
C 3
  

B      , we must set it up such that it can
be tested — that is, executed with the intent to make it fail. In this chap-

ter, we review basic testing techniques, with a special focus on automation and
isolation.

3.1   

User reports are not the only way of learning about problems. Typically, most
problems (and in the best of all worlds, all problems) are found by testing at
the developer’s site before they ever could be experienced by a user. Testing is
the process of executing a program with the intent of producing some problem.
Once such a problem has been found by testing, the process of tracing down
the defect and fixing it is the same as if the problem had been reported by
a user (except that problems found by testing, or any other means of quality
assurance, are less embarrassing, and generally much cheaper to fix). First comes
the problem (from a test or a user), then comes the debugging.

This classical view of testing is called testing for validation. It is geared toward
uncovering yet unknown problems. A great deal of research revolves around the
question of how to test programs such that the tests uncover as many problems as
possible. We summarize the basics in Section 3.8. In the context of debugging,
though, testing also has its place. However, it is geared toward uncovering a
known problem. Such testing for debugging is required at many stages of the
debugging process, and thus throughout this book:

• One must create a test to reproduce the problem (Chapter 4).

53

54   Making Programs Fail

• One must rerun the test multiple times to simplify the problem (Chapter 5).

• One must rerun the test to observe the run (Chapter 8).

• One must rerun the test to verify whether the fix has been successful (Sec-
tion 15.4).

• One must rerun the test before each new release such that the problem (or
a similar one) will not occur in the future. This is also called regression testing
(Section 15.6).

As testing occurs so frequently while debugging, it is a good thing to au-
tomate it as much as possible. In general, by using automation more thorough
tests can be achieved with less effort. Automation:

• Allows the reuse of existing tests (for instance, to test a new version of a
program)

• Allows one to perform tests that are difficult or impossible to carry out
manually (such as massive random tests)

• Makes tests repeatable

• Increases confidence in the software

All of these benefits apply to validation as well as to debugging, such as the
previously listed.

Automation not only streamlines the “classical” testing and debugging tasks
but enables additional automated debugging techniques, such as those discussed
in this book.

• Automated tests enable automated simplification of test cases (Chapter 5).

• One can use automated tests to isolate failure causes automatically, includ-
ing:

– Failure-inducing input (Section 13.5)

– Failure-inducing code changes (Section 13.7)

– Failure-inducing thread schedules (Section 13.6)

– Failure-inducing program states (Section 14.4)

3.2. Controlling the Program 55

Ok the following operations cause mozilla to crash consistently

on my machine

-> Start mozilla

-> Go to bugzilla.mozilla.org

-> Select search for bug

-> Print to file setting the bottom and right margins to .50

(I use the file /var/tmp/netscape.ps)

-> Once it’s done printing do the exact same thing again on

the same file (/var/tmp/netscape.ps)

-> This causes the browser to crash with a segfault

 . MOZILLA problem report #24735.

In this chapter, we will thus focus on how to set up automated tests that
support our (automated and nonautomated) debugging tasks. We examine the
question:

H       ?

3.2   

Consider a real-world example, related to the MOZILLA web browser — or more
specifically, its HTML layout engine named Gecko. In July 1999, two years before
the final completion of MOZILLA 1.0, BUGZILLA (the MOZILLA problem data-
base) listed more than 370 open problem reports — problem reports that were
not even reproduced. At the same time, test automation was in a bad shape.
To test MOZILLA, developers essentially had to visit a number of critical web
pages, such as http://www.cnn.com/, and (visually) check whether the layout
and functionality was okay.

Example 3.1 shows the problem report we want to turn into an automated
test case. Under certain conditions, MOZILLA crashes when printing a page. How
do we automate this sequence of actions? In general, an automated test must
simulate the environment of the program — that is, the test must provide the
program’s input and assess the program’s output. Simulating an environment
can be very tricky, though. If the environment involves users who interact with

56   Making Programs Fail

 . Making MOZILLA print (and crash). This takes just six easy steps.

the program, the automated test must simulate actual users (including all of
their capabilities).

Figure 3.1 shows the steps our user simulation must conduct, which are:

1. Launch MOZILLA.

2. Open the Open Web Location dialog.

3. Load bugzilla.mozilla.org.

4. Open the Print dialog.

5. Enter appropriate print settings.

6. Invoke the actual printing.

However, our user simulation must also synchronize its actions with the ap-
plication. For instance, the simulation can “click” in the dialog only after it has
popped up. The same applies for the second printing, which can only start after

3.2. Controlling the Program 57

 . Testing layers. A program can be tested (1) at the presentation layer, (2) at the
functionality layer, or (3) at the unit layer.

the first printing is done. Thus, the user simulation must not only provide input
but interpret the output.

Such efforts can be avoided by identifying alternate interfaces, where control
and assessment are easier to automate. Figure 3.2 shows a typical decomposition
of a program into three layers:

• The presentation layer handles the interaction with the user (or whatever
constitutes the environment of the program).

• The functionality layer encapsulates the actual functionality of the program,
independent of a specific presentation.

• The unit layer splits the functionality across multiple units, cooperating to
produce a greater whole.

