

73

Chapter 3

Requirements
Engineering for
Secure Software

3.1 Introduction

When security requirements are considered at all during the system
life cycle, they tend to be general lists of security features such as pass-
word protection, firewalls, virus detection tools, and the like. These
are, in fact, not security requirements at all, but rather implementation
mechanisms that are intended to satisfy unstated requirements, such
as authenticated access. As a result, security requirements that are spe-
cific to the system and that provide for protection of essential services
and assets are often neglected. In addition, the attacker perspective is
not considered, with the result being that security requirements—
when they exist—are likely to be incomplete. We believe that a system-
atic approach to security requirements engineering will help avoid the
problem of generic lists of features and take into account the attacker’s
perspective. Several approaches to security requirements engineering
are described in this chapter, and references are provided to additional
material that can help you ensure that your products effectively meet
security requirements.

L4LME

Chapter 3 Requirements Engineering for Secure Software74

3.1.1 The Importance of Requirements Engineering

It comes as no surprise that requirements engineering is critical to
the success of any major development project. Some studies have
shown that requirements engineering defects cost 10 to 200 times as
much to correct once the system has become operational than if they
were detected during requirements development [Boehm 1988;
McConnell 2001]. Other studies have shown that reworking require-
ments, design, and code defects on most software development
projects accounts for 40 to 50 percent of the total project effort [Jones
1986a]; the percentage of defects originating during requirements
engineering is estimated at more than 50 percent. The total percent-
age of project budget due to requirements defects ranges from 25
percent to 40 percent [Wiegers 2003]. Clearly, given these costs of
poor security requirements, even a small improvement in this area
would provide a high value. By the time that an application is
installed in its operational environment, it is very difficult and
expensive to significantly improve its security.

Requirements problems are among the top causes of the following
undesirable phenomena [Charette 2005]:

• Projects are significantly over budget, go past schedule, have sig-
nificantly reduced scope, or are cancelled

• Development teams deliver poor-quality applications
• Products are not significantly used once delivered

These days we have the further problem that the environment in which
we do requirements engineering has changed, resulting in an added ele-
ment of complexity. Today’s software development takes place in a
dynamic environment that changes while projects are still in develop-
ment, with the result that requirements are constantly in a state of flux.
Such changes can be inspired by a variety of causes—conflicts between
stakeholder groups, rapidly evolving markets, the impact of tradeoff
decisions, and so on.

In addition, requirements engineering on individual projects often suf-
fers from the following problems:

• Requirements identification typically does not include all relevant
stakeholders and does not use the most modern or efficient tech-
niques.

3.1 Introduction 75

• Requirements are often statements describing architectural con-
straints or implementation mechanisms rather than statements
describing what the system must do.

• Requirements are often directly specified without any analysis or
modeling. When analysis is done, it is usually restricted to functional
end-user requirements, ignoring (1) quality requirements such as
security, (2) other functional and nonfunctional requirements,
and (3) architecture, design, implementation, and testing constraints.

• Requirements specification is typically haphazard, with speci-
fied requirements being ambiguous, incomplete (e.g., nonfunc-
tional requirements are often missing), inconsistent, not cohesive,
infeasible, obsolete, neither testable nor capable of being validated,
and not usable by all of their intended audiences.

• Requirements management is typically weak, with ineffective
forms of data capture (e.g., in one or more documents rather than
in a database or tool) and missing attributes. It is often limited to
tracing, scheduling, and prioritization, without change tracking or
other configuration management. Alternatively, it may be limited
to the capabilities provided by a specific tool, with little opportu-
nity for improvement.

3.1.2 Quality Requirements

Even when organizations recognize the importance of functional end-
user requirements, they often neglect quality requirements, such as
performance, safety, security, reliability, and maintainability. Some
quality requirements are nonfunctional requirements, but others
describe system functionality, even though it may not contribute
directly to end-user requirements.

As you might expect, developers of certain kinds of mission-critical
systems and systems in which human life is involved, such as the
space shuttle, have long recognized the importance of quality require-
ments and have accounted for them in software development. In
many other systems, however, quality requirements are ignored alto-
gether or treated in an inadequate way. Hence we see the failure of
software associated with power systems, telephone systems,
unmanned spacecraft, and so on. If quality requirements are not
attended to in these types of systems, it is far less likely that they will
be focused on in ordinary business systems.

Chapter 3 Requirements Engineering for Secure Software76

This inattention to quality requirements is exacerbated by the desire to
keep costs down and meet aggressive schedules. As a consequence,
software development contracts often do not contain specific quality
requirements, but rather offer up some vague generalities about qual-
ity, if they touch on this topic at all.

3.1.3 Security Requirements Engineering

If security requirements are not effectively defined, the resulting sys-
tem cannot be evaluated for success or failure prior to its implementa-
tion [BSI 09]. When security requirements are considered, they are
often developed independently of other requirements engineering
activities. As a result, specific security requirements are often
neglected, and functional requirements are specified in blissful igno-
rance of security aspects.

In reviewing requirements documents, we typically find that security
requirements—when they exist—are in a section by themselves and
have been copied from a generic list of security features. The require-
ments elicitation and analysis that are needed to produce a better set of
security requirements seldom take place.

As noted previously, operational environments and business goals
often change dynamically, with the result that security requirements
development is not a one-time activity. Therefore the activities that we
describe in this chapter should be planned as iterative activities, tak-
ing place as change occurs. Although we describe them as one-time
activities for the sake of exposition, you can expect mini-life cycles to
occur over the course of a project.

Much requirements engineering research and practice addresses the
capabilities that the system will provide. As a consequence, a lot of
attention is paid to the functionality of the system from the user’s per-
spective, but little attention is devoted to what the system should not do
[Bishop 2002]. Users have implicit assumptions for the software applica-
tions and systems that they use. They expect those products to be secure
and are surprised when they are not. These user assumptions need to be
translated into security requirements for the software systems when
they are under development. Often the implicit assumptions of users
are overlooked, and features are focused on instead.

Another important perspective is that of the attacker. An attacker is
not particularly interested in functional features of the system, unless

3.1 Introduction 77

they provide an avenue for attack. Instead, the attacker typically
looks for defects and other conditions outside the norm that will
allow a successful intrusion to take place. For this reason, it is
important for requirements engineers to think about the attacker’s
perspective and not just the functionality of the system from the
end-user’s perspective. The discussion of attack patterns in
Chapter 2 provides a good place to start this analysis. Other tech-
niques that can be used in defining the attacker’s perspective are
misuse and abuse cases [McGraw 2006], attack trees [Ellison 2003;
Schneier 2000], and threat modeling [Howard 2002]. Some of these
methodologies are discussed in later sections of this chapter.

For many projects, security requirements are stated as negative
requirements. As a result, general security requirements, such as “The
system shall not allow successful attacks,” are usually not feasible, as
there is no consensus on ways to validate them other than to apply for-
mal methods to the entire system. We can, however, identify the essen-
tial services and assets that must be protected. Operational usage
scenarios can be extremely helpful aids to understanding which ser-
vices and assets are essential. By providing threads that trace through
the system, such scenarios also help to highlight security requirements
as well as other quality requirements such as safety and performance
[Reifer 2003]. Once the essential services and assets are understood,
we become able to validate that mechanisms such as access control,
levels of security, backups, replication, and policy are implemented
and enforced. We can also validate that the system properly handles
specific threats identified by a threat model and correctly responds to
intrusion scenarios.

As usable approaches to security requirements engineering continue
to emerge and new mechanisms are identified to promote organiza-
tional use, project managers can do a better job of ensuring that the
resulting product effectively meets security requirements. The follow-
ing techniques are known to be useful in this regard:

• Comprehensive, Lightweight Application Security Process (CLASP)
approach to security requirements engineering. CLASP is a life-
cycle process that suggests a number of different activities across the
development life cycle in an attempt to improve security. Among
these is a specific approach for security requirements [BSI 12].

• Security Quality Requirements Engineering (SQUARE). This pro-
cess is aimed specifically at security requirements engineering.

