
The Foundation of Civilization

“The value of a thing sometimes lies not in what one attains with it,
but in what one pays for it—what it costs us.”

—Frederick Nietzsche

For the city of London, 1854 was a dreadful year. An outbreak
of cholera, the third in 20 years, claimed over ten thousand
lives. Six previous city Commissions failed to adequately

address London’s growing sewage problem, leaving the entire met-
ropolitan area—more than one million people—subject to the
vagaries of overflowing cesspools, ill-constructed sewers, contam-
inated groundwater, and a dangerously polluted Thames River.
Considering London was one of the most populated cities at the
time and depended heavily on the Thames River, inaction had
unfortunate consequences. Sadly, thousands of deaths could not
properly motivate Parliament to overcome numerous bureaucratic
and political obstacles required to address the crisis.

It was not until an inordinately hot summer in 1858 that the
stench of the Thames so overwhelmed all those in close proximity
to the river—particularly members of Parliament, many of whom
still believed cholera to be an airborne rather than a waterborne
pathogen—that resistance finally subsided. The “Great Stink”
served as impetus to the largest civic works project London had
ever seen.1

For the next ten years, Joseph Bazalgette, Chief Engineer of the
Metropolitan Board of Works, constructed London’s newer and
larger sewer network against imposing odds. Despite Parliament’s
hard-won support and a remarkable design by Bazalgette himself,
building a new sewer network in an active and sprawling city
raised significant technical and engineering challenges.

1

C H A P T E R 1

2 Geekonomics

Most obvious among these challenges was excavating sewer
lines while minimizing disruption to local businesses and the
city’s necessary daily activities. Less obvious, but no less impor-
tant, was selecting contracting methods and building materials
for such an enormous project. Modern public works projects
such as the California Aqueduct, the U.S. Interstate highway
system, or China’s Three Gorges Dam elicit images of enormous
quantities of coordination and concrete. Initially, Bazalgette
enjoyed neither.

Selecting suitable building materials was an especially impor-
tant engineering decision, one that Bazalgette did not take light-
ly. Building materials needed to bear considerable strain from
overhead traffic and buildings as well as survive prolonged
exposure to and immersion in water. Traditionally, engineers at
the time would have selected Roman cement, a common and
inexpensive material used since the fourteenth century, to con-
struct the extensive underground brickworks required for the
new sewer system. Roman cement gets its name from its exten-
sive use by the Romans to construct the infrastructure for their
republic and empire. The “recipe” for Roman cement was lost
during the Dark Ages only to be rediscovered during the
Renaissance. This bit of history aside, Bazalgette chose to avoid
Roman cement for laying the sewer’s brickwork and instead
opted in favor of a newer, stronger, but more expensive type of
cement called Portland cement.

Portland cement was invented in the kitchen of a British
bricklayer named Joseph Aspdin in 1824. What Aspdin discov-
ered during his experimentation that the Romans did not (or
were not aware of) was that by first heating some of the ingre-
dients of cement—finely ground limestone and clay—the silica
in the clay bonded with the calcium in the limestone, creating a
far more durable concrete, one that chemically interacted with
any aggregates such as stone or sand added to the cement mix-
ture. Roman cement, in comparison, does not chemically inter-
act with aggregates and therefore simply holds them in suspen-
sion. This makes Roman cement weaker in comparison to
Portland cement but only in relative, not absolute terms. Many
substantial Roman structures including roadways, buildings,
and seaports survived nearly 2,000 years to the present.

It is the chemical reaction discovered by Aspdin that gives
Portland cement its amazing durability and strength over
Roman cement. This chemical reaction also gives Portland
cement the interesting characteristic of gaining in strength with
both age and immersion in water.2 If traditional cement sets in
one day, Portland cement will be more than four times as hard
after a week and over eight times as hard in five years.3 In choos-
ing a material for such a massive and important project as the
London sewer, Portland cement might have rightly appeared to
Bazalgette as the obvious choice. There was only one problem:
Portland cement is unreliable if the production process varies
even slightly.

