
Chapter 5

Scope Management

Project Scope Management includes the processes required to ensure
that the project includes all the work required, and only the work
required, to complete the project successfully.

—PMBOK® Guide

It is not the strongest of the species that survive, nor the most
intelligent, but the ones most responsive to change.

—Charles Darwin, The Origin of Species

Next week there can’t be any crisis. My schedule is already full.

—Henry Kissinger

“Scope creep” has always been the bane of traditional project managers, as
requirements continue to change in response to customer business needs,
changes in the industry, changes in technology, and things that were learned
during the development process. Scope planning, scope definition, scope
verification, and scope control are all processes that are defined in the
PMBOK® Guide to prevent scope creep, and these areas earn great atten-
tion from project managers. Those who use agile methods believe these
deserve great attention as well, but their philosophy on managing scope is
completely different. Plan-driven approaches work hard to prevent changes
in scope, whereas agile approaches expect and embrace scope change. The
agile strategy is to fix resources and schedule, and then work to implement
the highest value features as defined by the customer. Thus, the scope

• 67 •

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 67

remains flexible. This is in contrast to a typical waterfall approach, as shown
in Figure 5-1, where features (scope) are first defined in detail, driving the
cost and schedule estimates. Agile has simply flipped the triangle.

• 68 • S C O P E M A N A G E M E N T

Figure 5-1
Waterfall vs. Agile:
The paradigm shift
(original concept
courtesy of the DSDM
Consortium)

Traditional Agile

Fixed Features Resources Schedule

Variable Resources Schedule Features

Plan
Driven

Value/Vision
DrivenAgile flips the

triangle.

Scope Planning
The PMBOK® Guide defines the Project Scope Management Plan as the out-
put of the scope planning process.1 This document defines the processes that
will be followed in defining scope, documenting scope, verifying and accept-
ing scope and completed deliverables, and controlling and managing
requests for changes to the scope. In agile, the iterative and incremental
process itself is what manages scope. Unless documentation is required for
auditing purposes, no additional document outlining procedures for scope
management is needed. Scope is defined and redefined constantly in agile, as
part of the planning meetings—in particular, release planning and iteration
planning—and by the management of the product backlog. Remember,
resources and time are typically fixed in agile approaches, and it’s the scope
that is allowed to change. However, when fixed-scope projects are required,
it is the number of iterations that will change, in order to accommodate the
need for a full feature set prior to release. Additionally, one of the success cri-
teria in traditional projects is the extent to which we can “stick to the scope”;
in agile, it is more important to be able to efficiently and effectively respond
to change. The success criteria in agile thus changes to “Are we providing
value to our customer?” The primary measure of progress is working code.

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 68

Table 5-1 provides a summary comparison of scope planning from the
traditional and agile perspectives. In agile projects, scope planning is
referred to as “managing the product backlog.”

Table 5-1
Scope Planning

Traditional Agile

Prepare a Project Scope Management Commit to following the framework as
Plan document. outlined in the chosen agile process.

Scope Definition

The PMBOK® Guide practices of scope definition, work breakdown struc-
ture (WBS) creation, and scope verification occur iteratively in agile. A tra-
ditional WBS for software projects is usually divided at its highest level into
phases of analysis, design, coding, testing, and deployment activities. Each
of these phases is then decomposed into tasks or groups of tasks, referred to
as work packages in the PMBOK® Guide. Traditional project planning
begins top-down and relies on the elaboration of detailed tasks with esti-
mates and dependencies to drive the project schedule via use of critical path
analysis. Even though the PMBOK® Guide goes into great detail about
scope decomposition by way of WBS (work breakdown structure), it also
warns that “excessive decomposition can lead to nonproductive manage-
ment effort, inefficient use of resources, and decreased efficiency in per-
forming the work.”2