Chapter 3 Requirements Engineering for Secure Software78

• Core security requirements artifacts [Moffett 2004]. This approach
takes an artifact view and starts with the artifacts that are needed to
achieve better security requirements. It provides a framework that
includes both traditional requirements engineering approaches to
functional requirements and an approach to security requirements
engineering that focuses on assets and harm to those assets.

Other useful techniques include formal specification approaches to
security requirements, such as Software Cost Reduction (SCR) [Heitm-
eyer 2002], and the higher levels of the Common Criteria [CCMB
2005a]. As an additional reference, the SOAR report Software Security
Assurance [Goertzel 2007] contains a good discussion of SDLC pro-
cesses and various approaches to security requirements engineering.

In this chapter we discuss several approaches to development of secu-
rity requirements, including the use of misuse and abuse cases, security
quality requirements engineering, security requirements elicitation, and
security requirements prioritization. While the processes we discuss are
similar to those used for requirements engineering in general, we have
found that when we delve into the detailed steps of how to do security
requirements engineering, certain techniques are particularly useful,
and we highlight these where they occur.

3.2 Misuse and Abuse Cases1

To create secure and reliable software, we first must anticipate abnor-
mal behavior. We don’t normally describe non-normative behavior in
use cases, nor do we describe it with UML, but we must have some
way to talk about and prepare for it. Misuse (or abuse) cases can help
you begin to see your software in the same light that attackers do. By
thinking beyond normative features while simultaneously contem-
plating negative or unexpected events, you can better understand how
to create secure and reliable software.2

1. [BSI 43] © 2004 IEEE. Reprinted, with permission, from “Misuse and Abuse Cases: Getting
Past the Positive” by Paco Hope, Gary McGraw, and Annie I. Anton, IEEE Security & Privacy 2, 3
(May/June 2004): 90–92.

2. Since the original publication of this material, there have been a number of vendor efforts to
improve security, such as the Microsoft effort described in [Howard 2007].

L3L L

3.2 Misuse and Abuse Cases 79

Guttorm Sindre and Andreas Opdahl extend use-case diagrams with
misuse cases to represent the actions that systems should prevent in tan-
dem with those that they should support for security and privacy
requirements analysis [Sindre 2000]. Ian Alexander advocates using
misuse and use cases together to conduct threat and hazard analysis
during requirements analysis [Alexander 2003]. Here, we provide a
nonacademic introduction to the software security best practice of mis-
use and abuse cases, showing you how to put the basic science to work.

3.2.1 Security Is Not a Set of Features

There is no convenient security pull-down menu that will let you
select “security” and then sit back and watch magic things happen.
Unfortunately, many software developers simply link functional secu-
rity features and mechanisms somewhere into their software, mistak-
enly assuming that doing so addresses security needs throughout the
system. Too often, product literature makes broad, feature-based
claims about security, such as “built with SSL” or “128-bit encryption
included,” which represent the vendor’s entire approach for securing
its product.

Security is an emergent property of a system, not a feature. This is
analogous to how “being dry” is an emergent property of being inside
a tent in the rain. The tent will keep you dry only if the poles are stabi-
lized, vertical, and able to support the weight of wet fabric; the tent
also must have waterproof fabric (with no holes) and be large enough
to protect everyone who wants to remain dry. Lastly, everyone must
remain under the tent for the entire time it’s raining. So, although hav-
ing poles and fabric is important, it’s not enough to say, “The tent has
poles and fabric; thus it keeps you dry!” This sort of claim, however, is
analogous to the claims that software vendors make when they high-
light numbers of bits in cryptographic keys or the use of particular
encryption algorithms. Cryptography of one kind or another is usually
necessary to create a secure system, but security features alone are not
sufficient for building secure software.

Because security is not a feature, it cannot be bolted on after other soft-
ware features are codified, nor can it be patched in after attacks have
occurred in the field. Instead, security must be built into the product
from the ground up, as a critical part of the design from the very begin-
ning (requirements specification) and included in every subsequent
development phase, all the way through fielding a complete system.

Chapter 3 Requirements Engineering for Secure Software80

Sometimes building security in at the beginning of the SDLC means
making explicit tradeoffs when specifying system requirements. For
example, ease of use might be paramount in a medical system
designed for clerical personnel in doctors’ offices, but complex authen-
tication procedures, such as obtaining and using a cryptographic iden-
tity, can be hard to use [Whitten 1999]. Furthermore, regulatory
pressures from HIPAA and California’s privacy regulations (Senate
Bill 1386) force designers to negotiate a reasonable tradeoff.

Technical approaches must go far beyond the obvious features, deep
into the many-tiered heart of a software system, to provide enough
security: Authentication and authorization can’t stop at a program’s
front door. The best, most cost-effective approach to software security
incorporates thinking beyond normative features and maintains that
thinking throughout the development process. Every time a new
requirement, feature, or use case is created, the developer or security
specialist should spend some time thinking about how that feature
might be unintentionally misused or intentionally abused. Profession-
als who know how features are attacked and how to protect software
should play active roles in this kind of analysis.

3.2.2 Thinking About What You Can’t Do

Attackers are not standard-issue customers. They’re bad people with
malicious intentions who want your software to act to their benefit. If
the development process doesn’t address unexpected or abnormal
behavior, then an attacker usually has plenty of raw material with
which to work [Hoglund 2004].

Although attackers are creative, they always probe well-known loca-
tions—boundary conditions, edges, intersystem communication,
and system assumptions—in the course of their attacks. Clever
attackers will try to undermine the assumptions on which a system
was built. If a design assumes that connections from the Web server
to the database server are always valid, for example, an attacker will
try to make the Web server send inappropriate requests to access
valuable data. If the software design assumes that the client never
modifies its Web browser cookies before they are sent back to the
requesting server (in an attempt to preserve some state), attackers
will intentionally cause problems by modifying the cookies. Building
Secure Software teaches us that we have to be on guard when we
make any assumptions [Viega 2001].

3.2 Misuse and Abuse Cases 81

When we design and analyze a system, we’re in a great position to
know our systems better than potential attackers do. We must leverage
this knowledge to the benefit of security and reliability, which we can
achieve by asking and answering the following critical questions:
Which assumptions are implicit in our system? Which kinds of things
make our assumptions false? Which kinds of attack patterns will an
attacker bring to bear?

Unfortunately, a system’s creators are not the best security analysts of
that system. Consciously noting and considering all assumptions
(especially in light of thinking like an attacker) is extremely difficult
for those who have built up a set of implicit assumptions. Fortunately,
these professionals make excellent subject matter experts (SMEs).
Together, SMEs and security analysts can ferret out base assumptions
in a system under analysis and think through the ways an attacker will
approach the software.

3.2.3 Creating Useful Misuse Cases

One of the goals of misuse cases is to decide and document a priori how
software should react to illegitimate use. The simplest, most practical
method for creating misuse cases is usually through a process of
informed brainstorming. Several theoretical methods require fully speci-
fying a system with rigorous formal models and logics, but such activities
are extremely time and resource intensive. A more practical approach
teams security and reliability experts with SMEs. This approach relies
heavily on expertise and covers a lot of ground quickly.

To guide brainstorming, software security experts ask many questions
of a system’s designers to help identify the places where the system is
likely to have weaknesses. This activity mirrors the way attackers
think. Such brainstorming involves a careful look at all user interfaces
(including environmental factors) and considers events that develop-
ers assume a person can’t or won’t do. These “can’ts” and “won’ts”
take many forms: “Users can’t enter more than 50 characters because
the JavaScript code won’t let them” or “Users don’t understand the
format of the cached data, so they can’t modify it.” Attackers, unfortu-
nately, can make these can’ts and won’ts happen.