The strength and therefore the
reliability of Portland cement is sig-
nificantly diminished by what
would appear to the average
observer as minuscule, almost triv-
ial changes in mixture ratios, kiln
temperature, or grinding process. In
the mid-nineteenth century, quality
control processes were largely non-
existent, and where they did exist
were inconsistently employed—
based more on personal opinion
rather than objective criteria. The
“state of the art” in nineteenth century quality control meant that
while Portland cement was promising, it was a risky choice on the
part of Bazalgette. To mitigate any inconsistencies in producing
Portland cement for the sewer project, Bazalgette created rigor-
ous, objective, and some would say draconian testing procedures
to ensure each batch of Portland cement afforded the necessary
resiliency and strength. His reputation as an engineer and the suc-
cess of the project depended on it.

Bazalgette enforced the following regimen: Delivered cement
sat at the construction site for at least three weeks to acclimate
to local environmental conditions. After the elapsed time, sam-
ples were taken from every tenth sack and made into molds that
were immediately dropped into water where the concrete would
remain for seven days. Afterward, samples were tested for
strength. If any sample failed to bear weight of at least five hun-
dred pounds (more than twice that of Roman cement), the entire

3The Foundation of Civilization

Portland cement might have
rightly appeared to

Bazalgette as the obvious
choice. There was only one

problem: Portland cement is
unreliable if the production
process varies even slightly.

delivery was rejected.4 By 1865, more than 11,587 tests were
conducted on 70,000 tons of cement for the southern section of
the sewerage alone.5 Bazalgette’s testing methodology proved so
thorough, the Metropolitan Board who oversaw the project
eventually agreed to Bazalgette’s request to construct sewers
entirely from concrete. This not only decreased the time
required to construct the sewerage, but eliminated the consider-
able associated cost of the brickworks themselves.6

Once completed, Bazalgette’s sewer system saved hundreds
of thousands of lives by preventing future cholera and typhoid
epidemics.7 The sewer system also made the Thames one of the
cleanest metropolitan rivers in the world and changed the face
of river-side London forever. By 1872, the Registrar-General’s
Annual Report stated that the annual death rate in London was
far below any other major European, American, or Indian city,
and at 3.3 million people (almost three times the population
from the time Bazalgette started his project), London was by far
the largest city in the world. This state of affairs was unprece-
dented for the time. By 1896 cholera was so rare in London, the
Registrar-General classified cholera as an “exotic disease.”
Bazalgette’s sewer network, as well as the original cement used
in its construction, remains in use to this day. Given that
Portland cement increases with strength over time, it is likely
London’s sewer system will outlive even some of Rome’s longest
standing architectural accomplishments such as the aqueducts
and the Pantheon.

Software and Cement
While Bazalgette’s design of the sewer network was certainly
important, in hindsight the selection and qualification of
Portland cement was arguably the most critical aspect to the
project’s success. Had Bazalgette not enforced strict quality con-
trol on production of Portland cement, the outcome of the
“Great Stink of London” might have been far different. Due to
Bazalgette’s efforts and the resounding success of the London
sewer system, Portland cement progressed in a few short years
from “promising but risky” to the industry standard used in just
about every major construction project from that time onward.

4 Geekonomics

Portland cement’s popularity then, is due not just to its phys-
ical properties, but in large part to Bazalgette’s strict and rigor-
ous quality tests, which drastically reduced potential uncertain-
ties associated with Portland cement’s production. At present,
more than 20 separate tests are used to ensure the quality of
Portland cement, significantly more than Bazalgette himself
employed. World production of Portland cement exceeded two
billion metric tons in 2005, with China accounting for nearly
half of that production followed closely by India and the United
States.8 This works out to roughly 2.5 tons of cement for every
person on the planet. Without Portland cement, much of mod-
ern civilization as we know it, see it, live on it, and drive on it
would fail to exist.

