
11

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

2 MDSD – Basic Ideas and Terminology

This chapter introduces the most important basic concepts of Model-Driven Software Develop-
ment, as well as the motivation for them. We prefer the abbreviation MDSD for Model-Driven
Software Development over the less-precise variant ‘MDD’ (Model Driven Development). The
first abbreviation has become more popular in the software modeling community over the past
two years.

The Object Management Group’s Model Driven Architecture (MDA) is both a flavor and a
standardization initiative for this approach. Our focus here is its practicability in software
projects. In many respects our concepts and experiences are congruent with those of OMG’s
MDA vision, but in other respects they differ. We point out the latter and discuss them. Apart
from this, the MDA terminology, due to its standardization and pervasiveness, is extremely use-
ful for providing an introduction to this topic, and this is exactly how you should approach the
second part of this chapter: MDA provides the basic terminology for MDSD. The chapter’s third
part introduces the concepts that have been missing until then and which are required to under-
stand the case study.

2.1 The Challenge

In the twenty-first century software is all around us. The software industry has become one of
the largest on the planet, and many of today’s most successful businesses are software produc-
tion companies or offer services in the software field.

Software is today a relevant part of the machinery of all technology-based and many serv-
ice-based businesses. High software development costs have significant economic impact,
and bad software design, which impairs the productivity of users, can have even more serious
consequences.

Many manufacturers of business software are so involved in dealing with the constantly-
changing implementation technologies that productivity effort and risk management fall behind.
Neither off-shoring, nor the newest generation of infrastructure software such as integrated
development environments (IDEs), EAI1 or BPM2 tools and middleware, are much use here. In
most cases, productivity problems are the result either of insufficient consistency or openness in

1 EAI = Enterprise Application Integration
2 BPM = Business Process Management

c02.fm Page 11 Friday, March 31, 2006 12:26 PM

12 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

the application architecture, or of inadequate management or dependencies between various
software components and unsuitable software development processes.

2.1.1 Historical View

The nineteen-nineties were mainly influenced by two software development paradigms. At the
beginning of the nineties, these were Computer Aided Software Engineering (CASE) and
fourth-generation languages (4GLs). In the second half of that decade, Object-Orientation
entered the mainstream.

CASE methods and the corresponding tools were expensive, and proprietary approaches col-
lided with a growing awareness of open standards. Many companies had bad experiences with
some manufacturers, so eventually not only the tools but also the model-based software develop-
ment approach were dumped. Object-orientation did not keep all of its promises, but it did
become the foundation of component technologies, and object-oriented languages successfully
replaced the previous generation of programming languages.

With the departure of 4GLs and CASE, OO modeling tools became the center of tool manu-
facturers’ attention, resulting in the Unified Modeling Language (UML) notation standard and
in tools based on a ‘round-trip’ philosophy. This enables smooth switching between UML mod-
els and the corresponding implementation code. Superficially, UML tools impress with their
ability to keep models and code synchronized. However, on closer inspection one finds that
such tools do not immediately increase productivity, but are at best an efficient method for gen-
erating good-looking documentation3. They can also help in understanding large amounts of
existing code.

2.1.2 The Status Quo

The boundaries between modern UML tools and Integrated Development Environments (IDEs)
are disappearing. For example, some UML tools have ‘comfortable’ code editors and integrated
compilers, while traditional IDEs are equipped with UML modeling components. Software
development tools, meanwhile, provide increasingly smart wizards that support users in the
application of design patterns, the creation of user interfaces, and the generation of code skele-
tons for use with popular frameworks.

Although this approach constitutes an improvement compared to older UML tools that were
only able to generate empty class skeletons, they strongly resemble CASE tools, as they are sim-
ilarly inflexible. If, for example, a design pattern changes, today’s UML tools are unable to trans-
fer the effects automatically and iteratively to the source code of an application system without
losing the abstraction.

Eventually, the weaknesses of mainstream IDEs and UML tools led to the formation of the
OMG’s MDA initiative. Appropriate tools allow users to define precisely how UML models are
to be mapped to combinations of company-specific implementation technology. Unfortunately,
in this context some traditional CASE tool manufacturers have spotted a second opportunity to
offer their tools in a new package, as commercial MDA products. The tools cannot however be

3 They offer a different graphical view of the code, but no real abstraction.

c02.fm Page 12 Friday, March 31, 2006 12:26 PM

2.2 The Goals of MDSD 13

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

customized to meet individual requirements or customer needs, as they still adhere to the ‘one
size fits all’ dogma. Most tools listed on the OMG’s Web pages, however, actually deserve the
label ‘MDA tool’. In parallel with the progress in the field of software development tools, a sig-
nificant evolution has also taken place in the field of software development methods, which has
hardly been addressed yet in MDA.

The rapid adoption of agile approaches demonstrates an increasing resistance to traditional
software development methods, which usually require a large amount of manually-created prose
text documents. Today it is openly acknowledged that traditional methods required the produc-
tion of such documentation, but in practice this cannot be reconciled with the market’s demand
for lower software development costs. Admittedly, agile methods such as Extreme Programming
(XP) [Bec00] alone do not offer sufficient guidance for the creation of high quality software,
and they do not scale to more complex projects. The odd misbelief that they can compensate for
a development team’s lack of analytical abilities or software design experience is particularly
problematic.

