
113

Hearing the Voice of the
Customer

“Good morning, Maria. I’m Phil, the requirements analyst for the new employee
information system we’re going to build for you. Thanks for agreeing to be the
product champion for this project. Your input will really help us a lot. So, can
you tell me what you want?”

“Hmmm, what do I want,” mused Maria. “I hardly know where to start. It
should be a lot faster than the old system. And you know how the old system
crashes if some employee has a really long name and we have to call the help
desk and ask them to enter the name? The new system should take long names
without crashing. Also, a new law says we can’t use Social Security numbers for
employee IDs anymore, so we’ll have to change all the employee IDs when the
new system goes in. The new IDs are going to be six-digit numbers. Oh, yes, it’d
be great if I could get a report of how many hours of training each employee has
had so far this year. And I also need to be able to change someone’s name even
if their marital status hasn’t changed.”

Phil dutifully wrote down everything Maria said, but his head was starting
to spin. He wasn’t sure what to do with all these bits of information, and he had
no idea what to tell the developers. “Well,” he thought, “if that’s what Maria says
she wants, I guess we’d better do it.”

The heart of requirements engineering is elicitation, the process of identi-
fying the needs and constraints of the various stakeholders for a software sys-
tem. Elicitation focuses on discovering the user requirements, the middle level
of the software requirements triad. (As described in Chapter 1, business require-
ments and functional requirements are the other two levels.) User requirements

C07618798.fm Page 113 Thursday, January 16, 2003 4:02 PM

114 Part II Software Requirements Development

encompass the tasks that users need to accomplish with the system and the
users’ expectations of performance, usability, and other quality attributes. This
chapter addresses the general principles of effective requirements elicitation.

The analyst needs a structure to organize the array of input obtained from
requirements elicitation. Simply asking the users, “What do you want?” gener-
ates a mass of random information that leaves the analyst floundering. “What do
you need to do?” is a much better question. Chapter 8, “Understanding User
Requirements,” describes how techniques such as use cases and event-response
tables provide helpful organizing structures for user requirements.

The product of requirements development is a common understanding
among the project stakeholders of the needs that are being addressed. Once the
developers understand the needs, they can explore alternative solutions to
address those needs. Elicitation participants should resist the temptation to
design the system until they understand the problem. Otherwise, they can
expect to do considerable design rework as the requirements become better
defined. Emphasizing user tasks rather than user interfaces and focusing on
root needs more than on expressed desires help keep the team from being side-
tracked by prematurely specifying design details.

Begin by planning the project’s requirements elicitation activities. Even a
simple plan of action increases the chance of success and sets realistic expecta-
tions for the stakeholders. Only by gaining explicit commitment on resources,
schedule, and deliverables can you avoid having people pulled off elicitation to
fix bugs or do other work. Your plan should address the following items:

■ Elicitation objectives (such as validating market data, exploring use
cases, or developing a detailed set of functional requirements for the
system)

■ Elicitation strategies and processes (for example, some combination
of surveys, workshops, customer visits, individual interviews, and
other techniques, possibly using different approaches for different
stakeholder groups)

■ Products of elicitation efforts (perhaps a list of use cases, a detailed
SRS, an analysis of survey results, or performance and quality
attribute specifications)

■ Schedule and resource estimates (identify both development and
customer participants in the various elicitation activities, along with
estimates of the effort and calendar time required)

■ Elicitation risks (identify factors that could impede your ability to
complete the elicitation activities as intended, estimate the severity of
each risk, and decide how you can mitigate or control it)

C07618798.fm Page 114 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 115

Requirements Elicitation
Requirements elicitation is perhaps the most difficult, most critical, most error-
prone, and most communication-intensive aspect of software development.
Elicitation can succeed only through a collaborative partnership between cus-
tomers and the development team, as described in Chapter 2. The analyst must
create an environment conducive to a thorough exploration of the product
being specified. To facilitate clear communication, use the vocabulary of the
application domain instead of forcing customers to understand computer jar-
gon. Capture significant application domain terms in a glossary, rather than
assuming that all participants share the same definitions. Customers should
understand that a discussion about possible functionality is not a commitment
to include it in the product. Brainstorming and imagining the possibilities is a
separate matter from analyzing priorities, feasibility, and the constraining reali-
ties. The stakeholders must focus and prioritize the blue-sky wish list to avoid
defining an enormous project that never delivers anything useful.

