
75

Chapter 7

THE ESSENCE OF AGILE

With Ryan Martens1

Conceptually, agile is simple. Most everything is different.

WHAT ARE WE CHANGING WITH AGILE?
We’ve now reviewed a variety of agile methods and an iterative and incre-
mental one that can be applied in a substantially agile fashion. As we begin to
analyze them for commonality, we will find many common practices among
them, and these common practices, plus a few extensions, form the basis for
Parts II and III of this book.

And yet, when we compare the methods in aggregate to our former plan-
based, stage-gated, and waterfall-like processes, we find far more differences
than similarities. Indeed, it would not be too extreme to say that when it
comes to software development and software project management in gen-
eral, agile changes everything, as Figure 7–1 shows.

These changing paradigms provide both the power and the consternation of
agile, because addressing change on such a wholesale basis in an enterprise is
not a trivial thing. And yet, team by team, organizations are making these
changes over time, allowing them to approach the full benefits of agile devel-
opment. Let’s examine each of these new paradigms to see what additional
clues we can find as to what is so different about agile.

1. Ryan Martens, agile thought leader and founder and president of Rally Software
Development Corp., contributed much of the conceptual content of this chapter.

Leffingwell_book.fm Page 75 Thursday, February 1, 2007 3:02 PM

76 CHAPTER 7 � THE ESSENCE OF AGILE

New Measures of Success

The basic measures of success are different in agile. Teams and organizations
evolve from conformance to plan2 to the ability to respond to change.

2. Agile thought leader, Jim Highsmith, notes that he has seen so many good teams trying
to understand why they were not on plan, and faulting themselves, that he eventually
came to the conclusion that the plan, and not the team, was the problem.

Work breakdown structure Feature breakdown
Single, detailed, complete plan Two-level plan
Serial functions Parallel functions
Follow the plan Adapt to changing facts
Procedural stage gates Time boxes, inspections
Documents models, reviews Working code

Process
Waterfall
Development

Iterative and
Incremental

Agile
Development

Conformance
to plan

Response to change,
working code

Measure
of Success

Command and
control

Leadership/
collaborative

Management
Culture

Big and
up front

Continuous/emergent/
just-in-time

Requirements
and Design

Code all features in
parallel/test later

Code and unit test,
deliver serially

Coding and
Implementation

Big, planned/
test late

Continuous/concurrent/
test early

Test and Quality
Assurance

PERT/detailed/fix scope,
estimate time and resource

Two-level plan/fix date,
estimate scope

Planning and
Scheduling

Figure 7–1 Changing paradigms in agile

Conformance
to plan

Response to change,
working code

Measure
of Success

Leffingwell_book.fm Page 76 Thursday, February 1, 2007 3:02 PM

WHAT ARE WE CHANGING WITH AGILE? 77

This transition involves moving from traditional work breakdown struc-
tures to a “value-delivery focus” by implementing stories and requirements
on a prioritized basis. Procedural and documentation stage gates are re-
placed with success measures based on working, tested, and demonstrated
code. The plan is fluid and flexible; the actual is the best that can be achieved
under the facts present at the time. More importantly, the actual is poten-
tially shippable.

Different Management Culture

In many ways, agile turns the traditional approach to software management
upside down.

Traditionally, management fixed scope, dates, and resources and set the tech-
nical direction for the team. Management was also responsible for the team’s
performance. In agile, the table is turned. Management sets direction; the
teams bid the work and figure out how to accomplish as much of the work as
possible in the time frame given. The team self-organizes as necessary to
meet the objectives. The team makes the technical decisions and corrects
them on the fly as necessary.

Management’s job is to eliminate impediments within the organization and
trust the team to meet the objectives (this trust is reinforced daily with visi-
bility of progress and the presence of working, integrated code). In turn, the
team is fully accountable for the deliverable and is responsible for meeting
the dates and delivering the requisite quality. Team empowerment and team
accountability are two sides of the same agile coin.

Management defines dates and scope Teams bid stories
Management dictates implementation Team selects approach
Culture of sign-offs Shared learning
Protect the scope Protect the date
Demonstrate at end Demonstrate always
Weekly status meetings Daily stand-up meeting

Command and
control

Leadership/
collaborative

Management
Culture

Leffingwell_book.fm Page 77 Thursday, February 1, 2007 3:02 PM

78 CHAPTER 7 � THE ESSENCE OF AGILE

Different Approach to Requirements, Architecture,
and Design

Our strategies for how to approach requirements, architecture, and design
evolve as well. 3

Instead of investing months in building detailed software requirements spec-
ifications, architectural models, and even prototypes, teams focus on deliver-
ing early, value-added stories into an integrated baseline. Early delivery
serves to test the requirements and architectural assumptions, and it drives
risk out by proving or disproving assumptions about integration of features
and components. If it doesn’t work, the team refactors the code until it does,
allowing for constant user feedback and visibility along the way.

