reacting to attacks. According to IDC, the intrusion-detection market 
grew from $20 million to $100 million between 1997 and 1999 and is expected to 
reach $518 million by 2005. 

 Yet the capabilities of current intrusion detection systems are widely accepted 
as inadequate, particularly in the context of growing threats and capabilities. Two 
key problems with current systems are that they are slow and that they have a 
high false-positive rate. As a result of these defi ciencies, intrusion detection serves 
primarily as a monitoring and audit function rather than as a real-time component 
of a protection architecture on par with fi rewalls and encryption. 

 However, many vendors are working to introduce  real-time  intrusion detec-
tion systems. If intrusion detection systems can work in real time with only a 
small fraction of false positives, they can actually be used to  respond  to attacks by 
either defl ecting the attack or tracing the perpetrators. 

 Intrusion detection systems (IDSs) have been studied in many forms since 
Denning’s classic statistical analysis of host intrusions. Today, IDS techniques are 
usually classifi ed as either  signature detection  or  anomaly detection . Signature 
detection is based on matching events to the signatures of known attacks. 

 In contrast, anomaly detection, based on statistical or learning theory techniques, 
identifi es aberrant events, whether known to be malicious or not. As a result, 
anomaly detection can potentially detect new types of attacks that signature-based 
systems will miss. Unfortunately, anomaly detection systems are prone to falsely 
identifying events as malicious. Thus this chapter does  not  address anomaly-based 
methods. 

 Meanwhile signature-based systems are highly popular due to their relatively 
simple implementation and their ability to detect commonly used attack tools. 

                Network Security 
Algorithms    4 
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The lightweight detection system Snort is one of the more popular examples 
because of its free availability and effi ciency. 

 Given the growing importance of real-time intrusion detection, intrusion 
detection furnishes a rich source of packet patterns that can benefi t from network 
algorithmics. Thus this chapter samples three important subtasks that arise in the 
context of intrusion detection. The fi rst is an  analysis  subtask, string matching, 
which is a key bottleneck in popular signature-based systems such as Snort. The 
second is a  response  subtask, traceback, which is of growing importance given the 
ability of intruders to use forged source addresses. The third is an  analysis  sub-
task to detect the onset of a new worm (e.g., Code Red) without prior knowledge. 

 These three subtasks only scratch the surface of a vast area that needs to 
be explored. They were chosen to provide an indication of the richness of the 
problem space and to outline some potentially powerful tools, such as Bloom fi l-
ters and Aho–Corasick trees, that may be useful in more general contexts. Worm 
detection was also chosen to showcase how mechanisms can be combined in 
powerful ways. 

 This chapter is organized as follows. The fi rst few sections explore solutions 
to the important problem of searching for suspicious strings in packet payloads. 
Current implementations of intrusion detection systems such as Snort (www.snort
.org) do multiple passes through the packet to search for each string. Section 4.1.1 
describes the Aho–Corasick algorithm for searching for multiple strings in one pass 
using a trie with backpointers. Section 4.1.2 describes a generalization of the clas-
sical Boyer–Moore algorithm, which can sometimes act faster by skipping more 
bits in a packet. 

 Section 4.2 shows how to approach an even harder problem—searching for 
 approximate  string matches. The section introduces two powerful ideas: min-
wise hashing and random projections. This section suggests that even complex 
tasks such as approximate string matching can plausibly be implemented at wire 
speeds. 

 Section 4.3 marks a transition to the problem of responding to an attack, by 
introducing the IP traceback problem. It also presents a seminal solution using 
probabilistic packet marking. Section 4.4 offers a second solution, which uses 
packet logs and no packet modifi cations; the logs are implemented effi ciently 
using an important technique called a  Bloom fi lter . While these traceback solu-
tions are unlikely to become deployed when compared to more recent standards, 
they introduce a signifi cant problem and invoke important techniques that could 
be useful in other contexts. 

 Section 4.5 explains how algorithmic techniques can be used to extract auto-
matically the strings used by intrusion detection systems such as Snort. In other 
words, instead of having these strings be installed manually by security analysts, 
could a system automatically extract the suspicious strings? We ground the discus-
sion in the context of detecting worm attack payloads. 

The implementation techniques for security primitives described in this chap-
ter (and the corresponding principles) are summarized in  Figure 4.1   .
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  4.1  SEARCHING FOR MULTIPLE STRINGS IN 
PACKET PAYLOADS 

 The fi rst few sections tackle a problem of detecting an attack by searching for sus-
picious strings in payloads. A large number of attacks can be detected by their use 
of such strings. For example, packets that attempt to execute the Perl interpreter 
have  perl.exe  in their payload. For example, the arachNIDS database of vulnerabili-
ties contains the following description. 

 An attempt was made to execute perl.exe. If the Perl interpreter is available 
to Web clients, it can be used to execute arbitrary commands on the Web server. 
This can be used to break into the server, obtain sensitive information, and poten-
tially compromise the availability of the Web server and the machine it runs on. 
Many Web server administrators inadvertently place copies of the Perl interpreter 
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 FIGURE 4.1 

    Principles used in the implementation of the various security primitives discussed in this 
chapter.    

      Quick    Reference Guide     
 Sections 4.1.1 and 4.1.2 show how to speed up searching for  multiple  strings in packet 
payloads, a fundamental operation for a signature-based IDS. The Aho–Corasick algo-
rithm of Section 4.1.1 can easily be implemented in hardware. While the traceback 
ideas in Section 4.4 are unlikely to be useful in the near future, the section intro-
duces an important data structure, called a Bloom fi lter, for representing sets and also 
describes a hardware implementation. Bloom fi lters have found a variety of uses and 
should be part of the implementor’s bag of tricks. Section 4.5 explains how signatures 
for attacks can be  automatically  computed, reducing the delay and diffi culty required to 
have humans generate signatures.      

