
chapter 1
the

challenge

The lakes and rivers of New Zealand are a fisherman’s paradise. But one
threat to the quality of streams and fishing in New Zealand is the koi carp,
which was introduced accidentally in the 1960s as part of a goldfish consign-
ment and is now classified as a noxious species. Koi carp resemble huge gold-
fish, but they destroy native plants and fish habitats, eat indiscriminately like
vacuum cleaners, and grow to about 75 cm long. They are found mostly in
the Auckland/Waikato region, and the goal is to prevent them from spread-
ing further.

Imagine that you are a regional manager of the Fish and Game Council
and you been given the job of eliminating carp from a stream, so that rain-
bow trout and other fish can thrive there. How would you do it? Would you
take any or all of the following actions?

• Employ hundreds of amateur fishermen to fish with rods and hooks
and offer a bounty payment for each koi carp caught.

• Place nets at strategic places, with regular inspections to kill all koi carp
and release all other fish.

Note: The photo here is of the Waikato River in Hamilton, New Zealand.
1



2 chapter 1 The Challenge

Figure 1.1 New Zealand’s first electrofishing boat looks like something from a
science fiction movie. But Waikato University’s Te Waka Hiko Hi Ika is the first
successful electrofishing boat. It has spectacular electronic prongs in front that
dangle under the water and generate a 5 kilowatt pulsating electronic fishing field.
Fish are temporarily stunned by the field and float to the surface. Pest fish, such as
koi carp, can be scooped out with a net, while other fish are left unharmed. Some
advantages of electrofishing over conventional fish-capturing techniques, such as
netting, are that it captures fish of all sizes and from all locations, including
bottom-dwelling ones. Source: Centre for Biodiversity and Ecology Research, University of
Waikato, Hamilton, NZ. Used with permission.

• Use an advanced technology solution, such as an electrofishing boat
(see Figure 1.1) that attracts all fish and allows pest fish like koi carp
to be killed while other fish can be returned to the water unharmed
[HOL05, H+05].

Now imagine that you are the validation manager of a software devel-
opment company that is finalizing the development of a new smart card
payment system for car parking. To thoroughly test your system, which of
the following actions would you take?



1.1 What Do We Mean by Testing? 3

• Employ a dozen full-time testers to manually design tests, record the
tests on paper, and then manually perform the tests each time the
system changes.

• Manually design a set of tests and then use automated test execution
tools to rerun them after every change and report tests that fail.

• Use state-of-the-art tools that can automatically generate tests from a
model of your requirements, can regenerate updated test suites each
time the requirements change, and can report exactly which require-
ments have been tested and which have not.

In both cases, the third solution takes advantage of new technology to
get faster results with lower costs than traditional methods, and it ensures
a more systematic, less ad hoc, coverage (of the fish in the stream, or the
failures in the program).

This book will show you how to test your software systems using the
third approach. That is, it will explain how a new breed of test genera-
tion tools, called model-based testing tools, can improve your testing practices
while reducing the cost of that testing.

1.1 what do we mean by testing?
Testing is an activity performed for evaluating product quality, and for improving
it, by identifying defects and problems.

This definition of testing, from the IEEE Software Engineering Body of
Knowledge (SWEBOK 2004),1 describes the top-level goals of testing. It goes
on to give more detail:

Software testing consists of the dynamic verification of the behavior of a pro-
gram on a finite set of test cases, suitably selected from the usually infinite
executions domain, against the expected behavior.

We’ve emphasized in italics the words that capture the key features of soft-
ware testing; these are their definitions as they relate to this book.

Dynamic: This means that we execute the program with specific input val-
ues to find failures in its behavior. In contrast, static techniques (e.g.,
inspections, walkthroughs, and static analysis tools) do not require exe-
cution of the program. One of the big advantages of (dynamic) testing

1The SWEBOK can be downloaded from http://www.swebok.org or purchased from the IEEE.