58   Making Programs Fail

Whereas the user (and the environment) interact only with the presentation
layer, an automated test can use all three layers for automating execution and
for retrieving and assessing results. Each layer requires individual techniques,
though, and brings its own benefits and drawbacks for testing and debugging.
In the next three sections, we shall discuss testing at the individual layers and
check for the following features:

• Ease of execution: How easy is it to get control over program execution?

• Ease of interaction: How easy is it to interact with the program?

• Ease of result assessment: How can we check results against expectations?

• Lifetime of test case: How robust is my test when it comes to program
changes?

3.3     

Let’s start with the presentation layer, where the program interacts with its en-
vironment. How does one test at the presentation layer? Basically, one simulates
the input and monitors the output. Depending on the nature of the input and
output, this can be done at multiple abstraction levels. For a networking device,
for instance, we can capture input and output at the data link layer (monitor-
ing and sending individual bits between two ends of a physical connection), or
at the transport layer (monitoring and sending data packets between two ma-
chines). The higher the abstraction level, the more details are abstracted away,
which makes it easier to simulate interaction. On the other hand, one risks ab-
stracting away the very details that cause a failure.

As an more detailed (and frequent) example of abstraction levels, let’s take
a look at user interaction. User interaction can be simulated at two abstraction
levels: at a low level (expressing interaction as a sequence of mouse and keyboard
events) or at a higher level, denoting interaction using graphical user controls of
the application.

3.3.1 Low-level Interaction

At the lowest abstraction level, user input becomes a stream of mouse and key-
board events. Such event streams can be captured (i.e., recorded from the input
devices) and replayed, substituting the stream from actual input devices by the
previously recorded stream.

3.3. Testing at the Presentation Layer 59

1. Launch mozilla and wait for 2 seconds

exec mozilla &

send_xevents wait 2000

2. Open URL dialog (Shift+Control+L)

send_xevents keydn Control_L

send_xevents keydn Shift_L

send_xevents key L

send_xevents keyup Shift_L

send_xevents keyup Control_L

send_xevents wait 500

3. Load bugzilla.mozilla.org

and wait for 5 seconds

send_xevents @400,100

send_xevents type {http://bugzilla.mozilla.org}

send_xevents key Return

send_xevents wait 5000

4. Open Print Dialog (Ctrl+P)

send_xevents @400,100

send_xevents keydn Control_L

send_xevents key P

send_xevents keyup Control_L

send_xevents wait 500

5. Click on "Print to File"

send_xevents @550,170 click 1

6. Print (Return)

send_xevents key Return

send_xevents wait 5000

 . ANDROID script to make MOZILLA print. This script simulates user inter-
action at a low level by means of keyboard and mouse interaction.

As an example, Example 3.2 shows a script recorded by the open-source tool
ANDROID to reproduce the MOZILLA interaction shown in Figure 3.1. To make
it more user readable, the script has been simplified to the relevant events.

60   Making Programs Fail

Each of these send_xevents command simulates a user action. The com-
mand

send_xevents @550,170 click 1

tells ANDROID to move the mouse pointer to position (550,170), and then to
simulate a click of mouse button 1 (the left mouse button). Likewise, the com-
mand key simulates the press of a key, and type is shorthand for typing several
keys in a row. The commands keydn and keyup are handy for simulating mod-
ifiers such as Shift, Alt, or Ctrl that need to be held down while other keys are
pressed.

As nobody wants to read or maintain tests that deal with absolute screen
coordinates, such event scripts are largely write-only. Furthermore, any recorded
information is fragile: the slightest change in the user’s display or the program’s
interface makes the recorded scripts obsolete.

To illustrate the fragility, just try to invoke the script twice in a row: the
second time the script executes, the file to be printed to already exists, and thus
MOZILLA wants special confirmation before overwriting the file. This extra di-
alog, though, is not handled in our script and thus will fail miserably. Other
changes that quickly make the script obsolete include a different placement of
the MOZILLA main window or its dialogs (all coordinates in the script are ab-
solute) and changes in font size, screen size, layout, user language, or even inter-
action speed.

If we record and replay nonuser interaction at a low level, such as data
flow on a network, any changes to the program or the protocol will also make
recorded scripts quickly obsolete. Nonetheless, such recorded information can
be very useful for automating user interaction again and again — as long as it is
used for one single debugging session in one specific environment.

3.3.2 System-level Interaction

One way of overcoming the problem of fragility (Section 3.3.1) is to control not
only the single application but the entire machine. For this purpose, one typi-
cally uses a virtual machine system that simulates an entire machine as software.
The virtual machine FAUmachine, for instance, allows us to simulate many types
of input and can even inject faults such as simulated hardware defects. Exam-
ple 3.3 shows a simple script.

Use of virtual machines for testing and debugging typically requires that
a number of well-defined virtual machines be available. Therefore, virtual ma-
chines are nice to have if one desires or requires complete control at the system

3.3. Testing at the Presentation Layer 61

Power on the machine and wait for 5s

power <= true; wait for 5000;

Click mouse button 1

m_b1 <= true; wait for 300; m_b1 <= false;

Click the CDROM change button

cdctrl’shortcut_out_add("/cdrom%change/...");

 . A script for automating execution of a virtual FAUmachine. This script interacts
at the system level, simulating the hardware of a real machine.

level. Although a large set of virtual machines requires careful administration, it
is still easier to administer and configure virtual rather than real machines.