4.1 Searching for Multiple Strings in Packet Payloads
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into their Web server script directories. If perl is executable from the cgi directory, 
then an attacker can execute arbitrary commands on the Web server. 

 This observation has led to a commonly used technique to detect attacks in so-
called signature-based intrusion detection systems such as Snort. The idea is that 
a router or monitor has a set of rules, much like classifi ers. However, the Snort 
rules go beyond classifi ers by allowing a 5-tuple rule specifying the type of packet 
(e.g., port number equal to Web traffi c) plus an arbitrary string that can appear 
anywhere in the packet payload. 

 Thus the Snort rule for the attempt to execute perl.exe will specify the proto-
col (TCP) and destination port (80 for Web) as well as the string  “ perl.exe ”  occur-
ring anywhere in the payload. If a packet matches this rule, an alert is generated. 
Snort has 300 such augmented rules, with 300 possible strings to search for. 

 Early versions of Snort do string search by matching each packet against each 
Snort rule in turn. For each rule that matches in the classifi er part, Snort runs a 
Boyer–Moore search on the corresponding string, potentially doing several string 
searches per packet. Since each scan through a packet is expensive, a natural 
question is: Can one search for all possible strings in one pass through packet? 

 There are two algorithms that can be used for this purpose: the Aho–Corasick 
algorithm and a modifi ed algorithm due to Commentz-Walter, which we describe 
next. 

  4.1.1 Integrated String Matching Using Aho–Corasick 
 A trie can be used to search for a string that starts at a known position in a packet. 
Thus  Figure 4.2    contains a trie built on the set of two strings  “ babar ”  and  “ barney ” ; 
both are well-known characters in children’s literature. The trie is built on charac-
ters and not on arbitrary groups of bits. The characters in the text to be searched 
are used to follow pointers through the trie until a leaf string is found or until fail-
ure occurs. 

 The hard part, however, is looking for strings that can start anywhere in a 
packet payload. The naivest approach would be to assume the string starts at byte 
1 of the payload and then traverses the trie. Then if a failure occurs, one could 
start again at the top of the trie with the character that starts at byte 2. 

 However, if packet bytes form several  “ near misses ”  with target strings, then for 
each possible starting position, the search can traverse close to the height of the 
trie. Thus if the payload has  L  bytes and the trie has maximum height  h , the algo-
rithm can take  L   �   h  memory references. 

 For example, when searching for  “ babar ”  in the packet payload shown in  
Figure 4.2 , the algorithm jogs merrily down the trie until it reaches the node corre-
sponding to the second  “ a ”  in  “ babar. ”  At that point the next packet byte is a  “ b ”  and 
not the  “ r ”  required to make progress in the trie. The naive approach would be to 
back up to the start of the trie and start the trie search again from the second byte 
 “ a ”  in the packet. 
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 However, it is not hard to see that backing up to the top is an obvious waste 
( P1 ) because the packet bytes examined so far in the search for  “ babab ”  have 
 “ bab ”  as a suffi x, which is a prefi x of  “ babar. ”  Thus, rather than back up to the top, 
one can precompute (much as in a grid of tries) a failure pointer corresponding 
to the failing  “ b ”  that allows the search to go directly to the node corresponding 
to path  “ bab ”  in the trie, as shown by the leftmost dotted arc in  Figure 4.2 . 

 Thus rather than have the fi fth byte (a  “ b ” ) lead to a null pointer, as it would in 
a normal trie, it contains a failure pointer that points back up the trie. Search now 
proceeds directly from this node using the sixth byte  “ a ”  (as opposed to the sec-
ond byte) and leads after seven bytes to  “ babar. ”  

 Search is easy to do in hardware after the trie is precomputed. This is not hard 
to believe because the trie with failure pointers essentially forms a state machine. 
The Aho–Corasick algorithm has some complexity that ensues when one of the 
search strings,  R , is a suffi x of another search string,  S . However, in the security 
context this can be avoided by relaxing the specifi cation ( P3 ). One can remove 
string  S  from the trie and later check whether the packet matched  R  or  S . 

 Another concern is the potentially large number of pointers (256) in the Aho–
Corasick trie. This can make it diffi cult to fi t a trie for a large set of strings in 
cache (in software) or in SRAM (in hardware). One alternative is to use, say, Lulea-
style encoding to compress the trie nodes.  

b a b a b a r (Packet payload).   .   .
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 FIGURE 4.2 

    The Aho–Corasick algorithm builds an alphabetical trie on the set of strings to be searched 
for. A search for the string  “ barney ”  can be found by following the  “ b ”  pointer at the root, the 
 “ a ”  pointer at the next node, etc. More interestingly, the trie is augmented with failure pointers 
that prevent restarting at the top of the trie when failure occurs and a new attempt is made to 
match, shifted one position to the right.    

4.1 Searching for Multiple Strings in Packet Payloads
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  4.1.2 Integrated String Matching Using Boyer–Moore 
 The famous Boyer–Moore algorithm for  single -string matching can be derived by 
realizing that there is an interesting degree of freedom that can be exploited ( P13 ) 
in string matching: One can equally well start comparing the text and the target 
string from the last character as from the fi rst. 

 Thus in  Figure 4.3    the search starts with the fi fth character of the packet, a  “ b, ”  
and matches it to the fi fth character of, say,  “ babar ”  (shown below the packet), an 
 “ r. ”  When this fails, one of the heuristics in the Boyer–Moore algorithm is to shift 
the search template of  “ babar ”  two characters to the right to match the rightmost 
occurrence of  “ b ”  in the template.      1    Boyer–Moore’s claim to fame is that in practice 
it skips over a large number of characters, unlike, say, the Aho–Corasick algorithm. 