No longer do management and the user community wait breathlessly for
months, hoping that the team is building the right thing. At worst, the next
checkpoint is only a week or so away, and with a little luck and foresight, us-
ers may be able to deploy or at least evaluate even the earliest iterations in
their own working environment.

Revised Coding and Implementation Practices

Coding is different too. Instead of the developers working on all the func-
tionality in parallel with a big bang at the end, the whole team “swarms” over
the earliest and highest priorities first.

Marketing requirements up front Vision and backlog
Software specification up front Just-in-time elaboration
Models and plans Build in increments
Big design up front LRM3 design decisions
Architecture is planned Architecture emerges

3. Last Responsible Moment

Big and
up front

Continuous/emergent/
just-in-time

Requirements
and Design

Leffingwell_book.fm Page 78 Thursday, February 1, 2007 3:02 PM

WHAT ARE WE CHANGING WITH AGILE? 79

Integration is continuous. Testing is not deferred; it is done first (XP or
TDD) or concurrently with the development of the code. Pairing is routine.
Conversation is continuous. There is only one kind of code that results:
tested, working, integrated code. Feedback is immediate and continuous. All
team members know where they are every day and what they need to do that
day to meet the goals of the iteration.

Changes to Test and Quality Assurance Practices

The testing and QA organizations are in for big changes as well.

The impact on the testing organization is substantial. Often, entire QA and test
organizations are refactored (largely disbanded as a separate organization) and
instead dispatched to become part of individual component or feature teams.
Testing is no longer a lifecycle phase; it is a continuous activity. No longer do
testers test large blocks of untested code; rather, they tests systems that include
new code that has already been unit- and acceptance-tested. Development of

Build in parallel Build serially
Integrate late Integrate continuously
Hand off to test Partner with test
Demonstrate at end Demonstrate always
Individual code responsibility Shared code ownership
Never miss dev. complete date Never break the build
Test code later Code unit test first

Contract with customer Partner with customer
Big test plan sign off LRM testing decisions
Testing at the end Test from the beginning
QA is responsibility for test Everyone is responsible
Testers write all the tests Everyone writes tests
Testing squeezed Low features squeezed
Big stand-alone test teams Integrated with dev
Automate tests later Automate tests now

Code all features in
parallel/test later

Code and unit test,
deliver serially

Coding and
Implementation

Big, planned/
test late

Continuous/concurrent/
test fast

Test and Quality
Assurance

Leffingwell_book.fm Page 79 Thursday, February 1, 2007 3:02 PM

80 CHAPTER 7 � THE ESSENCE OF AGILE

testing automation is the rule rather than the exception. Testing skill levels in-
crease as testers participate in design decisions and test automation develop-
ment. Programmers’ skills increase as they understand how to write code that
is straightforward enough to be tested. QA personnel do real QA instead of
managing legions of manual testers.

New Ways of Planning and Scheduling

Planning and scheduling change too.

But contrary to rumor, planning does not disappear in agile; indeed, it is
quite intense and it reappears at two levels: gross-level plans for releases and
fine-grained plans for iterations. Planning doesn’t happen just once, and up-
front planning happens at every release and every iteration boundary. Plan-
ning is no longer lumpy and ad hoc—it is systematic and routine.

Planning is greatly simplified because the dates are always known in advance,
and the teams, with the product owner driving, are responsible for determin-
ing priorities. Tracking is simpler too, because daily status meetings and fre-
quent demonstrations illustrate progress. No longer is there a separation
between plan and actual. Managers don’t worry about interdependent
events, such as who has a vacation this week—teams do.

The Biggest Change: Scope versus Schedule—Schedule Wins!