2.2 The Goals of MDSD

Before we proceed to discuss the concepts and terminology of MDSD, we want to make a few
comments on the goals of MDSD. However, we can only touch on how these can be achieved
here.

• MDSD lets you increase your development speed. This is achieved through automation:
runnable code can be generated from formal models using one or more transformation
steps.

• The use of automated transformations and formally-defined modeling languages lets you
enhance software quality, particularly since a software architecture – once it has been
defined – will recur uniformly in an implementation.

• Cross-cutting4 implementation aspects can be changed in one place, for example in the
transformation rules. The same is true for fixing bugs in generated code. This Separation
of Concerns [Lad03] promises, among other things, better maintainability of software sys-
tems through redundancy avoidance and manageability of technological changes.

• Once they have been defined, architectures, modeling languages and transformations can
be used in the sense of a software production line for the manufacture of diverse software
systems. This leads to a higher level of reusability and makes expert knowledge widely
available in software form.

• Another significant potential is the improved manageability of complexity through
abstraction. The modeling languages enable ‘programming’ or configuration on a more
abstract level. For this purpose, the models must ideally be described using a problem-
oriented modeling language.

• MDSD offers a productive environment in the technology, engineering, and management
fields through its use of process building blocks and best practices. It thus contributes to
meeting the goals described here.

4 Aspects that cannot be easily located in a single module.

c02.fm Page 13 Friday, March 31, 2006 12:26 PM

14 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

• Finally, based on the OMG’s focus and history, the organization’s primary motivations for
MDA are interoperability (manufacturer-independence through standardization) and port-
ability (platform-independence) of software systems. These goals that can be met only if a
standardization – such as the OMG’s MDA effort – is achieved. The same motivation has
already led to the definition of CORBA5. To achieve these goals, the OMG aims at sepa-
rating the specification of a specific functionality from its implementation on a specific
platform. The MDA serves the purpose of providing guidelines and standards that should
lead to a corresponding structuring of system specifications in the form of models.

Most of the goals presented here are not new. On the contrary, they represent something like the
IT industry’s ‘Holy Grail’: no-one is inclined to believe in beneficial promises anymore, and
rightly so. But if you take a look at the history of IT or computer science, you can see that an
ongoing evolution is taking place. High-level languages, object-orientation and component sys-
tems were milestones on the road toward meeting these goals – and MDSD is another. This par-
adigm takes us a small – or even a big – step closer to these goals.

2.3 The MDSD Approach

Each software has its inherent construction paradigms, expressed in the source code – an inner
structure. How sound and how pronounced this structure is directly influences development
speed, quality, performance, maintainability, interoperability, and portability of the software.
Those are extremely important key economic factors.

The problem is that it is difficult to recognize the actual construction paradigms on a pro-
gramming language level, because their abstraction level is much lower. To put it differently, the
much-treasured inner structure is present in a cloudy, distributed, and of course also a strongly
individualized form. It is no longer directly represented in the system itself. Its quality varies,
depending on the skills and interpretation of the developers.

The idea of modeling is not exactly new, and is used mostly for sophisticated development
processes to document a software’s inner structure. Developers then try to counteract the inevita-
ble consistency problems with time-consuming reviews. In practice, these reviews and also the
models are among the first victims when time presses – from a pragmatic point of view, even
rightly so. Another approach is ‘round-trip’ or reverse engineering, which most UML tools offer,
which is merely source code visualization in UML syntax: that is, the abstraction level of these
models is the same as for the source code itself6. Visually it may be clearer, but the essential
problem remains the same.

Model-Driven Software Development offers a significantly more effective approach: Models
are abstract and formal at the same time. Abstractness does not stand for vagueness here, but for
compactness and a reduction to the essence. MDSD models have the exact meaning of program
code in the sense that the bulk of the final implementation, not just class and method skeletons,
can be generated from them. In this case, models are no longer only documentation, but parts of

5 CORBA: Common Object Request Broker Architecture (an OMG standard)
6 In the meantime, UML tools have been improved to handle the J2EE programming model and can thus represent an

EJB Bean through a UML class. However, abstraction cannot be taken any further than that, because the tool does
not ‘know’ the application architecture's concepts. Unique mapping to the source code is also impossible.

c02.fm Page 14 Friday, March 31, 2006 12:26 PM

2.3 The MDSD Approach 15

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

the software, constituting a decisive factor in increasing both the speed and quality of software
development. We emphasize ‘model-driven’ as opposed to ‘model-based’ to verbally highlight
this distinction.

The means of expression used by models is geared toward the respective domain’s problem
space, thus enabling abstraction from the programming language level and allowing the corre-
sponding compactness. All model-driven approaches have this principle in common, regardless
of whether the domain is labeled ‘software architecture’, ‘financial service systems’, ‘insur-
ances’, or ‘embedded systems’. To formalize these models, a higher-level Domain-Specific
Modeling Language (DSL) is required. From this ‘bird’s eye view’, it doesn’t matter whether this
is a UML-based language or not.