Cement is everywhere in modern civilization. Mixed with
aggregates such as sand and stone, it forms concrete that com-
prises roadways, bridges, tunnels, building foundations, walls,
floors, airports, docks, dams, aqueducts, pipes, and the list goes
on. Cement is—quite literally—the foundation of modern civi-
lization, creating the infrastructure that supports billions of lives
around the globe. One cannot live in modern civilization with-
out touching, seeing, or relying on cement in one way or anoth-
er. Our very lives depend on cement, yet cement has proven so
reliable due to strict quality controls that it has to a large extent
disappeared from our field of concerns—even though we are
surrounded by it. Such is the legacy of Bazalgette’s commitment
to quality: We can live our lives without thinking twice about
what is beneath our feet, or more importantly, what may be
above our head.

Civilization depends on infrastructure, and infrastructure
depends, at least in part, on durable, reliable cement. Due to its
versatility, cost-effectiveness, and broad availability, cement has
provided options in construction that could not otherwise be
attained with stone, wood, or steel alone. But since the 1950s, a
new material has been slowly and unrelentingly injected into
modern infrastructure, one that is far more versatile, cost-effec-
tive, and widely available than cement could ever hope to be. It
also just so happens to be invisible and unvisualizable. In fact, it
is not a material at all. It is software.

Like cement, software is everywhere in modern civilization.
Software is in your mobile phone, on your home computer, in

5The Foundation of Civilization

cars, airplanes, hospitals, businesses, public utilities, financial
systems, and national defense systems. Software is an increas-
ingly critical component in the operation of infrastructures, cut-
ting across almost every aspect of global, national, social, and
economic function. One cannot live in modern civilization with-
out touching, being touched by, or depending on software in one
way or another.

Software helps deliver oil to our
cities, electricity to our homes,
water to our crops, products to our
markets, money to our banks, and
information to our minds. It
allows us to share pictures, music,
thoughts, and ideas with people we
might meet infrequently in person

but will intimately know from a distance. Everything is becom-
ing “smarter” because software is being injected into just about
every thing. Software has accelerated economic growth through
the increased facilities of managing labor and capital with
unprecedented capacity. Hundreds of thousands of people if not
millions owe their livelihoods to software. With its aid, we have
discovered new medicines, new oil fields, and new planets and it
has given us new ways of visualizing old problems, thereby find-
ing solutions we might never have had the capacity, time, or
ability to discover without it. With software we are able to build
bridges once thought impossible, create buildings once thought
unrealistic, and explore regions of earth, space, and self once
thought unreachable.

Software has also given us the Internet, a massive world-wide
network connecting all to all. In fact, connectedness in the twen-
ty-first century is primarily a manifestation of software.
Software handles the protocols necessary for communication,
operates telecommunications equipment, bundles data for trans-
mission, and routes messages to far-flung destinations as well as
giving function and feature to a dizzying array of devices.
Software helps connect everything to everything else with the
network—the Internet—merely a by-product of its function.
Without software, the network would be just a bunch of cables,
just as a human cell without DNA would be just a bunch of
amino acids and proteins.

6 Geekonomics

Like cement, software is
everywhere in modern

civilization.

Software is everywhere; it is everywhere because software is
the closest thing we have to a universal tool. It exhibits a radi-
cal malleability that allows us to do with it what we will.
Software itself is nothing more than a set of commands that tells
a computer processor (a microchip) what to do. Connect a
microchip to a toy, and the toy becomes “smart;” connect a
microchip to a car’s fuel injector, and the car becomes more fuel
efficient; connect it to a phone, and the phone becomes indis-
pensable in life’s everyday affairs. Connect a microchip to just
about anything, and just about anything is possible because the
software makes it so. Software is the ghost in the machine, the
DNA of technology; it is what gives things the appearance of
intelligence when none can possibly exist.