3.3.3 Higher-level Interaction

A more comfortable way of making user interaction scripts more robust against
changes and thus more persistent is to choose a higher abstraction level — that is,
controlling the application not by means of coordinates but by actual graphical
user controls. As an example, consider Example 3.4. It shows a script in the
APPLESCRIPT language that makes MOZILLA on Mac OS load and print the page
bugzilla.mozilla.org. APPLESCRIPT is designed to be readable by end users. The
¬ character lets you split one line of script onto two.

The main difference with the ANDROID script shown in Example 3.2 is that
APPLESCRIPT no longer references user controls by position but by names such
as Open Web Location and relative numbers such as menu bar 1. This makes the
script much more robust against size or position changes (only the labels and
the relative ordering of the user interface controls must remain constant).

Again, such scripts can also be recorded from user interactions. Several cap-
ture/replay tools are available that work at the level of named user controls.
However, even if we raise the abstraction level to user controls scripts remain
fragile: a single renaming or rearrangement of controls causes in all scripts to
become obsolete.

62   Making Programs Fail

-- 1. Activate mozilla

tell application "mozilla" to activate

-- 2. Open URL dialog via menu

tell application "System Events"

tell process "mozilla"

tell menu bar 1

tell menu bar item "File"

click menu item "Open Web Location"

end tell

end tell

end tell

end tell

-- 3. Load bugzilla.mozilla.org

-- and wait for 5 seconds

tell window "Open Web Location"

tell sheet 1

set value of text field 1 to ¬

"http://bugzilla.mozilla.org/"

end tell

click button 1

end tell

delay 5
...

 . APPLESCRIPT makes MOZILLA print. This script excerpt interacts with
MOZILLA at a higher level. It refers to named GUI elements to simulate actions.

3.3.4 Assessing Test Results

Whether we are controlling the application using event streams or user controls,
one major problem remains: our simulation must still examine the program’s out-
put.

• Examining the output is necessary for synchronization, as the simulated user
may have to wait until a specific action completes. In our MOZILLA script,
we circumvented this problem by introducing appropriate delays.

3.4. Testing at the Functionality Layer 63

• Examining the program’s output is necessary for result assessment. Eventually,
our test must determine whether the result matches the expectations or not.
In our MOZILLA example, this was particularly easy. The crash of a program
is relatively easy to detect, but if we had to verify MOZILLA’s output on the
screen we would have a difficult time processing and assessing this output.

To sum up, the advantage of testing at the presentation layer is that it is al-
ways feasible. We can always simulate and automate a user’s behavior. However,
this is already the only advantage. In general, one should use the presentation
layer for testing only:

• If the problem occurs in the presentation

• If the presentation layer is easily used by computers

• If there is no other choice (for instance, because there is no clear separa-
tion between presentation and functionality, or because the lower layers are
inaccessible for testing)

The rule of thumb is: The friendlier an interface is to humans, the less
friendly it is to computers. Therefore, we should have a look at alternative in-
terfaces that are better suited to automation.

3.4     

Rather than simulate user interaction, it is much preferable to have the pro-
gram provide an interface that is designed for automation — or, more generally,
designed for interaction with technical systems. Such an interface may be de-
signed for interaction with programming languages (for instance, the program-
ming language the application itself is written in). However, some programs
provide interfacing with scripting language, allowing even end users and non-
programmers to automate execution in a simple way.

Example 3.5 shows an APPLESCRIPT program that uses the scripting ca-
pabilities of the Safari web browser to load a given web page and to print it,
mimicking our MOZILLA example. This script uses commands such as

set the URL of the front document

64   Making Programs Fail

1. Load document

tell application "Safari"

activate

if not (exists document 1)

make new document at the beginning of documents

end if

set the URL of the front document ¬

to "http://bugzilla.mozilla.org/"

delay 5

end tell

2. Print it

No script support for printing, so we go via the GUI

tell application "System Events"

tell process "safari"

keystroke "p" using command down

end tell

end tell

 . Loading a site in Safari using APPLESCRIPT. This script uses Safari’s built-in
functionality layer to open web pages — except for printing, where one has to resort to simulating
user interaction.

which work regardless of what the user interface looks like, and thus make the
script unaffected by any changes of the user interface. Note, though, that not
every Safari feature is scriptable. To print a page (Step 2 in Example 3.5), we
still have to fall back to the presentation layer.

Support for automation at the functionality layer greatly differs by operating
environment. In Mac OS, APPLESCRIPT is available for several applications. In
Windows, this role is filled by Visual Basic. Example 3.6 shows a VBSCRIPT

program that loads a file into Internet Explorer (note how this program waits
until the page is actually loaded). Under Linux and UNIX, there is no single
standard for scripting — no scripting support for MOZILLA, for instance.

Nonetheless, the advent of web components has encouraged further separa-
tion of functionality and presentation — thus making automation far easier for
future applications. Every major scripting language (such as VBSCRIPT, PERL,
PYTHON, and, APPLESCRIPT) can use web component interfaces such as SOAP

to interact with local and distributed components and services. Essentially, arbi-
trary web components can be accessed using arbitrary scripting languages.