Skill in conducting elicitation discussions comes with experience and builds
on training in interviewing, group facilitation, conflict resolution, and similar
activities. As an analyst, you must probe beneath the surface of the require-
ments the customers present to understand their true needs. Simply asking
“why” several times can move the discussion from a presented solution to a
solid understanding of the problem that needs to be solved. Ask open-ended
questions to help you understand the users’ current business processes and to
see how the new system could improve their performance. Inquire about pos-
sible variations in the user tasks that the users might encounter and ways that
other users might work with the system. Imagine yourself learning the user’s
job, or actually do the job under the user’s direction. What tasks would you
need to perform? What questions would you have? Another approach is to play
the role of an apprentice learning from the master user. The user you are inter-
viewing then guides the discussion and describes what he or she views as the
important topics for discussion.

Probe around the exceptions. What could prevent the user from success-
fully completing a task? How should the system respond to various error con-
ditions? Ask questions that begin with “What else could…,” “What happens
when…,” “Would you ever need to…,” “Where do you get…,” “Why do you (or
don’t you)…,” and “Does anyone ever…” Document the source of each
requirement so that you can obtain further clarification if needed and trace
development activities back to specific customer origins.

When you’re working on a replacement project for a legacy system, ask
the users, “What three things annoy you the most about the existing system?”

C07618798.fm Page 115 Thursday, January 16, 2003 4:02 PM

116 Part II Software Requirements Development

This question helps get to the bottom of why a system is being replaced. It also
surfaces expectations that the users hold for the follow-on system. As with any
improvement activity, dissatisfaction with the current situation provides excel-
lent fodder for the new and improved future state.

Try to bring to light any assumptions the customers might hold and to
resolve conflicting assumptions. Read between the lines to identify features or
characteristics the customers expect to be included without their having explic-
itly said so. Gause and Weinberg (1989) suggest using context-free questions,
high-level and open-ended questions that elicit information about global char-
acteristics of both the business problem and the potential solution. The cus-
tomer’s response to questions such as “What kind of precision is required in the
product?” or “Can you help me understand why you don’t agree with Miguel’s
reply?” can lead to insights that questions with standard yes/no or A/B/C
answers do not.

Rather than simply transcribing what customers say, a creative analyst sug-
gests ideas and alternatives to users during elicitation. Sometimes users don’t
realize the capabilities that developers can provide and they get excited when
you suggest functionality that will make the system especially useful. When
users truly can’t express what they need, perhaps you can watch them work
and suggest ways to automate portions of the job. Analysts can think outside
the box that limits the creativity of people who are too close to the problem
domain. Look for opportunities to reuse functionality that’s already available in
another system.

Interviews with individuals or groups of potential users are a traditional
source of requirements input for both commercial products and information
systems. (For guidance on how to conduct user interviews, see Beyer and
Holtzblatt [1998], Wood and Silver [1995], and McGraw and Harbison [1997].)
Engaging users in the elicitation process is a way to gain support and buy-in for
the project. Try to understand the thought processes that led the users to
present the requirements they state. Walk through the processes that users fol-
low to make decisions about their work and extract the underlying logic. Flow-
charts and decision trees are useful ways to depict these logical decision paths.
Make sure that everyone understands why the system must perform certain
functions. Proposed requirements sometimes reflect obsolete or ineffective
business processes that should not be incorporated into a new system.

After each interview, document the items that the group discussed and ask
the interviewees to review the list and make corrections. Early review is essen-
tial to successful requirements development because only those people who
supplied the requirements can judge whether they were captured accurately.
Use further discussions to resolve any inconsistencies and to fill in any blanks.

C07618798.fm Page 116 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 117

Elicitation Workshops
Requirements analysts frequently facilitate requirements elicitation workshops.
Facilitated, collaborative group workshops are a highly effective technique for
linking users and developers (Keil and Carmel 1995). The facilitator plays a crit-
ical role in planning the workshop, selecting participants, and guiding the par-
ticipants to a successful outcome. When a team is getting started with new
approaches to requirements elicitation, have an outside facilitator lead the ini-
tial workshops. This way the analyst can devote his full attention to the discus-
sion. A scribe assists the facilitator by capturing the points that come up during
the discussion.

