

497

C

HAPTER

 14:
R

EPLICATION

Replication is the process of automatically duplicating and updating data on mul-
tiple computers across a network—usually to a geographically dispersed location
to fail-safe the data from building loss. The simple description of replication is
that it moves data from source computers (those labelled “a” in Figure 14-1.) to
destination computers (in this case, computer “b” in Figure 14-1.).

Figure 14-1. Basic file replication

As I said, that’s the short version. It gets a bit more complicated when you imple-
ment the replication software, because at that point you have to know about three
different variations dealing with the

source of the data

,

how often

that data is
moved, and whether the data transfer is

synchronous

or

asynchronous

.

(a)

(b)

498

The Backup Book: Disaster Recovery from Desktop to Data Center

The source data
for replication

The replication source data can either be individual files and folders, or whole vol-
umes and partitions. Some products are purely file-focused and aren’t used for
backing up database volumes; other products are specifically designed with the
replication of databases in mind, and therefore focus primarily on moving every-
thing within the volume from point A to point B.

• If the replication process is file-based, the data is examined at the file level and
then updated from the source to the destination either in whole or by using
the delta block transfer method

1

.

File-based replication systems normally transfer the data from source to
destination via any IP-based network. This means that these systems are
outstanding for creating mirrored replicas in the organizational network or
across the organizational WAN.

• If the replication system is volume-based, the volume is examined block by
block, and the replica is updated by that method.

Volume-based replication systems transfer the information from the source
to the destination using either high-speed SCSI or Fibre Channel cabled
systems. These systems are outstanding for creating mirrored replicas within
server clusters, a campus network, or from one office to the next within a 10-
kilometer area (using Fibre Channel).

Either way, replicated files on the destination volume are constantly updated with
the changes made to the original files on the source volume so that an exact copy
of each and every file targeted is continuously replicated and then available for use
on the destination.

Because replication can be either file-based or volume-based, it’s an ideal thread-
in to network backup practices. It can be used to copy live databases for backup,
to centralize data from multiple computer systems to a single computer system for
easier backup, and for a host of other purposes.

How often do
you want the
data moved?

The next thing you need to know about replication is that you can move data in
two ways: continuously as it’s written, or as a series of point-in-time snapshots.

File-based replication is normally

not

 set up to move the data on a continuous
basis from the source to the destination, because that just wouldn’t make sense.
Why spend the computer processes and network bandwidth to move a Microsoft

1.

See

Delta block backup

 on page 303 for more information on this method.

Chapter 14: Replication

499

Word file that gets saved every 10 minutes while the user is working on it? At best,
the replication software would have something to do every 10 minutes. Generally,
documents just sit there until opened and saved. Therefore, file-based replication
is normally set up so that the administrator can designate a regular schedule for
when the replication should occur.

By setting up a normally scheduled replication
process, an administrator can ensure that the data is consistent between points A and B

.

On the other hand, databases are usually accessed frequently, and therefore repli-
cation software that focuses on databases moves that data continuously between
points A and B. As we stated in

Open file database backups

 on page 343, backing
up databases using a point-in-time method causes you to lose a lot of data. There-
fore,

allowing the replication process to run continuously will give the administrator
peace of mind that the data is not only consistent, but current as well

.

Synchronous or
asynchronous

transfer

The last bit of replication that you have to come to grips with is how you’re going
to

move

 your data from point A to point B. Moving the data can be done in two
ways—synchronously and asynchronously.

The

synchronous

 method is simple. When the replication process commences, all
the data at the source that you’ve chosen to move is immediately sent over the net-
work to the destination. If you’re moving files during a point-in-time snapshot,
this should cause no major problems, as it’s handled like any other file transfer
through the network. However, if you’re trying to continuously move the contents
of a database that’s being hit hard with a lot of updates, and you’re moving large
blocks and huge amounts of data at a time, you’re now outside the normal bounds
of control that a network offers. Your replication system could easily cause your
entire network’s bandwidth to fill up and become congested during a synchronous
transfer.

Therefore,

asynchronous

 transfers were devised to curtail those sudden bursts of
network traffic that continuous, block-based replication processes create. The
asynchronous method of transfer establishes a queue at the replication server in
which to hold data while maintaining a steady stream of network traffic between
source and destination.

Your choice of using synchronous or asynchronous data transfers really depends
on the information you want to replicate, how much change you’re implementing
to that information, how often that change comes (in lumps or gradually), and
how big the network pipes are between source and destination.

500

The Backup Book: Disaster Recovery from Desktop to Data Center

T

HE

 M

AIN

 T

HING

The Main Thing here is that you understand

• Your business needs,

What happens if the data you’re replicating isn’t the most current? What’s the
cost of loss of a minute, hour, or day’s worth of data loss? Would that cost
more than the replication system, or are you trying to propose a replication
system that has a price tag higher than the worth of the data you’re
replicating?

• Your data transfer needs,

Do you need to move data in blocks or files? Do you need to move your data
from one office to another office in the same building? Do you need to move
your data to another city for it to be safe? You have to ask these questions
before you can move on.

• How often your data changes, and

If your data changes relatively often and you’re trying to replicate a database,
you might need to move to a block-based asynchronous replication process.
If your database doesn’t change often, or changes gradually, you can probably
get away with a synchronous process. If you’re replicating files and folders,
you’ll want to go with synchronous scheduled transfers.

• The throughput available between your source and destination.

No matter which method you use, you need to understand your throughput
and latency. Get a good set of network management tools and then manage
your network throughput.

Special thanks

Special thanks to John Frassel, Tim Hardy, and Jon Burgoyne over at EverStor for
their software, help and support. Again to Connie Chronis at VERITAS, along
with Matt Fairbanks who helped a great deal on synchronization and configura-
tion research.

Chapter 14: Replication

501

 C

URRENT

,

OR

SIMPLY

CONSISTENT

DATA

?

Choosing a replication system is a balancing act: You must weigh the cost of
unavailable data against how much you want to spend. And you must grasp
another balance—because it’ll grasp your wallet one way or the other: the balance
of

current

 and

consistent

data

. Replication helps you with both in the event of
your computer’s loss by moving that data to a destination that’s usually at least a
building away from the original source computer. However, the more current you
want to keep your data, the more you must spend on connectivity infrastructure
between your source server and your destination server. We mention that up front
here because it’s something that folks don’t often think about, yet it could be one
of the major cost factors you have to face in planning for replication. Let’s start
with consistent data and then work our way through to current data.

Consistent data

If the source server dies and the destination server must be made live, your data is

consistent

 if the application using it on the destination can be successfully
restarted to a usable state with data that’s verifiable to a certain point in time—
without any corruption (hearkening back to that “write-order fidelity” thing we’ve
mentioned before). While this sounds easy, in practice it can get a tad complicated
when you realize how some database transactions work while the replication pro-
cess is going on.