In agile, we approach these practices differently in that we define fea-
tures at a high level in the product backlog and then place features into iter-
ations during release planning. One can think of the iteration—or even the
feature itself—as the agile equivalent of work packages. The features are
estimated at a gross level in the product backlog—no detailed tasks or
resources are defined at this point in time. Once the iteration begins, the fea-
tures slated for that iteration—and only that iteration—are then elaborated
into tasks that represent a development plan for the feature. Think of it as
just-in-time elaboration, preventing a wasteful buildup of requirements
inventory that may never be processed. The PMBOK® Guide supports this
idea of “rolling wave planning”:3 As the work is decomposed to lower levels

• 69 •S C O P E P L A N N I N G

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 69

of detail, the ability to plan, manage, and control the work is enhanced
because the short timeframe of the iteration reduces the amount of detail
and the complexity of estimating. The agile approach assumes that because
things change so often, you shouldn’t spend the time doing “excessive
decomposition” until you’re ready to do the work.

Let’s look at how scope is defined throughout an agile project by exam-
ining five levels of planning common to most agile projects: the product
vision, the product roadmap, the release plan, the iteration plan, and the
daily plan.4

Product Vision

At the outset of a project, it is typical to hold a kickoff meeting. Agile is no
different; however, the way the agile vision meeting is conducted is unlike
what a traditional project manager might be accustomed to. Although the
vision is defined and presented by the customer or business representative,
it is the team that clarifies the vision during the discussions and subsequent
exercises. Therefore, the team is heavily involved, and group exercises are a
big part of determining the final outcomes. See Chapter 4, “Integration
Management,” for more detail on vision meetings.

The vision meeting is designed to present the big picture, get all team
members on the same page, and ensure a clear understanding of what it is
that they’ve been brought together to do. The vision defines the mission of
the project team and the boundaries within which they will work to achieve
the desired results. The project’s goal should be directly traceable to a cor-
porate strategic objective.

Here the scope is defined at a very high level. It is not uncommon to
leave the vision meeting with only a dozen or so features identified, such as
“provide online order capabilities,” “enable international ordering and
delivery,” “create data warehouse of customer orders to use for marketing
purposes,” and “integrate with our current brick-and-mortar inventory sys-
tem.” Clearly these are all very large pieces of functionality with little-to-no
detail—and this is what is appropriate at this stage of the project. The far-
ther away the delivery date, the broader the stroke given to feature details.

Product Roadmap

A product roadmap shows how the product will evolve over the next three
to four releases or some period of calendar time, typically quarters. The

• 70 • S C O P E M A N A G E M E N T

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 70

product roadmap is a high-level represen-
tation of what features or themes are to be
delivered in each release, the customer
targeted, the architecture needed to sup-
port the features, and the business value
the release is expected to meet. The cus-
tomer or product manager, agile project
manager, architect, and executive man-
agement should meet on average two to
three times a year to collaborate on the
development and revision of the product
roadmap. Figure 5-2 shows a sample roadmap template made popular by
Luke Hohmann in his book Beyond Software Architecture.5

• 71 •S C O P E P L A N N I N G

Note
In agile, the word “release” does
not solely mean a product release
to the end customer—it can also
mean an internal release to fulfill
integration milestones and con-
tinue to confirm that the product is
“potentially shippable.”

Figure 5-2
Product roadmap
template, courtesy of
Enthiosys and Luke
Hohmann, from his
book Beyond Soft-
ware Architecture

Market Map
(Target Market
Demographics)

Time Horizon -- Quarters work well…

Features/
Benefit Map

Technology/
Architecture
Roadmap

Market Events
/Rhythms

Biometric
ID

COMDEX

?
What

technology
should we use?

Small
Office

Managed
Service

Linux

Because the customer is responsible for maintaining and prioritizing the
backlog of work, the customer also owns the product roadmap. In large cor-
porations or on projects with multiple customers or product owners, the
customer assigned to the project will often first work with others in his busi-
ness unit to create a roadmap straw man as part of working out the priorities
of deliverables with the business. Then this straw man is presented to key
project team members (agile project manager, architect, and so on) for fur-
ther revision. Finally, the roadmap is presented to the entire team and inter-
ested stakeholders, usually as part of the vision meeting and/or release

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 71

planning meeting. Feedback is encouraged at all sessions because it helps to
better define a reasonable approach to product deliverables.