Besides formal and abstract models, ‘semantically rich’, domain-specific platforms make up
the second foundation pillar: prefabricated, reusable components and frameworks offer a much
more powerful basis than a ‘naked’ programming language or a technical platform like J2EE.
First and foremost, this means that the generator, which is supposed to transform the formal
model, will be simplified once the generated code can rest on APIs of significantly higher qual-
ity. The introduction of reusable frameworks, super classes, and components to avoid code
redundancy is not a new idea, but in the context of MDSD they serve additionally to intercept
the model transformation half-way in the form of a well-formed platform, which causes a signif-
icant complexity reduction of the code generators7.

Figure 2.1 shows the relationships in application development with MDSD.

Let’s take a look at an existing application or a reference implementation (the upper left cor-
ner of the diagram). These are unique items with individual structures. We can restructure the

7 The transformations become less complex because they don’t have to generate code that runs on low-level platforms,
but can assume that there is a platform that provides basic services. This reduces the complexity of the transforma-
tion, since the ‘abstraction gap’ is reduced.

Figure 2.1 The basic ideas behind Model-Driven Software Development.

Applikations-
Modell

Applikations-
Modell

CodeCode

Code of Application or
Reference Implementation

analyse separate

Platform

Individual
Code

Application
Model

DSL

Trans-
formations

uses creates

Generic
Code

Individual
Code

Schematic
Repetitive

Code

Schematic
Repetitive

Code

c02.fm Page 15 Friday, March 31, 2006 12:26 PM

16 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

code of these application in our minds so that three parts can be separated8 (the lower left
corner): a generic part that is identical for all future applications, a schematic part that is not
identical for all applications, but possesses the same systematics (for example, based on the
same design patterns), and finally an application-specific part that cannot be generalized. At
this point, we won’t make any statements about the significance of each part: in extreme
cases, the application-specific part can even be empty. Model-Driven Software Development
aims to derive the schematic part from an application model. Intermediate stages can occur
during transformation, but in any case DSL, transformation, and platform will constitute the
key elements. They must only be created once for each domain, for example ‘enterprise soft-
ware architecture’ or ‘inventory system for insurance’ (lower right).

2.4 Basic Terminology

This section introduces the most important concepts and terms of the MDA standard, to establish
the basic terminology for MDSD.

Domain-related specifications are defined in Platform-Independent Models (PIMs). To this
end, a formal modeling language is used that is specific to the concepts of the domain to be
modeled. In most cases, one would use UML that has been adapted via profiles to the respective
domain, not least because of its tool support (see Section 6.5). These domain-specific descrip-
tions are completely independent of the later implementation on the target platform. Such target
platforms can be, for example, CORBA, J2EE, .NET or proprietary frameworks/platforms.
Figure 2.2 illustrates this basic principle.

Via model transformation, usually automated with tools, Platform-Specific Models (PSMs)
are created from the Platform-Independent Models. These Platform-Specific Models contain
the target platform’s specific concepts. The implementation for a concrete target platform is

8 Where appropriate through refactoring.

Figure 2.2 The basic principle of MDA.

CORBA
Model

J2EE
Model

XML
Model

CORBA / C++
Code

J2EE / Java
Code

XML-
Code

Platform-IndependentModel
(PIM), via UML-Profile

Model-to-model transformation

Platform-SpecificModel
(PSM), via UML-Profile

Model-to-code transformation

Implementation

Domain-related
Specifications

c02.fm Page 16 Friday, March 31, 2006 12:26 PM

2.4 Basic Terminology 17

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

then generated with another tool-supported transformation based on one or more PSMs (see
Figure 2.3).

It is important to note that a PIM and a PSM are relative concepts – relative to the platform. In
the example shown above, the EJB-PSM is specific to the EJB 2.0 platform, yet it is independent
regarding its concrete, application server-specific realization.

Let’s look at another example. Figure 2.4 shows a small part of a PIM. It shows a class model
with two domain classes: Customer and Account. Both classes have the «Business Entity» ster-
eotype, and both have an attribute that is assigned the stereotype «UniqueID». The method
findByLastName features the stereotype «Query» under Customer.

Figure 2.3 PIM, PSM and transformation.

Figure 2.4 An example that illustrates the relationship between PIM, PSM and code.

PIM PSM
(Components)Transformation

PSM
(EJB 2.0)Transformation

PSM
(WLS 7.1)

Transformation

Code
(Java + XML) Transformation

PIM

1
<<UniqueID>> number : Integer
balance : Float

<<BusinessEntity>>
Account

<<Query>> findByLastName()

<<UniqueID>> id : String
lastName : String
firstName : String

<<BusinessEntity>>
Customer*

PSM (EJB)

1
<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer*

customeraccount

Code

public interface Account extends EJBObject {...}
public interface AccountHome extends EJBHome {...}
public abstract class AccountBean implements EntityBean {...}
public class AccountPK implements Serializable {...}

c02.fm Page 17 Friday, March 31, 2006 12:26 PM

18 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

The annotation of stereotypes on UML model elements allows us to change or specify the
meaning of an element. A class with the stereotype «Business Entity» is not just a simple class,
but is rather a self-contained entity in business applications. What this means in practice is
determined by transformations that define how a stereotype such as «Business Entity», for
example, is mapped to an existing platform such as J2EE.