Let’s say that you decided that you’re so darn cool you must buy one of the trendy
hats at buttlecaps.com.

Consistent
operation

1. You sign into the system (you’ve bought there before) and tell it you want to
order a new buttlecap—in this way, you’re telling the database manager run-
ning the store that you want to modify your purchase records.

2. The database software receives the request in the form of a Data Modification
Language (DML) command to perform the update to your record. It then
writes this transaction to its log.

3. Once you’ve entered all of the buttlecaps you want to buy, you hit the

Save

button, telling the database to commit your order to the system as a perma-
nent change. The database enters this as another log transaction. If it’s not

01011101
00101001
01101010
00011110
010000…

$$

502

The Backup Book: Disaster Recovery from Desktop to Data Center

busy, it might update to the data table. If buttlecaps are going like hotcakes,
though, it maintains your transaction in the computer’s RAM until such time
as it can write the transaction to disk. However, a write

never

 occurs to the
table space unless it’s first committed to the log.

Figure 14-2. Data consistency

4. The database then replies to your computer’s application, indicating that the
write has been committed and telling it that it’s okay to end the transaction.

As you can see from this simple example, the application on your computer is
responsible for maintaining the transaction until it receives the commit from the
database. That’s only the first step in the process.

The database is responsible for maintaining the transaction (sometimes called the

redo

) log. Throughout the normal course of events, the database will checkpoint
the log.

Checkpointing

 means that all transactions still in memory are written to
the disk’s tables. After that, the transactions are cleared from the logs and the logs
can be archived. In this way, the database maintains consistent data.

Crash and
restore

operations

Now that we know what a consistent operation looks like, let’s examine what hap-
pens during a

 non-consistent

operation—a fancy term for what happens when
the database crashes. For that, we’ll put you back in the seat of the user hitting the
buttlecaps.com website to order a hat.

1. You’ve decided to update your buttlecaps order, thus telling the database man-
ager that you want to modify your purchase records.

Tables

Indexes
Logs

Database Mgr

(1) (2)

(3)

(4)

Chapter 14: Replication

503

2. The database software receives the request in the form of a Data Modification
Language (DML) command to perform the update to your record. It then
writes this transaction to its log.

Figure 14-3. Non-consistent operation

3. However, before you can hit the

Save

 button and commit your changes, the
database server crashes. It won’t matter now if you hit the

Save

 button as often
as you hit the down button in the elevator after a 10-hour workday. The da-
tabase server isn’t there to hear your urgent cries of “I want buttlecaps!” and
sooner or later, your application times out.

The database must take several steps to return to a healthy, up-to-date state.

1. First, it must be restarted. This usually occurs after the angst und drang of ev-
eryone involved and after the database administrator has calmed down
enough to get to the database server administration software and send the re-
start command.

2. When the database resumes operations, it performs a crash recovery, mount-
ing the data tables in their pre-crash state—the instance of the last database
checkpoint. This is called the database’s

known state

: some time in the past
between the points when the crash and the last checkpoint occurred.

3. Once the database is at a known state, it can then begin to “roll forward”
through all of the log transactions and apply the actions to the database. This
is the longest portion of time during the recovery process, and can take any-
where from a few seconds (highly doubtful) to hours. All transactions in the

Tables

Indexes
Logs

Database Mgr

(1) (2)

(3)

504

The Backup Book: Disaster Recovery from Desktop to Data Center

log are committed. Any non-committed transactions (due to the crash) are
“undone” in the database.

Figure 14-4. Database restoration after crash

4. That means that your buttlecap purchase won’t be recorded. Had the

Save

button been hit before the crash, and the database received your order and en-
tered the information into the transaction log, the transaction would be
marked as committed. The end user would be able to see the record (remem-
ber, the server crashed before sending a response to the client app on the end
user’s machine) only if he or she re-signs in and examines the purchase history.

Data loss is measured as transactions lost plus time to restore operations.

Of course, all of this depends on the database’s ability to restart.

What happens if the database crashed due to a fire in the building that destroyed
the computer? Or if the building fell down? Or, if you lived in my old neighbor-
hood, where it’s likely that somebody just came in and took the computer? Then
there wouldn’t be any computer to restart the database

with

.

Let’s look at the restoration process rebuilt from a tape or disk backup of the data.

1. First, if your computer is gone, you must replace and reconfigure it. You can
do this in less than an hour if you swapped in an existing computer and re-
loaded the software and setups from an imaged disk system.

2. Your next step: Layer on top of your image the data that was lost in your da-
tabase. This could take anywhere from less than an hour to hours.

3. You’re left with whatever data you had during your last off-site tape backup—
up to a week’s worth of data loss. That isn’t good.

Time to restoreAmount of data lost

Secs Mins Hrs Days WksSecsMinsHrsDaysWks

(1) Restart of crashed server

(2) Database performs
crash recovery

(3) Database performs
“roll forward” transactions

(4) Data loss is measured
as transactions lost plus

time to restore operations

Chapter 14: Replication

505

Figure 14-5. Database restoration from tape

4. Once your database is up and running, it must still go through the “roll for-
ward” process (assuming that you’ve backed up the transaction logs, as well).

5. Your data and productivity loss spans a much greater time interval than it
would have in a mere computer crash.

Which, of course, is why you’ve wisely chosen to replicate your data to an offsite
computer. Let’s walk through what happens during an asynchronous replication,
and how it recovers in such a situation.

Asynchronous replication

In an

asynchronous replication

 system, data is written first to the primary source
and then to a source cache, which queues the data for transmission to the desti-
nation as bandwidth allows.The queue acts as a buffer between the source and the
destination, providing a much kinder replication environment for your network
than synchronous replication does. When the writing application creates surges in
the update rate, the queue grows. As the data is received by the secondary, the
queue shrinks. This prevents the writing application from being bogged down
waiting for data to transmit from the primary to the secondary.

However, in the event of an emergency, asynchronous replication is more suscep-
tible to variances in data between the source and the destination. If the source dies
before a transmission has been sent, or packets are delivered out of order, data is
lost. If the source dies with a large buffer, the information therein won’t be trans-
mitted, causing a discrepancy between the information in the source and the
information in the destination.

(4) Database performs
“roll forward” transactions

Time to restoreAmount of data lost

Secs Mins Hrs Days WksSecsMinsHrsDaysWks

(1) Creation of Secondary server

(3) Database performs
crash recovery

(2) Restoration of data from
tape or drive

(5) Data loss is measured as transactions lost
plus time to restore operations

506

The Backup Book: Disaster Recovery from Desktop to Data Center

To handle this additional complexity, replication management software must be
added as a layer between the database manager and the volumes being written to.
Also, a replication journal that works with the replication management software
must be created, and installed, with the replication manager in the receiving, sec-
ondary computer. On the receiving end, there should be no live database manager
trying to access the replicated database—that would gum up the works. The dia-
gram below (Figure 14-6.) shows the basic setup of the primary and secondary
database, as well as the additional steps necessary for a transaction to take place.
Let’s walk through it.

