
107

Chapter 5

Continuous Database Integration

Things do not change; we change.

—HENRY DAVID THOREAU

Continuous Database Integration (CDBI) is the process of rebuilding
your database and test data any time a change is applied to a project’s
version control repository.

Do you ever feel like your source code and database are operating
in different “galaxies” throughout the development lifecycle on
projects? As a developer, you may wait several days for a change to
the database. You may even be restricted from making minor test data
changes, or are afraid to make data changes for fear of ruining the one
shared database for fellow developers. Situations like these are not
unusual, and effectively utilizing CDBI can help alleviate some of
these challenges and many others as well.

Automate
Database
Integration

Use a Local
Database
Sandbox

Use a Version
Control Repository

to Share
Database Assets

Give Developers
Capability to
Modify the
Database

Make DBA Part
of Development

Team

Duvall.book Page 107 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

108 Chapter 5 ❑ Continuous Database Integration

Revisiting the theme of the book, database integration is one of the
parts of the Integrate button (see Figure 5-1), because it is based on the
principle that database code (DDL, DML, configuration files, etc.) is,
in essence, no different from the rest of the source code in a system. In
fact, the artifacts related to database integration:

• Should reside in a version control system

• Can be tested for rigor and inspected for policy compliance

• And can be generated using your build scripts

Therefore, the building of the database can be incorporated into a
CI system and can enjoy the same benefits as the rest of the project
source code. What’s more, changes to database source code can trigger
an integration build just as other source code changes do.

FIGURE 5-1 Database integration in the Integrate button

P {
[|

\
“
‘ Integrate

?
/

Shift

Compile
Source Code

Integrate
Database

Run
Tests

Run
Inspections

Deploy
Software

Integrate

Improving Software Quality and Reducing Risk

F
e
e
d
b
a
c
k

Duvall.book Page 108 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Chapter 5 ❑ Continuous Database Integration 109

Not All Data Sources Are Alike
Some projects, or portions of projects, don’t use a database
exactly the way that we define it in this chapter. However, most
projects need to persist data, be it in a flat file, an XML file, a
binary file, or an RDBMS. Regardless of your chosen persistent
store, the principles of CDBI apply.

As a first step in describing how to automate database integration
with CI, we start by describing how to incorporate database integration
into a build process. The scripts used to build, configure, and populate
a database need to be shared with the rest of the project team, so we
discuss which database files are committed to a version control reposi-
tory. Automating a database integration build process solves only part
of the problem, so we go one step further by rebuilding the database
and data at every software change—making the verification process
continuous. If a team is adopting CDBI for the first time, most people
on a project will probably need to modify their development practices,
so we finish the chapter looking at effective CDBI practices.

Refactoring Databases
The topics covered in this chapter could even be the subject of a
separate book.1 Other materials already make the case for treat-
ing your database as just another type of source code that is
managed through the version control repository. This chapter
gives you the essentials to automate and run database integra-
tion processes continuously.

1. In fact, Scott Ambler and Pramod Sadalage have much more in a book called
Refactoring Databases. Martin Fowler and Pramod Sadalage wrote about similar
topics in “Evolutionary Database Design,” at www.martinfowler.com/articles/
evodb.html.

Duvall.book Page 109 Thursday, May 31, 2007 7:03 PM

Copyright © 2007 Pearson Education, Inc.

110 Chapter 5 ❑ Continuous Database Integration

Automate Database Integration

On many projects, a database administrator (DBA) can often feel like a
short-order cook. DBAs typically have analytical skills that took many
years to cultivate, but they often spend most of their time performing
low-level command tasks. What’s more, this job role can also be
stressful, because the DBA often becomes a development bottleneck as
the team members wait for the DBA to apply one small change to the
database after another. Here’s a familiar scenario.

Nona (Developer): Hi Julie, will you set up a development database
for me on the shared development machine?

Julie (DBA): I am in the middle of something. I should be able to set it
up later this afternoon. Would you like the data from last week or an
export of today’s data?

Nona: Today’s data.