3.4. Testing at the Functionality Layer 65

’ Load document

Set IE = CreateObject("InternetExplorer.Application")

IE.navigate "http://bugzilla.mozilla.org/"

IE.visible=1

’ Wait until the page is loaded

While IE.Busy

WScript.Sleep 100

Wend

 . Loading a site in Internet Explorer using VBSCRIPT . The script uses IE’s
functionality layer to open pages.

You may be tempted to define your own home-grown scripting language that
is built into the application. In general, however, this is not worth the invest-
ment. Sooner or later you will require variables, control structures, and modu-
larization — and it is difficult to add these features one at a time. It is far easier
to incorporate an existing interpreter for a powerful scripting language such as
PYTHON, PERL, or TCL and extend it with application-specific commands. Even
more easily, you can turn your application into a .NET component, a JAVA bean,
or a CORBA component. All of this makes the functionality available for arbitrary
automation purposes and is thus great for automated testing. (Be aware, though,
that automation interfaces can be exploited by malicious users. For instance, au-
tomation features in Office have frequently been used to send document and
e-mail viruses automatically.)

Overall, the big advantage of testing at the functionality layers is that the
results can be easily accessed and evaluated — something that is difficult to do at
a presentation layer for humans. For web components, results typically come in
XML format, which is easy to parse and process for all scripting languages. Thus,
unless one wants to test individual parts of the program, testing (and debugging)
at the functionality level is the way to go.

Unfortunately, all of this requires a clear separation between presentation
and functionality. Especially older programs may come as monolithic enti-
ties without presentation or functionality layers. In this case, you have three
choices.

• You can go through the presentation layer, as discussed in Section 3.3, and
suffer all of the problems associated with assessing test results.

66   Making Programs Fail

• You can do a major redesign to separate presentation and functionality —
or at least to reduce dependences between them. We will come back to this
idea when discussing designing for debugging (Section 3.7).

• You can decompose the program and access the individual units directly.
(This is discussed in the next section.)

3.5     

Any nontrivial program can be decomposed into a number of individual units —
that is, subprograms, functions, libraries, modules, abstract data types, objects,
classes, packages, components, beans, or whatever decomposition the design and
the language provide. These units communicate via interfaces — just like the
program communicates with its environment.

The idea now is not to automate the execution of the entire program but
only the execution of a specific unit. This has the advantage that automating the
unit in isolation is frequently easier than automating the entire program. The
disadvantage, of course, is that you can only automate the behavior of the given
unit and thus must count on the unit producing the problem in isolation.

Units are typically not accessible to end users, and thus not necessarily ac-
cessible for scripting, as discussed in Section 3.4. However, they are accessible to
programmers, using the same means as the enclosing program to access their ser-
vices — typically, simple invocation of functions and methods in the language
of the program.

Whereas units are among the eldest concepts of programming, the concept
of automated testing at the unit level has seen a burst of interest only in the
last few years. This is due to the big interest in extreme programming, which
mandates automated tests as early and often as possible (and notably the creation
of a unit test case before implementation), and to the fact that massive automated
testing has become much more affordable than, say, 20 years ago.

All of these tools provide a testing framework that collects a number of indi-
vidual unit tests — a test that covers a single unit. Unit tests are supposed to run
automatically; that is, without any user interaction. Upon request, the testing
framework runs some or all unit tests and displays a summary of the executed
unit tests and their respective outcomes. When a single unit test executes, a
testing framework does three things.

3.5. Testing at the Unit Layer 67

• It sets up an environment for embedding the unit. Frequently, a unit will
require services of other units or the operating environment. This part sets
up the stage.

• It tests the unit. Each possible behavior of the unit is covered by a test case,
which first performs the operation(s) and then verifies whether the outcome
is as expected.

• It tears down the environment again. This means it brings everything back
in the state encountered initially.

Consider an example of how to use unit tests. Assume that as part of a web
browser you manage a JAVA class for uniform resource locators (URLs) such as
the following.

http://www.askigor.org/status.php?id=sample#top

A URL class has a constructor that takes a URL as a string. Among others,
it provides methods for retrieving the protocol (e.g., http), the host (e.g.,
www.askigor.org), the path (e.g., /status.php), and the query (e.g., id=sample).

Suppose you want to test these methods. Because you are working with a
JAVA class, one of the first choices for unit testing is the JUNIT testing frame-
work. JUNIT provides all we want from a testing framework. It allows us to
organize and conduct automated tests in a simple yet effective fashion. (In fact,
JUNIT has been so successful that its approach has been adopted for more than
100 languages, including CPPUNIT for C++, VBUNIT for VBSCRIPT, PYUNIT for
PYTHON, and so on.)

To test the URL class with JUNIT, you create a test case URLTest that is a sub-
class of TestCase. The source code URLTest.java is shown in Example 3.7. In
this template, the setUp() method is responsible for setting up the environment
for embedding the unit. The tearDown() method destroys the environment
again. Our environment consists of a rational member variable askigor_url

containing the URL. This variable can be used in all further tests.
We can add the individual tests to this class. In JUNIT, each test comes in

a separate method. We shall add four methods that test for equality and non-
equality, respectively, as shown in Example 3.8. The assertEquals() method
makes the test fail if the two arguments do not equal each other.