According to one authority, “Facilitation is the art of leading people
through processes toward agreed-upon objectives in a manner that encourages
participation, ownership, and productivity from all involved” (Sibbet 1994). A
definitive resource on facilitating requirements elicitation workshops is Ellen
Gottesdiener’s Requirements by Collaboration (2002). Gottesdiener describes a
wealth of techniques and tools for workshop facilitation. Following are a few
tips for conducting effective elicitation sessions.

Establish ground rules. The participants should agree on some basic oper-
ating principles for their workshops (Gottesdiener 2002). Examples include the
following:

■ Starting and ending meetings on time

■ Returning from breaks promptly

■ Holding only one conversation at a time

■ Expecting everyone to contribute

■ Focusing comments and criticisms on issues, not on individuals

Stay in scope. Use the vision and scope document to confirm whether pro-
posed user requirements lie within the current project scope. Keep each work-
shop focused on the right level of abstraction for that day’s objectives. Groups
easily dive into distracting detail during requirements discussions. Those discus-
sions consume time that the group should spend initially on developing a
higher-level understanding of user requirements; the details will come later.
The facilitator will have to reel in the elicitation participants periodically to keep
them on topic.

C07618798.fm Page 117 Thursday, January 16, 2003 4:02 PM

118 Part II Software Requirements Development

Trap Avoid drilling down into excessive requirements detail prema-
turely. Recording great detail about what people already understand
doesn’t reduce the risks due to uncertainty in the requirements.

It’s easy for users to begin itemizing the precise layout of items in a report
or a dialog box before the team even agrees on the pertinent user task. Record-
ing these details as requirements places unnecessary constraints on the subse-
quent design process. Detailed user interface design comes later, although
preliminary screen sketches can be helpful at any point to illustrate how you
might implement the requirements. Early feasibility exploration, which requires
some amount of design, is a valuable risk-reduction technique.

Use parking lots to capture items for later consideration. An array of
random but important information will surface in an elicitation workshop: qual-
ity attributes, business rules, user interface ideas, constraints, and more. Orga-
nize this information on flipcharts—parking lots—so that you don’t lose it and
to demonstrate respect for the participant who brought it up. Don’t be dis-
tracted into discussing off-track details unless they turn out to be showstopper
issues, such as a vital business rule that restricts the way a use case can work.

Timebox discussions. The facilitator might allocate a fixed period of time to
each discussion topic, say, 30 minutes per use case during initial use case
explorations. The discussion might need to be completed later, but timeboxing
helps avoid the trap of spending far more time than intended on the first topic
and neglecting the other planned topics entirely.

Keep the team small and include the right participants. Small groups
can work much faster than larger teams. Elicitation workshops with more than
five or six active participants can become mired in side trips down “rat holes,”
concurrent conversations, and bickering. Consider running multiple workshops
in parallel to explore the requirements of different user classes. Workshop par-
ticipants should include the product champion and other user representatives,
perhaps a subject matter expert, a requirements analyst, and a developer.
Knowledge, experience, and authority to make decisions are qualifications for
participating in elicitation workshops.

C07618798.fm Page 118 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 119

Trap Watch out for off-topic discussions, such as design explora-
tions, during elicitation sessions.

Keep everyone engaged. Sometimes participants will stop contributing to
the discussion. These people might be frustrated because they see that the sys-
tem is an accident waiting to happen. Perhaps their input isn’t being taken seri-
ously because other participants don’t find their concerns interesting or don’t
want to disrupt the work that the group has completed so far. Perhaps the
stakeholder who has withdrawn has a submissive personality and is deferring
to more aggressive participants or a dominating analyst. The facilitator must
read the body language, understand why someone has tuned out of the pro-
cess, and try to bring the person back. That individual might hold an insightful
perspective that could make an important contribution.

Too Many Cooks
Requirements elicitation workshops that involve too many participants
can slow to a contentious crawl. My colleague Debbie was frustrated at
the sluggish progress of the first use-case workshop she facilitated for a
Web development project. The 12 participants held extended discussions
of unnecessary details and couldn’t agree on how each use case ought to
work. The team’s progress accelerated nicely when Debbie reduced the
number of participants to six who represented the roles of analyst, cus-
tomer, system architect, developer, and visual designer. The workshop lost
some input by using the smaller team but the rate of progress more than
compensated for that loss. The workshop participants should exchange
information off-line with colleagues who don’t attend and then bring the
collected input to the workshops.