Such an extension of the standard language vocabulary of UML through stereotypes is called
a (UML) profile. It is a standard mechanism specified by the OMG to ensure openness, and is
used here to define a formal modeling language. This formalization is mandatory for trans-
forming a UML model into an MDA model. The concepts «Business Entity», «UniqueID», and
«Query» are completely independent of the target platform. Dependency occurs through the
transformation from PIM to PSM. Here, we find the stereotypes that are specific to J2EE:
«EJBEntityBean», «PrimaryKeyField», and «EJBFinderMethod». These are also originally con-
cepts that acquire their meaning through transformations, in this case transformations into the
Java programming language.

The transformation eventually turns the PSM into source code, in which the concepts
described here can be found in their concrete manifestation.

2.4.1 An Overview of MDA Concepts

The Model

A model is an abstract representation of a system’s structure, function or behavior. MDA models
are usually defined in UML9. In principle, the MDA formally considers even classic program-
ming languages as MDA modeling languages that in turn maintain relationships with a platform.
Without a doubt this is correct, but we think that this approach occasionally hampers the elucida-
tion of concepts, so from now on we will keep the terms model and modeling language clearly
separate from the terms program and programming language.

UML models are not per se MDA models. The most important difference between common
UML models (for example analysis models) and MDA models is that the meaning (semantics)
of MDA models is defined formally. This is guaranteed through the use of a corresponding mod-
eling language which that is typically realized by a UML profile and its associated transforma-
tion rules. We discuss these mechanisms in greater detail later in this chapter. All in all, this
means that the mapping of a model to an existing platform is clearly defined.

The Platform

At first the MDA says nothing about the abstraction level of platforms. Platforms can build on
each other, for example an Intel PC is a platform for Linux. Similarly, CORBA, J2EE, or Web
Services are possible platforms for an e-business system, and C++ is a possible platform for
CORBA. A well-defined application architecture, including its runtime system, can also be a
platform for applications. We consider the latter idea to be one of the key concepts for Model-
Driven Software Development and discuss it in greater detail later on.

9 According to the standard with MOF-based models – see Chapter 6.

c02.fm Page 18 Friday, March 31, 2006 12:26 PM

2.4 Basic Terminology 19

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

UML Profiles

UML profiles are the standard mechanism for expanding the vocabulary of UML. They contain
language concepts that are defined via basic UML constructs such as classes and associations,
stereotypes, tagged values, and modeling rules (constraints) – see Figure 2.5.

A UML profile is defined as an extension of the UML metamodel. A metamodel defines,
among other things, the basic constructs that may occur in a concrete model. Conceptually, a
model is an instance of a metamodel. Accordingly, the UML metamodel contains elements
such as Class, Operation, Attribute, or Association. The metamodel concept is one of the most
significant concepts in the context of MDSD. For this reason, we dedicate a whole chapter to it,
Chapter 6. However, at this stage we are content just to gain an intuitive understanding. The
relationship between the metamodel and profile is clarified in Figure 2.6, using a simplified
example – a UML profile for Enterprise Java Beans (EJB).

In the UML profile, the standard UML concepts Attribute, Class and Operation are supple-
mented by the specific concepts PrimaryKeyField, EJBEntityBean and EJBFinderMethod. In
addition, a new UML 2.0 language construct, an extension, is used. This is indicated by the
filled-in inheritance pointer. To avoid confusion, we made these larger.

Additional extensions are defined through tagged values and modeling guidelines in the form
of constraints. A constraint is usually annotated as a comment for the respective model elements:
we use the formal constraint language OCL here. Tagged values are rendered as attributes of the
stereotype.

A UML profile therefore offers a concrete notation for referencing metamodels from a model,
and determines whether a certain model is ‘well-formed’, that is, valid or not. In short, it defines
a formal modeling language as an extension of UML.

Further details of these relationships are elaborated on in Chapter 6.

Figure 2.5 Use of a UML profile.

1

{EJBPersistenceType=Container}

<<PrimaryKey>> number : int
balance : float

<<EJBEntityBean>>
Account

{EJBPersistenceType=Container}

<<EJBFinderMethod>>
findByLastName()

<<PrimaryKey>> id : String
lastName : String
firstName : String

<<EJBEntityBean>>
Customer

*

customeraccount

Stereotype

Tagged Value

context Account:
inv: number > 1000000 and
 number < 9999999

Constraint

c02.fm Page 19 Friday, March 31, 2006 12:26 PM

20 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

PIM and PSM

The separation of Platform-Independent Model (PIM) and Platform-Specific Model (PSM) is a
key concept of the OMG’s MDA. The background to this is as follows: concepts are more stable
than technologies, and formal models are potentially useful for automated transformations. The
PIM abstracts from technological details, whereas the PSM uses the concepts of a platform to
describe a system (see Figure 2.7). The reverse route – the extraction of a PIM from a PSM – is
extremely hard to automate, and in some cases impossible. That usually requires manual, intel-
lectual work, which is somewhat awkwardly termed Refactoring in the MDA specification. (The
meaning of Refactoring leans more toward equivalence transformations – see [Fow99].)

