
Example Recipe
8.8 Uploading Malicious File Contents

Problem
You want to test how your application handles files with malicious content. The content might be
malicious because of its size, because it is not the required type, or because it actually causes the
application to crash when it is processed.

Solution
Example 8-8. Uploading a file through Perl
#!/usr/bin/perl
use LWP::UserAgent;
use HTTP::Request::Common qw(POST);
$UA = LWP::UserAgent->new();
$page = "http://www.example.com/upload.jsp";
$req = HTTP::Request::Common::POST("$page",
 Content_Type => 'form-data',
 Content => [myFile => ['C:\TEMP\myfile.pdf',
 "AttackFile.pdf",
 "Content-Type" => "application/pdf"],
 Submit => 'Upload File',
]
);
$resp = $UA->request($req);

Description
The code from Example 8-8 does the minimum possible work to upload a file named
C:\TEMP\myfile.pdf (that lives on your local hard disk) and put it at the URL shown in the $page
variable. It is clear from Example 8-8 that there are several opportunities for malicious attack.

The first obvious thing to try when testing for security this way is to provide contents of files that
will cause difficulties at the server. If the requirements for your application say that files must be
smaller than 100 kilobytes, your typical boundary case testing would involve uploading 105 kilo-
byte files, 99 kilobyte files, and probably 0-byte files.

You should also upload some extremely large files, too. A badly designed application might keep
unacceptable files in some temporary location, even after it has sent a message to the user saying
“file too large.” This means you could crash the application by filling its temporary storage, even
though the files appear to be ignored.

From a security point of view, good tests will send files whose contents are not what they appear.
Imagine a web application that unpacks uploaded ZIP files, for example. You could take a file like
a spreadsheet or an executable, rename it to end in .zip, and then upload it. This would surely
cause a failure of some kind in your application. Some file formats have old, well-known attacks.
For zip files there are attacks called “zip bombs” or “zip of death” attacks where a correctly for-
matted zip file that is very small (for example, 42 kilobytes) would expand to over 4 gigabytes if
fully unzipped. You can find an example file by searching on Google for "zip of death."

Other data formats have similar possible bugs. It is possible to craft various image files that con-
tain size information indicating that they are one size (e.g., 6 megabytes) but actually only contain
a fraction of that data—or much more than that data.

	Example Recipe
	Problem
	Solution
	Description