Julie: Okay, I can have that for you by tomorrow morning.

10 minutes later…

Scott (Technical Lead): I am unable to perform testing on the test
server because there are no assigned records for the Reviewer role.

Julie: Oh, let me create some test records that are assigned this role. I
think Nona may have used up all of those records.

Scott: Thanks. While you’re at it, would you remove the Y/N con-
straint on the APPROVED columns on the PERSON table? We’d like
to use different flags on this column.

It’s more of the same on a typical day for the DBA. Not only is this
a poor use of the DBA’s talents, it causes a significant bottleneck, espe-
cially in the continuous approach promoted by CI. If you asked any
DBA what they’d rather do on a day-to-day basis, they would probably
tell you that they’d rather spend time on data normalization, improving
performance, or developing and enforcing standards, not giving people
database access or recreating databases and refreshing test data. In this
section, you’ll see how you can automate these repetitive tasks so both
the DBA’s and the team’s time is spent on improving the efficacy and

Duvall.book Page 110 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Automate Database Integration 111

efficiency of the database—not on simple administration. Table 5-1
identifies database integration activities typically performed by a
project member that can be automated.

Once you have automated these database-related tasks, you’ll find
yourself solving problems just by dropping and creating a database
followed by inserting test data. This chapter’s examples utilize Ant,
but the principles apply to any build platform that supports communi-
cating with a database. If your build platform is NAnt, Rake, or Maven,
you can do the same things this chapter demonstrates. Listing 5-1 executes
a series of SQL statements to create a database including its related
tables, comments, constraints, and stored procedures. The script also
applies test data for the given environment, such as development or

TABLE 5-1 Repeatable Database Integration Activities

Activity Description

Drop database Drop the database and remove the associated data so that
you can create a new database with the same name.

Create database Create a new database using Data Definition Language (DDL).

Insert system data Insert any initial data (e.g., lookup tables) that your system
is expected to contain when delivered.

Insert test data Insert test data into multiple testing instances.

Migrate database and data Migrate the database schema and data on a periodic basis (if
you are creating a system based on an existing database).

Set up database instances in
multiple environments

Establish separate databases to support different versions
and environments.

Modify column attributes
and constraints

Modify table column attributes and constraints based on
requirements and refactoring.

Modify test data Alter test data as needed for multiple environments.

Modify stored procedures
(along with functions and
triggers)

Modify and test your stored procedures many times during
development (you typically need to do this if you are using
stored procedures to provide behavior for your software).

Obtain access to different
environments

Log in to different database environments using an ID, pass-
word, and database identifier(s).

Back up/restore large data
sets

Create specialized functions for especially large data sets or
entire databases.

Duvall.book Page 111 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

112 Chapter 5 ❑ Continuous Database Integration

QA. Using this process, you can simply type ant db:prepare2 from
the command line and the build process will perform the tasks outlined
in Table 5-1. If you’d like to see this same process using other tools,
like NAnt or Maven, we’ve provided additional examples at the book’s
associated Web site.3

LISTING 5-1 build-database.xml: Automating Database Integration
Using Ant

> ant –f build-database.xml db:prepare
Buildfile: build-database.xml

db:create:
 [sql] Executing file: data-definition.sql
 [sql] 8 of 8 SQL statements executed successfully

db:insert:
 [sql] Executing file: data-manipulation.sql
 [sql] 60 of 60 SQL statements executed successfully

BUILD SUCCESSFUL
Total time: 20 seconds

As you can see, using a single instruction from the command line
enables the execution of SQL scripts that define (db:create) and
manipulate a database (db:insert). We describe each of these tasks in
more detail in subsequent sections.

Figure 5-2 shows the steps to automate your database integration.
The following sections present a discussion of each component in

Figure 5-2.

Creating Your Database
To automate database integration, you must first create a database. In
this script, you typically drop and recreate the database, enforce data
integrity through constraints and triggers, and define database behav-

2. To manage other environments from the command line, incorporate a feature
into your build script to override the default configuration. For instance, in Ant
this would be ant –Denvironment=devqa <targetname>.