In addition to the vision plan and product roadmap, the end result of
the product vision and product roadmap discussions should be the priori-
tized product backlog. These are all inputs into the next level of planning:
release (or quarterly) planning.

Release (or Quarterly) Planning

In a release planning meeting, the team reviews the strategies and vision
shared by the customer and determines how to map the work from the pri-
oritized backlog into the iterations that make up a release or that make up a
period of time such as a quarter. Figure 5-3 shows a typical release plan
agenda, and Figure 5-4 shows the release plan done using a whiteboard and
sticky notes, as is common in agile meetings when the team is co-located.
The release plan is divided up into iterations (usually one flipchart page per
iteration), with associated high-level features. The release plan also includes
any assumptions, dependencies, constraints, decisions made, concerns,
risks, or other issues that may affect the release. Again, documentation of
these additional items can be as simple as posting the flipchart that they
were originally recorded on or taking a picture of it and posting it on a
shared website.

• 72 • S C O P E M A N A G E M E N T

Last Responsible Moment Decision Points
Note that one of the items on the release planning meeting agenda is the identifica-
tion of “Last Responsible Moment (LRM) decision points.” LRM decision points
identify points in the release where a decision must be made on an issue so as not to
allow a default decision to occur. In other words, they identify “the moment at which
failing to make a decision eliminates an important alternative”.6 Up until this point,
the team can continue its momentum and gather additional information that will help
in the decision-making. For example, one team knew it would have to make a deci-
sion between going with a Sybase database and an Oracle database. But the team did
not have to decide this before they could start on the project—indeed, the team real-
ized that it could develop code that was database-independent until the third iteration,
when integration and reporting were required. Therefore, the team set the end of the
second iteration as its LRM on the database decision, giving the architect and the
DBA time to experiment with the work being developed concurrently.

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 72

• 73 •S C O P E P L A N N I N G

Figure 5-3
Release planning
meeting agendaRelease Planning

Meeting Agenda

 Introductions, ground rules, review of purpose and agenda (Project manager)

 Do we need to review our current situation and/or existing product roadmap?

 (Project manager, architect, customer/product owner)

 Do we remember the product vision? Has it changed? (Customer/product

 owner)

 What is the release date? How many iterations make up this release? (Project

 Manager)

 What is the theme for this release? (Customer/product owner)

 What are the features we need for this release? (Customer/product owner)

 What assumptions are we making? What constraints are we dealing with?

 (Team)

 What are the milestones/deliverables expected? Do we have any LRM decision

 points? (Team)

 What is the capacity of the team (iteration velocity)? (Team)

 Can we move the features into the iterations? Do we need to break them into

 smaller features so that they can be completed in a single iteration? (Team)

 What issues/concerns do we have? (Team)

 Can we commit to this release as a team, given what we know today? (Team)

 Close: empty parking lot, action items, next steps (Project manager)

Figure 5-4
Release plan

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 73

Teams that are not co-located should make every effort to bring every-
one together for this meeting. Agile emphasizes face-to-face communication
because of its benefits. However, balancing this with the realities of geo-
graphically dispersed teams means that budget constraints force teams to be
selective about when they can gather together as a group. The vision and
release planning meetings should receive high priority, because the informa-
tion shared and decisions made in these meetings guide the team through-
out the remainder of the release.