As we learned in DSDM, perhaps the biggest change of all is that, in the battle
of date versus scope, the date always wins. That is, iteration length (or periodic
release date at the release level) is determining scope instead of scope deter-
mining the length of a development cycle. In plan-driven methods, scope de-
termined time, and two variables (scope and time) varied with every planning
cycle and every significant change. Since agile methods fix the time and let
that define scope, only one variable remains (the scope of what gets built).
This frees the team to organize as necessary and to remain constantly focused

Detailed planning early Detailed planning JIT
Measures on intermediate deliverables Measures based on code
Protect the scope Protect the date
Demonstrate at end Demonstrate always
Weekly status meetings Daily stand-up meeting

PERT/detailed/fix scope,
estimate time and resource

Two-level plan/fix date,
estimate scope

Planning and
Scheduling

Leffingwell_book.fm Page 80 Thursday, February 1, 2007 3:02 PM

THE HEARTBEAT OF AGILE: WORKING CODE IN A SHORT TIME BOX 81

on what can be accomplished by the date. And since the scope is always prior-
itized, team members can be assured that they will deliver the best possible so-
lution in the time available, as the DSDM pyramid in Figure 7–2 illustrates.

If for some reason, the delivered result lacks sufficient functionality to be
“above the bar” (which can only be determined by the users when they have a
system to evaluate), have no fear because the next iteration is only a week
away, and the next release will be available only a month or two thereafter.

THE HEARTBEAT OF AGILE: WORKING CODE
IN A SHORT TIME BOX

So much for the differences in plan-based and agile development methods!
It’s time now to move toward what is common among the methods them-
selves so we can start to distill common practices to apply at scale.

As we do so, we discover that all agile methods have one thing big thing in
common, and that may well be the quintessential difference between agile
methods and the waterfall. That is, all development proceeds by creating small
chunks of working code in a time box (fixed date.) This new skill is the heart-
beat of agile, and when teams master this skill, many other things agile will
fall naturally into place. Figure 7–3 illustrates this simple “process model
within a process model.”

Figure 7–3 illustrates that stories are pulled from a backlog in order of the
“next most important thing to do for the customer.” Each item is defined/
built/tested in a fast, concurrent loop. We use define/build/test as a verb to

Waterfall/Traditional Agile

Fixed

Resources Date

ResourcesRequirements Date

Requirements
Estimated

Plan
Driven

Value
Driven

Figure 7–2 Plan-driven (traditional) versus value-driven (agile) methods

Leffingwell_book.fm Page 81 Thursday, February 1, 2007 3:02 PM

82 CHAPTER 7 � THE ESSENCE OF AGILE

illustrate that this operation is atomic; one part can’t be done without the
other.

Within the time box, each item is evaluated for acceptance, and when it
passes the test, another story is pulled from the backlog. If it fails, it is re-
worked, on the spot, until it passes the test. Of course, in order to accomplish
this, all the resources necessary to define it, build it, and test it must be con-
tinuously present on the team (Chapter 9).

Even then, there are two key elements to this simple process statement, each
of which represents a paradigm shift for the new agile team.

1. Working in a Time Box

In a well-disciplined agile process, everything is time-boxed.

The mechanism for handling flexibility of requirements in DSDM is
the time box.

—DSDM [2006]

This time-boxing establishes a rhythm for the development organiza-
tion that becomes the drum beat that synchronizes the activities of all
participants. Like a manufacturing schedule, it is repetitive, predicable,
and reliable, and all software production and delivery rotates around
this cycle. The most important benefit is that time-boxing introduces a
near-term milestone that forces both the team and code lines to con-
verge and actually deliver working software at regular intervals.

—Leffingwell and Muirhead [2004]

build

define test

Story 1
Story 2
Story 3

Evaluate

OKPull next

Not OK

Fix now

Time box

Figure 7–3 The heartbeat of agile, working code in a time box

Leffingwell_book.fm Page 82 Thursday, February 1, 2007 3:02 PM

THE HEARTBEAT OF AGILE: WORKING CODE IN A SHORT TIME BOX 83

Iterations Are Time-Boxed Iterations are timeboxed, and they may be as short
as one week or, more typically, two weeks, but rarely longer. (Learning to ac-
complish this art is the subject of Chapter 10.)

Releases Are Time-Boxed Releases are time-boxed too. Release dates are known
in advance, and scope, not quality or resources or schedule, is adjusted to as-
sure the team meets the commitment of the date.

Meetings Are Time-Boxed Meetings are also time-boxed. Release planning, it-
eration planning, iteration retrospectives, iteration demos, and daily stand-
ups are all time-boxed, thereby instilling discipline in the team and con-
stantly communicating that time matters. This discipline also helps every team
member meet his or her commitments by knowing in advance how much
time can be committed to any specific overhead activity.