Classifying Customer Input
Don’t expect your customers to present a succinct, complete, and well-orga-
nized list of their needs. Analysts must classify the myriad bits of requirements

C07618798.fm Page 119 Thursday, January 16, 2003 4:02 PM

120 Part II Software Requirements Development

information they hear into various categories so that they can document and
use it appropriately. Figure 7-1 illustrates nine such requirement categories.

F07LO01Figure 7-1 Classifying the voice of the customer.

Information that doesn’t fit into one of these buckets might be one of the
following:

■ A requirement not related to the software development, such as the
need to train users on the new system

■ A project constraint, such as a cost or schedule restriction (as
opposed to the design or implementation constraints described in
this chapter)

■ An assumption

■ A data requirement, which can often be associated with some system
functionality (you store data in a computer only so that you can get
it out again later)

■ Additional information of a historical, context-setting, or descriptive
nature

The following discussion suggests some phrases to listen for that will help
you in this classification process.

Business requirements. Anything that describes the financial, marketplace,
or other business benefit that either customers or the developing organization

���������
���	
�������

�������
�����

�������
������������

���
������
������������

�������
����������

����������������
�
������������

�����������

����
�����������

	�������
�����

C07618798.fm Page 120 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 121

wish to gain from the product is a business requirement. Listen for statements
about the value that buyers or users of the software will receive, such as these:

■ “Increase market share by X%.”

■ “Save $Y per year on electricity now wasted by inefficient units.”

■ “Save $Z per year in maintenance costs that are consumed by legacy
system W.”

Use cases or scenarios. General statements of user goals or business tasks
that users need to perform are use cases; a single specific path through a use
case is a usage scenario. Work with the customers to generalize specific scenar-
ios into more abstract use cases. You can often glean use cases by asking users
to describe their business workflow. Another way to discover use cases is to ask
users to state the goals they have in mind when they sit down to work with the
system. A user who says, “I need to <do something>” is probably describing a
use case, as in the following examples:

■ “I need to print a mailing label for a package.”

■ “I need to manage a queue of chemical samples waiting to be
analyzed.”

■ “I need to calibrate the pump controller.”

Business rules. When a customer says that only certain user classes can per-
form an activity under specific conditions, he might be describing a business
rule. In the case of the Chemical Tracking System, such a business rule might
be, “A chemist may order a chemical on the Level 1 hazard list only if his haz-
ardous-chemical training is current.” You might derive some software functional
requirements to enforce the rules, such as making the training record database
accessible to the Chemical Tracking System. As stated, though, business rules
are not functional requirements. Following are some other phrases that suggest
the user is describing a business rule:

■ “Must comply with <some law or corporate policy>”

■ “Must conform to <some standard>”

■ “If <some condition is true>, then <something happens>”

■ “Must be calculated according to <some formula>”

C07618798.fm Page 121 Thursday, January 16, 2003 4:02 PM

122 Part II Software Requirements Development

More Info See Chapter 9, “Playing by the Rules,” for more examples
of business rules.

Functional requirements. Functional requirements describe the observable
behaviors the system will exhibit under certain conditions and the actions the
system will let users take. Functional requirements derived from system require-
ments, user requirements, business rules, and other sources make up the bulk
of the SRS. Here are some examples of functional requirements as you might
hear them from users:

■ “If the pressure exceeds 40.0 psi, the high pressure warning light
should come on.”

■ “The user must be able to sort the project list in forward and reverse
alphabetical order.”

■ “The system sends an e-mail to the Idea Coordinator whenever
someone submits a new idea.”

These statements illustrate how users typically present functional require-
ments, but they don’t represent good ways to write functional requirements in
an SRS. In the first case, we would replace should with shall to make it clear
that illuminating the warning light is essential. The second example is a require-
ment of the user, not of the system. The requirement of the system is to permit
the user to do the sorting.

More Info Chapter 10, “Documenting the Requirements,” contains
more guidance for writing good functional requirements.

Quality attributes. Statements that indicate how well the system performs
some behavior or lets the user take some action are quality attributes. Listen for
words that describe desirable system characteristics: fast, easy, intuitive, user-
friendly, robust, reliable, secure, and efficient. You’ll have to work with the
users to understand precisely what they mean by these ambiguous and subjec-

C07618798.fm Page 122 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 123

tive terms and write clear, verifiable quality goals, as described in Chapter 12,
“Beyond Functionality: Software Quality Attributes.”