The process of specifying abuse cases makes a designer very clearly dif-
ferentiate appropriate use from inappropriate use. To reach this point,
however, the designer must ask the right questions: How can the system
distinguish between good input and bad input? Can it tell whether a

Chapter 3 Requirements Engineering for Secure Software82

request is coming from a legitimate application or from a rogue applica-
tion replaying traffic? All systems have more vulnerable places than the
obvious front doors, so where might a bad guy be positioned? On the
wire? At a workstation? In the back office? Any communication line
between two endpoints or two components is a place where an attacker
might try to interpose himself or herself, so what can this attacker do in
the system? Watch communications traffic? Modify and replay such
traffic? Read files stored on the workstation? Change registry keys or
configuration files? Be the DLL? Be the “chip”?

Trying to answer such questions helps software designers explicitly
question design and architecture assumptions, and it puts the designer
squarely ahead of the attacker by identifying and fixing a problem
before it’s ever created.

3.2.4 An Abuse Case Example

This section describes a real-world example of a classic software secu-
rity problem on a client/server application. The architecture had been
set up so that the server relied on the client-side application, which
manipulated a financially sensitive database, to manage all data-access
permissions—no permissions were enforced on the server itself. In
fact, only the client had any notion of permissions and access control.
To make matters worse, a complete copy of the database (only parts of
which were to be viewed by a given user with a particular client) was
sent to the client program, which ran on a garden-variety desktop PC.
As a consequence, a complete copy of the sensitive data (which was
expressly not to be viewed by the user) was available on that user’s PC
in the clear. If the user looked in the application’s cache on the hard
disk and used a standard-issue unzip utility, he or she could see all
sorts of sensitive information.

The client also enforced which messages were sent to the server, hon-
oring these messages independent of the user’s actual credentials. The
server assumed that any messages coming from the client had passed
the client software’s access control system (and policy) and were,
therefore, legitimate. By intercepting network traffic, corrupting val-
ues in the client software’s cache, or building a hostile client, malicious
users could inject data into the database that they were not even sup-
posed to read (much less write to).

Determining the can’ts and won’ts in such a case is difficult for those
who think only about positive features. Attack patterns can provide

3.2 Misuse and Abuse Cases 83

some guidance in this regard (see Section 2.3.2). Attack patterns are
akin to patterns in sewing—that is, a blueprint for creating an attack.
Everyone’s favorite example, the buffer overflow, follows several dif-
ferent standard patterns, but patterns allow for a fair amount of varia-
tion on a theme. They can take into account many dimensions,
including timing, resources required, techniques, and so forth
[Hoglund 2004]. When we’re trying to develop misuse and abuse
cases, attack patterns can help.

Misuse/Abuse Case Templates

Templates for misuse and abuse cases appear in a number of ref-
erences. They can be text or diagrams, and some are supported
by tools. Some good sources for templates are in materials by Sin-
dre and Opdahl [Sindre 2001] and Alexander [Alexander 2002].
Figure 3–1 is an example of a use/misuse-case diagram to elicit
security requirements from Alexander’s article. The high-level
case is shown on the left; use cases are drawn in white and mis-
use cases are drawn in black.

Figure 3–1: Misuse case example

Driver

Car Thief

Steal the Car

Short the Ignition

Includes

Includes

Includes

Use Cases for Car Security

Drive the Car

Lock the Car

Lock the Transmission

Threatens

Mitigates

Threatens

Mitigates

Chapter 3 Requirements Engineering for Secure Software84

It is possible for misuse cases to be overused (and generated forever
with little impact on actual security). A solid approach to building
them requires a combination of security know-how and subject matter
expertise to prioritize misuse cases as they are generated and to strike
the right balance between cost and value.

Although misuse and abuse cases can be used as a stand-alone activity,
they are more effective when they are developed as part of an overall
security requirements engineering process. As noted in Section 3.1.3, a
number of processes can be used to address security requirements engi-
neering. In the next section, we describe one such process, the SQUARE
process model, in which misuse and abuse cases play important roles.
Consult the reference material that we have provided to learn about
other processes and select the process and methods that are best for
your organization.

3.3 The SQUARE Process Model

Security Quality Requirements Engineering (SQUARE) is a process
model that was developed at Carnegie Mellon University [Mead
2005].3 It provides a means for eliciting, categorizing, and prioritizing
security requirements for information technology systems and appli-
cations. (Note that this section and the following sections all discuss
security requirements, regardless of whether the term “security” is
specifically used as a qualifier.) The focus of the model is to build secu-
rity concepts into the early stages of the SDLC. It can also be used for
documenting and analyzing the security aspects of systems once they
are implemented in the field and for steering future improvements
and modifications to those systems.

After its initial development, SQUARE was applied in a series of client
case studies [Chen 2004; Gordon 2005; Xie 2004]. Prototype tools were
also developed to support the process. The draft process was revised and
established as a baseline after the case studies were completed; the base-
lined process is shown in Table 3–1. In principle, Steps 1–4 are actually
activities that precede security requirements engineering but are neces-
sary to ensure that it is successful. Brief descriptions of each step follow; a
detailed discussion of the method can be found in [Mead 2005].

3. The SQUARE work is supported by the Army Research Office through grant number
DAAD19-02-1-0389 (“Perpetually Available and Secure Information Systems”) to Carnegie Mel-
lon University’s CyLab.

L3L LM

85

Table 3–1: The SQUARE Process

Number Step Input Techniques Participants Output

1 Agree on
definitions

Candidate
definitions from
IEEE and other
standards

Structured
interviews, focus
group

Stakeholders,
requirements
engineers

Agreed-to
definitions

2 Identify security
goals

Definitions, candi-
date goals, busi-
ness drivers,
policies and pro-
cedures, examples

Facilitated work
session, surveys,
interviews

Stakeholders,
requirements
engineers

Goals

3 Develop artifacts
to support secu-
rity requirements
definition

Potential artifacts
(e.g., scenarios,
misuse cases,
templates, forms)

Work session Requirements
engineers

Needed artifacts:
scenarios, misuse
cases, models,
templates, forms

4 Perform
(security) risk
assessment

Misuse cases,
scenarios, secu-
rity goals

Risk assessment
method, analysis
of anticipated risk
against organiza-
tional risk toler-
ance, including
threat analysis

Requirements
engineers, risk
expert,
stakeholders

Risk assessment
results

Continues

86

5 Select elicitation
techniques

Goals, defini-
tions, candidate
techniques,
expertise of stake-
holders, organi-
zational style,
culture, level of
security needed,
cost–benefit
analysis

Work session Requirements
engineers

Selected elicita-
tion techniques

6 Elicit security
requirements

Artifacts, risk
assessment
results, selected
techniques

Accelerated
Requirements
Method, Joint
Application
Development,
interviews, sur-
veys, model-
based analysis,
checklists, lists of
reusable require-
ments types, doc-
ument reviews

Stakeholders
facilitated by
requirements
engineers

Initial cut at secu-
rity requirements

Table 3–1: The SQUARE Process (Continued)

Number Step Input Techniques Participants Output

87

7 Categorize
requirements as
to level (e.g.,
system, software)
and whether they
are requirements
or other kinds of
constraints

Initial
requirements,
architecture

Work session
using a standard
set of categories

Requirements
engineers, other
specialists as
needed

Categorized
requirements

8 Prioritize
requirements

Categorized
requirements and
risk assessment
results

Prioritization
methods such
as Analytical
Hierarchy
Process (AHP),
triage, and
win-win

Stakeholders
facilitated by
requirements
engineers

Prioritized
requirements

9 Inspect
requirements

Prioritized
requirements,
candidate formal
inspection
technique

Inspection
method such as
Fagan and peer
reviews

Inspection team Initial selected
requirements,
documentation of
decision-making
process and
rationale

Table 3–1: The SQUARE Process (Continued)

Number Step Input Techniques Participants Output

Chapter 3 Requirements Engineering for Secure Software88

3.3.1 A Brief Description of SQUARE

The SQUARE process is best applied by the project’s requirements
engineers and security experts in the context of supportive executive
management and stakeholders. We have observed that this process
works best when elicitation occurs after risk assessment (Step 4) has
been done and when security requirements are specified before criti-
cal architecture and design decisions. Thus critical security risks to
the business will be considered in the development of the security
requirements.