We next need a suite that runs all tests, as shown in Example 3.9. By default,
any method of the test class whose name begins with the word test will be run
as a test. For the last step, we have to give the class a main method that invokes

68   Making Programs Fail

import junit.framework.Test;

import junit.framework.TestCase;

import junit.framework.TestSuite;

public class URLTest extends TestCase {

private URL askigor_url;

// Create new test

public URLTest(String name) {

super(name);

}

// Assign a name to this test case

public String toString() {

return getName();

}

// Setup environment

// will be called before any testXXX() method

protected void setUp() {

askigor_url = new URL("http://www.askigor.org/" +

"status.php?id=sample");

}

// Release environment

protected void tearDown() {

askigor_url = null;

}

 . URLTest.java— a unit test for URLs.

a GUI for testing. This piece of code is shown in Example 3.10. This concludes
the URLTest class.

The main method we have added to the test case allows us to execute it as
a stand-alone application. If we do so, we obtain the graphical user interface
shown in Figure 3.3. Clicking on Run runs all tests at once. The bar below
shows the status. If the bar is green (as in the left-hand window), all tests have

3.5. Testing at the Unit Layer 69

// Test for protocol ("http", "ftp", etc.)

public void testProtocol() {

assertEquals(askigor_url.getProtocol(), "http");

}

// Test for host

public void testHost() {

int noPort = -1;

assertEquals(askigor_url.getHost(),

"www.askigor.org");

assertEquals(askigor_url.getPort(), noPort);

}

// Test for path

public void testPath() {

assertEquals(askigor_url.getPath(), "/status.php");

}

// Test for query part

public void testQuery() {

assertEquals(askigor_url.getQuery(), "id=sample");

}

 . Actual tests in URLTest.java.

// Set up a suite of tests

public static TestSuite suite() {

TestSuite suite =

new TestSuite(URLTest.class);

return suite;

}

 . Setting up a test suite in URLTest.java.

been run successfully. If the bar is red (as in the right-hand window), some tests
have failed.

The important thing about unit tests is that they run automatically; that
is, we can assess the unit state with a click of a single button. Recent studies
by Saff and Ernst (2004b) show that users write better code faster if the test

70   Making Programs Fail

// Main method: Invokes GUI

public static void main(String args[]) {

String[] testCaseName =

{ URLTest.class.getName() };

// Run using a textual user interface

// junit.textui.TestRunner.main(testCaseName);

// Run using a graphical user interface

junit.swingui.TestRunner.main(testCaseName);

}

 . A main method for URLTest.java.

 . The JUNIT graphical user interface. The left-hand dialog shows a passing test,
the right-hand dialog a failing test — with a failure description in the bottom test field.

runs automatically each time they save the program (i.e., not even a button click
is needed). This idea of continuous testing suggests that you simply cannot test
early and often enough.

3.6. Isolating Units 71

3.6  

Automated unit testing of low-level classes such as URL is particularly easy, be-
cause such classes do not depend on anything. That is, we do not have to import
and set up an entire environment just to make the URL class run. In principle,
we could also use unit test entire applications such as Mozilla — in a manner
similar to testing at the functionality layer (Section 3.4) but using an API rather
than a scripting language.

However, all of this automation again requires that the unit in question
clearly separate functionality and presentation and make its results available for
automatic assessment. This is true for many programs, which thus make it pos-
sible for functionality to be examined (and tested and debugged) in isolation.

However, there are programs in which the functionality depends on the pre-
sentation, such that it is impossible to separate them. Example 3.11 shows an
example. The function print_to_file prints the current web page to a file. To
avoid overwriting an existing file, it asks the user for confirmation if the file al-
ready exists. From the user’s perspective, such protection against data loss is a
strict necessity. From the tester’s perspective, though, this confirmation makes
the functionality depend on the presentation. This introduces a circular depen-
dence, as shown in Figure 3.4.

// Print current Web page to FILENAME.

void print_to_file(string filename)

{

if (path_exists(filename))

{

// FILENAME exists;

// ask user to confirm overwrite

bool confirmed = confirm_loss(filename);

if (!confirmed)

return;

}

// Proceed printing to FILENAME

...

}

 . Functionality depending on presentation.

72   Making Programs Fail

 . A circular dependence. The Core and UserPresentation classes depend on each
other and can thus not be tested (or debugged) separately.

• The presentation invokes print_to_file(), thus depending on the func-
tionality.

• The functionality invokes confirm_loss(), thus depending on the presen-
tation.

As a result, presentation and functionality can no longer be separated from
each other. This has a bad impact on testing (and debugging), as we can no
longer interact at the functionality layer alone. If a testing program invokes
print_to_file(), setting up confirm_loss() to reply automatically will result
in a major hassle. The question is thus: How do we break dependences that keep
us from isolating units?