4 chapter 1 The Challenge

is that we are executing the actual program either in its real environment
or in an environment with simulated interfaces as close as possible to the
real environment. So we are not only testing that the design and code are
correct, but we are also testing the compiler, the libraries, the operating
system and network support, and so on.

Finite: Exhaustive testing is not possible or practical for most real programs.
They usually have a large number of allowable inputs to each operation,
plus even more invalid or unexpected inputs, and the possible sequences
of operations is usually infinite as well. So we must choose a smallish
number of tests so that we can run the tests in the available time. For ex-
ample, if we want to perform nightly regression testing, our tests should
take less than 12 hours!

Selected: Since we have a huge or infinite set of possible tests but can afford
to run only a small fraction of them, the key challenge of testing is how to
select the tests that are most likely to expose failures in the system. This
is where the expertise of a skilled tester is important—he or she must use
knowledge about the system to guess which sets of inputs are likely to
produce the same behavior (this is called the uniformity assumption) and
which are likely to produce different behavior. There are many informal
strategies, such as equivalence class and boundary value testing,2 that can
help in deciding which tests are likely to be more effective. Some of these
strategies are the basis of the test selection algorithms in the model-based
testing tools that we use in later chapters.

Expected: After each test execution, we must decide whether the observed
behavior of the system was a failure or not. This is called the oracle prob-
lem. The oracle problem is often solved via manual inspection of the test
output; but for efficient and repeatable testing, it must be automated.
Model-based testing automates the generation of oracles, as well as the
choice of test inputs.

Before describing the various kinds of testing, we briefly review some
basic terms according to standard IEEE software engineering terminology.

A failure is an undesired behavior. Failures are typically observed during
the execution of the system being tested.

A fault is the cause of the failure. It is an error in the software, usually
caused by human error in the specification, design, or coding process. It is
the execution of the faults in the software that causes failures. Once we have

2See Lee Copeland’s book [Cop04] for a comprehensive overview of the most popular informal
test design techniques.



1.1 What Do We Mean by Testing? 5

Figure 1.2 Different kinds of testing. Source: From Tretmans [Tre04]. Used with
permission.

observed a failure, we can investigate to find the fault that caused it and
correct that fault.

So testing is the activity of executing a system in order to detect failures.
It is different from, and complementary to, other quality improvement tech-
niques such as static verification, inspections, and reviews. It is also distinct
from the debugging and error-correction process that happens after testing
has detected a failure.

In fact, there are many kinds of testing. Figure 1.2 shows one way to clas-
sify various kinds of testing along three dimensions (adapted from [Tre04]).
One axis shows the scale of the system under test (SUT), ranging from small
units up to the whole system. Unit testing involves testing a single unit at



6 chapter 1 The Challenge

a time, such as a single procedure or a single class. Component testing tests
each component/subsystem separately, and integration testing aims at testing
to ensure that several components work together correctly. System testing in-
volves testing the system as a whole. Model-based testing can be applied to
any of these levels.

Another axis shows the different characteristics that we may want to
test. The most common kind of testing is functional testing (also known
as behavioral testing), where we aim to find errors in the functionality
of the system—for example, testing that the correct outputs are pro-
duced for given inputs. Robustness testing aims at finding errors in the sys-
tem under invalid conditions, such as unexpected inputs, unavailability
of dependent applications, and hardware or network failures. Performance
testing tests the throughput of the system under heavy load. Usability
testing focuses on finding user interface problems, which may make the soft-
ware difficult to use or may cause users to misinterpret the output.

The main use of model-based testing is to generate functional tests, but
it can also be used for some kinds of robustness testing such as testing the
system with invalid inputs. It is not yet widely used for performance testing,
but this is an area under development.

The third axis shows the kind of information we use to design the tests.
Black-box testing means that we treat the SUT as a “black box,” so we do not
use information about its internal structure. Instead, the tests are designed
from the system requirements, which describe the expected behavior of that
black box. On the other hand, white-box testing uses the implementation
code as the basis for designing tests. For example, we might design a set of
tests to ensure statement coverage of a procedure, meaning that each statement
will be executed by at least one of the tests.