Step 1, “Agree on definitions,” is needed as a prerequisite to security
requirements engineering. On a given project, team members tend to
have definitions in mind, based on their prior experience, but those
definitions often differ [Woody 2005]. For example, for some govern-
ment organizations, security has to do with access based on security
clearance levels, whereas for others security may have to do with
physical security or cybersecurity. It is not necessary to invent defini-
tions. Sources such as the Institute for Electrical and Electronics Engi-
neers (IEEE) and the Software Engineering Body of Knowledge
(SWEBOK) provide a range of definitions to select from or tailor. A
focus group meeting with the interested parties will most likely enable
the selection of a consistent set of definitions for the security require-
ments activity.

Step 2, “Identify security goals,” should be done at the organizational
level and is needed to support software development in the project at
hand. This step provides a consistency check with the organization’s
policies and operational security environment. Different stakeholders
usually have different goals. For example, a stakeholder in human
resources may be concerned about maintaining the confidentiality of
personnel records, whereas a stakeholder in a financial area may be
concerned with ensuring that financial data is not accessed or modi-
fied without authorization. It is important to have a representative set
of stakeholders, including those with operational expertise. Once the
goals of the various stakeholders have been identified, they need to be
prioritized. In the absence of consensus, an executive decision may be
needed to prioritize them. It is expected that the goals identified in this
step will link to the core properties discussed in Chapter 2.

Step 3, “Develop artifacts,” is necessary to support all subsequent
security requirements engineering activities. Organizations often do
not have a documented concept of operations for a project, succinctly

3.3 The SQUARE Process Model 89

stated project goals, documented normal usage and threat scenarios,
misuse or abuse cases, and other documents needed to support
requirements definition. As a consequence, either the entire require-
ments process is built on unstated assumptions or a lot of time is spent
backtracking to try to obtain such documentation.

Step 4, “Perform risk assessment,” requires an expert in risk assess-
ment methods, the support of the stakeholders, and the support of a
security requirements engineer. A number of risk assessment methods
are available (as discussed in detail in Section 3.4.1). The risk assess-
ment expert can recommend a specific method based on the unique
needs of the organization. The artifacts from Step 3 provide the input
to the risk assessment process; the outcomes of the risk assessment, in
turn, can help in identifying the high-priority security exposures (see
also the discussion of the risk management framework in Section 7.4).
Organizations that do not perform risk assessment typically do not have
a logical approach to considering organizational risks when identifying
security requirements, but rather tend to select specific solutions or tech-
nologies, such as encryption, without really understanding the problem
that is being solved.

Step 5, “Select elicitation technique,” becomes important when the
project has diverse stakeholders. A more formal elicitation technique,
such as the Accelerated Requirements Method [Hubbard 1999], Joint
Application Design [Wood 1989], or structured interviews, can be
effective in overcoming communication issues when stakeholders
have variable cultural backgrounds. In other cases, elicitation may
simply consist of sitting down with a primary stakeholder and trying
to understand that stakeholder’s security requirements needs.

Step 6, “Elicit security requirements,” is the actual elicitation process
using the selected technique. Most elicitation techniques provide
detailed guidance on how to perform elicitation. This effort builds on
the artifacts that were developed in earlier steps, such as misuse and
abuse cases, attack trees, threats, and scenarios.

Step 7, “Categorize requirements,” allows the security requirements
engineer to distinguish among essential requirements, goals (desired
requirements), and architectural constraints that may be present.
Requirements that are actually constraints typically arise when a spe-
cific system architecture has been chosen prior to the requirements
process. This is good, as it allows for assessment of the risks associated
with these constraints. This categorization also helps in the prioritiza-
tion activity that follows (Step 8).

Chapter 3 Requirements Engineering for Secure Software90

Step 8, “Prioritize requirements,” depends not only on the prior step,
but may also involve performing a cost–benefit analysis to determine
which security requirements have a high payoff relative to their cost.
Prioritization may also depend on other consequences of security
breaches, such as loss of life, loss of reputation, and loss of consumer
confidence.

Step 9, “Requirements inspection,” can be done at varying levels of
formality, ranging from Fagan inspections (a highly structured and
proven technique for requirements inspection) [Fagan 1999] to peer
reviews. Once this inspection is complete, the project team should
have an initial set of prioritized security requirements. It should also
understand which areas are incomplete and must be revisited at a later
time. Finally, the project team should understand which areas are
dependent on specific architectures and implementations and should
plan to revisit those areas as well.

3.3.2 Tools

A prototype tool has been developed to support SQUARE. It primarily
provides an organizational framework for the artifact documents; in
addition, it provides default content for some of the steps. The tool
does not perform sophisticated functions such as requirements analy-
sis. This prototype is undergoing further development so that it will
provide better support to the SQUARE process and be more attractive
to users. The current status of the SQUARE process and tool, as well as
contact information, can be found at http://www.cert.org/nav/
index_purple.html/square.html.

3.3.3 Expected Results

When you apply SQUARE, you can expect relevant security require-
ments to be identified and documented for the system or software that
is being developed. SQUARE is better suited to use with a system
under development than with a system that has already been fielded,
although it has been used in both situations. Although quantitative
measures do not exist, case study clients recognized the value of the
new security requirements and have taken steps to incorporate them
into their system specifications. You’ll need to consider the resources
required for this activity and for the implementation of the resulting
requirements [Xie 2004].

http://www.cert.org/nav/index_purple.html/square.html
http://www.cert.org/nav/index_purple.html/square.html

3.4 SQUARE Sample Outputs 91

Our experience with SQUARE suggests that the system and its ele-
ments must be considered within the context or environment in which
it operates. For example, a system that operates on a single isolated
workstation will have very different security requirements from a sim-
ilar system that is Web based. Likewise, a medical information system
will have different security requirements for workstations that are iso-
lated in a physician’s office than for those that are located in a public
area in a hospital. These differences should be accounted for in the
artifacts developed in Step 3—for example, in usage scenarios and
misuse or abuse cases. When the context for a project changes, you
should revisit the security requirements and reapply the SQUARE
process. It may be that a subset of the SQUARE steps will be sufficient
for this purpose, but we do not yet have enough experience with sub-
sequent applications of SQUARE to the same system to make that
determination.

3.4 SQUARE Sample Outputs

Several case studies have been conducted using the SQUARE process
model [Chen 2004; Gordon 2005]. The goals of these case studies were
to experiment with each step of the SQUARE process, make recom-
mendations, and determine the feasibility of integrating the SQUARE
methodology into standard software development practices. The case
studies involved real-world clients that were developing large-scale IT
projects, including an IT firm in Pittsburgh, Pennsylvania; a federal
government research institute; and a department of the federal gov-
ernment.

Acme Corporation (an alias used to protect the identity of the client), a
private IT firm headquartered in Pittsburgh, provides technical and
management services to various public sectors and a number of diver-
sified private sectors. Its product, the Asset Management System
(AMS) version 2, provides a tool that enables companies to make stra-
tegic allocations and plans for their critical IT assets. This system pro-
vides specialized decision support capabilities via customized views.
AMS provides a graphical interface to track and analyze the state of
important assets. The security requirements surrounding the AMS are
the subject of one of our case studies and the source of the sample out-
puts that follow.

L2L L

Chapter 3 Requirements Engineering for Secure Software92

3.4.1 Output from SQUARE Steps

We present a sample output for each step, all taken from the case stud-
ies, to provide concrete examples of the nine SQUARE steps. Given
that these are actual results, they are not all that sophisticated or cut-
ting edge, but they do reflect the typical state of affairs at present.
Note, however, that these snippets leave out underlying assumptions
and background information.

Step 1: Agree on Definitions

We worked with the client to agree on a common set of security defini-
tions with which to create a common base of understanding. The fol-
lowing is a small subset of the definitions that were agreed to:

• Access control: Ensures that resources are granted only to those
users who are entitled to them.

• Access control list: A table that tells a computer operating system
which access rights or explicit denials each user has to a particular
system object, such as a file directory or individual file.