In the case of confirm_loss(), we could easily hack it such that the func-
tion runs in two modes: the “automated” mode disables confirmation, al-
ways returning true; the “interactive” mode enables confirmation, querying
the user. A much more general solution, though, would be to parameterize the
print_to_file() function such that it could work with arbitrary presentations.

This variant of the print_to_file() function is shown in Example 3.12.
The idea here is to have a Presentation class that, among others, again includes
the confirm_loss() method. However, Presentation need not necessarily be a
presentation for the user. Instead, as shown in Figure 3.5, Presentation is an
interface — an abstract superclass that is instantiated only in subclasses. One of
these subclasses (e.g., UserPresentation) may be geared toward the user and
implement all user interaction. Another subclass (e.g., AutomatedPresentation)
may be geared toward automation, though, and always return true whenever
confirm_loss is invoked.

What do we get by adopting the inheritance scheme shown in Figure 3.5?
We have effectively broken the dependence between functionality and presenta-
tion — that is, the presentation that is geared toward the user. For testing pur-
poses, we must still provide some functionality we depend on, but this can be
encapsulated in a small class such as AutomatedPresentation.

3.6. Isolating Units 73

// Print current Web page to FILENAME.

void print_to_file(string filename,

Presentation *presentation)

{

if (path_exists(filename))

{

// FILENAME exists; confirm overwrite

bool confirmed =

presentation->confirm_loss(filename);

if (!confirmed)

return;

}

// Proceed printing to FILENAME

...

}

 . Functionality with parameterized presentation.

 . Depending on abstractions rather than details. Presentation is now an abstract
superclass, which can be instantiated either as UserPresentation (with confirmation) or as
AutomatedPresentation (without confirmation). The circular dependency between core and pre-
sentation is broken.

Overall, the general principle of breaking a dependence is known as the
dependence inversion principle, which can be summarized as depending on ab-
stractions rather on details. Whenever you have some component A depending
on some component B, and you want to break this dependence, you perform
the following.

74   Making Programs Fail

1. Introduce an abstract superclass B′, and make B a subclass of B′.

2. Set up A such that it depends on the abstract B′ rather than on the con-
crete B.

3. Introduce alternate subclasses of B′ that can be used with A such that B is
no longer required.

By having A depend on the abstract B′ rather than on the concrete B, we
can set up arbitrary new subclasses of B without ever having to change A — and
we have effectively broken the dependence between A and B.

3.7   

The principle of reducing dependences by depending on abstractions rather than
on details goes a long way. In fact, entire application frameworks can be built this
way. Among the most popular examples is the model-view-controller architectural
pattern, which decouples functionality and presentation at the application level.

To illustrate the model-view-controller pattern, let’s imagine we want to
build an information system for election day. As illustrated in Figure 3.6, we

 . An information system for election day. The actual data (on top) is displayed in a
number of graphical formats, and also manipulated as text.

3.7. Designing for Debugging 75

want to display the election data in a number of graphical formats, including
pie and bar charts. We also want to display the data in the form of a spreadsheet,
whereby an operator can manipulate and enter the data.

How would one build such a system? The key idea here is again to sepa-
rate functionality and presentations. In no way do we want the core function-
ality being dependent on a specific view. The model-view-controller pattern, as
illustrated in Figure 3.7, gives us a general solution to this problem. It splits
responsibilities into two parts.

• A model that holds the core data and provides services that operate on this
core data.

• A number of observers that register or attach to the model and get notified
whenever the core data changes.

 . The model-view-controller pattern. A model has a number of observers, which
can be either views or controllers.

76   Making Programs Fail

Observers, again, are divided into two subclasses.

• A view is responsible for displaying the core data in a specific way (such as
pie chart views or bar chart views).

• A controller handles input events (typically from the user) and invokes the
services of the model.

When a user thus interacts with a controller, she will eventually invoke a
service that changes the core data. When this happens, all views attached to the
model are automatically notified; that is, they can get the data from the model
in order to update their displays. This also includes the view of the user, who
thus gets visual feedback.

When it comes to testing and debugging, a model-view-controller architec-
ture has several benefits. For testing, one can build and add new controllers that
invoke services of the model — for instance, controllers that automate execution
of these services. For debugging, one can register special views that automatically
log all changes to the model. Finally, every observer and model can be examined
and tested in isolation, thus reducing complexity.

As the model-view-controller pattern shows, it is generally advisable to avoid
dependences between presentation and functionality. However, any dependence
may eventually cause problems in testing and debugging. Just as we want to
examine systems that are isolated in our controlled environment (rather than
embedded in the user’s environment), we want to examine units that are iso-
lated in a controlled environment rather than entangled with the entire system.
Isolated units are not only easier to test and debug but easier to understand,
reuse, and maintain. Reducing dependences is thus a key issue in software de-
sign. Fortunately, all software design methods attempt to minimize dependences
between units, using the same two principles.

• High cohesion: This is the basic principle that tells what to group into a
unit. Those parts of a system that operate on common data (and thus de-
pend on this data) should be grouped together — typically, into some unit
as supported by the design or programming language. For instance, object-
oriented design groups the state (i.e., data) and the functions that work on
this data into classes and objects.

