
1
Introduction and Overview

INTRODUCTION

Many companies, in their push to complete successful Level 2 Capability Maturity Model
(CMM®)1 or Capability Maturity Model Integration (CMMI®)2 appraisals, have spent
large sums of capital to develop and document their software processes. Many times,
there is confusion regarding just what each process should contain in order to be defined
as one that meets the basic Level 2 criteria as specified in the CMM® or CMMI®. IEEE
standards can be used as tools to help with the process definition and documentation re-
quired in support of software process improvement. Many of the IEEE software engineer-
ing (SE) standards provide detailed procedure explanations, offer section-by-section
guidance on building the necessary documentation, and, most importantly, they provide
best-practice guidance as defined by those from the software development industry who
sit on the panels of standards reviewers.

The CMM® for software (SW-CMM®) and CMMI®-SW are compendiums of software
engineering practices that act as motivators for the continuous evolution of improved soft-
ware engineering processes. It is the premise of this book that IEEE software engineering
standards can be used to provide the basic beginning framework for this type of process
improvement. IEEE software engineering standards, as a set, can be used to help compa-
nies define themselves as Level 2 organizations.

Moving an organization from the chaotic environment of free-form software develop-
ment toward a more controlled and documented process can be overwhelming to those
tasked to make it happen. This book specifically addresses how IEEE standards may be
used to facilitate the development of internal plans and procedures in support of repeat-
able software engineering processes, or SW-CMM®/CMMI®-SW Level 2. It describes

'CMM® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University.
2CMMI® is registered in the U.S. Patent and Trademark Office by Carnegie Mellon University (August 2002).

Using IEEE Software Engineering Standards to Jumpstart CMM®/CMMI® Software 1
Process Improvement. ISBN 0-471-70925-5. © 2005 IEEE Computer Society



2 INTRODUCTION AND OVERVIEW

how IEEE software engineering standards can be used to help support the definition of
best practices.

This book takes the CMM®/CMMI®-SW (Staged) Level 2 process representation and
maps it to information supporting goals and practices found in the IEEE standards. The
assumption is made that the standards are implemented as is, with no tailoring. This pro-
vides the reader with information regarding the value added by using the IEEE standards
to implement and define software process. The identification of the strengths and weak-
nesses of these standards is a by-product of this comparison.

The CMM® and CMMI® do not tell the user "how" to satisfy their KPA criteria. The
CMM® and CMMI® are descriptive. They do not describe how to accomplish their goals
but describe the criteria that the end results should support. IEEE standards are prescrip-
tive. These standards describe how to full fill the requirements associated with effective
software project management.

It is often hard to separate the details associated with software development from the
practices required to manage the effort. Simply handing the CMM®/CMMI® to a project
leader or manager provides them with a description of an end result. Pairing this with
IEEE standards provides them with a way to work toward this desired end. IEEE stan-
dards do not offer a "cookie cutter" approach to software management; rather, they sup-
port the definition of the management processes in use by describing what is required.

For organizations that do not wish to pursue CMM®/CMMI® Level 2 accreditation,
this book will show how the application of IEEE standards, and their use as reference ma-
terial, can facilitate the development of sound software engineering practices. This book
is geared for the CMM®/CMMI® novice, the project manager, and practitioner who wants
a one-stop source—a helpful document that provides the details and implementation sup-
port required when targeting CMM®/CMMI® implementation with the aid of IEEE soft-
ware engineering standards.

What Are the CMM® and CMMI®?

The CMMI® (and in a more limited sense, the CMM®) are process frameworks. They:

• Contain the essential elements of effective processes for one or more disciplines
• Contain a framework that provides the ability to generate multiple models and asso-

ciated training and assessment materials. These models may represent
• Software and systems engineering
• Integrated product and process development
• New disciplines

• Combinations of disciplines
• Provide guidance to use when developing processes

What the CMM® and CMMI® Are Not

The CMM® and CMMI® models are not processes or process descriptions. Actual
processes depend on

• Application domain(s)
• Organization structure



IEEE SOFTWARE ENGINEERING STANDARDS 3

• Organization size

• Organization culture

• Customer requirements or constraints

What are Standards?

Standards are consensus-based documents that codify best practice. Consensus-based
standards have seven essential attributes that aid in process engineering. They

• Represent the collected experience of others who have been down the same road
• Tell in detail what it means to perform a certain activity
• Can be attached to or referenced by contracts

• Help to assure that two parties attach the same meaning to an engineering activity
• Increase professional discipline
• Protect the business and the buyer
• Improve the product

IEEE SOFTWARE ENGINEERING STANDARDS

IEEE software engineering standards provide a framework for documenting software
engineering activities. The "soft structure" of the standards set lends itself well to the in-
stantiation of CMM® and CMMI®-SW (Staged) Level 2 KPAs. The structure of the
IEEE software engineering standards set provides for tailoring. Each standard describes
recommended best practices detailing required activities. These standards documents
provide a common basis for documenting organizationally unique software process ac-
tivities.