3. At www.integratebutton.com/.

Duvall.book Page 112 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Automate Database Integration 113

ior through stored procedures or functions. We are using Ant to auto-
mate the execution of this process in Listing 5-2; however, as
mentioned earlier, you can also use make, shell, batch, Rake, Ruby, or
any number of tools. Notice that Ant provides a task to execute a SQL
script via the sql task. Using a build platform like Ant allows you to
perform the database integration activities using a sequential approach
and enforce dependencies on other targets (a set of tasks) in the script.
The example in Listing 5-2 demonstrates the use of Ant’s sql
attributes, such as driver, userid, and password, to connect to the
database.

LISTING 5-2 build-database.xml: Defining Your Database Using an
Ant Script

<target name="db:create" depends="filterSqlFiles" description="Create
 the database definition">
 <sql
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/"
 userid="root"
 password="root"
 classpathref="db.lib.path"
 src="${filtered.sql.dir}/database-definition.sql"
 delimiter="//"/>
</target>

FIGURE 5-2 The sequence of automated database integration

Developer: DB:build-database.xml:ANT: build-database.xml:ANT: database-definition.sql: database-manipulation.sql:

db:prepare

filterSqlFiles

db:create

db:create

load

execute

execute

db:insert

Duvall.book Page 113 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

114 Chapter 5 ❑ Continuous Database Integration

Create Reusable Scripts
When you are writing a script that you plan to reuse, you can
define the attributes in a single file so that you only need to
define them one time for use in all of your manual and automated
scripts, rather than every time you use these attributes.

In Listing 5-3, data-definition.sql is the SQL script that’s called by
the Ant script in Listing 5-2. We’re using a MySQL database in this
example, so some of the commands are MySQL-dependent. The data-
definition.sql file is responsible for creating the database and its tables,
enforcing data integrity, and applying stored procedures. The follow-
ing is a typical order for this creation process.

1. Database and permissions

2. Tables

3. Sequences

4. Views

5. Stored procedures and functions

6. Triggers

The order of creation within your DDL statements may vary based
on database object dependencies. For example, you may have a func-
tion that depends on a view, or vice versa, so you may need to list the
view first, for example.

LISTING 5-3 data-definition.sql: Sample Database Definition Script
for MySQL

DROP DATABASE IF EXISTS brewery//
…
CREATE DATABASE IF NOT EXISTS brewery//

GRANT ALL PRIVILEGES ON *.* TO 'brewery'@'localhost' IDENTIFIED BY
'brewery' WITH GRANT OPTION//
GRANT ALL PRIVILEGES ON *.* TO 'brewery'@'%' IDENTIFIED BY 'brewery'
WITH GRANT OPTION//

USE brewery//
…
CREATE TABLE beer(id BIGINT(20) PRIMARY KEY, beer_name VARCHAR(50),
brewer VARCHAR(50), date_received DATE);
CREATE TABLE state(state CHAR(2), description VARCHAR(50));//

Duvall.book Page 114 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Automate Database Integration 115

…
CREATE PROCEDURE beerCount(OUT count INT)
BEGIN
 SELECT count(0) INTO count FROM beer;
END
//

Technically Speaking…
You may find it easier to organize your targets and scripts by
database definition type (such as a table, view, and function) or
by subsystem (e.g., Property and Application).

Manipulating Your Database
Once you’ve created a database from a build script, you’ll need to provide
initial data (e.g., lookup tables) and test data for testing code that relies
on the database. This is where you supply the test data for your particular
environment or testing context. What’s more, you may also find your-
self needing to use different SQL data files to support different envi-
ronments, like development, test, QA, and production environments.

The example in Listing 5-4 shows an Ant script pointing to a SQL
file, whose contents are inserted as test data into a database.