• Low coupling: This is the principle that reduces dependences. If two units
do not operate on common data, they should exchange as little information
as possible. This principle is also known as information hiding, and is the
key for understandable, reusable, and extensible systems. The principle of

3.8. Preventing Unknown Problems 77

low coupling also prohibits circular dependences, as they couple all involved
units.

Applying the principles of strong cohesion and low coupling consistently
will reduce the number of dependences in any design. Thus, the confirm_loss()
invocation (Example 3.11) would be counterintuitive as it violates the principle
of low coupling by coupling presentation and functionality more than necessary.

Given the time potentially saved on coding, testing, and debugging, any
extra hour spent on improving the design is a good investment. A good design
will not only make your system more flexible, more robust, and more reusable
but will make it easier to test and to debug. If you want to know more about
design, the “Further Reading” section gives a number of useful references.

3.8   

So far, this section has been about setting up tests for debugging — that is, how
to isolate a unit in a controlled environment. All of this assumes that a problem
has already occurred.

Any problem that escapes into the wild (and is experienced by a user) indi-
cates that the product has not been tested (or reviewed, or proven) well enough.
Consequently, the quality assurance process must be refined such that the prob-
lem in question (and hopefully similar problems) will not occur in the future.

As this is a book about debugging (i.e., the cure of known problems), we
cannot spend too much space on preventing yet unknown problems. This is not
to negate that prevention is better than cure. In fact, one might say that by far
most of computer science is concerned with preventing problems. But when
prevention fails, there is need for a cure, and that is what this book is about.
Nonetheless, for your reference, Lists 3.1 and 3.2 capture basic rules of testing
and quality assurance.

Quality assurance can never reach perfection. Even if all techniques are ap-
plied to the extreme, we will still have programs with surprising behavior. How-
ever, as a professional developer, you should know about all of these techniques,
and be prepared to suggest them whenever it comes to reducing risk. Making
mistakes is hard to avoid but not caring to prevent mistakes is unacceptable.

78   Making Programs Fail

• Specify. A program cannot be correct on its own — it can only
be correct with respect to some specification that describes its
purpose. Attempt precise, or even formal, specifications that
cover the entire behavior, including exceptions. A full specifi-
cation will be a big help in understanding how the system is
supposed to work — and hence help you in writing a correct
system.

• Test early. This principle states that you must not wait with test-
ing until the entire system is assembled. Instead, run test cases
as soon as a unit is implemented, and assemble your system out
of carefully tested units.

• Test first. Write test cases before implementing the unit. This
is useful because test cases can serve as specifications. Although
test cases specify only examples, a sufficient number of test cases
can make it difficult to implement something else than the most
elegant (and correct) solution.

• Test often. At the minimum, run your tests with each release of
the system. Better yet, run your tests with every change. The
sooner you know that there is a defect the smaller the set of
accumulated changes that might have caused the defect. Au-
tomation helps a lot here.

• Test enough. Measure the coverage of your tests. How many
statements and branches are actually taken? Instrument your
code to gather coverage and design your test cases to achieve
sufficient coverage. Use random inputs to cover exceptional and
extreme situations.

• Have others test. Testing for unknown problems is a destructive
process. By all means, one must try to uncover a weakness in
the program. As people in general prefer being constructive to
ripping things apart, this is a difficult psychological situation
for most. In particular, it makes an author unsuited to test her
or his own code. Therefore, always have someone independent
test your program, and be open to criticism.

 . Essential rules for testing.

3.9. Concepts 79

• Have others review. Testing is not the most effective way to catch
defects. Reviewing is. No other technique catches so many de-
fects for the same amount of effort. Have someone else review
your code and check for possible defects. Think about pair pro-
gramming as a means of increasing the amount of reviews.

• Check the code. More and more, computers can detect errors and
anomalies in your system. Chapters 7 and 11 give an overview.
Running such tools on your code comes at a small cost, but
brings greater and greater benefits as computers get faster and
faster.

• Verify. Several important properties of software systems can to-
day be shown automatically or semiautomatically. If the behav-
ior of your system can be modeled as a finite state machine,
software model checking comes in handy to prove correctness.
That is how Microsoft validates its device drivers.

• Assert. If you cannot fully prove correctness, go the simpler way:
let the computer do the work and have it check its state at run-
time (Chapter 10). Your program may still fail due to a failed
assertion, but if all assertions are met the result will be correct
with respect to all assertions.

 . More tools and techniques for quality assurance.

3.9 

To test for debugging, one must:

• Create a test to reproduce the problem

• Run the test several times during debugging

• Run the test before new releases to prevent regression

Due to the number of tests needed in debugging, it is thus useful to auto-
mate as much as possible.

To automate program execution, one can access three layers. HOW TO

• Presentation layer

• Functionality layer

80   Making Programs Fail

• Unit layer

The layers differ in ease of execution, ease of interaction, ease of result as-
sessment, and robustness against changes.

To test at the presentation layer, the testing environment must stimulate hu-HOW TO

man activities — either input devices (low level) or user controls (higher level).

To test at the functionality layer, use an interface designed for automation —HOW TO

typically using specific scripting languages.

To test at the unit layer, use the API of a program unit to control it and toHOW TO

assess its results.

To isolate a unit, break dependences using the dependence inversion principle,HOW TO

making the unit depend on abstractions rather than on details.