Much has been written about the pros and cons of black-box and white-
box testing. However, the most common practice is to use black-box testing
techniques to design functional and robustness tests. Some testers then use
white-box coverage metrics to check which parts of the implementation have
not been tested well so that extra tests can be designed for those cases. Model-
based testing is a form of black-box testing because tests are generated from
a model, which is derived from the requirements documentation. The next
section describes model-based testing in more detail.

1.2 what is model-based testing?
Model-based testing has become a bit of a buzzword in recent years, and we
have noticed that people are using the term for a wide variety of test gen-



1.2 What Is Model-Based Testing? 7

eration techniques. The following are the four main approaches known as
model-based testing.

1. Generation of test input data from a domain model
2. Generation of test cases from an environment model
3. Generation of test cases with oracles from a behavior model
4. Generation of test scripts from abstract tests

We will briefly describe these approaches and then explain why this book
focuses mostly on the third meaning of model-based testing and covers the
other meanings more briefly.

When model-based testing is used to mean the generation of test input
data, the model is the information about the domains of the input values
and the test generation involves clever selection and combination of a sub-
set of those values to produce test input data. For example, if we are test-
ing a procedure that has three inputs, A : {red , green, yellow}, B : 1..4, and
C : {car, truck,bike}, then we might use a pairwise algorithm3 to generate a
minimal set of tests that exercise all possible pairs of input values. For this
example, a good pairwise algorithm would generate just 12 tests4 rather than
the 3×4×3 = 36 tests that we would need if we tried all possible combina-
tions. The automatic generation of test inputs is obviously of great practical
importance, but it does not solve the complete test design problem because
it does not help us to know whether a test has passed or failed.

The second meaning of model-based testing uses a different kind of
model, which describes the expected environment of the SUT. For example,
it might be a statistical model of the expected usage of the SUT [Pro03] (op-
eration frequencies, data value distributions, etc.). From these environment
models it is possible to generate sequences of calls to the SUT. However, like
the previous approach, the generated sequences do not specify the expected
outputs of the SUT. It is not possible to predict the output values because the
environment model does not model the behavior of the SUT. So it is difficult
to determine accurately whether a test has passed or failed—a crash/no-crash
verdict may be all that is possible.

3See Chapter 4 for further discussion of pairwise testing, and the Pairwise website, http://www.
pairwise.org, for tools, articles, and case studies on pairwise testing.
4For example, the 12 triples (red ,1, car), (red ,2, truck), (red ,3,bike), (red ,4, car), (green,
1, truck), (green,2, car), (green,3, truck), (green,4,bike), (yellow,1,bike), (yellow,2,bike),
(yellow,3, car), (yellow,4, truck) cover all pairs of input values. That is, all 12 combinations of
color and number appear; so do all 12 combinations of number and vehicle and all 9 combinations
of color and vehicle.



8 chapter 1 The Challenge

The third meaning of model-based testing is the generation of executable
test cases that include oracle information, such as the expected output values
of the SUT, or some automated check on the actual output values to see if
they are correct. This is obviously a more challenging task than just generat-
ing test input data or test sequences that call the SUT but do not check
the results. To generate tests with oracles, the test generator must know
enough about the expected behavior of the SUT to be able to predict or
check the SUT output values. In other words, with this definition of model-
based testing, the model must describe the expected behavior of the SUT,
such as the relationship between its inputs and outputs. But the advantage
of this approach is that it is the only one of the four that addresses the whole
test design problem from choosing input values and generating sequences of
operation calls to generating executable test cases that include verdict infor-
mation.

The fourth meaning of model-based testing is quite different: it assumes
that we are given a very abstract description of a test case, such as a UML
sequence diagram or a sequence of high-level procedure calls, and it focuses
on transforming that abstract test case into a low-level test script that is ex-
ecutable. With this approach, the model is the information about the struc-
ture and API (application programming interface) of the SUT and the details
of how to transform a high-level call into executable test scripts. We discuss
this process in more detail in Chapter 8.