External interface requirements. Requirements in this class describe the
connections between your system and the rest of the universe. The SRS should
include sections for interfaces to users, hardware, and other software systems.
Phrases that indicate that the customer is describing an external interface
requirement include the following:

■ “Must read signals from <some device>”

■ “Must send messages to <some other system>”

■ “Must be able to read (or write) files in <some format>”

■ “Must control <some piece of hardware>”

■ “User interface elements must conform to <some UI style standard>”

Constraints. Design and implementation constraints legitimately restrict the
options available to the developer. Devices with embedded software often must
respect physical constraints such as size, weight, and interface connections.
Record the rationale behind each constraint so that all project participants know
where it came from and respect its validity. Is it truly a restrictive limitation, as
when a device must fit into an existing space? Or is it a desirable goal, such as
a portable computer that weighs as little as possible?

Unnecessary constraints inhibit creating the best solution. Constraints also
reduce your ability to use commercially available components as part of the
solution. A constraint that specifies that a particular technology be used poses
the risk of making a requirement obsolete or unattainable because of changes
in the available technologies. Certain constraints can help achieve quality
attribute goals. An example is to improve portability by using only the standard
commands of a programming language, not permitting vendor-specific exten-
sions. The following are examples of constraints that a customer might present:

■ “Files submitted electronically may not exceed 10 MB in size.”

■ “The browser must use 128-bit encryption for all secure
transactions.”

■ “The database must use the Framalam 10.2 run-time engine.”

C07618798.fm Page 123 Thursday, January 16, 2003 4:02 PM

124 Part II Software Requirements Development

Other phrases that indicate the customer is describing a design or imple-
mentation constraint include these:

■ “Must be written in <a specific programming language>”

■ “Can’t require more than <some amount of memory>”

■ “Must operate identically to (or be consistent with) <some other
system>”

■ “Must use <a specific user interface control>”

As with functional requirements, the analyst shouldn’t simply transcribe
the user’s statement of a constraint into the SRS. Weak words such as identically
and consistent need to be clarified and the real constraint stated precisely
enough for developers to act on the information. Ask why the constraint exists,
verify its validity, and record the rationale for including the constraint as a
requirement.

Data definitions. Whenever customers describe the format, data type,
allowed values, or default value for a data item or the composition of a complex
business data structure, they’re presenting a data definition. “The ZIP code con-
sists of five digits, followed by an optional hyphen and an optional four digits
that default to 0000” is a data definition. Collect these in a data dictionary, a
master reference that the team can use throughout the product’s development
and maintenance.

More Info See Chapter 10 for more information on data dictionaries.

Data definitions sometimes lead to functional requirements that the user
community did not request directly. What happens when a six-digit order num-
ber rolls over from 999,999? Developers need to know how the system will han-
dle such data issues. Deferring data-related problems just makes them harder to
solve in the future (remember Y2K?).

Solution ideas. Much of what users present as requirements fits in the cate-
gory of solution ideas. Someone who describes a specific way to interact with
the system to perform some action is presenting a suggested solution. The ana-

C07618798.fm Page 124 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 125

lyst needs to probe below the surface of a solution idea to get to the real
requirement. For instance, functional requirements that deal with passwords are
just one of several possible solutions for a security requirement.

Suppose a user says, “Then I select the state where I want to send the
package from a drop-down list.” The phrase from a drop-down list indicates
that this is a solution idea. The prudent analyst will ask, “Why from a drop-
down list?” If the user replies, “That just seemed like a good way to do it,” the
real requirement is something like, “The system shall permit the user to specify
the state where he wants to send the package.” However, maybe the user says,
“I suggested a drop-down list because we do the same thing in several other
places and I want it to be consistent. Also, it prevents the user from entering
invalid data, and I thought we might be able to reuse some code.” These are fine
reasons to specify a specific solution. Recognize, though, that embedding a
solution idea in a requirement imposes a design constraint on that requirement.
It limits the requirement to being implemented in only one way. This isn’t nec-
essarily wrong or bad; just make sure the constraint is there for a good reason.

Some Cautions About Elicitation
Trying to amalgamate requirements input from dozens of users is difficult with-
out using a structured organizing scheme, such as use cases. Collecting input
from too few representatives or hearing the voice only of the loudest, most
opinionated customer is also a problem. It can lead to overlooking require-
ments that are important to certain user classes or to including requirements
that don’t represent the needs of a majority of the users. The best balance
involves a few product champions who have authority to speak for their
respective user classes, with each champion backed up by several other repre-
sentatives from that same user class.