When we started with agile, I was concerned it might be a less disci-
plined method for development. In reality, it’s more disciplined and
provides more accountability.

—Paul Beavers, Director, BMC R&D

2. Developing in Small, Bite-Sized Chunks

The feature (story) should be small enough that it can be done in a few
days.

—Poppendieck and Poppendieck [2003]

I like to break stories into tasks that individuals take responsibility for
and estimate. I think ownership of tasks goes a long way towards satis-
fying the human need for ownership.

—Beck [2005]

Agile, in general, and XP, in particular, takes incrementalism to the extreme.
Work is divided into stories and tasks. Stories represent “pliable” requirements
(or at least the need for a discussion about a requirement); tasks are added to
define the specific work that each team member must do to implement the
story. The granularity of stories typically represents no more than a few days’
work. The granularity of tasks is on the order of less than a day. For those ap-
plying use cases, significant use cases may be implemented as granularly as one
scenario at a time or by picking any other logical and cohesive piece (such as a
single step) of the use case that can be done in an iteration. There are a variety
of reasons for doing this, and each represents a key element of agile.

Leffingwell_book.fm Page 83 Thursday, February 1, 2007 3:02 PM

84 CHAPTER 7 � THE ESSENCE OF AGILE

Small Chunks Can Be Estimated and Tracked The size of the chunks of work
that are scheduled into the iteration has a dramatic effect on the visibility of
their status. If one large chunk of work is scheduled into an iteration, then by
implication, the entire iteration will be devoted to working toward finishing
that one chunk, and the chunk of work can’t possibly be completed until the
end. Gauging progress is a matter of guessing the “percentage complete” of
the monolithic chunk. It is also difficult to get the testing group involved
early in the iteration when all of the work is delivered in a very large chunk at
the end.

If we instead break the monolithic chunk of work into smaller pieces, we can
then consider the status of the smaller pieces individually and we no longer
have to wait until the end of the iteration to see a chunk of work transition
from a state of “in progress” to “complete.” Instead, all along the way, smaller
chunks of work are transitioning from “planned” to “in progress” to “com-
plete” states as developers take responsibility for, work on, and then deliver
each small chunk.

This breakdown gives us a more fine-grained means to track the progress of
the iteration. We suddenly can understand whether any particular chunk of
work is blocked, ready to be tested, completed ahead of schedule, or perhaps
unlikely to be worked on at all. We also have the ability to deliver the smaller
pieces to the testing group during the iteration.

Small Chunks Foster Ownership and Accountability Working in small chunks
fosters ownership and accountability on the part of the team. After, all if chunk
A is to be delivered in less than a week, the team had better be very certain of
which team members are going to define/build/test it!

Small Chunks Divide Big Jobs into Doable, Smaller Pieces On systems of
scale, complexity reigns. Imagine the challenge of coordinating 300 people to
build a new system, the likes of which have never been seen on the market. In
traditional development models, the problem can appear overwhelming, and
no amount of planning can possibly flesh out all the details. In addition, for
very large jobs, job satisfaction for the team is often deferred until the end.
And as we have seen with our analysis of what doesn’t work, even the ending
can be pretty unpleasant at times. In such a case, job satisfaction can be en-
tirely missing from the employment equation!

With agile, progress and job satisfaction are constant, frequent, and in real
time. The next opportunity to show your wares to a customer, peer, or other
stakeholder is at most a week or so away.

Leffingwell_book.fm Page 84 Thursday, February 1, 2007 3:02 PM

SUMMARY 85

Small Chunks Uncover Key Risks Early It is not unusual for teams new to ag-
ile to achieve only 25 to 35 percent of the scope of work they set out for them-
selves in the first iteration. The reasons can be varied, as we’ll see in later
chapters. But whether the goal is missed because, for example, the teams are
unable to estimate very well or perhaps because a small story uncovered an
unanticipated technical obstacle, the results of the first iteration will immedi-
ately expose the risks, wherever they may lay. In addition, management has its
first tangible view of progress at the end of only the first week or two of the project.

SUMMARY

We’ve seen in this chapter that, conceptually, agile is indeed very different
from our plan-driven methods. However, given this data, we can now also
start to imagine how these different paradigms can potentially deliver dramat-
ically different results. That is why we are here, and that is the power of agile.

Leffingwell_book.fm Page 85 Thursday, February 1, 2007 3:02 PM

Leffingwell_book.fm Page 86 Thursday, February 1, 2007 3:02 PM