Consistent
operation

1. You’ve decided to update your buttlecaps order; thus, you’re telling the data-
base manager that you want to modify your purchase records.

2. The database software receives the request in the form of a Data Modification
Language (DML) command to perform the update to your record. Instead of
writing the information directly to its transaction log, it passes the informa-
tion to the replication manager, which writes the information to the primary
server’s replication journal.

Figure 14-6. Asynchronous write process

3. Once you’ve hit the

Save

 button, instead of the database manager writing to
its transaction log, the Replication Manager again steps up to the plate, does
the work, and tells the database application that the write is complete.

Tables

Indexes
Logs

Replication
Journal

Replication
Mgr

Tables

Indexes
Logs

Replication
Journal

Database
Mgr

Replication
Mgr

(1)

(2)

(3)

(4)

(4)
(5)
(7)

(6)

(4)

Chapter 14: Replication

507

4. At this point, several things happen simultaneously. The database manager re-
plies to the client that the transaction is complete. The replication manager
writes the data to the primary volumes, and at the same time, adds the infor-
mation to the outgoing queue to be sent asynchronously to the secondary
host.

At this point, more data might have been sent than the connectivity between
the two hosts can handle. In this case, the queue begins to grow, creating a
backlog on the primary server. We’ll cover just how much backlog can grow
in another section—for now, understand that only so much data can go
through a pipe at one time. This isn’t Wiley Coyote who turns on the spigot
for the hose and watches a bulge go through—alas, real life is not nearly as
colorful as a cartoon.

5. Upon receipt of the data, the secondary host sends a network acknowledg-
ment to the primary host, stating that the data is present and in memory,
ready to be written to disk.

6. The secondary host then writes the data to its local disks and sends an ac-
knowledgment to the primary host.

7. Once the primary host receives the acknowledgment from the secondary host
that the data has been written to local disk, it marks the write as complete in
the replication journal.

In a database environment (whether that database is a simple MySQL system, a
complex Oracle system, or the structured and incredibly complex file storage
engine of a bookkeeping system), updates are made to various elements in a fixed-
sequence methodology that can be spread over multiple directories, or even mul-
tiple volumes. If this data gets out of sequence, the database or bookkeeping sys-
tem reject it. Any replication system that works in these environments

must

consistently safeguard the in-sequence writing of this data—VERITAS calls this

write-order fidelity

. This state can be achieved either through software (such as
VERITAS’ product) or through using asynchronous transfer mode (ATM) wide
area networking, or a combination of both.

Crash and
restore

operations

Let’s look at the process again—but this time, there’s a hitch: The primary server
dies in the middle of a transaction.

1. Let’s say that you started the process as before, but you’re expanding your TQ
(trendiness quotient), and want to buy a different buttlecap for every day of
the week.

508

The Backup Book: Disaster Recovery from Desktop to Data Center

Figure 14-7. Death of a server

2. The replication manager starts to do its thing by logging the request into the
replication journal.

3. It then passes the information back to the database manager that everything
is hunky-dory. But before the database manager can send a reply to the client,
or the data can be written to the primary storage volumes, or the data can be
queued for sending to the secondary volumes, the unthinkable occurs:

The
computer dies

. A massive typhoon has hit the Ogunquit office that housed the
primary database, and the database is swept out to sea. Months later, some
happy inhabitant of an uncharted island will have a dandy new coconut-
smasher—but for now, let’s return to civilization as we know it.

Since it has received no acknowledgment, the client computer will eventually
either hang, or the end user will give up. You’ve now lost your primary server,
along with any data in the primary server’s queue. That’s the bad news.

The good news? Restoring your system to productivity is

much

 faster, because part
of the secondary’s job is to monitor the primary server’s heartbeat (like all of us
monitoring Cheney’s to ensure that George doesn’t take charge). If the secondary
notices that the primary has missed a consecutive number of heartbeats and has
lost contact, it immediately begins the recovery process, which is much like the
recovery process of a server that has crashed. To the secondary, there is no loss of
hardware—it doesn’t need any imaging or data restoration from a backup opera-
tion. Here are the steps it takes, and the amount of your loss.

Tables

Indexes
Logs

Replication
Journal

Replication
Mgr

Tables

Indexes
Logs

Replication
Journal

Database
Mgr

Replication
Mgr

(1)

(2)

(3)

Chapter 14: Replication

509

Figure 14-8. Secondary recovery process

1. The secondary senses the death of the primary and converts into active mode.

2. Even though this version of the database hasn’t crashed per se, it still performs
a full recovery operation from the last checkpoint.

3. It immediately begins to roll forward through the transaction logs.

4. The data loss consists of all of the information in the transfer queue on the
primary computer (and which therefore hadn’t yet been sent to the second-
ary), those transactions that were still live and not yet committed to the data-
base, and the recovery time it took to switch the secondary from standby
through live and the roll-forward operations. In essence, this could be any-
thing from minutes to hours, but it sure beats having to restore the data from
a backup and

then

 begin whatever roll-forward process it can.

The only scenario that involves less downtime and less data loss is accomplished
through synchronous replication. Caveat emptor here: Unless you have one heck
of pipe from the primary to the secondary server, your system won’t transfer a lot
of data. I don’t know what type of pipe it takes to run a synchronous replication
for our servers over the WAN, but I do know that it would be expensive.

Current data

The obvious benefit of synchronous versus asynchronous replication is the reduc-
tion of data loss—but that benefit comes at a cost. Because of the complexity of
the network connection, network management, and monetary considerations, a
move from asynchronous to synchronous replication is ultimately a business deci-
sion.

Time to restoreAmount of data lost

Secs Mins Hrs Days WksSecsMinsHrsDaysWks

(1) Conversion of secondary server

(2) Database performs
crash recovery

(3) Database performs
“roll forward” transactions

(4) Data loss is measured
as transactions lost plus

time to restore operations

510

The Backup Book: Disaster Recovery from Desktop to Data Center

In a perfect world, the secondary and primary hosts have almost identical infor-
mation. If data loss is measured in minutes for the fastest possible asynchronous
replications, it’s measured in seconds for the synchronous system. The data lost in
an asynchronous replication consists of those transactions that were pending, but
not committed, as well as all of the data in the replication queue. The data lost in
a synchronous replication consists solely of those transactions that were pending,
but not committed. For this amount of data to be moved from the primary to the
secondary, you need a very fast and wide connection. Let’s explore synchronous
replication in more detail.