Iteration Planning

Traditional scope definition and many of the practices defined in the
PMBOK® Guide knowledge area of Project Time Management are done as
part of iteration planning. Here, features are elaborated (creating the equiv-
alent of PMBOK® Guide work packages), tasks are identified, and the time
needed to accomplish the tasks is estimated (see Figures 5-5 and 5-8). At the
beginning of each iteration, the team should hold an iteration planning
meeting to conduct this work. The team reviews the release plan and the pri-
oritized items in the backlog, reviews the features requested for the current

• 74 • S C O P E M A N A G E M E N T

Coordinated Release Planning
A colleague of ours once ran a release planning meeting with teams located in the
U.S. and in London. Because of the size of the team and the budget constraints, not
everyone could attend the day-long event. So the meeting was broken out into three
days. Day 1 was focused on the U.S. team’s release plan and all its assumptions
about and dependencies on the London team. Due to time zone issues, the London
team listened in on the phone for the first part of the meeting as the vision and the
high-level detail and expectations around the features were discussed, then dropped
off the call once the U.S. team started on the work of moving the features into the
iterations. On Day 2, the London team did its work of moving the features into the
iterations after reviewing the results of the U.S. team’s release plan (photos and notes
were made available on their shared wiki). At the end of Day 2, the London team
posted its release plan. Day 3 was devoted to the coordination of the two plans, mak-
ing sure all assumptions had been addressed and understood, all dependencies
accounted for, and proper prioritizations had been made reflecting the teams’ con-
straints. Both groups committed to the release plan on the third day after some final
tweaking.

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 74

iteration, and tasks out and estimates those features. See Figure 5-6 for a
typical iteration planning meeting agenda. In keeping with the agile practice
of just-in-time design, it is here that the details of the features are discussed
and negotiated.

• 75 •S C O P E P L A N N I N G

Figure 5-5
Iteration plan

Figure 5-6
Iteration planning
meeting agendaIteration Planning

Meeting Agenda

 Introductions, ground rules, review of purpose and agenda (Project manager)

 Do we know our iteration start and end dates? (Project manager)

 Do we know the team’s velocity? (Team)

 Do we know what “done” means? (Team)

 What are the features we need for this iteration? What is the acceptance criteria

 for each feature? (Customer/product owner)

 Do we have enough information about the features so that we can task them

 out? (Team)

 Can we estimate the time it takes to complete the tasks? (Team)

 What assumptions are we making? What constraints are we dealing with? Are

 there dependencies that affect our prioritization? (Team)

 Are we within our velocity limits? (Team)

 What issues/concerns do we have? (Team)

 Can we commit to this iteration as a team, given what we know today? (Team)

 Close: empty parking lot, action items, next steps (Project manager)

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 75

Again, planning and design work is done only for the pieces that are
being readied to code in that iteration, not for the entire system. It’s often
discovered during iteration planning that the sum of the task efforts exceeds
the size of the iteration timebox. When this occurs, some of the work needs
to be shifted either into the next iteration or back into the backlog. Similarly,
if a team discovers that it has chosen too little work for the iteration, it will
consult with the customer, who can then give the team an additional feature
or two to make up the difference. This allows the team to make a realistic
commitment to the scope of the work being defined.

Daily Stand-Up

One of the key heartbeats of agile development involves the practice of daily
stand-up meetings. It is just what it sounds like: a daily meeting, where all
team members attend, and while remaining standing, they each relate their
status to the other team members and their plan for the day based on the
progress that they’ve made. Standing helps keep the meetings short—stand-
ups should run only 5 to 15 minutes. Its primary purpose is for the team
members to inspect and adapt its work plan (iteration backlog) by quickly
sharing information about the progress (or lack of) being made by each
individual regarding the tasks that were committed to during the iteration
planning meeting. These stand-ups help the team to remain focused on the
agreed-to scope and goals of the iteration.

Summary Comparison

Table 5-2 provides a summary comparison of traditional and agile
approaches to scope definition. In agile projects this is called “multilevel
planning.”

Table 5-2
Scope Definition

Traditional Agile

Prepare a Project Scope Statement document Conduct a vision meeting to share the
that includes items such as the following: product vision; confirm and clarify the

Project boundaries and objectives, product boundaries, objectives, and product

scope description… scope description using exercises such as
the elevator statement and design the box.