The only aspect of software more impressive than software
itself is the people that create software. Computer programmers,
also known as software developers or software engineers, write
the instructions that tell computers what to do. Software devel-
opers are in large part a collection of extremely talented and
gifted individuals whose capacity to envision and implement
algorithms of extraordinary complexity and elegance gives us
search engines, operating systems, word processors, instant mes-
saging, mobile networks, satellite navigation, smart cars,
advanced medical imaging; the list goes on. As such, software is
a human creation, and as a human creation it is subject to the
strengths and foibles of humanity. This is where the similarities
of cement and software become most interesting.

Software, like cement before it, is becoming the foundation
of civilization. Our very lives are becoming more dependent on
and subject to software. As such, the properties of software mat-
ter greatly: quality, reliability, security, each by themselves
accomplish very little, but their absence faults everything else.
Like Portland cement, software can be unreliable if production
processes vary even slightly. Whereas variations in kiln temper-
atures, mixture ratios, or grinding processes can detrimentally
affect the strength and durability of Portland cement after it has
been poured, there are a host of similar, seemingly trivial varia-
tions in producing software that can detrimentally affect its
“strength” when “poured” into microchips. It is up to humans
to get the production process right.

7The Foundation of Civilization

Unlike Portland cement, for more than 50 years software of
all types and function has been continuously released into the
stream of commerce, plagued by design and implementation
defects that were largely detectable and preventable by manu-
facturers, but were not. This has and does result in catastrophic
accidents, significant financial losses, and even death. The trep-
idation over insufficient software manufacturing practices
extends back to the late 1960s when the North American Treaty
Organization (NATO) convened a panel of 50 experts to
address the “software crisis.” While the panel did not provide
any direct solutions, the concept of a “software engineer” was
developed as a means to more closely align software manufac-
turing with the engineering discipline rather than artistic creativ-
ity. The intent, as far as we can tell, was to remove the “rule of
thumb” in the production of software and all the inconsistencies
such approximation introduces. After 50 years, defining what
actually constitutes the principles and practice of software engi-
neering has not progressed far. What is clear, however, is that the
unfortunate history of software blunders sullies the reputation
of software in general and distorts the genius of software devel-
opers in particular.

Perhaps most frustrating is the
inconsistent use of quality control
measures by such a wide range of
software manufacturers for such
an extended period of time.
Software is infinitely more com-
plex than cement to be sure, but
complexity does not entirely
account for systemic, reoccurring
software manufacturing defects.
Quality control measures—even in
the absence of a clear definition for

software engineering—have been and are available specifically
to address problems with software production.

Software has its own modern-day equivalent of Joseph
Bazalgette: his name is Watts Humphrey. Humphrey is a fellow
and research scientist at Carnegie Mellon University’s Software
Engineering Institute (SEI) and is often called the “father of soft-
ware quality” having developed numerous methodologies since

8 Geekonomics

What is clear, however, is
that the unfortunate history
of software blunders sullies
the reputation of software
in general and distorts the

genius of software
developers in particular.

the 1980s for designing quality and reliability into software
products. In 2005, President George W. Bush awarded Mr.
Humphrey the National Medal of Technology, the highest honor
for innovation in the United States. The only problem in this
story is that a significant portion of software manufacturers
around the world still largely ignore or only superficially imple-
ment Humphrey’s guidance. As a result, the Software
Engineering Institute noted at the beginning of the twenty-first
century that software was getting worse, not better. Such a
proclamation augurs ill for civilization’s newest foundation.

But if software quality were the only issue, perhaps we could
discount the problem of low-quality software simply on the basis
of “growing pains.” After all, at 50 years old, some might argue
software is still a relatively new phenomenon and that such fail-
ures in quality are understandable and even tolerable for such a
young technology. When civil engineering was 50 years old, for
instance, the brick had not even been invented yet.9

Yet when civil engineering was 50 years old, the profession
was not building and connecting global infrastructure.
Software’s newness has not precluded it from being injected into
nearly every aspect of modern civilization. That software con-
nects everything to everything else magnifies even the smallest
foibles in software production. This introduces a critical aspect
of software vastly different from weaknesses in traditional
building materials: once interconnected, even the smallest piece
of insecure software may have global consequences. New or not,
software needs to be worthy of its place.