 To generalize Boyer–Moore to multiple strings, imagine that the algorithm con-
currently compares the fi fth character in the packet to the fi fth character,  “ e, ”  in the 
other string,  “ barney ”  (shown above the packet). If one were only doing Boyer–
Moore with  “ barney, ”  the  “ barney ”  search template would be shifted right by four 
characters to match the only  “ b ”  in barney. 

 When doing a search for both  “ barney ”  and  “ babar ”  concurrently, the obvious 
idea is to shift the search template by the smallest shift proposed by any string 
being compared for. Thus in this example, we shift the template by two charac-
ters and do a comparison next with the seventh character in the packet. 

 Doing a concurrent comparison with the last character in all the search strings 
may seem ineffi cient. This can be taken care of as follows. First, chop off all char-
acters in all search strings beyond  L , the shortest search string. Thus in  Figure 4.3 , 
 L  is 5 and  “ barney ”  is chopped down to  “ barne ”  to align in length with  “ babar. ”  

b a r n e

b a r n e

b a b a r

b a b a r

b a b a b a r (Packet payload).   .   .

Shift right by 4

Shift right by 2

 FIGURE 4.3 

    Integrated Boyer–Moore by shifting a character.    

   1   There is a second heuristic in Boyer–Moore, but studies have shown that this simple Horspool 
variation works best in practice.   
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 Having aligned all search string fragments to the same length, now build a trie 
starting  backwards  from the last character in the chopped strings. Thus, in the 
example of  Figure 4.3  the root node of the trie would have an  “ e ”  pointer point-
ing toward  “ barne ”  and an  “ r ”  pointer pointing towards  “ babar. ”  Thus comparing 
concurrently requires using only the current packet character to index into the 
trie node. 

 On success, the backwards trie keeps being traversed. On failure, the amount to 
be shifted is precomputed in the failure pointer. Finally, even if a backward search 
through the trie navigates successfully to a leaf, the fact that the ends may have 
been chopped off requires an epilogue, in terms of checking that the chopped-off 
characters also match. For reasonably small sets of strings, this method does better 
than Aho–Corasick. 

 The generalized Boyer–Moore was proposed by Commentz-Walter. The appli-
cation to intrusion detection was proposed concurrently by Coit, Staniford, and 
McAlerney and Fisk and Varghese. The Fisk implementation has been ported 
to Snort. 

 Unfortunately, the performance improvement of using either Aho–Corasick or 
the integrated Boyer–Moore is minimal, because many real traces have only a few 
packets that match a large number of strings, enabling the naive method to do 
well. In fact, the new algorithms add somewhat more overhead due to slightly 
increased code complexity, which can exhibit cache effects. 

 While the code as it currently stands needs further improvement, it is clear that 
at least the Aho–Corasick version does produce a large improvement for  worst-
case  traces, which may be crucial for a hardware implementation. The use of 
Aho–Corasick and integrated Boyer–Moore can be considered straightforward appli-
cations of effi cient data structures ( P15 ).   

  4.2 APPROXIMATE STRING MATCHING 
 This section briefl y considers an even harder problem, that of approximately 
detecting strings in payloads. Thus instead of settling for an exact match or a pre-
fi x match, the specifi cation now allows a few errors in the match. For example, 
with one insertion  “ perl.exe ”  should match  “ perl.exe ”  where the intruder may 
have added a character. 

 While the security implications of using the mechanisms described next need 
much more thought, the mechanisms themselves are powerful and should be part 
of the arsenal of designers of detection mechanisms. 

 The fi rst simple idea can handle substitution errors. A  substitution error  is a 
replacement of one or more characters with others. For example,  “ parl.exe ”  can 
be obtained from  “ perl.exe ”  by substituting  “ a ”  for  “ e. ”  One way to handle this is to 
search not for the complete string but for one or more random projections of the 
original string. 

4.2 Approximate String Matching
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 For example, in  Figure 4.4   , instead of searching for  “ babar ”  one could search for 
the fi rst, third, and fourth characters in  “ babar. ”  Thus the misspelled string  “ babad ”  
will still be found. Of course, this particular projection will not fi nd a misspelled 
string such as  “ rabad. ”  To make it hard for an adversary, the scheme in general can 
use a small set of such random projections. This simple idea is generalized greatly 
in a set of papers on  locality-preserving hashing . 

 Interestingly, the use of random projections may make it hard to effi ciently 
shift one character to the right. One alternative is to replace the random projec-
tions by deterministic projections. For example, if one replaces every string by 
its two halves and places each half in an Aho–Corasick trie, then any one substi-
tution error will be caught without slowing down the Aho–Corasick processing. 
However, the fi nal effi ciency will depend on the number of false alarms. 

 The simplest random projection idea, described earlier, does not work with 
insertions or deletions that can displace every character one or more steps to the 
left or right. One simple and powerful way of detecting whether two or more 
sets of characters, say,  “ abcef ”  and  “ abfecd, ”  are similar is by computing their 
 resemblance . 

 The resemblance of two sets of characters is the ratio of the size of their 
intersection to the size of their union. Intuitively, the higher the resemblance, the 
higher the similarity. By this defi nition, the resemblance of  “ abcef ”  and  “ abfecd ”  is 
5/6 because they have fi ve characters in common. 