Synchronous replication

In a previous chapter, we defined how the network protocol stack works, with its
multiple layers speaking to each other (

The basics—a layered approach

 on page
128). In a

synchronous replication

 environment, the writing of data from the
source to the destination is done at a very low layer in the protocol stack, so that
the write update to the destination is acknowledged by the source before the oper-
ation is actually completed at the Application layer on the source. This must hap-
pen very fast, or it slows down the source’s performance waiting for the data to be
written. The synchronous method ensures that even if the source fails, the maxi-
mum amount of data has already been transferred to its destination.

Before you plan on deploying synchronous replication, you’ll need to understand
it and

y

our network’s capabilities in the throughput and latency categories. In
researching this book, we found out that roughly 32 percent of organizations
recently interviewed by

InformationWeek

 said that they had the network infra-
structure to support high volumes of instantaneous data delivery

2

. For most of the
world, synchronous replication is most effective in application environments that
have normal LAN characteristics and low update rates within the data structure.
It can also be deployed effectively in write-intensive applications, as long as a high-
bandwidth, low-latency network connection is pervasive.

Current
operations

1. You’ve decided to update your buttlecaps order—you’re now telling the data-
base manager that you want to modify your purchase records.

2. The database software receives the request in the form of a Data Modification
Language (DML) command to perform the update to your record. Instead of

2.

“How to build networks with zip—these technologies can help keep your network reliable and
responsive,” by R. Gareiss,

InformationWeek

 (2002).

Chapter 14: Replication

511

writing the information directly to its transaction log, it passes the informa-
tion to the replication manager, which then writes the information to the pri-
mary server’s replication journal (VERITAS calls this the Storage Replicator
Log).

So

far

,

 you’ve followed the exact same steps as you did in the asynchro-
nous mode.

Figure 14-9. Synchronous replication process

3. In synchronous mode, this step consists of two simultaneous steps: The rep-
lication manager writes to the secondary host, and while waiting for the net-
work acknowledgment from the secondary, it writes the information to the
primary data volumes.

4. Once the secondary receives the write information and processes it in its ker-
nel memory, even before it writes any data to its resident volumes, it returns
a network acknowledgment to the primary.

5. In this step, more simultaneous processes occur. The replication manager on
the secondary writes the data to its volumes. As soon as the primary receives
the network acknowledgment from the secondary, it informs the database ap-
plication that the write is complete.

6. As the write has taken place on the secondary’s volumes, the replication man-
ager marks it as complete in the replication journal. The database manager
notifies the originating client that the transaction is complete.

Tables

Indexes
Logs

Replication
Journal

Replication
Mgr

Tables

Indexes
Logs

Replication
Journal

Database
Mgr

Replication
Mgr

(1)

(2)

(5)

(6)

(3)
(4)
(6)

(5)

(3)

512

The Backup Book: Disaster Recovery from Desktop to Data Center

The huge difference between synchronous and asynchronous modes? In synchro-
nous mode, the primary writes data to its own drives while it sends the data to the
secondary, and further, that write won’t be acknowledged to the database manager
until both primary and secondary writes are complete.

If a primary server crashes (or the building crashes down upon it) midway through
the write phase (step 3, above) so that the write phase doesn’t happen, the only real
data loss consists of those writes that were about to happen, and any pending
requests that might have been opened but were never saved or committed to the
system. Let’s go through the steps of a worst-case crash and restore operation:

Crash and
restore

operations

1. You started the process as usual: Deciding to boost your TQ, you want to buy
a different buttlecap for every day of the week.

2. The replication manager starts to do its thing by logging the request into the
replication journal.

Figure 14-10. Synchronous database crash

3. Before or during the process of writing to the primary’s volumes and sending
the information to the secondary host —

the computer dies. A massive tsunami
has hit the Pismo Beach office where the primary database is located, and the
building that housed the database collapses, washing its contents out to sea.
On yet another uncharted island... well, you know all about arcane uses of
flotsam and jetsam. However, the secondary database was housed across a fi-

Tables

Indexes
Logs

Replication
Journal

Replication
Mgr

Tables

Indexes
Logs

Replication
Journal

Database
Mgr

Replication
Mgr

(1)

(2)

Chapter 14: Replication

513

ber link two blocks away, and neither the building nor secondary host sus-
tained any damage.

Because synchronous systems are also usually tied in with clustered server man-
agement systems, you’ll know within seconds that the primary has failed and the
system will automatically jump into fail-over mode, bringing the secondary host
to live status.

1. The secondary senses the primary’s demise and transfers into active mode.

2. Even though this version of the database hasn’t crashed per se, it still performs
a full recovery operation from the last checkpoint. However, since the data is
about as live as live can get, only seconds’ worth of data isn’t written to the
secondary host’s volumes.

3. It then immediately begins to roll forward through the transaction logs.
Again, since synchronous operations are nearly simultaneous, there isn’t much
of a roll-forward log.

4. The data loss consists of all the information that was being written at the time
of loss, those transactions that were still live and not yet committed to the da-
tabase, and the recovery time it took to switch the secondary from standby
through live and the roll-forward operations. In essence, this can be anything
from seconds to minutes—and that’s about as good as it’s ever going to get.

Figure 14-11. Recovery operations

Time to restoreAmount of data lost

Secs Mins Hrs Days WksSecsMinsHrsDaysWks

(1) Conversion of secondary server

(2) Database performs
crash recovery

(3) Database performs
“roll forward” transactions

(4) Data loss is measured
as transactions lost plus

time to restore operations

514

The Backup Book: Disaster Recovery from Desktop to Data Center

 THE TOOLS

The tools that we review here are all replication-specific. We also discuss (albeit in
an oblique way) Retrospect’s ability to duplicate information from point A to
point B. However, since this application is not a replication-specific engine, we
don’t cover it directly in this section. It is, however, covered throughout the book,
and duplication-specific information is covered in Document and directory dupli-
cation on page 277.

Replicator

EverStor’s Replicator is a server-based asynchronous replication engine that runs
on Unix, Linux, Mac OS X, and Windows-based computers or Network Attached
Storage devices. We think it runs best on NAS boxes or an Apple Xserve. This is
one heck of a program, and we love it—it’s easy to use and presents the user with
a web interface for restoration. Replicator uses a three-step process to move files
(it doesn’t work with databases) from the client computer to its storage space. Rep-
licator sits on top of the operating system.

Figure 14-12. Replicator

1. Replicator pulls files from the clients at intervals set by the administrator. It
can pull files through FTP or SMB.

Replicator

Operating
System

Backups

Archives

(1)
(2)

(3)

Chapter 14: Replication

515

2. Once it has the files, Replicator stores each of the client file sets in predeter-
mined areas of the hard drive with permissions for access to those areas that
are tied to each of the workstations.

3. Because Replicator is more than a duplication engine, it allows N number of
versions of each file to be stored in its archive directory. So, if a file is being
added during step 2, before it overwrites the present version, it archives that
file according to the rules set by the administrator.