The main focus of this book (Chapters 3 to 7 and 9 and 10) is the third
meaning of model-based testing: the generation of executable test cases that
include oracle information, based on models of the SUT behavior. This gen-
eration process includes the generation of input values and the sequencing
of calls into test sequences, but it also includes the generation of oracles that
check the SUT outputs. This kind of model-based testing is more sophis-
ticated and complex than the other meanings, but it has greater potential
paybacks. It can automate the complete test design process, given a suitable
model, and produces complete test sequences that can be transformed into
executable test scripts.

With this view of model-based testing, we define model-based testing
as the automation of the design of black-box tests. The difference from the
usual black-box testing is that rather than manually writing tests based on
the requirements documentation, we instead create a model of the expected
SUT behavior, which captures some of the requirements. Then the model-
based testing tools are used to automatically generate tests from that model.

Key Point Model-based testing is the automation of the design of
black-box tests.



1.2 What Is Model-Based Testing? 9

That leads us to two questions: What is a model? What notation should we
use to write models? Here are two illuminating definitions of the word model,
from the American Heritage Dictionary [Ame00]:

• A small object, usually built to scale, that represents in detail another,
often larger object.

• A schematic description of a system, theory, or phenomenon that
accounts for its known or inferred properties and may be used for
further study of its characteristics.

These definitions show the two most important characteristics of models
that we want for model-based testing: the models must be small in relation
to the size of the system that we are testing so that they are not too costly to
produce, but they must be detailed enough to accurately describe the char-
acteristics that we want to test. A UML class diagram or an informal use
case diagram by itself is not precise or detailed enough for model-based test-
ing; some description of the dynamic behavior of the system is needed. Yes,
these two goals (small, detailed) can be in conflict at times. This is why it is
an important engineering task to decide which characteristics of the system
should be modeled to satisfy the test objectives, how much detail is useful,
and which modeling notation can express those characteristics most natu-
rally. Chapter 3 gives an introduction to various kinds of modeling notations
and discusses guidelines for writing effective models for testing purposes.

Once we have a model of the system we want to test, we can then use one
of the model-based testing tools to automatically generate a test suite from
the model. There are quite a few commercial and academic model-based
testing tools available now, based on a variety of methods and notations.
Many of the tools allow the test engineer to guide the test generation process
to control the number of tests produced or to focus the testing effort on
certain areas of the model.

The output of the test case generator will be a set of abstract test cases,
each of which is a sequence of operations with the associated input values
and the expected output values (the oracle). That is, the generated test cases
will be expressed in terms of the abstract operations and values used by the
model.

The next step is to transform (concretize) these abstract test cases into
executable test scripts. This may be done by the model-based testing tool,
using some templates and translation tables supplied by the test engineer.
The resulting executable tests may be produced directly in some program-
ming language, such as JUnit tests in Java, or in a dynamic language such
as Tcl or Python, or in a dedicated test scripting language. These executable



10 chapter 1 The Challenge

test scripts can then be executed to try to detect failures in the SUT. The
execution of the tests may be controlled and monitored by a test execution
tool—different varieties of these tools are available for various types of SUT.
The process of transforming the abstract test cases into executable tests and
executing them is covered in Chapter 8.

In the next chapter, we will discuss the benefits and limitations of model-
based testing and its impact on the software life cycle. But before that, let us
look at a realistic example of model-based testing to get a clearer picture of
what it involves.

1.3 a smart card example

To give a good overview of what model-based testing can do, we will show
how we can use it to test a simplified smart card system. Figure 1.3 shows a
UML class diagram for this system. We will not describe the system in detail
or show the entire model, but we note that it is sophisticated enough to allow
each smart card to be used for a variety of applications, such as banks and
retailers, and it even supports loyalty programs.