• 76 • S C O P E M A N A G E M E N T

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 76

Traditional Agile

And major milestones and project Conduct a planning meeting to prepare the
deliverables… product roadmap, as well as release or quarterly

planning meetings that also include milestones
and deliverables at an iteration level.

And product specifications and Conduct an iteration planning meeting that
acceptance criteria… results in the detail around each feature, and the

tasks needed to complete the feature according to
the team’s definition of “done” and the acceptance
criteria defined by the customer.

And assumptions and constraints. All planning meetings identify and/or review
assumptions and constraints.

Create a WBS

Agile teams do not tend to create formal WBSs (work breakdown struc-
tures). Instead, flipcharts and whiteboards are used to capture the break-
down of work. You’ve seen examples of these in Figures 5-4 and 5-5. So at
the end of release planning, the agile equivalent of a WBS—a feature break-
down structure—would look like the sample release plan feature break-
down structure in Figure 5-7. If having iterations as work packages is not
sufficient for your organization/billing needs, then breaking the work down
further into smaller work packages would look like the results of an iteration
planning meeting, as illustrated in Figure 5-8.

Table 5-3 compares the traditional and agile approaches to work break-
down. In agile projects, the work breakdown structure is captured in the
release plan and the iteration plan.

Table 5-3
WBS Creation

Traditional Agile

Create a work breakdown structure Conduct planning meetings and give the team
diagram. the responsibility for breaking down the work

into smaller work packages (features and
tasks), displayed as the release plan at the
high level, and the iteration plan at the more
detailed level.

• 77 •S C O P E P L A N N I N G

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 77

• 78 • S C O P E M A N A G E M E N T

Figure 5-7
Release plan feature
breakdown structure

Iteration 1 Iteration 2 Iteration 3 Iteration 4

Customer
Profile

Software
Product
Release

Order
Entry

Inventory
Report

Customer
Billing

Security
Options

Inventory
Updates

Trend
Reporting

Figure 5-8
Iteration plan (partial)

Tasks:
Confirm available inventory.
Capture customer info.
Capture shipping options.
Validate credit card.
Provide status to user (pass, fail).

Etc.

Estimate (hours):
5

13
8
2
2

Who:
Sue
Sue
Rob
Stu
Stu

Iteration 1

Order
Entry

Place Order
Using Credit

Card

Place Order
Using
PayPal

Access/Edit
Shopping

Cart

Cancel
Order

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 78

Scope Verification

Scope verification is accomplished within the iteration, as the customer gets
to review, test, and accept the implemented features. Ideally this happens
throughout the iteration, but it can also happen at the end of the iteration,
during the demo of the working code. Those features that were not accepted
(either because they weren’t ready or weren’t right) move back into the
backlog or into the next iteration at the discretion of the customer. Scope
change control is handled by the management of this backlog, as discussed
in the previous chapter on integration.

Table 5-4 makes the comparison between the traditional and agile
approaches to scope verification. Scope verification is captured by the agile
practices of acceptance testing and customer acceptance.

Table 5-4
Scope Verification

Traditional Agile

Document those completed deliverables Documentation of accepted features may
that have been accepted and those that be done informally (by moving the sticky
have not been accepted, along with the reason. notes to the “done” pile) or formally.

Document change requests. Customer updates the backlog.

Scope Control

Controlling scope in agile projects consists of two things: managing the
product backlog and protecting the iteration. Whereas the customer main-
tains the backlog, it is the agile project manager who protects the team and
helps prevent scope changes from occurring during the iteration.

When a team commits to the iteration at the end of the iteration plan-
ning meeting, the delivery team is effectively saying, “Given what we know
today, we believe we can deliver this work using our definition of ‘done’
within this iteration,” and the customer is effectively saying, “Given what I

• 79 •S C O P E P L A N N I N G

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 79

know today, this is the work that I am expecting by the end of the iteration,
and during that time I will not mess with the iteration backlog” (that is,
scope). The iteration backlog is thus locked in.