 Unfortunately, resemblance per se does not take into account order, so  “ abcef ”  
completely resembles  “ fecab. ”  One way to fi x this is to rewrite the sets with 
order numbers attached so that  “ abcef ”  becomes  “ 1a2b3c4e5f ”  while  “ fecab ”  now 
becomes  “ 1f2e3c4a5b. ”   The resemblance, using pairs of characters as set elements 
instead of characters, is now nil. Another method that captures order in a more 
relaxed manner is to use shingles by forming the two sets to be compared using 
as elements all possible substrings of size  k  of the two sets. 

 Resemblance is a nice idea, but it also needs a fast implementation. A naive 
implementation requires sorting both sets, which is expensive and takes large stor-
age. Broder’s idea is to quickly compare the two sets by computing a random ( P3a , 
trade certainty for time) permutation on two sets. For example, the most practi-
cal permutation function on integers of size at most  m  � 1 is to compute  P ( X )      �       
ax       �       b  mod  m , for random values of  a  and  b  and prime values of the modulus  m . 

b a b a r

b a b a b a d (Packet payload).   .   .

 FIGURE 4.4 

    Checking for matching with a random projection of the target string  “ babar ”  allows the 
detecting of similar strings with substitution errors in the payload.    
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 For example, consider the two sets of integers  { 1, 3, 5 }  and  { 1, 7, 3 } . Using the 
random permutation  { 3 x       �      5 mod 11 } , the two sets become permuted to  { 8, 3, 9 }  
and  { 8, 4, 3 } . Notice that the minimum values of the two randomly permuted sets 
(i.e., 3) are the same. 

 Intuitively, it is easy to see that the higher the resemblance of the two sets, the 
higher the chance that a random permutation of the two sets will have the same 
minimum. Formally, this is because the two permuted sets will have the same mini-
mum if and only if they contain the same element that gets mapped to the minimum 
in the permuted set. Since an ideal random permutation makes it equally likely for 
any element to be the minimum after permutation, the more elements the two sets 
have in common, the higher the probability that the two minimums match. 

 More precisely, the probability that two minimums match is equal to the 
resemblance. Thus one way to compute the resemblance of two sets is to use 
some number of random permutations (say, 16) and compute all 16 random per-
mutations of the two sets. The fraction of these 16 permutations in which the 
two minimums match is a good estimate of the resemblance. 

 This idea was used by Broder to detect the similarity of Web documents. 
However, it is also quite feasible to implement at high link speeds. The chip must 
maintain, say, 16 registers to keep the current minimum using each of the 16 ran-
dom hash functions. When a new character is read, the logic permutes the new 
character according to each of the 16 functions in parallel. Each of the 16 hash 
results is compared in parallel with the corresponding register, and the register 
value is replaced if the new value is smaller. 

 At the end, the 16 computed minima are compared in parallel against the 16 
minima for the target set to compute a bitmap, where a bit is set for positions in 
which there is equality. Finally, the number of set bits is counted and divided by 
the size of the bitmap by shifting left by 4 bits. If the resemblance is over some 
specifi ed threshold, some further processing is done. 

 Once again, the moral of this section is not that computing the resemblance 
is the solution to all problems (or in fact to any specifi c problem at this moment) 
but that fairly complex functions can be computed in hardware using multiple 
hash functions, randomization, and parallelism. Such solutions interplay principle 
 P5  (use parallel memories) and principle  P3a  (use randomization).  

  4.3 IP TRACEBACK VIA PROBABILISTIC MARKING 
 This section transitions from the problem of  detecting  an attack to  responding  to 
an attack. Response could involve a variety of tasks, from determining the source 
of the attack to stopping the attack by adding some checks at incoming routers. 

 The next two sections concentrate on  traceback , an important aspect of 
response, given the ability of attackers to use forged IP source addresses. To 
understand the traceback problem it helps fi rst to understand a canonical denial-
of-service (DOS) attack that motivates the problem. 

4.3 IP Traceback via Probabilistic Marking
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 In one version of a DOS attack, called  SYN fl ooding , wily Harry Hacker wakes 
up one morning looking for fun and games and decides to attack CNN. To do so 
he makes his computer fi re off a large number of TCP connection requests to the 
CNN server, each with a different forged source address. The CNN server sends 
back a response to each request  R  and places  R  in a pending connection queue. 

 Assuming the source addresses do not exist or are not online, there is no 
response. This effect can be ensured by using random source addresses and 
by periodically resending connection requests. Eventually the server’s pending-
connection queue fi lls up. This denies service to innocent users like you who wish 
to read CNN news because the server can no longer accept connection requests. 

 Assume that each such denial-of-service attack has a traffi c signature (e.g., 
too many TCP connection requests) that can be used to detect the onset of an 
attack. Given that it is diffi cult to shut off a public server, one way to respond to 
this attack is to trace such a denial-of service back to the originating source point 
despite the use of fake source addresses. This is the IP traceback problem. 

 The fi rst and simplest systems approach ( P3 , relax system requirements) is to 
fi nesse the problem completely using help from routers. Observe that when Harry 
Hacker sitting in an IP subnetwork with prefi x  S  sends a packet with fake source 
address  H , the fi rst router on the path can detect this fact if  H  does not match  S . 
This would imply that Harry’s packet cannot disguise its subnetworks, and offend-
ing packets can be traced at least to the right subnetwork. 

 There are two diffi culties with this approach. First, it requires that edge rout-
ers do more processing with the source address. Second, it requires trusting edge 
routers to do this processing, which may be diffi cult to ensure if Harry Hacker has 
already compromised his ISP. There is little incentive for a local ISP to slow down 
performance with extra checks to prevent DOS attacks to a remote ISP. 

 A second and cruder systems approach is to have managers that detect an 
attack call their ISP, say,  A . ISP  A  monitors traffi c for a while and realizes these 
packets are coming from prior-hop ISP  B , who is then called.  B  then traces the 
packets back to the prior-hop provider and so on until the path is traced. This is 
the solution used currently. 