During requirements elicitation, you might find that the project scope is
improperly defined, being either too large or too small (Christel and Kang
1992). If the scope is too large, you’ll collect more requirements than are
needed to deliver adequate business and customer value and the elicitation
process will drag on. If the project is scoped too small, customers will present
needs that are clearly important yet just as clearly lie beyond the limited scope
currently established for the project. The present scope could be too small to
yield a satisfactory product. Eliciting user requirements therefore can lead to
modifying the product vision or the project scope.

C07618798.fm Page 125 Thursday, January 16, 2003 4:02 PM

126 Part II Software Requirements Development

It’s often stated that requirements are about what the system has to do,
whereas how the solution will be implemented is the realm of design. Although
attractively concise, this is an oversimplification. Requirements elicitation
should indeed focus on the what, but there’s a gray area—not a sharp line—
between analysis and design. Hypothetical hows help to clarify and refine the
understanding of what users need. Analysis models, screen sketches, and pro-
totypes help to make the needs expressed during requirements elicitation more
tangible and to reveal errors and omissions. Regard the models and screens
generated during requirements development as conceptual suggestions to facil-
itate effective communication, not as constraints on the options available to the
designer. Make it clear to users that these screens and prototypes are illustrative
only, not necessarily the final design solution.

The need to do exploratory research sometimes throws a monkey wrench
into the works. An idea or a suggestion arises, but extensive research is
required to assess whether it should even be considered for possible incorpo-
ration into the product. Treat these explorations of feasibility or value as project
tasks in their own right, with objectives, goals, and requirements of their own.
Prototyping is one way to explore such issues. If your project requires extensive
research, use an incremental development approach to explore the require-
ments in small, low-risk portions.

Finding Missing Requirements
Missing requirements constitute the most common type of requirement defect
(Jones 1997). They’re hard to spot during reviews because they’re invisible! The
following techniques will help you detect previously undiscovered requirements.

Trap Watch out for the dreaded analysis paralysis, spending too
much time on requirements elicitation in an attempt to avoid missing
any requirements. You’ll never discover them all up front.

■ Decompose high-level requirements into enough detail to reveal
exactly what is being requested. A vague, high-level requirement
that leaves much to the reader’s interpretation will lead to a gap
between what the requester has in mind and what the developer

C07618798.fm Page 126 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 127

builds. Imprecise, fuzzy terms to avoid include support, enable,
permit, process, and manage.

■ Make sure that all user classes have provided input. Make sure that
each use case has at least one identified actor.

■ Trace system requirements, use cases, event-response lists, and busi-
ness rules into their detailed functional requirements to make sure
that the analyst derived all the necessary functionality.

■ Check boundary values for missing requirements. Suppose that one
requirement states, “If the price of the order is less than $100, the
shipping charge is $5.95” and another says, “If the price of the order
is more than $100, the shipping charge is 5 percent of the total order
price.” But what’s the shipping charge for an order with a price of
exactly $100? It’s not specified, so a requirement is missing.

■ Represent requirements information in multiple ways. It’s difficult to
read a mass of text and notice that something isn’t there. An analysis
model visually represents requirements at a high level of abstrac-
tion—the forest, not the trees. You might study a model and realize
that there should be an arrow from one box to another; that missing
arrow represents a missing requirement. This kind of error is much
easier to spot in a picture than in a long list of textual requirements
that all blur together. Analysis models are described in Chapter 11, “A
Picture Is Worth 1024 Words.”

■ Sets of requirements with complex Boolean logic (ANDs, ORs, and
NOTs) often are incomplete. If a combination of logical conditions has
no corresponding functional requirement, the developer has to deduce
what the system should do or chase down an answer. Represent com-
plex logic using decision tables or decision trees to make sure you’ve
covered all the possible situations, as described in Chapter 11.