• Antivirus software: A class of program that searches hard drives and
memory for any known or potential viruses.

The full set of definitions was drawn from resources such as IEEE, Car-
negie Mellon University, industry, and various dictionaries.

Step 2: Identify Security Goals

We worked with the client to flesh out security goals that mapped to
the company’s overall business goals. This is one example set of goals:

• Business goal of AMS: To provide an application that supports asset
management and planning.

• Security goals: Three high-level security goals were derived for the
system (it’s not surprising that these are closely linked to the secu-
rity properties of Chapter 2):

a. Management shall exercise effective control over the system’s
configuration and use.

b. The confidentiality, accuracy, and integrity of the AMS shall be
maintained.

c. The AMS shall be available for use when needed.

3.4 SQUARE Sample Outputs 93

Step 3: Develop Artifacts

Architectural diagrams, use cases, misuse cases, abuse case diagrams,
attack trees, and essential assets and services were documented in this
step. As noted earlier, the attack patterns discussed in Chapter 2 pro-
vide a good starting point for developing artifacts that reflect the
attacker’s perspective. For instance, an attack scenario was docu-
mented in the following way:

System administrator accesses confidential information

1. by being recruited OR
a. by being bribed OR
b. by being threatened OR
c. through social engineering OR

2. by purposefully abusing rights

An example abuse case diagram is shown in Figure 3–2.

Figure 3–2: Abuse case example

Exploit poor password management

Exploit poor account management

Exploit OS vulnerability

Install software sniffer

Install hardware sniffer

Assume system administrator identity

Tamper with client data

Tamper with application

Disgruntled
Employee

Script
Kiddie

Hostile
Competitor

Chapter 3 Requirements Engineering for Secure Software94

This step creates needed documentation that serves as input for the
following steps.

Step 4: Perform Risk Assessment

The risk assessment techniques that were field tested were selected
after completing a literature review. This review examined the useful-
ness and applicability of eight risk assessment techniques:

1. General Accounting Office Model [GAO 1999]
2. National Institute of Standards and Technology (NIST) Model

[Stoneburner 2002]
3. NSA’s INFOSEC Assessment Methodology [NSA 2004]
4. Shawn Butler’s Security Attribute Evaluation Method [Butler 2002]
5. Carnegie Mellon’s Vendor Risk Assessment and Threat Evaluation

[Lipson 2001]
6. Yacov Haimes’s Risk Filtering, Ranking, and Management Model

[Haimes 2004]
7. Carnegie Mellon’s Survivable Systems Analysis Method [Mead 2002]
8. Martin Feather’s Defect Detection and Prevention Model [Corn-

ford 2004]

Each method was ranked in four categories:

1. Suitability for small companies
2. Feasibility of completion in the time allotted
3. Lack of dependence on historical threat data
4. Suitability in addressing requirements

The results of the ranking are shown in Table 3–2.

After averaging scores from the four categories, NIST’s and Haimes’s
models were selected as useful techniques for the risk assessment step.
Brainstorming, attack tree, and misuse case documentation were used
to identify potential threat scenarios. The two independent risk assess-
ment analyses produced a useful risk profile for the company’s sys-
tem, with two especially meaningful findings:

• Insider threat poses the highest-impact risk to the AMS.
• Because of weak controls, it is easy for an insider or unauthorized

user to defeat authentication.

95

Table 3–2: Ranking of Assessment Techniques

Suitable for
Small

Companies

Feasible to
Complete within

Time Frame

Does Not Require
Additional Data

Collection
Suitable for

Requirements
Average

Score

M
et

ho
do

lo
gi

es

GAO 2 4 2 2 2.50

NIST 2 2 1 1 1.50

NSA/IAM 3 3 2 2 2.50

SAEM 4 4 4 4 4.00

V-Rate 3 4 4 4 3.75

Haimes 2 2 2 2 2.00

SSA 2 2 2 4 2.50

DDP/Feather 3 4 2 4 3.25

Chapter 3 Requirements Engineering for Secure Software96

In this particular case study, we also identified a set of essential services
and assets as part of the artifact generation. This activity is not part of the
standard SQUARE process but nevertheless can be a beneficial exercise if
enough architectural information already exists to support it. All findings
from the risk assessment, along with the findings from the essential ser-
vices and asset identification process, were used to determine the priority
level associated with each of the nine requirements.

We analyzed the importance of each of the major system services, out-
lined in the 11 use cases shown in Table 3–3, and made a determina-
tion as to which were essential.

Table 3–3: Classification of Use Cases

Use Case Service Status

UC-1 View floor plans Essential

UC-2 Enter damage assessment Essential

UC-3 Add/delete/edit Post-it notes Nonessential

UC-4 Find specialized employees Important

UC-5 Create journal entry Nonessential

UC-6 Install the Asset Management System Nonessential

UC-7 Create links to documents Nonessential

UC-8 Archibus administration: Add user and
assign privileges

Nonessential

UC-9 View contact information for maintenance
tasks

Important

UC-10 Create open space report Essential

UC-11 View incident command Essential

3.4 SQUARE Sample Outputs 97

There are two essential assets in this system. The first is the Windows
Server computer, which houses the majority of the production sys-
tem’s intellectual assets (that is, the code that runs the system). This
computer acts as a server that allows remote users to access the Asset
Management System. The second essential asset is the information
inside the Windows Server computer—specifically, the files stored in
the Microsoft IIS server and the information stored in the Sybase data-
base and MapGuide database are critical for making informed deci-
sions. If this information is lost or compromised, the ability to make
accurate decisions is lost.

Step 5: Select Elicitation Techniques

For this step, teams tested various elicitation techniques and models. It is
often the case that multiple techniques will work for the same project.
The difficulty lies in choosing a technique that can be adapted to the
number and expertise of stakeholders, the size and scope of the client
project, and the expertise of the requirements engineering team. It is
extremely unlikely that any single technique will work for all projects
under all circumstances, although our experience has shown that the
Accelerated Requirements Method [Hubbard 2000] has been successful
in eliciting security requirements. Selection of an elicitation technique is
discussed in more detail in Section 3.5.

Steps 6 and 7: Elicit and Categorize Security Requirements

Nine security requirements were identified and then organized to map
to the three high-level security goals (see Step 2). Examples include the
following requirements:

• Requirement 1: The system is required to have strong authentica-
tion measures in place at all system gateways and entrance points
(maps to Goals 1 and 2).

• Requirement 2: The system is required to have sufficient process-
centric and logical means to govern which system elements (e.g.,
data, functionality) users can view, modify, and/or interact with
(maps to Goals 1 and 2).

• Requirement 3: A continuity of operations plan (COOP) is required
to assure system availability (maps to Goal 3).

• Requirement 6: It is required that the system’s network communi-
cations be protected from unauthorized information gathering
and/or eavesdropping (maps to Goals 1 and 2).

Chapter 3 Requirements Engineering for Secure Software98

The nine security requirements were central to the security require-
ments document that was ultimately delivered to the client.

Step 8: Prioritize Requirements

In the first case study, the nine security requirements were prioritized
based on the following qualitative rankings:

• Essential: The product will be unacceptable if this requirement is
absent.

• Conditional: The requirement enhances security, but the product is
acceptable if this requirement is absent.

• Optional: The requirement is clearly of lower priority than essential
and conditional requirements.

Requirement 1 from Steps 6 and 7, which dealt with authentication at
borders and gateways, was deemed essential because of its impor-
tance in protecting against the high-impact, authentication-related
risks identified in the risk assessment. Requirement 3, dealing with
continuity of operations planning, was still seen as an important ele-
ment and worth considering, but it was found to be an optional
requirement relative to the other eight requirements. That is, although
COOP plans are valuable, the risk assessment phase found that greater
threats to the system resulted from unauthorized disclosure of infor-
mation than from availability attacks.

We also used the Analytical Hierarchy Process (AHP) methodology to
prioritize requirements and found it to be successful both in client
acceptance and in its ability to handle security requirements [Karlsson
1997; Saaty 1980]. Requirements prioritization is discussed in more
detail in Section 3.6.