Figure 2.6 UML metamodel and UML profile for EJB (section of).

Figure 2.7 The relationship between PIM, PSM and platform.

UML Meta Model

<<metaclass>>
Class

<<metaclass>>
Attribute

<<metaclass>>
Operation

operation

0..*

attribute

0..*

Simple
EJB Profile

<<stereotype>>
PrimaryKey

EJBPersistenceType: (Bean, Container)

<<stereotype>>
EJBEntityBean

<<stereotype>>
EJBFinderMethod

context EJBEntityBean:
inv: attribute->exists(isStereoKinded("PrimaryKey")

PIMPIM'

PSM-1

Mapping

PSM-1'

Refactoring

Platform-1

based on

c02.fm Page 20 Friday, March 31, 2006 12:26 PM

2.5 Architecture-Centric MDSD 21

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

Transformations

Transformations map models to the respective next level, be it further models or source code.
In terms of the MDA, transformations must be definable flexibly and formally based on an
existing profile. This is a prerequisite for the desired automation of the transformation via
generators.

Most of the currently-available MDA/MDSD tools define their transformation rules not
between two metamodels, but instead for example use templates for the direct generation of
source code, without the programming language’s metamodel being formally known to the gen-
erator. However, generators exist that attach the transformation rules to the UML profile or,
respectively, its corresponding metamodel. Such approaches are absolutely workable in practice,
and are described in Chapters 3 and 9. The advantage of a transformation based on two meta-
models (source and target) is mostly the elegant mapping from one metamodel to another. We
doubt whether this paradigm is feasible for the generation of source code in practice, however.

Current generators solve this problem in a different way, through the use of proprietary trans-
formation languages. In this context, JPython, TCL, JSP, XSLT, or custom script/template lan-
guages are used10. The generator templates defined with these languages principally work like
macros and use the models as input data. As a consequence, at present no interoperability for
model transformations exists: standardization is on its way, however – see Section 10.5.

Chapter 12 provides a deeper insight into the MDA standard.

2.5 Architecture-Centric MDSD

In this section we want to supply the foundations that can enable you to understand the later case
study: one flavor of MDSD that is termed Architecture-Centric MDSD (AC-MDSD). The
approaches described here have evolved in the course of many years’ practical experience with
many projects, and particularly focus on practical usability.

2.5.1 Motivation

In contrast to the primary goals of the OMG for MDA, interoperability and software portability,
AC-MDSD aims at increasing development efficiency, software quality, and reusability. This
especially means relieving the software developer from tedious and error-prone routine work.
Today developers are confronted with extremely complex software infrastructures: application
servers, databases, Open Source frameworks, protocols, interface technologies and so on, which
all need be connected to create robust and maintainable high-performance software. Due to
increasing complexity in this field, the discipline of software architecture assumes more and
more importance.

The existence of a software infrastructure also implies the existence of corresponding infra-
structure code in the software systems using it. This is source code, which mostly serves to
establish the technical coupling between infrastructure and applications to facilitate the devel-
opment of domain-specific code on top of it. The J2EE/EJB programming model is a prime

10 These languages are themselves domain-specific languages for the domain of defining code-generation templates.

c02.fm Page 21 Friday, March 31, 2006 12:26 PM

22 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

example in this context: home and remote interfaces, Bean classes, descriptors – technical
code that admittedly contains domain-related information such as method signatures, but
which also exhibits a high degree of redundancy. After they have built four or five Enterprise
Beans manually, if not before, a J2EE developer will long for a generator to create this type of
infrastructure code – and can get this kind of support, typically in the shape of a preprocessor
or an IDE wizard.

At best, some infrastructure components will bring their own ‘helpers’ for the generation of
their own infrastructure code. The problem here is that these tools do not ‘know’ each other,
which is why they fall short of the possibility of a holistic and architecture-centric approach, as
we will see in the case study.

Ergo, the goal of AC-MDSD must be integrated automation of infrastructure code genera-
tion and, as a consequence, the minimization of redundant infrastructure code in application
development.

When we talk about infrastructure code, we are not talking about peanuts: measurements
[Chapter 18] show that between 60% and 70% of modern e-business applications typically con-
sists of infrastructure code.

2.5.2 Generative Software Architectures

As the adjective architecture-centric already implies, software architecture plays the central role
in the MDSD flavor discussed here. Actually, a holistic, generative approach for the creation of
infrastructure code can only work on the basis of a thoroughly worked-out and formalized soft-
ware architecture.

You can imagine this as follows: the more and the better a software architecture has been elu-
cidated, the more schematic the source code of applications using this architecture will become.
If the architecture’s definition consists only of slides representing the system infrastructure
(databases, application server, mainframes, networks and so on) and maybe additionally the
most important layers, it is likely that two developer teams will realize the same application in
entirely different ways – including the implementation of the software architecture: two unique
applications will be created.