Machines

Machine is Replicator’s term for an individual client computer. Each client
machine managed under Replicator must have a separate machine definition. As
system administrator, you can manage each of these machines individually or del-
egate responsibility to others.

Remember that part about naming devices that we talked about in the network
corruption chapter (see LANsurveyor on page 153)? It definitely comes into play
here, as machine names cannot be duplicated in the Replicator system. On Win-
dows devices, you can find the device’s name by right-clicking on My Computer,
then choosing Properties > Network Identification.

Figure 14-13. Name of Windows 2000 device

For Linux and Unix, the machine’s name can be determined by typing the Host-
name command at the command prompt in the terminal.

For Macintosh OS X users, select System Preferences… then click Sharing in the
window to bring up the computer’s sharing information.

Once you have the basic information in hand, you’re ready to set up the device’s
replication parameters. Since Replicator provides a web-based management front
end, you can set it up from any location and on any computer that has a standard

516

The Backup Book: Disaster Recovery from Desktop to Data Center

web browser. It’s pretty simple: Just add the device’s name or IP address, the
device’s directory name for replication and archiving (usually the same name as
the user device), how many iterations of the same file are allowed (they call this
the max number of archives), and a log level for this user (if the user is having prob-
lems, you’ll want to log it).

Figure 14-14. Machine information

It takes longer to figure out the device’s name than it does to set up the device in
the system.

Save Sets

Save Sets are defined for each machine, determining a set of files to be replicated,
and how and when the replication is to be performed. The Save Set is the defini-
tion of the data to be replicated on each client machine. This definition includes
the directory or directories to be replicated, those to be excluded (if any), the fre-
quency of replication, and the maximum permissible levels of archival.

Since the Replicator product has no client software, the software uses SMB or
FTP to access the local computer’s source directory. FTP is the preferred method
of setting up a share-point on a local Unix/Linux computer, and SMB, of course,

Chapter 14: Replication

517

is for Windows users. Mac OS X users can set up FTP share-points or SMB share-
points—however, setting up an FTP share-point is much easier.

Figure 14-15. Save Set information

Workgroups

Workgroups consist of a group of machines managed by the workgroup adminis-
trator, and are used to delegate responsibility. The Replicator system administrator
may designate workgroup administrators as responsible for groups of client
machines. In a large organization, this can be a huge plus, but since this is a logis-
tical issue and has nothing to do with functionality, we won’t cover it here.

Replicator is a fine product for moving files from point A to point B. Because it
doesn’t use any software on the client source computer, it must have a very specific
address (or a resolvable domain name within the network) to find the source vol-
ume. This makes it great for replicating general user directories, websites, and any
other static file-based volume from the source to the backup destination.

It doesn’t work, however, with any open files—so using it to replicate a mail server
or a database server is out of the question. Any file that is not an open file can be
quickly and easily replicated to the destination server where Replicator is running.
And since it supports all major operating systems, we think it’s great.

518

The Backup Book: Disaster Recovery from Desktop to Data Center

VERITAS Volume Replicator

Based on the VERITAS Volume Manager, VERITAS Volume Replicator (VVR)
replicates volumes of data in real-time (either synchronous or asynchronous) to
remote locations over IP networks. Why the plural emphasis (locations)? VVR can
replicate one volume group to 32 secondary replication sites simultaneously (if
you have enough bandwidth or your volume doesn’t have a heavy change load).
The ability to replicate entire volumes in this manner is an extremely robust stor-
age-independent disaster recovery tactic. Unlike Replicator, VVR sits beneath the
operating system, intercepting hard drive calls and routing them appropriately.

VVR follows roughly the same set of steps in both synchronous or asynchronous
modes of operation.

1. As writes come in from the database application, VVR intercepts the call.

Figure 14-16. VERITAS Volume Replicator

2. VVR writes the change information to its Storage Replicator Log, so that if a
crash occurs before the rest of the procedures is finished, the information is
contained in its replication log and can be used for restoration purposes.

3. Once the write to the Storage Replicator log is complete, VVR sends the write
to the secondary host (or hosts). In asynchronous mode, this data is written
to a queue that then manages the sending of the data. In synchronous mode,
the data is sent directly. At the same time, VVR writes the data to the primary
computer’s volumes.

Tables

Indexes
Logs

Storage
Replicator
Log

Database/
Application

Veritas
VM & VR

Operating
System

Tables

Indexes
Logs

Replication
Journal

Veritas
VM & VR

Operating
System

(1)

(2)

(3)

(3)

(4) (6)

(4)

(5)

(7)

Chapter 14: Replication

519

4. On the secondary hosts, VVR receives the incoming write, processes it (put-
ting the information into its kernel memory), and sends a network acknowl-
edgment to the primary host.

5. In synchronous mode, once the primary receives the network acknowledg-
ment from all of the secondary hosts that the data has arrived, VVR sends an
acknowledgment of the write’s completion to the application.

6. Once the secondaries have actually finished writing the data to their local vol-
umes, they send a write acknowledgment to the primary.

7. Once the primary receives write acknowledgments from all of the secondaries,
VVR marks the write as complete in the Storage Replicator Log.

Replicating databases as volume groups

Remember when we were talking about write-order fidelity (Consistent operation
on page 501), how databases process the writing of information in a certain order,
and how that order must be maintained in order to recover from a crash? Good—
you were paying attention. Go grab a gold star and a Krispy Kreme. Now comes
the part where you get to put all your diligence to use by planning out a VVR rep-
lication setup the correct way.

Figure 14-17. Replication Volume Groups

Let’s say that you have a single large computer running both a POS database for
your 30 stores as well as a second Inventory Management (IM) database for the
same 30 stores. Each of these databases writes independently to its respective vol-
umes and database transaction logs. To maintain write-order fidelity for each of
the independent databases, you must set up independent Replicated Volume
Groups (RVGs) for each database. An RVG is a group of volumes within a VVM

Tables

Indexes
Logs

Storage
Replicator
Log

POS RVG

Tables

Indexes
Logs

Storage
Replicator
Log

IM RVG

OS &
Apps

Normal vols

520

The Backup Book: Disaster Recovery from Desktop to Data Center

disk group (Remember those? We talked about them in Dynamic volumes on page
478)—and all the related volumes are part of the same disk group.

Here are some tips for RVG setup:

• Separate each database into its own RVG, as we’ve done in Figure 14-17.

• For extra safety, make sure that you mirror all your SRL volumes, as well as
all data volumes.

• Make sure that you name the volumes on all of your secondary hosts the same
as those on the primary host’s volumes. In a disaster situation, your secondary
will become your primary and you’ll want volume-naming fidelity if and
when you have to map your drives over.

• Dedicated separate physical disks (with separate physical SCSI or FC control-
lers) to your SRL volumes, separating them from your data volumes. Ensure
that your data volumes have separate physical disks and controllers as well.