 A better solution than  manual  tracing would be  automatic  tracing of the 
packet back to the source. Assume one can modify routers for now. Then packet 
tracing can be trivially achieved by having each router in the path of a packet  P  
write its router IP address in sequence into  P  ’ s header. However, given common 
route lengths of 10, this would be a large overhead (40 bytes for 10 router IDs), 
especially for minimum-size acknowledgments. Besides the overhead, there is the 
problem of modifying IP headers to add fi elds for path tracing. It may be easier to 
steal a small number of unused message bits. 

 This leads to the following problem. Assuming router modifi cations are pos-
sible, fi nd a way to trace the path of an attack by marking as few bits as possible 
in a packet’s header. 

 For a single-packet attack, this is very diffi cult in an information theoretic sense. 
Clearly, it is impossible to construct a path of 10 32-bit router IDs from, say, a 2-byte 
mark in a packet. One can’t make a silk purse from a sow’s ear. 
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 However, in the systems context one can optimize the expected case ( P11 ), 
since most interesting attacks consist of hundreds of packets at least. Assuming 
they are all coming from the same physical source, the victim can shift the path 
computation over time ( P2 ) by making each mark contribute a piece of the path 
information. 

 Let’s start by assuming a single 32-bit fi eld in a packet that can hold a single 
router ID. How are the routers on the path to synchronize access to the fi eld so that 
each router ID gets a chance, over a stream of packets, to place its ID in the fi eld? 

 A naive solution is shown in  Figure 4.5   . The basic idea is that each router inde-
pendently writes its ID into a  single  node ID fi eld in the packet with probability  p , 
possibly overwriting a previous router’s ID. Thus in  Figure 4.5 , the packet already 
has  R 1 in it and can be overwritten by  R 3 to  R 1 with probability  p . 

 The hope, however, is that over a large sequence of packets from the attacker 
to the victim, every router ID in the path will get a chance to place its ID without 
being overwritten. Finally, the victim can sort the received IDs by the number of 
samples. Intuitively, the nodes closer to the victim should have more samples, but 
one has to allow for random variation. 

 The two problems with this naive approach are that too many samples (i.e., 
attack packets) are needed to deal with random variation in inferring order, and 
the attacker, knowing this scheme, can place malicious marks in the packet to 
fool the reconstruction scheme into believing that fi ctitious nodes are close to the 
victim because they receive extra marks. 

 To foil this threat,  p  must be large, say, 0.51. But in this case, the number of 
packets required to receive the router IDs far away from the victim becomes very 
large. For example, with  p     �        0.5 and a path of length  L       �      15, the number of pack-
ets required is the reciprocal of the probability that the router farthest from the 
victim sends a mark that survives. This is  p (1 �  p )  L   �1       �      2 �15 , because it requires 
the farthest router to put a mark and the remaining  L  � 1 routers not to. Thus 
the average number of packets for this to happen is  1

2
32,00015� �    . Attacks have a 

number of packets, but not necessarily this many. 
 The straightforward lesson from the naive solution is that randomization is 

good for synchronization (to allow routers to independently synchronize access to 
the single node ID fi eld) but not to reconstruct order. The simplest solution to this 

R1 R2 R3 Victim

Overwrite R1 to
R3 with probability p

R1

R1, 1 sample
R2, 2 samples
R3, 6 samples

Sampled nodes
sorted by sample frequency

 FIGURE 4.5 

    Reconstructing an attack path by having each router stamp its ID independently, with 
probability  p , into a single node ID fi eld. The receiver reconstructs order by sorting, assuming 
that closer routers will produce more samples.    

4.3 IP Traceback via Probabilistic Marking

CH04-P374463.indd   97CH04-P374463.indd   97 4/16/2008   8:31:34 AM4/16/2008   8:31:34 AM



98 CHAPTER 4 Network Security Algorithms

problem is to use a hop count (the attacker can initialize each packet with a differ-
ent TTL, making the TTL hard to use) as well as a node ID. But a hop count by itself 
can be confusing if there are multiple attacks going on. Clearly a mark of node  X  
with hop count 2 may correspond to a different attack path from a mark of node 
 Y  with hop count 1. 

 The solution provided in the seminal paper avoids the aliasing due to hop 
counts by conceptually starting with a pair of consecutive node IDs and a hop 
count to form a triple ( R ,  S ,  h ), as shown in  Figure 4.6   . 

 When a router  R  receives a packet with triple ( X ,  Y ,  h ),  R  generates a random 
number between 0 and 1. If the number is less than the sampling probability  p , 
router  R  writes its own ID into the mark triple, rewriting it as ( R , �, 0), where the � 
character indicates that the next router in the path has still to be determined. If the 
random number is greater than  p , then  R  must maintain the integrity of the previ-
ously written mark. If  h       �      0,  R  writes  R  to the second fi eld because  R  is the next 
router after the writer of the mark. Finally, if the random number is greater than  p , 
 R  increments  h . 

 It should be clear that by assuming that every edge gets sampled once, the 
victim can reconstruct the path. Note also that the attacker can only add fi cti-
tious nodes to the start of the path. But how many packets are required to fi nd all 
edges? Given that ordering is explicit, one can use arbitrary values of  p . 

 In particular, if  p  is approximately 1/ L , where  L  is the path length to the farthest 
router, the probability we computed before of the farthest router sending an edge 
mark that survives becomes  p (1 �  p )  L        �     1   �   p /(1 �  p ) e , where  e  is the base of natu-
ral logarithms. For example, for  p       �      1/25, this is roughly 1/70, which is fairly large 
compared to the earlier attempt. 