The Smartcard class in Figure 1.3 is annotated with �SUT� to indicate
that it is the SUT. A Smartcard instance can contain several Applications
and one of those Applications may be the selectedApplication. Each
Application can be either an EPurse application, which stores real money,
or a Loyalty application, which keeps track of reward points and prizes such
as free trips. Finally, each Application has one or more Profiles associ-
ated with it that define the PINs (personal identification numbers) needed
to use that Application and indicate whether those PINs have been entered
correctly.

This class diagram by itself is not enough. It tells us the classes that make
up the system, their data fields, and the signatures of the methods, but it says
nothing about the behavior of those methods. To get a UML model that is
suitable for model-based testing, we need to add details about the behavior
of the methods shown in the class diagram.

UML offers many ways and notations for specifying behavior. The two
that we will illustrate in this example are OCL postconditions and state ma-
chine diagrams. We will explain these notations more fully in Chapter 3, so
here we have just a brief introduction.

OCL (Object Constraint Language) is a textual notation, somewhat sim-
ilar to the expression part of a programming language, that can be used to
define constraints within class diagrams or specify preconditions or postcon-
ditions for operations. For example, here is an OCL postcondition to specify



1.3 A Smart Card Example 11

Figure 1.3 UML class diagram for the smart card system.



12 chapter 1 The Challenge

the behavior of the credit operation of the EPurse class. Note that the ex-
pression self.balance@pre gives the value of the balance field before the
method executes, so this postcondition says that the balance is increased by
amount if this EPurse is activated, but is left unchanged otherwise.

post: if (self.isActivated) then

self.balance = self.balance@pre + amount

else

self.balance = self.balance@pre

endif

Here is a more complex example, for the activate operation of the
EPurse class. It illustrates some of the OCL operators for collections,
which allow us to write expressive but concise conditions. The expression
self.epurseApplication.profiles navigates through the class diagram,
starting from the current EPurse object and returning its collection of Pro-
file objects. Then the .userType->excludes(bank) part checks that none of
those Profile objects are BANK profiles. The second if generates the same
set of Profile objects and then checks that there is a BANK profile among
them and that a valid PIN has been entered for that BANK profile.

post: if (self.epurseApplication.profiles.userType

->excludes(USER_TYPES::BANK)) then

result = MESSAGES::ERROR

else

if (self.epurseApplication.profiles->

exists(p:Profile | p.userType

= USER_TYPES::BANK and p.pinOK)) then

result = MESSAGES::SUCCESS and self.isActivated

else

result = MESSAGES::BANK_NOT_IDENTIFIED

endif

endif

Some class behaviors are better specified with state machine diagrams.
UML state machine diagrams represent the various states that an object may
be in and the transitions between those states. Figure 1.4 shows a state ma-
chine for the Smartcard class. Note that some transitions have labels in the
form Event[Guard]/Action, which means that the transition is triggered by
Event but is taken only if Guard evaluates to true. When the transition is
taken, then Action (which is written in OCL in this example) can specify
how the instance variables of the class are modified. The Guard and Action
parts are optional, so the ejectCard() event is always enabled and has an



1.3 A Smart Card Example 13

Figure 1.4 UML state machine for the Smartcard class.

empty action that does not change any variables. The transitions within the
“Holder not identified” state are self-transitions that can change state variables
and produce outputs, but do not move to a different state.

In addition to these details about the behavior of objects, it is useful to
give a concrete scenario for testing purposes. Figure 1.5 shows a UML object
diagram that specifies a single smart card that can interact with a bank and
an airline.

After specifying all these elements, we can finally use a model-based test-
ing tool to automatically generate some tests. We can choose various crite-
ria to determine how many tests we want. For example, we might choose
all-transitions coverage for a state machine to get a basic set of tests or all-
transition-pairs coverage to get a larger set of tests that tests interactions be-
tween adjacent pairs of transitions. For the methods specified with OCL
postconditions, we could choose basic branch coverage to make sure that
all branches of if-then-else constructs are tested or something like Modified
Condition/Decision Coverage (MC/DC) to give a larger set of tests that tests
each condition more thoroughly and independently. Most tools offer a vari-
ety of coverage criteria or allow you to specify manually exactly which class
or method or sequence of events you want to test.