Setting up the asynchronous RLINK

VERITAS calls the network connection between the primary and each secondary
host a Replication Link (RLINK). The RLINK’s attributes specify the replication
parameters, whether synchronous or asynchronous, for the corresponding second-
ary host. If the amount of data sent by the primary is greater than the RLINK can
handle, one of two things happens (other than your users start complaining that
the network is pokey). In the synchronous replication mode, the primary server
must wait until the writes are complete on the secondary server—and this could
greatly impact the performance of your primary server. In asynchronous mode,
the SRL queue grows until the change rate is less than the pipe size, and the queue
can empty as the overflow gets sent to the secondary. Therefore, you must set up
the data transmission link between the primary and each of the secondaries appro-
priately.

Below (see Figure 14-18. on page 521) is a graph showing the relationship
between…

• The data pipe (ours shows a 100 Mbps network pipe);

• Normal network traffic (which doesn’t amount to much here);

• The rate of data change taking place on the primary (that must therefore be
sent across the data pipe to the secondary host); and

Chapter 14: Replication

521

• The SRL that has to hold the excess data until it can be sent from the primary
to the secondary.

Figure 14-18. SRL fill depth as it relates to data flowing through an RLINK

The SRL begins to fill up with a backlog anytime that the amount of data that
must be sent to the secondary is greater than the amount of data that can flow in
the pipe at that time. If the primary goes down with data in the SRL, that data is lost.
As you can clearly see in Figure 14-18. , wherein the fill depth of the SRL at points
nine through 11 spike as the data rate mushrooms, a 100 Mbps pipe for this
RLINK between the primary and secondary would be a bit small, even though
there isn’t much normal network traffic (think what would happen if the network
traffic spiked, as well as the RLINK traffic?). In the diagram below
(Figure 14-19.), we show an RLINK with even more traffic than before, but now
the same traffic between the host and primary is running on a gigabit network
instead of a 100 Mbps network. The SRL fill depth is never above zero because
the pipe between the primary and secondary can easily handle the load.

Figure 14-19. The RLINK moved to a gigabit network

SRL Fill Depth

0

50

100

150

200

250

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transaction History

Pipe

RLINK

SRL
Net Traffic

SRL Fill Depth

0

200

400

600

800

1000

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Transaction History

Pipe

RLINK

SRL
Net Traffic

522

The Backup Book: Disaster Recovery from Desktop to Data Center

Our suggestion? When you establish an RLINK between a primary and secondary
host, build an RLINK-only network. By adding a secondary NIC card to both the
primary and secondary host(s) and then routing that data directly to its own LAN
or WAN, you eliminate any problems with LAN traffic snarls, give yourself a
much cleaner path, and can easily monitor this network (with simple tools like
CyberGauge from Neon Software, which we’ve mentioned throughout this book)
to ensure that the data rates aren’t soaring too high.

For heavy-use databases on a LAN, we suggest that you utilize a gigabit-switched
network. For heavy use between a primary host and a secondary host over a WAN,
we suggest that you create dedicated point-to-point connections (such as T1s,
T3s, or better) between each device.

Figure 14-20. An RLINK network

Remember, this is key data, and you’re creating a mirror through VVR to protect
it. Don’t foul up your protection scheme by cheesing out on the network connec-
tion—that’s the least expensive part of the whole operation.

VERITAS Storage Replicator

VERITAS Storage Replicator is a file replication product that provides real-time
replication for workgroup-level systems. It’s ideal for consolidating the backup
process to a centralized location within the Windows platform, or replicating
databases from one point to another. Storage Replicator keeps an up-to-the-
minute copy of specified volumes, directories, or files to allow for immediate
recovery, by mirroring the source-file system writes to a destination server as they

POS

IM

Primary Secondary

RLink network

Standard network

POS

IM

Chapter 14: Replication

523

occur, operating with full fidelity on open files. Storage Replicator can be used to
maintain real-time copies of databases stored in a safe location in a different part
of the campus or in a remote location.

When replicating, Storage Replicator sends updates from the primary node on
which the application is running, secondary or remote node. Replication is uni-
directional (updates on the primary are sent to the secondaries, but access to the
data at the secondary nodes is read-only while replication continues). If the data
at the primary is destroyed by a disaster, the copy of the data at the secondary can
be made write-accessible, and applications that were running on the primary can
be brought up on the secondary. The secondary can then be used as the new pri-
mary for the writing applications.

Storage Replicator has three main components.

1. Replication Management Server software that holds the configuration data
for the replication systems, controlling the beginning and ending of the rep-
lication process. This software drives the process and is the repository for all
of the logs, alerts, and histories.

2. The Replication Service Agent is client software that is installed on every
computer that is designated either a source or a destination. The Replication
Service Agent must be installed on the same computer as the Management
Server if that computer acts as either a host or a destination. Each Replication
Service Agent is dedicated to a single Replication Management Server (to
avoid conflicting jobs).

3. The Console is an application that provides a front end for information
about the replication configuration and replication processes. It’s great that
VERITAS has separated the front end from the engine so that the adminis-
trator can remotely manage a replication server, or can have multiple copies
of the console so that certain tasks can be delegated to subordinates who’ve
installed the Console on their computers.

Storage Replicator ties all of this together into a “replication neighborhood” (with
one server acting as the Remote Management Server for the whole neighborhood)
and uses job management terminology to describe its process. A replication “job”
defines the source and destination volumes, the data being replicated, the interval
and scheduled duration of the replication, and a few specific settings that are ger-
mane to each replication process.

524

The Backup Book: Disaster Recovery from Desktop to Data Center

Storage Replicator works by placing itself in the computer’s kernel stack just above
the operating system in order to intercept the 64 k writes to the disk so that it can
not only write the information to the primary host, but also to the replica desti-
nation. Because this is an asynchronous system, Storage Replicator simultaneously
passes the incoming writes off to the operating system (2) and also adds the data
to its replicator journal for processing and sending to the replication destinations
(3). This works exactly the same whether files are being written to the drive or
database writes are being performed.

Figure 14-21. Storage Replicator process

Because Storage Replicator can replicate data over any IP network (that supports
the throughput and latency necessary to accomplish the job), the primary source
computer can be in one location and the replica destination can be elsewhere,
such as the company hot-site, or another office or building. And because Storage
Replicator works as the operating system is writing to the disk, live databases do
not need to be shut down to be moved from point A to point B.