Weaknesses or defects in software can not only result in a
given software application failing for one reason or another
(including no reason), but software defects can potentially be
exploited by hackers, who, discovering or knowing the weakness
exists, may use it to surreptitiously access and control a system
from a continent away, stealing sensitive personal information
such as credit cards or social security numbers or absconding
with trade secrets or intellectual property. Such weaknesses could
also be used to hijack computer systems and then turn those sys-
tems against their owners or against other nations and other peo-
ples. In the end, insecure software is right now resulting in eco-
nomic and social costs that are now well into billions of dollars
per year with no sign of abatement. The trend is disturbing.

9The Foundation of Civilization

Understanding why this situation persists and seems to be
only getting worse has important implications for modern civi-
lization. In other words, new or not, society inevitably demands
any technology used in the foundation of civilization, whether
cement or software, should be given the time and attention
foundations deserve. Bazalgette and his legacy expected no less;
nor should we.

In the Shadow of Utility
The litany of documented software failures is extensive and trag-
ic.10 It does not take much effort to find examples of software
failures resulting in loss of life, limb, money, time, or property.
The trend only promises to become worse as software becomes
more critical to almost every aspect of modern life; yet, software
manufacturers enjoy an astonishing amount of insulation from

government oversight, legal liabili-
ty, consumer retaliation, and
indeed, as some critics have
observed, engineering skill. A
proven record of significant, costly,
and deadly failures with no signifi-
cant decline in use by its victims is
baffling. On top of—in fact,
despite—these shortcomings, vic-
tims (consumers, corporations, and
governments included) lavishly
spend on acquiring and defending a
clearly defective product. Why?

Why do software manufacturers continue to produce and con-
sumers continue to purchase unreliable and insecure software?
Why do software users willingly and repeatedly accept licens-
ing agreements that absolve software manufacturers of most
forms of liability for any design or application defects that
might result in injury, harm, or damages?
Why do governments make so few demands on software
manufacturers while placing onerous compliance require-
ments on software buyers, who are least qualified to address
the problems associated with software manufacturing?

10 Geekonomics

Software manufacturers
enjoy an astonishing amount

of insulation from
government oversight,

legal liability, consumer
retaliation, and indeed,

as some critics have
observed, engineering skill.

Why should software not be subject to the same public
policy concerns applied to other critical elements of national
infrastructure?
Why do chickens cross the road?

Each of these questions is answered in part by this simple
response: to maximize utility. We all do things that might
appear perfectly acceptable in our own eyes that might appear
perfectly crazy to someone else. A chicken crossing the road in
the presence of drivers who may be willing to flatten the poor
thing simply to interrupt the monotony of driving might appear
rather crazy to an outside observer. In fact, from an economist’s
perspective, this is perfectly rational behavior on the part of the
chicken so long as the chicken believes it will be better off for
the crossing. Jumping out of an airplane with a parachute might
seem perfectly crazy to observers, unless the skydiver believes
they are better off for the jumping. Likewise, software buyers
continuing to accept software licensing terms that put them at a
distinct disadvantage legally, financially, or personally should
the software fail might appear perfectly baffling, unless buyers
believe they will be better off for the accepting.

Economists use the notion of utility to help explain why peo-
ple behave the way they do. The concept of utility is a little like
the concept of “happiness” only more general. I explain the con-
cept of utility in more detail in Chapter 2, “Six Billion Crash
Test Dummies,” but sufficed to say, utility centers around the
notion that most of us want to make our lives better, and that
many of our life decisions are probably based on this desire.
Software inarguably makes our life better, but like crossing the
road or jumping out of an airplane or owning a swimming pool,
everything has a cost.

It is not always the utility we get out of something or some
activity that matters most, but how much it potentially costs us.
Costs are not always obvious to the individual at time of “pur-
chase” so to speak, and can be hidden or otherwise obscured. In
general, cost can be measured in private terms, what it directly
costs an individual to behave in a certain way, or measured in
social costs, what it costs society for an individual to undertake
a certain activity. The balance of private and social costs is the
focus of many public policy efforts.