 What is even nicer is that if we choose  p       �      1/50 based on the largest path 
lengths encountered in practice on the Internet (say, 50), the probability does 
not grow much smaller even for much smaller path lengths. This makes it easy to 
reconstruct the path with hundreds of packets as opposed to thousands. 

 Finally, one can get rid of obvious waste ( P1 ) and avoid the need for two node 
IDs by storing only the Exclusive-OR of the two fi elds in a single fi eld. Working 
backwards from the last router ID known to the victim, one can Exclusive-OR 
with the previous edge mark to get the next router in the path, and so on. Finally, 

R1 R2 R3 Victim

Overwrite R3, –, 0
with probability p

R1, R2, 1

R1, R2, 2
R2, R3, 1

R3, Victim, 0

Sampled path edges
sorted by edge distance

 FIGURE 4.6 

    Edge sampling improves on node sampling by sampling edges and not nodes. This allows 
trivial order reconstruction based on edge distance and not sample frequency.    
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by viewing each node as consisting of a sequence of a number of  “ pseudonodes, ”  
each with a small fragment (say, 8 bits) of the node’s ID, one can reduce the mark 
length to around 16 bits total.  

  4.4 IP TRACEBACK VIA LOGGING 
 A problem with the edge-sampling approach of the previous section is that it 
requires changes to the IP header to update marks and does not work for single-
packet attacks like the Teardrop attack. The following approach, traceback via log-
ging, avoids both problems by adding more storage at routers to maintain a com-
pressed packet log. 

 As motivations, neither of the diffi culties the logging approach gets around are 
very compelling. This is because the logging approach still requires modifying 
router forwarding, even though it requires no header modifi cation. This is due 
to the diffi culty of convincing vendors (who have already committed forwarding 
paths to silicon) and ISPs (who wish to preserve equipment for, say, 5 years) to 
make changes. Similarly, single-packet attacks are not very common and can often 
be fi ltered directly by routers. 

 However, the idea of maintaining compressed searchable packet logs may be 
useful as a general building block. It could be used, more generally, for, say, a net-
work monitor that wishes to maintain such logs for forensics after attacks. But 
even more importantly it introduces an important technique called  Bloom fi lters . 

 Given an effi cient packet log at each router, the high-level idea for traceback is 
shown in  Figure 4.7   . The victim  V  fi rst detects an attack packet  P ; it then queries 
all its neighboring routers, say,  R  8  and  R  9 , to see whether any of them have  P  in 
their log of recently sent packets. When  R  9  replies in the affi rmative, the search 
moves on to  R  9 , who asks its sole neighbor,  R  7 . Then  R  7  asks its neighbors  R  5  and 
 R  4 , and the search moves backward to  A . 

 The simplest way to implement a log is to reuse one of the techniques in tra-
jectory sampling. Instead of logging a packet we log a 32-bit hash of invariant 
content (i.e., exclude fi elds that change from hop to hop, such as the TTL) of the 
packet. However, 32 bits per packet for all the packets sent in the last 10 minutes 
is still huge at 10 Gbps. Bloom fi lters, described next, allow a large reduction to 
around 5 bits per packet. 

  4.4.1 Bloom Filters 
 Start by observing that querying either a packet log or a table of allowed users is a 
 set membership query , which is easily implemented by a hash table. For example, 
in a different security context, if John and Cathy are allowed users and we wish 
to check if Jonas is an allowed user, we can use a hash table that stores John and 
Cathy’s IDs but not Jona’s. 

4.4 IP Traceback via Logging
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100 CHAPTER 4 Network Security Algorithms

 Checking for Jonas requires hashing Jonas’s ID into the hash table and follow-
ing any lists at that entry. To handle collisions, each hash table entry must contain 
a list of IDs of all users that hash into that bucket. This requires at least  W  bits per 
allowed user, where  W  is the length of each user ID. In general, to implement a 
hash table for a set of identifi ers requires at least  W  bits per identifi er, where  W  is 
the length of the smallest identifi er. 

 Bloom fi lters, shown in  Figure 4.8   , allow one to reduce the amount of memory 
for set membership to a few bits per set element. The idea is to keep a bitmap of 
size, say, 5       N , where  N  is the number of set elements. Before elements are inserted, 
all bits in the bitmap are cleared. 

 For each element in the set, its ID is hashed using  k  independent hash func-
tions (two in  Figure 4.8 ,  H 1 and  H 2) to determine bit positions in the bitmap to 
set. Thus in the case of a set of valid users in  Figure 4.8 , ID John hashes into the 
second and next-to-last bit positions. ID Cathy hashes into one position in the mid-
dle and also into one of John’s positions. If two IDs hash to the same position, the 
bit remains set. 

 Finally, when searching to see if a specifi ed element (say, Jonas) is in the set, 
Jonas is hashed using all the  k  hash functions. Jonas is assumed to be in the set if 

S2

R2S1

R4 R5

R6

R8 R9

S3 A

R1

S4

R3

S5

R7

V

 FIGURE 4.7 

    Using a packet log to trace an attack packet  P  backwards from the victim  V   to the attacker  A  
by having the currently traced node ask all its neighbors (the dotted lines) if they have seen  P  
(solid line).    

CH04-P374463.indd   100CH04-P374463.indd   100 4/16/2008   8:31:34 AM4/16/2008   8:31:34 AM



101

all the bits hashed into by Jonas are set. Of course, there is some chance that Jonas 
may hash into the position already set by, say, Cathy and one by John (see  Figure 
4.8 ). Thus there is a chance of what is called a  false positive : answering the mem-
bership query positively when the member is not in the set. 