When a job is started, the source volume is not considered protected until each
and every specified file has been replicated onto the destination and then checked
to ensure that it is identical to the source file. We’ll cover this in more depth below,
but briefly, a synchronization phase is followed by a dynamic update phase. Stor-
age Replicator first synchronizes a complete set of files between the source and the
destination. Once the list of files has been synchronized, it then goes through the
list to update any files to be replicated. For explanation purposes here, we’ll walk

Storage
Replicator

Operating
System(1)

(2)

(3)

Replicator
Journal

(2)

Storage
Replicator

Operating
System

(3)

(4)

Any IP based network

Chapter 14: Replication

525

through the process of creating a replicant database structure instead of a file
structure, since the database structure is more volatile and specific.

Synchronization phase

When a replication starts, it synchronizes copies of files between the primary
source and the destination replica, so that an exact list of all files targeted exists in
both places. Therefore, the first step is to build an exact copy of the file structure
on the destination computer. Any files that don’t exist on the replica are copied
from the primary to the replica. Any files that do exist are examined, and if
changes are found, a new copy is transferred from the source to the destination (if
the file is smaller than 1 MB), or the delta changes to the file are updated from the
primary to the replica.

Figure 14-22. File synchronization phase

The only problem with this process is that since the database can be live with
changes being made to it, as files are replicated from the primary source to the rep-
licated destination, they can be out of date once they’ve hit the destination server
because changes have been made to the primary copy of the file. At this moment,
the dynamic phase comes into play.

Dynamic phase

The dynamic phase of replication tracks changes to the files as they are occurring
on the source (remember above, where the Storage Replicator software intercepts
the operating system calls to the drive? That’s how it knows). Once synchroniza-

Tables

Indexes
Logs

SQL Server Master

Tables

Indexes
Logs

Destination
Replica

Storage Replicator

Replication
Service Agent

526

The Backup Book: Disaster Recovery from Desktop to Data Center

tion has been completed, any changes to the primary files are then sent to the des-
tination, updating the copies of those files on the replica.

To maintain write-order fidelity, the dynamic phase tracks the changes on the pri-
mary in the order they occurred, updating files on the destination file in the same
order, thus guaranteeing the database’s transactional consistency3. Once all of the
files have been synchronized and then updated, the replication process is com-
plete.

Figure 14-23. Dynamic phase

The ongoing process

At this point, the administrator has two choices. An ongoing, continuous replica-
tion can occur from here on out, or the replication process can be stopped and
then restarted on a scheduled basis.

If the replication process is stopped and then restarted on a scheduled basis, fur-
ther synchronization will take place, followed by the dynamic phase.

If the replication process is allowed to continue on an ongoing basis, only the
dynamic phase will have to run, as the data will be moved to the replica destina-
tion as it is written to the primary source. During dynamic replication, Storage
Replicator will continuously send changes on the source volume over the network

3. Storage Replicator is a file replicator, and as such doesn’t understand SQL database tables, logs, etc.
and therefore isn’t used to move and reintegrate them. Instead, it replicates files ensuring write-
order fidelity so that the data is a perfect match, and if necessary, can be run from the destination.

Tables

Indexes
Logs

SQL Server Master

Tables

Indexes
Logs

Destination
Replica

Storage Replicator

01011101
00101001

01101010
00011110

010000…

01011101

Replication
Service Agent

Chapter 14: Replication

527

to the destination volume. In Storage Replicator, this happens asynchronously,
using as little CPU processes on the source as possible. To do this, Storage Repli-
cator’s drivers record all the changes to each document and place them in journals.

Journaling

Because Storage Replicator uses an asynchronous replication process, the change
can’t be sent immediately from the source to the destination. Rather, a copy of the
changed portion of the file is placed in a journal, transmitted over the network
and written to a journal on the destination, allowing for temporary network bot-
tlenecks. An inbound journal on the destination device that ensures all synchro-
nization data (the creation of new files) is written first and then followed up with
dynamic data.

Journal files are self-managing files that grow and shrink with the amount of data
to be transmitted and then integrated into the destination. These journal entries
are transferred across the network as quickly as the network allows (using as much
bandwidth as allocated within the console of the software). Once arrived, each
journal file will typically hold around 3 MB of data. Large job transfers can take
up to several individual journals.

In planning for this additional space on both source and destination, take the
amount of files being transferred. Add 10 percent for the additional journal size.
Journal files (on both source and destination) won’t be deleted until after the jour-
nal has been marked as read by the software. Then multiply that combined num-
ber by a fudge-factor of 15–20 percent more for the total size you’re going to need.

If your network is up to speed (pardon the pun), you probably won’t see a journal
entry file on either source or destination. However, a total failure of the network
connection between source and destination, or network corruption causing near-
zero TCP Window problems on either one (See our Low window size on page 165
for more info), expands the source journal. High CPU contention or usage on the
destination expands the journal on the troubled device and delays replication pro-
cesses, causing potential data loss if the primary fails during that period.

Planning the Replication Link

Using the VERITAS RLINK estimating tool, we created a single RLINK between
a primary and secondary host to replicate a 4.5 Gb database. The database changes

528

The Backup Book: Disaster Recovery from Desktop to Data Center

by about 3 percent a day, and the 100 MB LAN is used to transport the data (with
10 percent traffic on the LAN).

Figure 14-24. VERITAS Configuration Estimator

The VERITAS Configuration Estimator reveals that our computer will complete
the initial synchronization in about six to seven minutes, and synchronize the
delta changes even faster. Synchronizing over our T1 WAN connection takes
almost seven and a half hours for the initial synchronization and about another
half hour for the delta changes. Quite an improvement, I’d say!

Chapter 14: Replication

529

USES FOR IP-BASED REPLICATION

You can employ several tactics to optimize IP-based replication. We’ve listed the
applications that work in each specific instance in Table 14-1. through
Table 14-3. to help you select the right software for the task at hand.

Live DB to standby DB replication

To maximize your database’s uptime, perform a replication of your database to
another SQL server running different SQL databases (and ignoring this one), or
with the MS SQL software preinstalled but not running (standby mode). How
does this maximize uptime? If you replicate the data in a SQL server to SQL server
mode, you can simply launch the standby server in case the primary fails com-
pletely, or you can map the standby server’s drive to the primary’s drive if the pri-
mary’s drive fails.

In both low- and high-volume scenarios, you can use either Dantz Retrospect or
VERITAS Storage Manager. However, you can’t use EverStor Replicator, as it
doesn’t replicate open files.

When replicating the database data from the primary SQL server to the standby,
you can choose to replicate either individual databases or all the databases on the
server. It depends on the importance of the information, and the amount of band-
width between the two servers. When planning your SQL to SQL mapping, plan
as if you were going to map the entire database set, just in case you need to do so
later on. Therefore, make sure that your source directory and replication directory
are the same for your SQL data.