Step 9: Requirements Inspection

We experimented with different inspection techniques and had vary-
ing levels of success with each. None of the inspection techniques was
sufficiently effective in identifying defects in the security require-
ments. Instead, we recommend experimenting with the Fagan inspec-
tion technique.

In one case study instance, each team member played a role in
inspecting the quality of the team’s work and deliverables. A peer
review log was created to document what had been reviewed and

3.5 Requirements Elicitation 99

was used to maintain a log of all problems, defects, and concerns.
Each entry in the log was numbered and dated, and indicated the
date, origin, defect type, description, severity, owner, reviewer, and
status of the issue. Each entry was assigned to an owner, who was
responsible for making sure that defects were fixed. This step was
used as a sanity check to ensure that the system met quality goals
and expectations.

3.4.2 SQUARE Final Results

The final output to the client was a security requirements document. The
client could then use this document in the early stages of the SDLC to
ensure that security requirements were built into project plans.

Once a system has been deployed, the organization can look back to its
requirements documentation to analyze whether it met its require-
ments and, therefore, satisfied its security goals. As change occurs—be
it a configuration concern in the system, the organization’s risk profile,
or a business goal—the SQUARE process can be revisited to determine
how the change might affect the system’s security requirements. In
this way, SQUARE can be reapplied to a system as needed.

3.5 Requirements Elicitation

Using an elicitation method can help in producing a consistent and
complete set of security requirements. However, brainstorming and elic-
itation methods used for ordinary functional (end-user) requirements
usually are not oriented toward security requirements and, therefore, do
not result in a consistent and complete set of security requirements. The
resulting system is likely to have fewer security exposures when
requirements are elicited in a systematic way.

In this section, we briefly discuss a number of elicitation methods and
the kind of tradeoff analysis that can be done to select a suitable one.
Companion case studies can be found in “Requirements Elicitation
Case Studies” [BSI 10]. While results may vary from one organization
to another, the discussion of our selection process and various meth-
ods should be of general utility. Requirements elicitation is an active
research area, and we expect to see advances in this area in the future.

L2L L

Chapter 3 Requirements Engineering for Secure Software100

Eventually, studies will likely determine which methods are most
effective for eliciting security requirements. At present, however, there
is little if any data comparing the effectiveness of different methods for
eliciting security requirements.

3.5.1 Overview of Several Elicitation Methods

The following list identifies several methods that could be considered
for eliciting security requirements. Some have been developed specifi-
cally with security in mind (e.g., misuse cases), whereas others have
been used for traditional requirements engineering and could poten-
tially be extended to security requirements. In the future, we may have
a better understanding of how the unique aspects of security require-
ments elicitation drive selection of a method. We also note recent work
on requirements elicitation in general that could be considered in
developing such a list [Hickey 2003, 2004; Zowghi 2005] and in doing
the selection process [Hickey 2004]. We briefly describe each of the fol-
lowing elicitation methods:

• Misuse cases [Sindre 2000; McGraw 2006, pp. 205–222]
• Soft Systems Methodology [Checkland 1990]
• Quality Function Deployment [QFD 2005]
• Controlled Requirements Expression [Christel 1992; SDS 1985]
• Issue-based information systems [Kunz 1970]
• Joint Application Development [Wood 1995]
• Feature-oriented domain analysis [Kang 1990]
• Critical discourse analysis [Schiffrin 1994]
• Accelerated Requirements Method [Hubbard 2000]

Misuse Cases

As noted earlier, misuse/abuse cases apply the concept of a negative
scenario—that is, a situation that the system’s owner does not want to
occur—in a use-case context. For example, business leaders, military
planners, and game players are familiar with the strategy of analyzing
their opponents’ best moves as identifiable threats.

By contrast, a use case generally describes behavior that the system
owner wants the system to show [Sindre 2000]. Use-case models and
their associated diagrams (UCDs) have proven quite helpful for the

3.5 Requirements Elicitation 101

specification of requirements [Jacobson 1992; Rumbaugh 1994]. How-
ever, a collection of use cases should not be used as a substitute for a
requirements specification document, as this approach can result in
overlooking significant requirements [Anton 2001]. As a result, it is
controversial to use only use-case models for system and quality
requirements elicitation.

Soft Systems Methodology (SSM)

SSM deals with problem situations in which there is a high social,
political, and human activity component [Checkland 1990]. The SSM
can deal with “soft problems” that are difficult to define, rather than
“hard problems” that are more technology oriented. Examples of soft
problems include how to deal with homelessness, how to manage
disaster planning, and how to improve Medicare. Eventually technology-
oriented problems may emerge from these soft problems, but much
more analysis is needed to reach that point.

The primary benefit of SSM is that it provides structure to soft problem
situations and enables their resolution in an organized manner. In
addition, it compels the developer to discover a solution that goes
beyond technology.

Quality Function Deployment (QFD)

QFD is “an overall concept that provides a means of translating cus-
tomer requirements into the appropriate technical requirements for
each stage of product development and production” [QFD 2005]. The
distinguishing attribute of QFD is the focus on customer needs
throughout all product development activities. By using QFD, orga-
nizations can promote teamwork, prioritize action items, define clear
objectives, and reduce development time [QFD 2005].

Controlled Requirements Expression (CORE)

CORE is a requirements analysis and specification method that clar-
ifies the user’s view of the services to be supplied by the proposed
system. In CORE, the requirements specification is created by both
the user and the developer—not solely one or the other. The prob-
lem to be analyzed is defined and broken down into user and devel-
oper viewpoints. Information about the combined set of viewpoints
is then analyzed. The last step of CORE deals with constraints anal-
ysis, such as the limitations imposed by the system’s operational

Chapter 3 Requirements Engineering for Secure Software102

environment, in conjunction with some degree of performance and
reliability investigation.

Issue-Based Information Systems (IBIS)

Developed by Horst Rittel, the IBIS method is based on the principle
that the design process for complex problems, which Rittel terms
wicked problems, is essentially an exchange among the stakeholders in
which each stakeholder brings his or her personal expertise and per-
spective to the resolution of design issues [Kunz 1970]. Any problem,
concern, or question can be an issue and may require discussion and
resolution for the design to proceed.

Joint Application Development (JAD)

The JAD methodology [Wood 1995] is specifically designed for the
development of large computer systems. Its goal is to involve all stake-
holders in the design phase of the product via highly structured and
focused meetings. In the preliminary phases of JAD, the requirements
engineering team is charged with fact-finding and information-gathering
tasks. Typically, the outputs of this phase, as applied to security
requirements elicitation, are security goals and artifacts. The actual
JAD session is then used to validate this information by establishing
an agreed-on set of security requirements for the product.

Feature-Oriented Domain Analysis (FODA)

FODA is a domain analysis and engineering method that focuses on
developing reusable assets [Kang 1990]. By examining related soft-
ware systems and the underlying theory of the class of systems they
represent, domain analysis can provide a generic description of the
requirements of that class of systems in the form of a domain model
and a set of approaches for their implementation.

The FODA method was founded on two modeling concepts: abstrac-
tion and refinement [Kean 1997]. Abstraction is used to create domain
models from the specific applications in the domain. Specific applica-
tions in the domain are then developed as refinements of the domain
models. The example domain used in the initial report on FODA
[Kang 1990] is window management systems. The window manage-
ment examples of that time are no longer in use, but include VMS,
Sun, and Macintosh, among others.

3.5 Requirements Elicitation 103

Critical Discourse Analysis (CDA)

CDA uses sociolinguistic methods to analyze verbal and written dis-
course [Schiffrin 1994]. In particular, this technique can be used to ana-
lyze requirements elicitation interviews and to understand the
narratives and “stories” that emerge during those interviews.