A rigorous way to search for missing requirements is to create a CRUD
matrix. CRUD stands for Create, Read, Update, and Delete. A CRUD matrix cor-
relates system actions with data entities (individual data items or aggregates of
data items) to make sure that you know where and how each data item is cre-
ated, read, updated, and deleted. Some people add an L to the matrix to indi-
cate that the data item appears as a List selection (Ferdinandi 2002). Depending
on the requirements analysis approaches you are using, you can examine vari-
ous types of correlations, including the following:

C07618798.fm Page 127 Thursday, January 16, 2003 4:02 PM

128 Part II Software Requirements Development

■ Data entities and system events (Robertson and Robertson 1999)

■ Data entities and user tasks or use cases (Lauesen 2002)

■ Object classes and system events (Ferdinandi 2002)

■ Object classes and use cases (Armour and Miller 2001)

Figure 7-2 illustrates an entity/use case CRUDL matrix for a portion of the
Chemical Tracking System. Each cell indicates how the use case in the leftmost
column uses each data entity shown in the other columns. The use case can
Create, Read, Update, Delete, or List the entity. After creating a CRUDL matrix,
see whether any of these five letters do not appear in any of the cells in a col-
umn. If a business object is updated but never created, where does it come
from? Notice that none of the cells under the column labeled Requester (the
person who places an order for a chemical) contains a D. That is, none of the
use cases in Figure 7-2 can delete a Requester from the list of people who have
ordered chemicals. There are three possible interpretations:

1. Deleting a Requester is not an expected function of the Chemical
Tracking System.

2. We are missing a use case that deletes a Requester.

3. The “Edit Requesters” use case is incorrect. It’s supposed to permit
the user to delete a Requester, but that functionality is missing from
the use case at present.

We don’t know which interpretation is correct, but the CRUDL analysis is a
powerful way to detect missing requirements.

F07LO02Figure 7-2 Sample CRUDL matrix for the Chemical Tracking System.

�

����

� ���

�������

���

������

� � ���

��� �

��������
������

!��
��"����

�#��$��"����

%���$���#���
��
��&������

��'�������"�����

���������������

"���� �#���
�� ���������
(�����
������$

C07618798.fm Page 128 Thursday, January 16, 2003 4:02 PM

Chapter 7 Hearing the Voice of the Customer 129

How Do You Know When You’re Done?
No simple signal will indicate when you’ve completed requirements elicitation.
As people muse in the shower each morning and talk with their colleagues,
they’ll generate ideas for additional requirements. You’ll never be completely
done, but the following cues suggest that you’re reaching the point of diminish-
ing returns on requirements elicitation:

■ If the users can’t think of any more use cases, perhaps you’re done.
Users tend to identify use cases in sequence of decreasing importance.

■ If users propose new use cases but you’ve already derived the asso-
ciated functional requirements from other use cases, perhaps you’re
done. These “new” use cases might really be alternative courses for
other use cases that you’ve already captured.

■ If users repeat issues that they already covered in previous discus-
sions, perhaps you’re done.

■ If suggested new features, user requirements, or functional require-
ments are all out of scope, perhaps you’re done.

■ If proposed new requirements are all low priority, perhaps you’re
done.

■ If the users are proposing capabilities that might be included “some-
time in the lifetime of the product” rather than “in the specific prod-
uct we’re talking about right now,” perhaps you’re done, at least with
the requirements for the next release.

Another way to determine whether you’re done is to create a checklist of
common functional areas to consider for your projects. Examples include error
logging, backup and restore, access security, reporting, printing, preview
capabilities, and configuring user preferences. Periodically compare this list
with the functions you have already specified. If you don’t find gaps, perhaps
you’re done.

Despite your best efforts to discover all the requirements, you won’t, so
expect to make changes as construction proceeds. Remember, your goal is to
make the requirements good enough to let construction proceed at an accept-
able level of risk.

C07618798.fm Page 129 Thursday, January 16, 2003 4:02 PM

130 Part II Software Requirements Development

Next Steps

■ Think about missing requirements that were discovered late on
your last project. Why were they overlooked during elicitation?
How could you have discovered each of these requirements
earlier?

■ Select a portion of any documented voice-of-the-customer
input on your project or a section from the SRS. Classify every
item in that requirements fragment into the categories shown in
Figure 7-1 (on page 120): business requirements, use cases or
scenarios, business rules, functional requirements, quality
attributes, external interface requirements, constraints, data
definitions, and solution ideas. If you discover items that are
classified incorrectly, move them to the correct place in the
requirements documentation.

■ List the requirements elicitation methods used on your current
project. Which ones worked well? Why? Which ones did not
work so well? Why not? Identify elicitation techniques that you
think would work better and decide how you’d apply them
next time. Identify any barriers you might encounter to making
those techniques work and brainstorm ways to overcome those
barriers.

C07618798.fm Page 130 Thursday, January 16, 2003 4:02 PM