11The Foundation of Civilization

The private cost of smoking, for instance, is relatively low
monetarily from an individual’s view point, but can impose sub-
stantial social costs due to the prolonged medical services asso-
ciated with caring for long-term chronic smokers. Imposing a
cigarette tax is but one way to raise the private cost of an activ-
ity in order to deter the behavior, which thereby potentially
reduces the social cost by reducing the total number of smokers
in the population and how much they smoke.

People’s evaluation of utility versus cost can lead to some
fairly interesting situations. As a case in point, in the United
States swimming pools kill or injure more children under the age
of 14 than firearms. At 16 percent, accidental drowning was the
second leading cause of injury-related death of children aged 14
and under in 2004 (car accidents ranked first); compare this
with only 1 percent of children that died due to accidental
discharge of firearms.11 In fact, injury-related death due to acci-
dental discharge of firearms ranks at the bottom of all other
causes of death and injury among children including choking
(17 percent), fire and burns (10 percent), and bicycle accidents,
poisoning, and falls (each at 2 percent).

There are plenty of people, and parents in particular, who
might forbid children playing at the home of a neighbor who
possesses one or more firearms, but the likelihood of a child
drowning at a neighborhood pool party is far higher than a
child being injured or killed by the firearm of a neighbor. Yet
few parents espouse an anti-swimming pool sentiment or join
anti-swimming pool action groups as they would for firearms,
even though statistics would certainly warrant such behavior.
The rather simplistic answer to this incongruency is that a larg-
er portion of the population sees the intrinsic utility of a swim-
ming pool over and above the utility of possessing a hand gun.
Yet a swimming pool incurs a much higher cost to both families
and society than do firearms. Even things with obvious utility
like a swimming pool can have a dark shadow.

Played out against this background of people’s desire for util-
ity (and not always recognizing the real cost), is the story of soft-
ware. The questions at the start of this section really touch on
the issues of self-interest and, more importantly, the incentives
we have as individuals to undertake certain activities and the

12 Geekonomics

utility we derive. Understanding incentives also gives us a possi-
ble foundation to address the issues of why software manufac-
turing seems to be in the state it is in. If it is up to humans to get
the production processes for Portland cement and software cor-
rect, then it is just as important, if not more so, to understand
why humans behave as they do. Incentives are a good place to
start.

As such, Geekonomics is not so much the story of software
told through the lens of technology, but through the lens of
humanity, specifically the incentives for manufacturing, buying,
and exploiting insecure software. Economics is simply one way
of understanding why humans behave as they do. But if eco-
nomics is generally described as “the dismal science,” then soft-
ware engineering is economics’ freakish, serotonin-deprived
cousin. Economics is positively cheery and approachable in
comparison. To date, the discussion regarding software has been
largely dominated by technology experts whose explanations
largely serve to alienate the very people that are touched most
by software. Us.

Yet the congress of these two disciplines tells an important
and consequential story affecting both the reader’s everyday life
and the welfare of the global community. The issue of insecure
software is at least as much about economics as it is about tech-
nology. And so I discuss both in this book. This book is not
intended to be a comprehensive economics text, a litany of soft-
ware failures (although this is sometimes inevitable), a diatribe
as to how the world is coming apart at the seams, or a prophe-
cy that civilization’s ultimate demise will occur because of “bad”
software. Prophesizing disaster is cliché. Bad things happen all
the time, and forecasting tragic events does not require an
exceptional amount of talent, intelligence, or foresight. If any-
thing, the world tolerates disaster and somehow still makes
progress. This does not mean valid threats to economic and
national stability due to “bad” software are illusory or should
be minimized. On the contrary, the story of insecure software
has not been readily approachable and therefore not well under-
stood. We cannot manage what we do not understand, includ-
ing ourselves. Software is a ghost in the machine and, at times,
frustratingly so. But as software is a human creation, it does
need to remain a frustrating ghost.