14 chapter 1 The Challenge

Figure 1.5 UML object diagram that defines an initial state.

For example, if we use the LTG/UML tool from LEIRIOS5 Technolo-
gies, with its default settings of branch coverage and transition coverage, we
get 29 abstract tests. Each abstract test is a short sequence of operation calls
with appropriate input values, plus the expected output value of the method
if it has an output. In addition, some oracle information is included (shown
in italics in the following sample test), saying how the internal state of each
object should have changed after each method call.

Here is one of the abstract tests that is generated, showing a success-
ful withdrawal of one cent from the moneo application within the card. We
write the actual test invocations in bold, where Obj.M(. . .) = R means that
method M of object Obj should be called and its expected return value is R.

test001 =

moneo.verifyPin(pin=RIGHT_PIN, profileId=1)=SUCCESS;

bankProfile={id=1, userPIN=RIGHT_PIN, pinOK=true,

userType=BANK}

5LEIRIOS Technologies is a software company that produces model-based testing tools and other
model-based testing services. LTG/UML is the LEIROS Test Generator tool for UML.



1.3 A Smart Card Example 15

moneo.epurse.activate(bank=BANK)=SUCCESS;

moneo.epurse={isActivated=true, balance=0}
moneo.epurse.credit(amount=1);

moneo.epurse={isActivated=true, balance=1}
moneo.epurse.pay(amount=1);

moneo.epurse={isActivated=true, balance=0}

Why does this test do credit(1) before the pay(1) call? Because in this model,
the precondition of pay is that balance >= amount, so the model-based test
generation determined that it was necessary to increase the initial balance
(which was 0) before the pay method could be tested. Similarly, it generated
the necessary setup code to verify that the PIN was correct and to activate
the bank’s EPurse.

We say that this is an abstract test because it is written using the con-
cepts, classes, and values of the model rather than the real SUT. The actual
concrete API of the SUT may be quite different from the abstract model. So
we need to define how each abstract method maps to the concrete operations
of the system, how the abstract data values should be transformed into con-
crete data, and whether we can use query methods to observe some of the
internal states of the objects. Most model-based testing tools provide some
way to define these mappings, either by writing an adaptation layer that gives
the SUT an interface similar to the model or by writing some templates in
the target language for your tests so that the model-based testing tool can
translate all the abstract tests into executable code.

For example, the preceding abstract test could be translated into a script-
ing language, such as Tcl, or into C++ or Java. Listing 1.1 shows how it might
look if we translated it into Java code that uses the JUnit testing framework6

(we assume that the RIGHT_PIN constant is mapped to 3042 and that we have
query methods for accessing the pinOK and id fields of the Profile class and
the balance field of the EPurse class, but not for accessing other data fields).

This example illustrates some of the tradeoffs of model-based testing.
The tests do not come for free; there is the cost of writing the model or

6JUnit is a widely used Java library for unit testing of Java applications. See http://www.junit.org
for details and downloads.



16 chapter 1 The Challenge

Listing 1.1 The JUnit test script generated from test001.

public class extends junit.framework.TestCase

{

private Smartcard smartcard;

private Application moneo;

private Application airline;

public setUp()

{

/* Code to set up the initial network of objects */

... reinitializes smartcard, moneo, airline, etc.

}

public void test001()

{

MESSAGES result = moneo.verifyPin(3042,1);

assertEqual(result, MESSAGES.SUCCESS);

assertTrue(moneo.getProfile().pinOk());

assertTrue(moneo.getProfile().getId() == 1);

result = moneo.getEPurse().activate(USER_TYPES.BANK);

assertEqual(result, MESSAGES.SUCCESS);

assertEqual(moneo.getEPurse.getBalance() == 0);

moneo.epurse.credit(1);

assertEqual(moneo.getEPurse.getBalance() == 1);

moneo.epurse.pay(1);

assertEqual(moneo.getEPurse.getBalance() == 0);

}

// ...the other 28 tests...