Live DB to Standby DB

Re
tro

sp
ec

t

Ev
er

Sto
r R

ep
lic

at
or

VE
RI

TA
S S

to
ra

ge
 M

gr

Sto
ra

ge
 R

ep
lic

at
or

Low Volume Database ✔ ✔ ✔

High Volume Database ✔ ✔

Table 14-1. Live DB to Standby-DB Replication

530

The Backup Book: Disaster Recovery from Desktop to Data Center

Figure 14-25. Mapping MSSQL and data directory information

Then, if your data volume on your primary source SQL server dies for some rea-
son, you can map your replica drive over to the primary, and the database engine
won’t know the difference.

Figure 14-26. Remapping a downed volume

Or, in case of catastrophic failure, you can launch MSSQL on the replica server
and have that act as the primary.

Remember when we talked about not having the budget to create clustered servers
and the fact that you might want to plan on doubling up your systems in the event
of a failure (seeWhat if you can’t afford a clustered server or a SAN? on page 494)?
Well, here, we show you how to implement such a system. Let’s say that you can’t
afford a cluster, but also can’t afford to have your database system down, so you
set up your replication engine to replicate the database in your back-office server
over to your normal database server. You then set up your database server to rep-
licate its database over to your back-office server.

When setting up your servers to replicate to each other, you’ll probably want to
have separate partitions for each of your data volumes and your boot/applications
volume. By setting up separate drive volumes and letters for each partition, when
you replicate the information from the source to the destination, you won’t over-
write anything. Also, you can pre-set up each local database application to access
either data source. By doing this, if the remote computer’s data source goes down,

C:\PgmFls\MSSQL

D:\PgmFls\Data

C:\PgmFls\MSSQL

D:\PgmFls\Data
Destination ReplicaPrimary Source MSSQL Server

C:\PgmFls\MSSQL C:\PgmFls\MSSQL

D:\PgmFls\Data
Destination ReplicaPrimary Source MSSQL Server

Chapter 14: Replication

531

you can ensure a smooth transition for bringing it live on the surviving computer
system.

Figure 14-27. Double-duty server operations

You can also create a round-robin scenario using this method with two or three
different database servers in different locations. Let’s say that you have a home
office, as well as two remote offices in Ogunquit, Maine, and Pismo Beach, Cali-
fornia.

Figure 14-28. Round robin replication

You could replicate your home office to Ogunquit, Ogunquit to Pismo Beach,
and then Pismo Beach back to your home office. This method allows very fast
recovery of all of your servers, and ensures that some office will be up and running
if a catastrophe strikes.

Live DB to file server replication

Storage Replicator can also be used to replicate live databases from their primary
source over to a network file storage system (like a NAS box), so that they can be

C:\PgmFls\MSSQL

D:\Bkkpng\Data D:\Bkkpng\Data

Database ServerBack Office Server

C:\PgmFls\MSSQL

E:\DBase\Data E:\DBase\Data

Home office

Pismo Beach

Ogunquit
Office

532

The Backup Book: Disaster Recovery from Desktop to Data Center

backed up using normal backup processes. This is considered a many-to-one rep-
lication, because many databases can be consolidated onto a single file server for
backup centralization. In low-volume scenarios, you can use Dantz Retrospect’s
duplicate function and open file manager or VERITAS’ Storage Manager. How-
ever, you can’t use EverStor’s Replicator, as it doesn’t replicate open files.

By moving the databases off-host to a centralized location, you can make your
backup processes much simpler because you won’t have to worry about any other
open file manager systems running on the SQL database server.

Figure 14-29. Replication to a file server

In this scenario, when using both Retrospect and Storage Manager, if you use a
regular file server as your destination, you can run the server software on that file
server on another device, such as the backup server.

However, if you use a Network Attached Storage (NAS) box as the file repository,
Retrospect isn’t the answer, because it requires a front end (that the NAS box really

C:\PgmFls\MSSQL

D:\PgmFls\Data
MSSQL Server 1

C:\PgmFls\MSSQL

D:\PgmFls\Data
MSSQL Server 2

Network Attached
Storage

D:\SERVER_2\Data

D:\SERVER_1\Data

Live DB to File Server

Da
nt

z R
etr

os
pe

ct

Ev
er

Sto
r R

ep
lic

at
or

VE
RI

TA
S S

to
ra

ge
 M

gr

Sto
ra

ge
 R

ep
lic

at
or

Server software can be run from NAS box ✔ ✔

Client software can be run on NAS box ✔ ✔ ✔

Table 14-2. Live DB to file server replication

Chapter 14: Replication

533

doesn’t give you). Since VERITAS’ console doesn’t have to be on the server, you
can run Storage Manager’s Replication Server Manager software on the NAS box
and the console elsewhere. Since EverStor’s software would choke on a live data-
base without an open file manager, we’ve excluded it from the list of candidates
here.

File and directory consolidation

Replication can also consolidate information from many places to one, as shown
in Figure 14-30. This allows the backup admin to run centralized backups of serv-
ers only, knowing that all pertinent data resides on the servers and that the work-
stations can be retrieved from an image, if necessary.

Figure 14-30. File and directory consolidation

Many corporations are geographically dispersed, but still need a centralized
backup solution. In this case, how can you maintain local backup and archiving
needs as well as a centralized backup solution without plunging into Administra-
tive Inferno? Because this is an IP-based file replication scenario, you aren’t limited
to moving files and directories of information from single computers to a central
server on your LAN—you can use this type of replication to move whole data sets
from remote offices back to your home office through the use of the same tool.
That means that you can, in essence:

• Consolidate reports on select computers from multiple offices to a single of-
fice;

• Consolidate application or file servers from remote offices to a central office

Workstation
Source

Workstation
Source

Workstation
Source

NAS box
Destination

534

The Backup Book: Disaster Recovery from Desktop to Data Center

for the purpose of centralized backup and recovery; and

• Create a tiered system wherein each remote office consolidates files onto a sin-
gle server, and that server replicates itself up to the home office, where all of
the data is then stored onto a backup tape system for history and long-term
archiving and recovery.

Figure 14-31. WAN consolidation

The only application limited in this regard is the VERITAS solution, as it has only
Windows 2000 client software and won’t work in a tiered environment. However,
it does work for replicating one layer of servers up to the next layer. Each of the
other tools allows all three operating systems to replicate their data from one place
to the next.

File Consolidation

Da
nt

z R
etr

os
pe

ct

Ev
er

Sto
r R

ep
lic

at
or

VE
RI

TA
S S

to
ra

ge
 M

gr

Sto
ra

ge
 R

ep
lic

at
or

Windows Client ✔ ✔ ✔ ✔

Mac Client ✔ ✔

Unix Client ✔ ✔

Allows multiple tier usage ✔ ✔

Table 14-3. File consolidation

Home office

Pismo Beach

Ogunquit
Office

	Chapter 14: Replication
	The Main Thing
	Special thanks

	Current, or simply consistent data?
	Consistent data
	Current data

	The tools
	Replicator
	VERITAS Volume Replicator
	VERITAS Storage Replicator

	Uses for IP-based replication