13The Foundation of Civilization

My intent in this book is to give this story—the story of inse-
cure software—a suitable voice so that readers from any walk of
life can understand the implications. I promise the reader that
there is not a single graph in this book; nor is there a single snip-
pet of code. This story should be accessible to more than the
experts because it is we who create this story and are touched by
it daily. The consequences are too great and far-reaching for the
average person to remain unaware.

The first task of Geekonomics, then, is to address the ques-
tions presented at the beginning of this section as completely as
possible within the confines of a single book. This means some
aspects may be incomplete or not as complete as some readers
might prefer. However, if anything, the story of software can be
entertaining, and this book is intended to do that as well as
inform and enlighten.

The second and more difficult task of Geekonomics is to ana-
lyze what the real cost of insecure software might be. Swimming
pools can have a high cost, but how costly is insecure software,
really? This is a challenging task considering that unlike statistics
regarding accidental drowning, good data on which to base cost
estimates regarding insecure software is notoriously lacking and
inaccurate for two reasons. First, there is presumed to be a sig-
nificant amount of underreporting given that many organizations
might not realize they have been hacked or do not want to pub-
licly share such information for fear of consumer retaliation or
bad publicity. Second, actual costs tend to be distorted based on
the incentives of those reporting their losses. For some victims,
they may tend to inflate losses in an effort to increase their
chances of recovering damages in court. Other groups of victims
might deflate costs in an effort to quell any uprisings on the part
of customers or shareholders. Law enforcement and cyber secu-
rity companies can tend to inflate numbers in an effort to gain
more funding or more clients, respectively. Whatever the incen-
tives might be for reporting high or low, somewhere within these
numbers is a hint to what is actually going on.

The third and final task of Geekonomics is to identify current
incentives of market participants and what new incentives might
be necessary to change status quo. One alternative is always
choosing to do nothing; simply let things work themselves out on
their own, or more accurately, let the market determine what

14 Geekonomics

should be done. This book argues against such action. Any inter-
vention into a market carries with it the risk of shock, and doing
nothing is certainly one way of avoiding such risk. But interven-
tion is necessary when a condition is likely to degenerate if noth-
ing is done. The magnitude of the risk is great enough and the
signs of degeneration clear enough that new and different incen-
tives are needed to motivate software manufacturers to produce
and software buyers to demand safer, higher quality, and more
secure software.

Fragile Analogies
Writing a book is far easier than writing software. If the text in
a book should have “bugs” such as ambiguities, inconsistencies,
or worse, contradictions, you the reader might be annoyed, even
angry, but you will still have your wits about you. Simply shrug
your shoulders, turn the page and read on. This is because, as a
human, you are a perceptive creature and can deal to a greater
or lesser extent with the paradoxical and ambiguous nature of
reality. Computers are not nearly so lucky. As Peter Drucker, a
legendary management consultant, pointed out in The Effective
Executive more than 40 years ago, computers are logical
morons. In other words, computers are stupid. This is the first
important realization toward protecting modern infrastructure.
Computers are stupid because logic is essentially stupid: logic
only does what logic permits.12 Computers do exactly as they
are instructed by software, no more and no less. If the software
is “wrong,” so too will be the computer. Unless the software
developer anticipates problems ahead of time, the computer will
not be able to simply shrug, turn the page, and move on.

Computers cannot intrinsically deal with ambiguity or uncer-
tainly with as much deft and acumen as humans. Software must
be correct, or it is nothing at all. So whereas humans live and
even thrive in a universe full of logical contradictions and incon-
sistencies, computers live in a neat, tidy little world defined by
logic. Yet that logic is written primarily by perceptive creatures
known as software developers, who at times perceive better than
they reason. This makes the radical malleability of software
both blessing and bane. We can do with software as we will, but
what we will can sometimes be far different than what we mean.