If we assume however that a team of architects does some groundwork and develop some sort
of technical reference implementation that shows the concrete realization of the most important
software architectural aspects at the source code level, application developers can use this refer-
ence as a blueprint. Since the same technical realizations – notwithstanding domain variations –
recur in development practice (for example use of a specific interface technology or an MVC
pattern), the majority of the workload would be copy and paste programming. Of course, this
sort of programming is much more efficient than individually thought-out code created from
scratch.

In essence, the more of a software architecture’s definition has been fleshed out in source
code, the more schematic and repetitive the application development process will become. Sche-
matic programming means mostly copy and paste, followed by modifications that depend on the
domain context. This part of the work is clearly non-intellectual. If we pursue this train of
thought, it is not too far-fetched to leave the tedious and error-prone copy/paste/modify job to a
generator, which ultimately leads to a generative software architecture. Here, all implementation
details of the architecture’s definition – that is, all architectural schemata – are incorporated in

c02.fm Page 22 Friday, March 31, 2006 12:26 PM

2.5 Architecture-Centric MDSD 23

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

software form. This requires a domain model of the application as its input, and as output it gen-
erates the complete infrastructure code of the application – the very code that otherwise would
need to be generated via a tedious copy/paste/modify process. To this end, the model only needs
to have specific annotations that reference the architectural concepts defined as part of the gen-
erative software architecture.

Usually an architecture-centric UML profile is used for modeling in AC-MDSD. Thus a for-
mal, architecture-centric application design is created. The model-to-code transformations are
defined typically in the form of generator templates, so that the complete infrastructure code can
be generated automatically from the architecture-centric design model. It is important to note
that the model must already contain all relevant information for the generation of the infrastruc-
ture code – it is just a lot more abstract and more compact than the expanded code. The tem-
plates can use the entire infrastructure’s power and base the generated code on this platform, as
described in Section 2.3, simplifying the templates. Since the generation of the code is motivated
by technical and architectural concerns, a ‘semantic gap’ remains: developers must manually
create the application’s actual domain code, that is, the actual, domain-specific functionality that
is not infrastructure code.

There are various techniques for the integration of generated and manually-created code. We
look at them in detail in Chapter 8 and Chapter 9. Figure 2.8 illustrates these correlations. They
are explained further in the next chapter’s case study, using a practice-oriented, realistic example.

A generative software architecture is a powerful means to achieve the goals we listed in
Section 2.2. Its most important advantages are higher development speed and software quality,
better maintainability, and practical reusability – reusability within one application, but of
course even more beyond the boundaries of a single application. A generative software archi-
tecture can support an entire group or family of architecturally-similar applications – a soft-
ware system family. In effect, AC-MDSD deals with the creation of generative software
architectures for software system families, instead of creating unique products.

Figure 2.8 The principle of architecture-centric MDSD.

Application

Architecture-centric
Design Model

Infrastructure Code

Business
Logic Code

(manually developed)

Generative Architecture

Architecture-centric
UML Profile (DSL)

modeled using

Generator Templates
(Model-2-Code

Transformation)

Infrastructure
Components (Platform)

Generator

supported by

transformed into

c02.fm Page 23 Friday, March 31, 2006 12:26 PM

24 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

2.5.3 Architecture-Centric Design

The defined design language (typically a UML profile) contains the software system family’s
architecture concepts in the shape of a ‘platform-independent’11 abstraction. Designers use this
design language to create the domain’s application design in the form of PIMs. Other than when
dealing with the OMG–MDA vision, they will in most cases deliberately forego the transforma-
tion of these PIMs into explicitly visible, platform-dependent UML models (PSMs) when work-
ing with AC-MDSD.

Practical project experience has hitherto proved that this simplification is usually more useful
than the additional degrees of freedom gained with PSMs. As a consequence, one need not con-
trol, manipulate, and enrich the various intermediate transformation results with specific infor-
mation12. This not only allows for a more efficient development, but also avoids potential
consistency problems: a manual change of an intermediate model might result in an inconsist-
ency with higher abstraction levels that is not automatically correctable.

Similarly, we forego reverse engineering from the source code to the PIM, which in general is
not feasible anyway. A model that has been created ‘backwards’ from source code is naturally as
little abstract as the source code itself. Only its presentation is different, perhaps providing better
understandability for some purposes. For specific arbitrary sections of source code, a PIM from
which the program could be derived via transformation13 may not exist – especially if the PIM
modeling language focuses on a specific domain such as software architecture for e-business
systems. In the context of MDA specifications, this fact is more or less ignored by the OMG
however.

Some members of the MDSD tool-builders community anticipate tool-supported wizards or
some similar solution that will at least enable semi-automated reverse engineering. In our opin-
ion this is a concession rather than a goal-oriented concept14 – at least where newly developed
software is concerned. Admittedly, this view may first be perceived as being disadvantageous,
depending on your personal work preferences, but in truth it is an advantage, as we will learn
later on. Basically, AC-MDSD builds on forward engineering.