Motivation for IEEE Standards

When trying to understand exactly what the IEEE software engineering standards collec-
tion is, and what this body of work represents, the following statement (taken from the
Synopses of Standards section in the IEEE Standards Collection, Software Engineering,
1994 Edition [40]) summarizes it best:

The main motivation behind the creation of these IEEE standards has been to provide recom-
mendations reflecting the state-of-practice in development and maintenance of software. For
those who are new to software engineering, these standards are an invaluable source of care-
fully considered advice, brewed in the caldron of a consensus process of professional discus-
sion and debate. For those who are on the cutting edge of the field, these standards serve as a
baseline against which advances can be communicated and evaluated.

IEEE software engineering standards attempt to capture and distill industry best prac-
tices. They consolidate existing technology, establishing a firm foundation for introduc-
ing newer technology. They increase the professional discipline though the standardiza-
tion of evolving technologies and methodologies. The application of IEEE software
engineering standards helps to ensure a higher quality product. Application of these stan-



4 INTRODUCTION AND OVERVIEW

dards, while keeping the CMM® or CMMI® in mind, helps to ensure that the production
of a higher quality product is consistently reproduced. Applying IEEE software engineer-
ing standards and the CMM®/CMMI® processes and procedures together can help users
define their software development processes while developing software products (see
Table 1-1).

Categories of IEEE Standards

As described in the IEEE Software Engineering Standards Collection [49], all standards
are prescriptive in nature, containing requirements that must be satisfied. These levels of
prescription may be used to categorize the IEEE software engineering standards collection:

1. Terminology standards provide definitions and unifying concepts for a collection of
standards. In many cases, they do not include any explicit requirements, only the
implicit demands of applying a uniform terminology.

2. Collection guides do not provide requirements—only information. A collection
guide surveys a group of related standards and provides advice to users on how
suitable standards may be selected for their use.

3. Principle standards provide high-level requirements that might be satisfied in a
wide variety of ways. They emphasize goals rather than specific means for achiev-
ing the goals.

4. Element standards are the most familiar form. They contain requirements more de-
tailed than those of principle standards and prescribe a particular approach to
achieving the goals prescribed in a principle standard.

5. Application guides emphasize recommendations and guidance. They provide ad-
vice on how element standards may be implemented in particular situations.

6. Technique standards are the most detailed and prescriptive. They generally de-
scribe procedures rather than processes. They provide very specific requirements,
presumably for those cases in which small deviations might have large conse-
quences.

Table 1-1 What do IEEE Standards do? Some examples

Standard Function

IEEE 982.1 Measures for Specifies techniques to develop software faster, cheaper, better.
Reliable Software

IEEE 1008 Unit Testing Describes "best practices."

IEEE 1061 SW Quality Provides consensus validity for techniques that cannot be
Metrics scientifically validated.

IEEE/EIA 12207 SW Life Provides a framework for communication between buyer and seller.
Cycle Processes

IEEE 1028 SW Reviews Gives succinct, precise names to concepts that are otherwise fuzzy,
complex, detailed and multidimensional [78].



IEEE SOFTWARE ENGINEERING STANDARDS 5

Figure 1-1 IEEE S2ESC standards support of software engineering.

IEEE Standards Development

The focal point for the development and adoption of software engineering standards is the
Software and Systems Engineering Standards Committee (S2ESC), a standards sponsor
under the IEEE Computer Society Standards Association (IEEE-SA). S2ESC is an orga-
nization comprised of over 2000 volunteers who are committed to providing an integrated
set of software and systems engineering standards that support the practice of engineering
software and systems containing software (Figure 1-1).

The purposes of the S2ESC as defined in the S2ESC Charter3 are:

1. Codify the norms of professional software engineering practices into standards.
2. Promote use of software engineering standards among clients, practitioners, and ed-

ucators.
3. Harmonize national and international software engineering standards development.
4. Promote the discipline and professionalization of software engineering.
5. Promote coordination with other IEEE initiatives.

All IEEE software engineering standards are either developed by S2ESC-sponsored
working groups or adopted from other standards development organizations. In either
case, each standard is submitted to the S2ESC Management Board for a readiness review
prior to balloting. Following the readiness review, a balloting pool is formed and the stan-
dard is then put forward through a rigorous balloting process. Each negative ballot must
be addressed prior to the acceptance of the standard for publication. A cycle of comment
resolution, revision, and recirculation continues until consensus is achieved among the
balloting group. IEEE defines consensus as 75% approval. Following initial publication,
each IEEE standard is subjected to review at least every five years for revision or reaffir-
mation.

3IEEE S2ESC Charter Statement [42].