Accelerated Requirements Method (ARM)

The ARM process [Hubbard 2000] is a facilitated requirements elicita-
tion and description activity. It includes three phases:

1. Preparation phase
2. Facilitated session phase
3. Deliverable closure phase

The ARM process is similar to JAD but has certain significant differ-
ences from the baseline JAD method, which contribute to its unique-
ness. For example, in this process, the facilitators are content neutral,
the group dynamic techniques used are different from those used in
JAD, the brainstorming techniques used are different, and the require-
ments are recorded and organized using different conceptual models.

3.5.2 Elicitation Evaluation Criteria

Following are example evaluation criteria that may be useful in select-
ing an elicitation method, although you could certainly use other crite-
ria. The main point is to select a set of criteria and to have a common
understanding of what they mean.

• Adaptability. The method can be used to generate requirements in
multiple environments. For example, the elicitation method works
equally well with a software product that is near completion as it
does with a project in the planning stages.

• Computer-aided software engineering (CASE) tool. The method
includes a CASE tool.

• Stakeholder acceptance. The stakeholders are likely to agree to the
elicitation method in analyzing their requirements. For example,
the method isn’t too invasive in a business environment.

• Easy implementation. The elicitation method isn’t overly complex
and can be properly executed easily.

Chapter 3 Requirements Engineering for Secure Software104

• Graphical output. The method produces readily understandable
visual artifacts.

• Quick implementation. The requirements engineers and stakeholders
can fully execute the elicitation method in a reasonable length of time.

• Shallow learning curve. The requirements engineers and stakehold-
ers can fully comprehend the elicitation method within a reason-
able length of time.

• High maturity. The elicitation method has experienced consider-
able exposure and analysis with the requirements engineering
community.

• Scalability. The method can be used to elicit the requirements of
projects of different sizes, from enterprise-level systems to small-
scale applications.

Note that this approach presumes that all criteria are equally impor-
tant. If some criteria are more important than others, a weighted aver-
age can be used. For example, availability of a CASE tool might be
more important than graphical output. A typical weighting scheme
could consider criteria to be “essential” with weight 3, “desirable”
with weight 2, and “optional” with weight 1. The elicitation methods
can then be ranked using a tabular form, as shown in Table 3–4. The
example in Table 3–4 is not intended to be an actual recommendation
to use a specific method. You can develop your own comparison crite-
ria and ratings.

In our case studies, we decided to use JAD, ARM, and IBIS on three
different projects. These three methods were subjectively ranked to be
the most suitable candidates for the case studies, given the time and
effort constraints for the project. We considered not just the total score:
The learning curve was an important factor, and the team attempted to
select methods that were not too similar to one another, so as to have
some variety. In our case studies, we had the most success using ARM
to identify security requirements. Detailed results for all three meth-
ods can be found in the Requirements Engineering section of the Build
Security In Web site [BSI 10].

Additional Considerations

It is possible that a combination of methods may work best. You
should consider this option as part of the evaluation process, assum-
ing that you have sufficient time and resources to assess how methods

105

Table 3–4: Comparison of Elicitation Methods

Misuse
Cases SSM QFD CORE IBIS JAD FODA CDA ARM

Adaptability 3a 1 3 2 2 3 2 1 2

CASE tool 1 2 1 1 3 2 1 1 1

Stakeholder
acceptance

2 2 2 2 3 2 1 3 3

Easy implementation 2 2 1 2 3 2 1 1 2

Graphical output 2 2 1 1 2 1 2 2 3

Quick implementation 2 2 1 1 2 1 2 2 3

Shallow learning
curve

3 1 2 1 3 2 1 1 1

High maturity 2 3 3 3 2 3 2 2 1

Scalability 1 3 3 3 2 3 2 1 2

Total Score 18 18 17 16 22 19 14 14 18

a. 3 = Very good; 2 = Fair; 1 = Poor.

Chapter 3 Requirements Engineering for Secure Software106

may be combined and to actually combine them. You should also con-
sider the time necessary to implement a particular elicitation method
and the time needed to learn a new tool that supports a method.
Selecting a requirements elicitation method that meets the needs of a
diverse group of stakeholders aids in addressing a broader range of
security requirements.

3.6 Requirements Prioritization

Once you have identified a set of security requirements, you will usu-
ally want to prioritize them. Given the existence of time and budget
constraints, it can be difficult to implement all requirements that have
been elicited for a system. Also, security requirements are often imple-
mented in stages, and prioritization can help to determine which ones
should be implemented first. Many organizations pick the lowest-cost
requirements to implement first, without regard to importance. Others
pick the requirements that are easiest to implement—for example, by
purchasing a COTS solution. These ad hoc approaches are not likely to
achieve the security goals of the organization or the project.

To prioritize security requirements in a more logical fashion, we rec-
ommend a systematic prioritization approach. This section discusses a
tradeoff analysis that you can perform to select a suitable require-
ments prioritization method and briefly describes a number of meth-
ods. We also discuss a method of prioritizing requirements using AHP.
More extensive coverage of this material is available elsewhere
[Chung 2006].

While results may vary for your organization, the discussion of the
various techniques should be of interest. Much work needs to be done
before security requirements prioritization is considered a mature
area, but it is one that we must start to address.

3.6.1 Identify Candidate Prioritization Methods

A number of prioritization methods have been found to be useful in tra-
ditional requirements engineering and could potentially be used for
developing security requirements. We briefly mention here the binary
search tree, numeral assignment technique, planning game, the 100-point
method, Theory-W, requirements triage, Wiegers’ method, requirements

L2L L

3.6 Requirements Prioritization 107

prioritization framework, and AHP. Further information can be found on
the Build Security In Web site and in the references.

Binary Search Tree (BST)

A binary search tree is an algorithm that is typically used in a search
for information and can easily be scaled to be used in prioritizing
many requirements [Ahl 2005]. The basic approach for requirements is
as follows, quoting from [Ahl 2005]:

1. Put all requirements in one pile.
2. Take one requirement and put it as the root node.
3. Take another requirement and compare it to the root node.
4. If the requirement is less important than the root node, compare it

to the left child node. If the requirement is more important than the
root node, compare it to the right child node. If the node does not
have any appropriate child nodes, insert the new requirement as
the new child node to the right or left, depending on whether the
requirement is more or less important.

5. Repeat Steps 3 and 4 until all requirements have been compared
and inserted into the BST.

6. For presentation purposes, traverse through the entire BST in
order and put the requirements in a list, with the least important
requirement at the end of the list and the most important require-
ment at the start of the list.

Numeral Assignment Technique

The numeral assignment technique provides a scale for each require-
ment. Brackett proposed dividing the requirements into three groups:
mandatory, desirable, and unessential [Brackett 1990]. Participants
assign each requirement a number on a scale of 1 to 5 to indicate its
importance [Karlsson 1995]. The final ranking is the average of all par-
ticipants’ rankings for each requirement.

Planning Game

The planning game is a feature of extreme programming [Beck 2004]
and is used with customers to prioritize features based on stories. It is
a variation of the numeral assignment technique, where the customer
distributes the requirements into three groups: “those without which

Chapter 3 Requirements Engineering for Secure Software108

the system will not function,” “those that are less essential but provide
significant business value,” and “those that would be nice to have.”

100-Point Method

The 100-point method [Leffingwell 2003] is basically a voting scheme of
the type that is used in brainstorming exercises. Each stakeholder is
given 100 points that he or she can use for voting in favor of the most
important requirements. The 100 points can be distributed in any
way that the stakeholder desires. For example, if there are four require-
ments that the stakeholder views as having equal priority, he or she can
put 25 points on each. If there is one requirement that the stakeholder
views as having overarching importance, he or she can put 100 points
on that requirement. However, this type of scheme works only for an
initial vote. If a second vote is taken, people are likely to redistribute
their votes in an effort to move their favorites up in the priority scheme.

Theory-W

Theory-W (also known as “win-win”) was initially developed at the
University of Southern California in 1989 [Boehm 1989; Park 1999].
This method supports negotiation to solve disagreements about
requirements, so that each stakeholder has a “win.” It relies on two
principles:

1. Plan the flight and fly the plan.
2. Identify and manage your risks.

The first principle seeks to build well-structured plans that meet pre-
defined standards for easy development, classification, and query.
“Fly the plan” ensures that the progress follows the original plan. The
second principle, “Identify and manage your risks,” involves risk
assessment and risk handling. It is used to guard the stakeholders’
“win-win” conditions from infringement. In win-win negotiations,
each user should rank the requirements privately before negotiations
start. In the individual ranking process, the user considers whether he
or she is willing to give up on certain requirements, so that individual
winning and losing conditions are fully understood.