This forward-engineering based, generative approach allows us to derive conclusions about
generated applications from the ‘hard facts’ of architecture-centric models. A generative archi-
tecture can guarantee a loose coupling of components or the absence of access paths between
different application layers. For example, it can ensure that a presentation layer, such as a Web
user interface, cannot access a database’s SQL interface directly.

At this point it’s important to note that forward engineering is not to be mistaken for a water-
fall approach to development. It merely means that design changes must be made to the model
instead of the source code, which of course does not mean that the whole application must be
modeled at once. We concede that forward engineering does not exclude such an approach, but
this does not mean that it is mandatory. In fact, we favor an iterative, incremental process
[Oes01].

11 Platform-independence is a relative term. Here, it refers to the independence of standard software platforms like
J2EE.

12 We are not against the modularization of transformations through successive execution here, yet we do not favor
explicitly visible and manipulable intermediate results.

13 Mathematicians would say that the mapping of a PIM model to a programming language is not surjective.
14 In the context of adaptation of legacy software for MDSD, reverse engineering can make sense, quasi as boot-

strapping.

c02.fm Page 24 Friday, March 31, 2006 12:26 PM

2.5 Architecture-Centric MDSD 25

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

Let’s now examine an example of such a PIM, shown in Figure 2.9. This model does not
reveal anything about the technologies that were used – the technological realization of such
models is defined only once it is mapped to a concrete platform. A formal UML design language
is created through the semantic enrichment of the model with stereotypes, tagged values, and
constraints. For AC-MDSD, the abstraction level of this language lies on the level of architec-
tural concepts, which is why we speak of architecture-centric design. In other words: the domain
of AC-MDSD is software architecture.

The domain-related meaning of the diagram in Figure 2.9 is fairly obvious: at its core is an activ-
ity, a module for superordinate process models that is able to carry out an action for the creation
of a customer-specific account overview. The customer entity serves as input, which is transmit-
ted to the activity. Besides two domain-related attributes, the customer entity possesses an iden-
tifying characteristic (a key) and is able to calculate the total balance by adding balances of the
associated accounts. The activity, or respectively its action, uses a presentation with three
domain-related attributes to display the result.

A standard Java code generator would ignore the annotated stereotypes and generate the sig-
natures of four simple Java classes. In AC-MDSD, the realization of the model on the program-
ming language side is realized by a mapping to a concrete platform. This is illustrated by the two
examples that follow.

For an EJB-Based Architecture with HTML Clients

Activity classes are stateless session Beans that implement the interfaces of a server-
side process engine. Each action is declaratively transactional. The entity classes are
Beans with corresponding local interfaces. Attributes of the type key constitute the pri-
mary key classes. For public attributes, getter and setter methods are applied. Container
Managed Persistence (CMP) is used for persistence. The necessary descriptors can be
deduced from the model. For associations, access methods are available that are based

Figure 2.9 An example of architecture-centric design.

<<action>> + createOverview()

<<activity>>
CreateAccountOverview

calculateTotalBalance() : Double

<<key>> + CustomerNumber : String
+ Surname : String
+ Forename : String

<<entity>>
Customer

<<input>>

1

<<key>> + AccountNumber : String
+ BankCode : String
+ Balance : Double

<<entity>>
Account1 1..n

+ Surname : String
+ Forename : String
+ TotalBalance : Double

<<presentation>>
AccountOverview

c02.fm Page 25 Friday, March 31, 2006 12:26 PM

26 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

on the associated model’s finder methods. The presentation classes specify JSP models
that serve to fill JSP/HTML pages. The presentation implementations are activated by a
FrontController framework.

For a C++/CORBA-Based Client-Server Architecture

For each activity class there is an IDL interface. All attribute and parameter types of the
design are mapped to corresponding IDL types. A suitable C++ skeleton exists. The
activity classes implement the interfaces to a specific workflow system. Actions (action
operations) are transactions on an Object Transaction Monitor (OTM). All entity
classes are non-distributable C++ classes: their instances are submitted to a RDBMS
via object-relational mapping. Attributes of the type key serve as primary keys. The
presentation classes are Java Swing GUIs that implement the interfaces of a specific
client-framework.

By means of this simple example of a model we can easily recognize the main advantages of this
approach: architecture-centric models are compact, sufficiently rich in information and do not
contain any superfluous details that would impede portability and lower their degree of abstrac-
tion. They are therefore more concise and easier to maintain. Moreover, they are better suited for
enabling discussions with other project members, as they are not polluted with technical details.

2.5.4 Development Process

Generative software architectures and architecture-centric design can only be applied effectively
when the development methodology is adequately adapted. This extremely important issue is not
in the focus of the MDA’s attention. We dedicate the whole of Chapter 13 to this issue, which
illuminates MDSD from a process point of view. Since we are dealing with the special case of
architecture-centric design here, preparing the foundations for the following case study, we high-
light only a few aspects here.

Separation Between Architecture Development and Application
Development

We have already seen that a generative software architecture leads to a modularization of appli-
cation development: UML profile, generator templates, and infrastructure components on one
hand, architecture-centric design, generated infrastructure code, and manually-implemented
code on the other.