To design for debugging, reduce the amount of dependences using the prin-HOW TO

ciples of high cohesion and low coupling.

Design patterns such as model-view-controller are useful for reducing depen-
dences.

To prevent unknown problems, one can use a variety of techniques, includingHOW TO

the following.

• Testing early, testing often, and testing enough

• Reviewing by others and pair programming

• Having the computer check the code for anomalies and common errors

• Proving correctness formally (using computer support)

3.10 

JUNIT

JUNIT as well as unit test tools for other languages can be obtained via its web
page at:

http://www.junit.org/

3.10. Tools 81

ANDROID

All scripting languages described in the chapter are also documented online.
ANDROID can be found at:

http://www.wildopensource.com/larry-projects/android.html

APPLESCRIPT

APPLESCRIPT documentation and examples are found at:

http://www.apple.com/appescript/

Neuburg (2003) is strongly recommended as a guide to APPLESCRIPT.

VBSCRIPT

VBSCRIPT and other Microsoft tools for scripting can be found at:

http://msdn.microsoft.com/scripting/

Other scripting languages

Other scripting languages suitable for test automation include PYTHON, PERL,
TCL, and JAVASCRIPT, all of which are documented by a great deal of information
available on the web.

FAUmachine

The virtual machines discussed in this chapter are also publicly available. The
FAUmachine is a virtual machine specifically built for testing purposes. Among
others, the FAUmachine allows you to control the entire virtual machine via
scripts. FAUmachine can be researched at:

http://www.faumachine.org/

82   Making Programs Fail

VMWare

At the time of this writing, VMWare was one of the most popular provider of
virtual machines. It can be found at:

http://www.vmware.com/

Virtual PC

Microsoft also offers Microsoft Virtual PC for various operating systems, found
at:

http://www.microsoft.com/virtualpc/

3.11  

• Testing: The book by Myers (1979) has been the classic text on testing for
more than 25 years. It is still up-to-date, and I recommend it as a first
read to anyone who is interested in testing. It also includes a chapter on
testing for debugging. If you prefer a hands-on approach, try Kaner et al.
(1999).

The forthcoming book of Pezzè and Young (2005) promises to be an
in-depth treatment of all things testing and analysis. Psychological issues, in
particular the law that developers are unsuited to testing their own code, are
addressed in Weinberg (1971).

• Automation: Fewster and Graham (1998) and Dustin et al. (2001) focus on
automated testing, focusing especially on the management view — such as
when and how we should automate which parts of our test suite. A more
technical view on automated testing can be found on the web sites devoted
to extreme programming and unit testing — in particular

http://www.junit.org/

for JUNIT and

http://www.xprogramming.com/

for extreme programming.

3.12. Exercises 83

• Design: If you do not have it already, the Design Patterns book by Gamma
et al. (1994) contains much wisdom regarding how to structure systems.
On the architectural level, the Pattern-Oriented Software Architecture Series
by Buschmann et al. (1996) and Schmidt et al. (2000) contains several use-
ful patterns. The model-view-controller example is taken from this series.

The classic all-in-one textbook on object-oriented software design is the
book by Meyer (1997). Other classic design books include those by Booch
(1994) and Larman (2002). The dependence inversion principle was coined
by Martin (1996). The article is available online at:

http://www.objectmentor.com/

3.12 

 .. In a few words, describe testing for debugging and for validation.
Discuss the differences between these purposes.

 .. Discuss the differences between testing at presentation, func-
tionality, and unit layer. Focus on ease of execution, ease of interaction, ease of
result assessment, and robustness against changes.

 .. Is testing at the presentation layer of a command-line tool the
same as functionality testing? Discuss similarities and differences.

 .. Use your favorite web browser and try to automate the loading
of a web page, interacting at the presentation or the functionality layer.

 .. Run the JUNIT test URLtest.java code (Example 3.7). You need
a URL class for testing. You can use the URL class that is part of the JAVA 1.4
java.net.url package, documented at:

http://java.sun.com/

Simply include import java.net.url in URLTest.java and you can start run-
ning JUNIT.

 .. Extend URLTest.java to include tests for other methods of the
URL class. Is the documentation precise enough to let you write test cases?

84   Making Programs Fail

 .. In the model-view-controller pattern (Figure 3.7), every ob-
server still depends on a given model. How can you use the dependence in-
version principle to break this dependence?

 .. When it comes to breaking dependences, there are alternatives
to introducing abstract classes. Sketch and discuss

1. the usage of macros (C, C++)

2. the usage of aspects (Section 8.2.3)

to break the dependence illustrated in Example 3.11.

 .. JUNIT works fine to discover defects at the unit level, but fails if
a failure is caused by multiple units. Discuss.

Software features that can’t be demonstrated by automated tests
simply don’t exist.

— K B
Extreme Programming Explained (2000)

	Making Programs Fail
	Testing for Debugging
	Controlling the Program
	Testing at the Presentation Layer
	Testing at the Functionality Layer
	Testing at the Unit Layer
	Isolating Units
	Designing for Debugging
	Preventing Unknown Problems
	Concepts
	Tools
	Further Reading
	Exercises