Requirements Triage

Requirements triage [Davis 2003] is a multistep process that includes
establishing relative priorities for requirements, estimating the resources

3.6 Requirements Prioritization 109

needed to satisfy each requirement, and selecting a subset of require-
ments to optimize the probability of the product’s success in the intended
market. This technique is clearly aimed at developers of software prod-
ucts in the commercial marketplace. Davis’s more recent book [Davis
2005a] expands on the synergy between software development and mar-
keting; we recommend that you read it if you are considering this
approach. Requirements triage is a unique approach that is worth
reviewing, although it clearly goes beyond traditional requirements pri-
oritization to consider business factors as well.

Wiegers’ Method

Wiegers’ method relates directly to the value of each requirement to a
customer [Wiegers 2003]. The priority is calculated by dividing the
value of a requirement by the sum of the costs and technical risks asso-
ciated with its implementation [Wiegers 2003]. The value of a require-
ment is viewed as depending on both the value provided by the client
to the customer and the penalty that occurs if the requirement is miss-
ing. Given this perspective, developers should evaluate the cost of the
requirement and its implementation risks as well as the penalty
incurred if the requirement is missing. Attributes are evaluated on a
scale of 1 to 9.

Requirements Prioritization Framework

The requirements prioritization framework and its associated tool
[Moisiadis 2000, 2001] includes both elicitation and prioritization
activities. This framework is intended to address the following issues:

• Elicitation of stakeholders’ business goals for the project
• Rating the stakeholders using stakeholder profile models
• Allowing the stakeholders to rate the importance of the require-

ments and the business goals using a fuzzy graphic rating scale
• Rating the requirements based on objective measures
• Finding the dependencies between the requirements and cluster-

ing requirements so as to prioritize them more effectively
• Using risk analysis techniques to detect cliques among the stake-

holders, deviations among the stakeholders for the subjective rat-
ings, and the association between the stakeholders’ inputs and the
final ratings

Chapter 3 Requirements Engineering for Secure Software110

AHP

AHP is a method for decision making in situations where multiple
objectives are present [Saaty 1980; Karlsson 1996, 1997]. This method
uses a “pair-wise” comparison matrix to calculate the value and costs
of individual security requirements relative to one another. By using
AHP, the requirements engineer can confirm the consistency of the
result. AHP can prevent subjective judgment errors and increase the
likelihood that the results are reliable. It is supported by a stand-alone
tool as well as by a computational aid within the SQUARE tool.

3.6.2 Prioritization Technique Comparison

We recommend comparing several candidate prioritization techniques
to aid in selecting a suitable technique. Some example evaluation crite-
ria are provided here:

• Clear-cut steps: There is clear definition between stages or steps
within the prioritization method.

• Quantitative measurement: The prioritization method’s numerical
output clearly displays the client’s priorities for all requirements.

• High maturity: The method has had considerable exposure and
analysis by the requirements engineering community.

• Low labor-intensity: A reasonable number of hours are needed to
properly execute the prioritization method.

• Shallow learning curve: The requirements engineers and stakehold-
ers can fully comprehend the method within a reasonable length of
time.

Note that this simple approach does not consider the importance of
each criterion. It is also possible to construct a weighted average when
comparing techniques. For example, maturity may be of greater
importance than learning curve. This difference could be taken into
account by weighting the results and ranking the various criteria as
“essential” with weight 3, “desirable” with weight 2, and “optional”
with weight 1. A comparison matrix used in a case study is shown in
Table 3–5. This example is not intended to be an actual recommenda-
tion to use a specific technique; you can develop your own compari-
son criteria and ratings.

3.6 Requirements Prioritization 111

For one of our case studies, we considered the numeral assignment
technique (NAT), Theory-W (TW), and AHP. The results of the com-
parison are summarized in Table 3–5.

We decided to use AHP as a prioritizing method. This decision was
made on the basis of the results shown in Table 3-5 comparison, recog-
nizing that the rankings are subjective. Factoring into the rationale
behind choosing AHP were the team members’ familiarity with the
method, its quantitative outputs, and its structure in providing defi-
nite steps for implementation. The detailed case study results are
described in [BSI 11].

3.6.3 Recommendations for Requirements Prioritization

Prioritization of security requirements is an important activity. We rec-
ommend that stakeholders select candidate prioritization techniques,
develop selection criteria to pick one, and apply that methodology to
decide which security requirements to implement when. During the
prioritization process, stakeholders can verify that everyone has the
same understanding about the security requirements and further
examine any ambiguous requirements. After everyone reaches consen-
sus, the results of the prioritization exercise will be more reliable.

Table 3–5: Comparison of Prioritization Techniques for a Case Study

Selection Criteria NAT TW AHP

Clear-cut steps 3a

a. 3 = Very good; 2 = Fair; 1 = Poor.

2 3

Quantitative measurement 3 1 3

Maturity 1 3 3

Labor-intensive 2 1 2

Learning curve 3 1 2

Total Score 12 8 13

Chapter 3 Requirements Engineering for Secure Software112

3.7 Summary

In this chapter, we initially focused on the role of misuse and abuse
cases, which can motivate the identification and documentation of
security requirements. The examination of SQUARE focused on the
process to support security requirements engineering. We also
explored a method for selecting a requirements elicitation process and
provided experimental results for several candidate elicitation pro-
cesses. We then focused on methods for prioritizing requirements and
described the results of a case study in this area.

On the Build Security In Web site, we also discuss the Comprehensive,
Lightweight Application Security Process (CLASP) approach to secu-
rity requirements engineering, core security requirements artifacts,
and the use of attack trees in security requirements engineering [BSI
12]. Formal specification approaches to security requirements, such as
REVEAL and Software Cost Reduction (SCR), are also useful in this
regard. The higher levels of the Common Criteria provide similar
results [BSI 13]. Another article on BSI discusses the use of integer pro-
gramming for optimizing investment in implementation of security
requirements [BSI 14].

Although security requirements engineering is an area of active
research, many promising techniques have already emerged that you
can use to identify the requirements needed to improve your software
products. It seems obvious that systematic and thorough identification
of security requirements in the early stages of the SDLC will result in
more secure software and reduced security costs later on.

Here are our recommendations for software project managers who
wish to pay more attention to security requirements engineering:

• Review your existing development practices. Do you have devel-
opment practices that are specific to requirements engineering? If
not, put a standard requirements engineering practice in place.

• If you have an existing requirements engineering process, does it
address security requirements? If not, use the material presented
in this chapter and elsewhere to decide which steps need to be
taken to produce good security requirements. If your process does
address security requirements, have you considered the end-user’s
and attacker’s perspectives, in addition to the perspectives of other
stakeholders?

LME

3.7 Summary 113

• There is no one-size-fits-all answer to security requirements engineer-
ing. You need to analyze your projects to figure out which ones need
more attention to security requirements (such as mission-critical sys-
tems) and which ones are less critical (such as administrative systems
that don’t contain sensitive data). Note, however, that even unimpor-
tant systems can potentially provide an attacker with an indirect
means to access more critical systems and sensitive data.

• Start small. Try out your new and improved practices on a couple
of systems under development so that you can debug the process
without making all of your projects part of a grand experiment.
The case study results described on the BSI Web site give guidance
on how to go about this [BSI 10, 11].

• Document your results—both positive and negative—and use
them to improve your processes. As you know, development pro-
cesses need to be revisited periodically, just like everything else we
do in software and security engineering.

• Don’t be a victim of NIH (“not invented here”). If someone else has
an approach to security requirements engineering that could
potentially be useful to you, give it a try. It’s not necessary to rein-
vent the wheel every time.