}

at least of making an existing model precise enough so that it can be used
for model-based testing. In this example, it is likely that the class diagram
already existed but that the OCL postconditions for eight methods, the state
machine diagram, and the object diagram were developed specifically for the
model-based testing. So the cost of using model-based testing is mostly the



1.4 Summary 17

time to write these 2 or 3 pages of model details. The benefit is that we can
then automatically obtain a comprehensive set of 29 executable tests that
cover all the different behaviors of each method and class.

The cost of writing these 10 to 15 pages of tests manually would have
been greater than the additions we made to the model, and the coverage of
the manually written test set would probably be less systematic. Furthermore,
with model-based testing we can easily generate a larger test suite from the
same model or regenerate our test suite each time we change the system
requirements and therefore the model.

Other advantages of the model-based approach are discussed in the next
chapter. We will also see there how model-based testing changes the software
life cycle and the software development process.

1.4 summary

Model-based testing is the automation of black-box test design. A model-
based testing tool uses various test generation algorithms and strategies to
generate tests from a behavioral model of the SUT.

The model must be concise and precise: concise so that it does not take
too long to write and so that it is easy to validate with respect to the require-
ments but precise enough to describe the behavior that is to be tested.

Test cases (including test data and oracles) can be automatically gener-
ated from the model using a model-based testing tool. The test engineer can
also control the tool to focus the testing effort and manage the number of
tests that are generated.

The tests produced from the model are abstract tests, so they must be
transformed into executable tests. This also requires some input from the
test engineer, but most model-based testing tools provide assistance with this
process.

1.5 further reading

To understand model-based testing, it helps to have a good knowledge of
general testing practices and techniques, so we will start by recommending a
few good testing books.

Myers’s book, The Art of Software Testing [Mye79], is a classic in the test-
ing area—some sections are now a little out of date, but the first few chap-
ters are well worth reading, and it has good descriptions of some widely used



18 chapter 1 The Challenge

test design strategies, such as cause-effect and boundary testing.7 Beizer’s
book [Bei90] covers a range of manual test design techniques from models,
including path testing, data-flow testing, logic-based testing, graph-based
testing, and state-machine-based testing. Whittaker’s book, How to Break
Software [Whi03], contains a series of testing techniques, called “attacks,”
that target common software errors. The list is based on an empirical analy-
sis of a large number of bugs found in commercial software. Copeland’s
book [Cop04] gives an overview of classic and recent test design techniques.
He does not explicitly introduce model-based testing, but many of the test
design techniques that he discusses are used by model-based testing tools to
automate test case generation.

Binder’s 1200-page book on testing object-oriented systems [Bin99] is
the biggest and best guide to designing and automating tests for object-
oriented applications. He explains that, in one sense, all testing must be
model-based, whether the model is just in the tester’s mind or is a sketch on
paper or is a formal model that can be analyzed by tools (which is the focus
of our book). He covers a wide variety of techniques for designing tests from
state machine models, combinational logic and the Unified Modeling Lan-
guage (UML), plus a large library of patterns for writing tests. The scope of
his book is much broader than ours because we focus more on tool-supported
model-based testing and on the kinds of models and test generation tech-
niques that we have found to work best with automated tools.

For more information about model-based testing, we suggest that you
go online to the website associated with this book (http://www.cs.waikato.ac.
nz/∼markut.mbt). There you will find up-to-date links to other model-based
testing resources and lists of model-based testing tools and examples.

If you want to know more about the theory behind model-based testing,
the book Model-Based Testing of Reactive Systems (BJK+05) is a valuable col-
lection of survey papers on testing of finite state machines, testing of labeled
transition systems, model-based test case generation, tools and case studies,
and so forth.

7A second edition (2004) updates some chapters and covers new kinds of testing such as extreme
testing and Internet testing.


	The challenge
	What Do We Mean by Testing?
	What Is Model-Based Testing?
	A Smart Card Example
	Summary
	Further Reading