 Notice that the trick that makes Bloom fi lters possible is relaxing the speci-
fi cation ( P3 ). A normal hash table, which requires  W  bits per ID, does not make 
errors! Reducing to 5 bits per ID requires allowing errors; however, the percent-
age of errors is small. In particular, if there is an attack tree and set elements are 
hashed packet values, as in  Figure 4.7 , false positives mean only occasionally bark-
ing up the wrong tree branch(es). 

 More precisely, the false-positive rate for an  m -size bitmap to store  n  members 
using  k  hash functions is 

 
( ( / ) ) ( )/1 1 1 1� � �m ekn k kn m k≈

     

 The equation is not as complicated as it may appear: (1 � 1/ m )  kn   is the probabil-
ity that any bit is  not  set, given  n  elements that each hashes  k  times to any of  m  
bit positions. Finally, to get a false positive, all of the  k  bit positions hashed onto 
by the ID that causes a false positive must be set. 

 Using this equation, it is easy to see that for  k       �      3 (three independent hash 
functions) and 5 bits per member ( m / n       �      5), the false-positive rate is roughly 1%. 
The false-positive rate can be improved up to a point by using more hash func-
tions and by increasing the bitmap size.  

Allowed
users

Is Jonas an allowed user?

1 bit

1

1

1

H1 (John)

H1 (Jonas)

H2 (Jonas) H1 (Cathy)

H 2 (John)

 FIGURE 4.8 

    A Bloom fi lter represents a set element by setting  k  bits in a bitmap using  k  independent hash 
functions applied to the element. Thus the element John sets the second (using  H 1) and next-
to-last (using  H 2) bits. When searching for Jonas, Jonas is considered a member of the set 
only if all bit positions hashed to by Jonas have set bits.    

4.4 IP Traceback via Logging
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102 CHAPTER 4 Network Security Algorithms

  4.4.2 Bloom Filter Implementation of Packet Logging 
 The Bloom fi lter implementation of packet logging in the SPIE system is shown 
in  Figure 4.9    (the picture is courtesy of Sanchez et al.). Each line card calculates a 
32-bit hash digest of the packet and places it in a FIFO queue. To save costs, sev-
eral line cards share, via a RAM multiplexor, a fast SRAM containing the Bloom fi lter 
bitmap. 

 As in the case of counters, one can combine the best features of SRAM and 
DRAM to reduce expense. One needs to use SRAM for fast front-end  random 
access  to the bitmap. Unfortunately, the expense of SRAM would allow storing 
only a small number of packets. To allow a larger amount, the Bloom fi lter bit-
maps in SRAM are periodically read out to a large DRAM ring buffer. Because these 
are no longer random writes to bits, the write to DRAM can be written in DRAM 
pages or rows, which provide suffi cient memory bandwidth.   

  4.5 DETECTING WORMS 
 It would be remiss to end this chapter without paying some attention to the prob-
lem of detecting worms. A worm (such as Code Red, Nimda, Slammer) begins 

Ring buffer DRAM
t

Readout
by

control
processor

Readout
every

R msec

S32

S32

S32

S32

S32

Line cards SPIE card 
(or box)

FIFO
RAM
MUX

Time

= t

Sk

+

2K-bit RAM

Signature taps Signature aggregation History memory

 FIGURE 4.9 

    Hardware implementation of packet logging using Bloom fi lters. Note the use of two-level 
memory: SRAM for random read-modify-writes and DRAM for large row writes.    
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with an exploit sent by an attacker to take over a machine. The exploit is typically 
a buffer overfl ow attack, which is caused by sending a packet (or packets) con-
taining a fi eld that has more data than can be handled by the buffer allocated by 
the receiver for the fi eld. If the receiver implementation is careless, the extra data 
beyond the allocated buffer size can overwrite key machine parameters, such as 
the return address on the stack. 

 Thus with some effort, a buffer overfl ow can allow the attacking machine to 
run code on the attacked machine. The new code then picks several random IP 
addresses      2    and sends similar packets to these new victims. Even if only a small 
fraction of IP addresses responds to these attacks, the worm spreads rapidly. 

 Current worm detection technology is both  retroactive  (i.e., only after a new 
worm is fi rst detected and analyzed by a human, a process that can take days, can 
the containment process be initiated) and  manual  (i.e., requires human interven-
tion to identify the signature of a new worm). Such technology is exemplifi ed by 
Code Red and Slammer, which took days of human effort to identify, following 
which containment strategies were applied in the form of turning off ports, apply-
ing patches, and doing signature-based fi ltering in routers and intrusion detection 
systems. 

 There are diffi culties with these current technologies. 

  1.      Slow Response:  There is a proverb that talks about locking the stable door 
after the horse has escaped. Current technologies fi t this paradigm because 
by the time the worm containment strategies are initiated, the worm has 
already infected much of the network.  

  2.      Constant Effort:  Every new worm requires a major amount of human work 
to identify, post advisories, and fi nally take action to contain the worm. 
Unfortunately, all evidence seems to indicate that there is no shortage of 
new exploits. And worse, simple binary rewriting and other modifi cations 
of existing attacks can get around simple signature-based blocking (as in 
Snort).    

 Thus there is a pressing need for a new worm detection and containment strategy 
that is real time (and hence can contain the worm before it can infect a signifi cant 
fraction of the network) and is able to deal with new worms with a minimum of 
human intervention (some human intervention is probably unavoidable to at least 
catalog detected worms, do forensics, and fi ne-tune automatic mechanisms). In 
particular, the detection system should be  content agnostic . The detection system 
should not rely on external, manually supplied input of worm signatures. 

 Instead, the system should  automatically  extract worm signatures, even for 
new worms that may arise in the future. 