15The Foundation of Civilization

The radical malleability of software also poses additional
explanatory complications. Software is like cement because it is
being injected into the foundation of civilization. Software is
also like a swimming pool because people opt to use it even
though statistics tend to show the high private and social costs
of its use. In fact, in this book, software is described to be like
automobiles, DNA, broken windows, freeways, aeronautical
charts, books, products, manuscripts, factories, and so on.
Software might even be like a box of chocolates. You never
know what you’re going to get. With software, all analogies are
fragile and incomplete.

Cement is an imperfect analogy for software, but so too is
just about everything else, which means analogies used to under-
stand software tend to break quite easily if over-extended. The
radical malleability of software means any single analogy used
to understand software will be somewhat unsatisfying, as will,
unfortunately, any single solution employed to solve the prob-
lem of insecure software. As a universal tool, software can take
far too many potential forms for any one analogy to allow us to
sufficiently grasp software and wrestle it to the ground. This
challenge is nowhere more obvious than in the judicial courts of
the United States, which reason by analogy from known con-
cepts.13 This does not mean that software cannot be understood,
simply that significantly more mental effort must be applied to
think about software in a certain way, in the right context, and
under the relevant assumptions. As such, this book may liberal-
ly switch between analogies to make certain points. This is more
the nature of software and less the idiosyncrasies of the author
(or at least, I would hope).

Finally, there are many different kinds of software: enterprise
software, consumer software, embedded software, open source
software, and the list goes on. Experts in the field prefer to dis-
tinguish between these types of software because each has a dif-
ferent function and different relevancies to the tasks they are
designed for. Such is the radical malleability of software.

A fatal flaw of any book on software, therefore, is the lack
of deference to the wild array of software in the world. The soft-
ware in your car is different than in your home computer, is dif-
ferent than the software in space shuttles, is different than soft-
ware in airplanes, is different than software in medical devices,

16 Geekonomics

and so on. As such, one can argue that the quality of software
will differ by its intended use. Software in websites will have dif-
ferent and probably lower quality than software in airplanes.
And this is true. There is only one problem with this reasoning:
Hackers could care less about these distinctions.

At the point when software is injected into a product and
that product is made available to the consumer (or in any other
way allows the attacker to touch or interact with the software),
it is fair game for exploitation. This includes automobiles,
mobile phones, video game consoles, and even nuclear reactors.
Once the software is connected to a network, particularly the
Internet, the software is nothing more than a target. As a case in
point, two men were charged with hacking into the Los Angeles
city traffic center to turn off traffic lights at four intersections in
August 2006. It took four days to return the city’s traffic control
system to normal operation as the hackers locked out others
from the system.14 Given that more and more products are
becoming “network aware;” that is, they are connected to and
can communicate across a digital network, software of any kind
regardless of its intended use is fair game in the eyes of an
attacker. As William Cheswick and Steven Bellovin noted in
Firewalls and Internet Security, “Any program no matter how
innocuous it seems can harbor security holes…We have a firm
belief that everything is guilty until proven innocent.”

This is not paranoia on the part of the authors; this is the
reality.

Therefore, I have chosen to distinguish primarily between
two types of software: software that is networked, such as the
software on your home computer or mobile phone, and soft-
ware that is not. The software controlling a car’s transmission is
not networked; that is, it is not connected to the Internet, at
least not yet. Though not connected to the Internet, weaknesses
in this software can still potentially harm the occupants as I illu-
minate in Chapter 2. But it is only a matter of time before the
software in your transmission, as with most all other devices,
will be connected to a global network. Once connection occurs
the nature of the game changes and so too does the impact of
even the tiniest mistake in software production. That software
has different intended uses by the manufacturers is no excuse for

17The Foundation of Civilization

failing to prepare it for an actively and proven hostile environ-
ment, as Chapter 3, “The Power of Weaknesses,” highlights.

Finally, the radical malleability of software has moved me to
group multiple aspects of insufficient software manufacturing
practices such as software defects, errors, faults, and vulnerabil-
ities under the rubric of “software weaknesses.” This might
appear at first as overly simplistic, but for this type of discus-
sion, it is arguably sufficient for the task at hand.

18 Geekonomics