It is important to set the length of your iteration accordingly, because
the customer must wait until the next iteration to make changes. If there
happens to be lots of “requirements churn” (that is, requests for changes are
coming in very frequently), you may want to discuss shorter iteration cycles
with the team in order to enable more frequent changes. Maintenance teams
may have iteration lengths of only one week, whereas larger system develop-
ments with known requirements may have an iteration length of four to six
weeks. If the customer keeps trying to interrupt the team with changes, the
iteration length may be too long.

There will always be exceptions, and in those cases a discussion
between the customer and the agile project manager should help identify
potential resolutions. Iterations can be aborted and restarted, but this
should be the rare exception.

Given the short duration of iterations, it is easy to protect the iteration
backlog from change. However, changes in the product roadmap and the
release plan are expected and therefore should be reviewed regularly.

Table 5-5 lists out the differences between the traditional and agile
approaches to scope control. Agile users refer to scope control as “managing
the product backlog.”

Table 5-5
Scope Control

Traditional Agile

Use a change control system to The customer manages the product backlog; once
manage change. the team commits to the work to be done in an

iteration, the scope is protected for that duration.

Update all documents as appropriate The team revisits release plans and product
with the approved changes. roadmaps regularly, making changes as needed to

better reflect the team’s progress and changes
requested by the customer.

• 80 • S C O P E M A N A G E M E N T

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 80

Summary
The main points of this chapter can be summarized as follows:

• “Scope creep” doesn’t exist in agile projects, because scope is
expected to change.

• Scope management in agile is primarily a function of “rolling wave”
planning and the management of the product backlog.

• Scope is defined and redefined using five different levels of planning
that take the team from the broad vision down to what team mem-
bers plan to complete today.

• WBSs are not created per se; instead, release/quarterly plans and
iteration plans serve to break down the work into smaller work pack-
ages, referred to as “features and tasks.”

• Scope is verified by the customer, who is responsible for accepting or
rejecting the features completed each iteration.

• Scope is controlled through the use of the backlog, rolling wave plan-
ning, and the protection of the iteration.

Table 5-6 presents the differences in project management behavior
regarding scope management in traditional and agile projects.

Table 5-6
Agile Project Manager’s Change List for Scope Management

I used to do this: Now I do this:

Prepare a formal Project Scope Make sure the team understands the framework
Management plan. and process structure of the chosen agile

approach.

Prepare a formal Project Scope Facilitate planning meetings—vision, release,
Statement document. iteration, daily stand-up—and arrange for the

informally documented plans to be highly visible
to all stakeholders.

Create the WBS. Facilitate the release planning meeting so that the
team can create the plan showing the breakdown
of work across several iterations.

• 81 •S U M M A R Y

(continued)

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 81

Table 5-6
Agile Project Manager’s Change List for Scope Management (continued)

I used to do this: Now I do this:

Manage the change control system Step away from the backlog; it is owned by the
and try to prevent scope creep. customer. If needed, remind the customer that

during the iteration, the team is protected from
scope changes.

Manage the delivery of tasks to Allow team members to manage their daily tasks
prevent or correct scope creep and facilitate conversations with the customer to
at the task level. avoid unnecessary work or “gold plating.”

Endnotes
1. PMBOK® Guide, 107.

2. Ibid, 114.

3. Ibid.

4. Mike Cohn. Agile Estimating and Planning (Upper Saddle River, NJ: Pearson
Education, Inc., 2006), 28.

5. Luke Hohmann. Beyond Software Architecture (Boston: Addison-Wesley,
2003), 287.

6. Poppendieck. Lean Software Development, 57.

• 82 • S C O P E M A N A G E M E N T

08_0321502752_ch05.qxd 4/18/08 3:13 PM Page 82