Quite clearly, the applications depend on the generative software architecture, but not vice
versa. This leads us to the consideration of splitting the creation of these artifacts into two sep-
arate paths: as in framework development, one team can handle the creation of the generative
software architecture (the architecture development track) while another team deals with appli-
cation development (the application development track). The dependencies must be alleviated
by a suitable synchronization of the iterations, or through release management – more about

c02.fm Page 26 Friday, March 31, 2006 12:26 PM

2.5 Architecture-Centric MDSD 27

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

this topic can be found in Chapter 13. Regardless of the question of whether one wants to assign
different people to the two paths or not, we are obviously dealing with substantially different
activities here, so that a role-oriented view makes sense:

• Architects develop the generative software architecture.
• Designers create the application’s architecture-centric model.
• Developers program the application logic and integrate it in the generated infrastructure

code.

The Importance of the Reference Implementation

A practical generative software architecture is not realized out of the blue – a blueprint is needed
for the code to be generated. This blueprint is called a reference implementation. We are refer-
ring to a runnable sample that is as concise as possible with respect to actual domain functional-
ity, but which shows the semantics of the architecture-centric UML profile constructs on the
source code level. In the next step, generator templates can be derived from such a reference
implementation. We will concretize these in the course of a case study, as well as discussing
them in greater detail in Chapter 13.

2.5.5 The Properties of Architecture-Centric MDSD

Before we get started with the case study in the next chapter, we’ll briefly summarize the proper-
ties of architecture-centric MDSD. Methodological aspects come to the fore here: AC-MDSD
supports individual architectural requirements. Its focus is clearly the engineering principle and
not the integrated development environment (CASE or MDA tool/IDE). In other words, nothing
will be generated that hasn’t been verified before via a reference implementation. Therefore, we
can skip questions that often emerge in the context of generative approaches, such as “How good
is the runtime performance of the generated code?” or “How good is the quality of the generated
source code?” The generated code is as good (or as bad) as the reference implementation from
which the generator templates are derived.

• Software system families instead of unique items. AC-MDSD not only aims at increas-
ing efficiency and quality when developing one-off applications, it also aims at the
reuse of generative software architectures for architecturally-similar applications that
therefore constitute software system families. This aspect is not explicitly a main con-
cern of the MDA.

• Architecture-centric design. Other than the MDA, we (usually) work without platform-
specific models. Instead we apply platform-independent models in architecture-centric
design. This approach, which on one hand poses a limitation, clearly leads to optimization
on the other. The maintenance effort for intermediate results is reduced and consistency
problems are avoided.

• Forward engineering. Contrary to the MDA vision, we deliberately avoid round-trip
engineering. Since architecture-centric MDSD models require real abstractions, reverse

c02.fm Page 27 Friday, March 31, 2006 12:26 PM

28 MDSD – Basic Ideas and Terminology

 c02.fm Version 0.3 (final) March 31, 2006 12:25 pm

engineering is either not possible, or does not make sense. Design changes have to be
made to the actual design – that is, the model. Thus the model will always be consistent
with the generated source code.

• Model-to-model transformation for modularization only. We use a PIM that is as abstract
as possible, but ideally is directly (and of course iteratively) transformable into source
code. The ‘transformation gap’ can be modularized via model-to-model transformations,
but intermediate models occurring en route are implementation details that are invisible to
the application developer.

• Source code generation without explicit use of the target metamodel. The generation of
programming language source code is essential for AC-MDSD (Chapter 9). However, we
believe that model transformations as they are currently being discussed in the context of
the MDA standardization are only helpful for model-to-model transformations. The gener-
ation of architecturally-motivated infrastructure source code in this manner is very cum-
bersome, whereas the use of generator templates is proven and can be handled very
intuitively. The source metamodel (that is, that of the design language) is very useful for
the generation of source code in order to structure the transformation rules, as our case
study will demonstrate.

• No 100% generation. As a rule, ‘only’ 60% to 80% of software is generated from architec-
ture-centric models. We think that 100% generation is possible, and wise, in only very few
exceptional cases15. Architectural infrastructure code of an application is 100% generated,
but the individual/domain-related aspects are supplemented in the target language.

• Software architecture becomes manageable. Generative software architecture is per se for-
mal and up-to-date. The developers cannot leave the frame of the infrastructure code that
has been set, either accidentally or on purpose. This is clearly an advantage as far as qual-
ity is concerned. Developers and designers can immediately detect all changes in the
architecture and can handle them in the right place – that is, centrally in the generative
software architecture, instead of distributed all over the application. Technical and
domain-related aspects are clearly separated. Therefore AC-MDSD makes sure the archi-
tecture is really used consistently in an application, and helps to realize architectural
changes that cut across the system. This again supports the scalability of the development
process. In other words, AC-MDSD is a very useful and powerful instrument for software
architecture management.

So where do we go from here? After you have established a stable AC-MDSD infrastructure, it is
often useful to cascade additional MDSD-layers on top of it. This approach, called cascaded
MDSD, is explained in Section 8.2.

15 This statement is valid for AC-MDSD only, not for MDSD in general.

c02.fm Page 28 Friday, March 31, 2006 12:26 PM