 2   By contrast, a  virus  requires user intervention, such as opening an attachment, to take over the 
user machine. Viruses also typically spread by using known addresses, such as those in the mail 
address book, rather than random probing. 

4.5 Detecting Worms
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104 CHAPTER 4 Network Security Algorithms

 Can network algorithmics speak to this problem? We believe it can. First, we 
observe that the only way to detect new worms and old worms with the same 
mechanism is to abstract the basic properties of worms. 

 As a fi rst approximation, defi ne a worm to have the following abstract features, 
which are indeed discernible in all the worms we know, even ones with such vary-
ing features as Code Red (massive payload, uses TCP, and attacks on the well-known 
HTTP port) and MS SQL Slammer (minimal payload, uses UDP, and attacks on the 
lesser-known MS SQL port). 

  1.      Large Volume of Identical Traffi c:  These worms have the property that at 
least at an intermediate stage (after an initial priming period but before full 
infection), the volume of traffi c (aggregated across all sources and destina-
tions) carrying the worm is a signifi cant fraction of the network bandwidth.  

  2.      Rising Infection Levels:  The number of infected sources participating in 
the attack steadily increases.  

  3.      Random Probing:  An infected source spreads infection by attempting to 
communicate to random IP addresses at a fi xed port to probe for vulner-
able services.     

Note that detecting all three of these features may be crucial to avoid false posi-
tives. For example, a popular mailing list or a fl ash crowd could have the fi rst fea-
ture but not the third.   

 An algorithmics approach for worm detection would naturally lead to the fol-
lowing detection strategy, which automatically detects each of these abstract fea-
tures with low memory and small amounts of processing, works with asymmetric 
fl ows, and does not use active probing. The high-level mechanisms      3    are: 

  1.      Identify Large Flows in Real Time with Small Amounts of Memory : 
Mechanisms can be described to identify fl ows with large traffi c volumes 
for any defi nition of a fl ow (e.g., sources, destinations). A simple twist on 
this defi nition is to realize that the content of a packet (or, more effi ciently, 
a hash of the content) can be a valid fl ow identifi er, which by prior work 
can identify in real time (and with low memory) a high volume of repeated 
content. An even more specifi c idea (which distinguishes worms from valid 
traffi c such as peer-to-peer) is to compute a hash based on the content as 
well as the destination port (which remains invariant for a worm).  

  2.      Count the Number of Sources:  Mechanisms can be described using simple 
bitmaps of small size to estimate the number of sources on a link using small 
amounts of memory and processing. These mechanisms can easily be used 
to count sources corresponding to high traffi c volumes identifi ed by the pre-
vious mechanism.  

 3 Each of these mechanisms needs to be modulated to handle some special cases, but we prefer to 
present the main idea untarnished with extraneous details.
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  3.      Determine Random Probing by Counting the Number of Connection 
Attempts to Unused Portions of the IP Address:  One could keep a simple 
compact representation of portions of the IP address space known to be 
unused. One example is the so-called Bogon list, which lists unused 8-bit 
prefi xes (can be stored as a bitmap of size 256). A second example is a 
secret space of IP addresses (can be stored as a single prefi x) known to an 
ISP to be unused. A third is a set of unused 32-bit addresses (can be stored 
as a Bloom fi lter).    

 Of course, worm authors could defeat this detection scheme by violating any of 
these assumptions. For example, a worm author could defeat Assumption 1 by 
using a very slow infection rate and by mutating content frequently. Assumption 
3 could be defeated using addresses known to be used. For each such attack 
there are possible countermeasures. More importantly, the scheme described 
seems certain to detect at least all existing worms we know of, though they differ 
greatly in their semantics. In initial experiments at UCSD as part of what we call 
the EarlyBird system, we also found very few false positives where the detection 
mechanisms complained about innocuous traffi c.  

  4.6 CONCLUSION 
 Returning to Marcus Ranum’s quote at the start of this chapter, hacking must be 
exciting for hackers and scary for network administrators, who are clearly on dif-
ferent sides of the battlements. However, hacking is also an exciting phenomenon 
for practitioners of network algorithmics—there is just so much to do. Compared 
to more limited areas, such as accounting and packet lookups, where the basic 
tasks have been frozen for several years, the creativity and persistence of hackers 
promise to produce interesting problems for years to come. 

 In terms of technology currently used, the set string-matching algorithms seem 
useful and may be ignored by current products. However, other varieties of string 
matching, such as regular expression matches, are in use. While the approximate 
matching techniques are somewhat speculative in terms of current applications, 
past history indicates they may be useful in the future. 

 Second, the traceback solutions only represent imaginative approaches to the 
problem. Their requirements for drastic changes to router forwarding make them 
unlikely to be used for current deployment as compared to techniques that work 
in the control plane. Despite this pessimistic assessment, the underlying tech-
niques seem much more generally useful. 

 For example, sampling with a probability inversely proportional to a rough 
upper bound on the distance is useful for effi ciently collecting input from each 
of a number of participants without explicit coordination. Similarly, Bloom fi lters 
are useful to reduce the size of hash tables to 5 bits per entry, at the cost of a 
small probability of false positives. Given their beauty and potential for high-speed 

4.6 Conclusion
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106 CHAPTER 4 Network Security Algorithms

implementation, such techniques should undoubtedly be part of the designer’s bag 
of tricks. 

 Finally, we described our approach to content-agnostic worm detection using 
algorithmic techniques. The solution combines existing mechanisms described 
earlier in this book. While the experimental results on our new method are still 
preliminary, we hope this example gives the reader some glimpse into the possi-
ble applications of algorithmics to the scary and exciting fi eld of network security. 
 Figure 4.1  presents a summary of the techniques used in this chapter, together 
with the major principles involved.                       
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