LISTING 5-4 build-database.xml: Manipulating Your Database Using an
Ant Script

<target name="db:insert" depends="filterSqlFiles" description="Insert
 data">
 <sql
 driver="com.mysql.jdbc.Driver"
 url="jdbc:mysql://localhost:3306/brewery"
 userid="brewery"
 password="brewery"
 classpathref="db.lib.path"
 src="${filtered.sql.dir}/database-manipulation.sql"
 delimiter=";"/>
</target>

The SQL script in Listing 5-5 represents test data. This is the script
that is referenced in Listing 5-4. In a typical script, you’ll have many
more records than the three shown in Listing 5-5. Our intent is to give
you an idea of what the SQL scripts often execute. Tools like DbUnit

Duvall.book Page 115 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

116 Chapter 5 ❑ Continuous Database Integration

and NDbUnit4 can help seed the data that is inserted into and deleted
from a database as well.

LISTING 5-5 data-manipulation.sql: Sample Database Manipulation
Script for MySQL

INSERT INTO beer(id, beer_name, brewer, date_received) VALUES (1,
'Liberty Ale','Anchor Brewing Company','2006-12-09');
INSERT INTO beer(id, beer_name, brewer, date_received) VALUES (2,
'Guinness Stout','St. James Gate Brewery','2006-10-23');
INSERT INTO state (state, description) VALUES('VT','Vermont');
INSERT INTO state (state, description) VALUES('VA','Virginia');
INSERT INTO state (state, description) VALUES('VI','Virgin Islands');

To achieve the benefits of automated database integration, you’ll
need to provide scripts for inserting, updating, and deleting data.
These data manipulation scripts execute as part of an overall build pro-
cess. Next, we discuss how to tie these scripts together with the
orchestration script.

Creating a Build Database Orchestration Script
A database integration orchestration script executes the DDL and Data
Manipulation Language (DML) statements. Listing 5-6 shows an Ant
script that uses the sql task to call the data-definition.sql and data-
manipulation.sql files we created in Listing 5-3 and Listing 5-5. You’ll
incorporate this orchestration into your higher-level build and integra-
tion processes.

LISTING 5-6 build-database.xml: Database Integration Orchestration
Script Using Ant

<target name="db:prepare" depends="db:create, db:insert"/>
<target name="db:create">
…
<target name="db:insert" depends="filterSqlFiles">
…

4. DbUnit is available at www.dbunit.org/ and NDbUnit is available at
www.ndbunit.org/.

Duvall.book Page 116 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Use a Local Database Sandbox 117

Use a Local Database Sandbox

A significant challenge on many software development projects is
making changes to the database structure. Many projects I’ve observed
typically use one shared database, so when developers make changes
to this shared development database they can adversely affect others
on the team—causing each developer’s private build to break (if their
tests are part of the build). If developers have their own local code
“sandbox” to isolate their coding changes from other developers,
wouldn’t it be great if they had a “database sandbox” too?

Multiple Database Instances
You may not have the resources to get a database for each
developer. In this situation, you could assign each developer a
separate schema on a central database server or use one of the
freely available, lightweight, open source equivalent databases.
Furthermore, many of the more widely used RDBMSs provide
free developer versions.

Are You on Autopilot?

As you are automating your database integration, a few things
may trip you up. It’s easy for manual activities to unintentionally
accumulate in your database integration process. Try to resist this.
As Andrew Hunt and David Thomas mention in The Pragmatic
Programmer : Don’t Repeat Yourself (or DRY, for short), keep your
build scripts “DRY.” An easy form of “duplication” to miss is when
we get acclimated to clicking through the database vendor’s GUI
application wizard rather than interfacing through the command
line where it can run scripted. Another potential problem is the ten-
dency to wait until there are many DDL/DML changes before com-
mitting back to the version control repository. Database changes
can be pervasive, so try to make and check in small, incremental
changes to your database; this will make it easier to test and
debug.

Duvall.book Page 117 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

118 Chapter 5 ❑ Continuous Database Integration

Another important capability you gain by automating your data-
base integration is that everyone on the team will be able to create a
local instance of the database on their workstations. Every team mem-
ber can then create a database “sandbox” to make and test database
changes without affecting others. If your database integration is
scripted, creating a new database instance is a push-button affair; con-
versely, if you don’t automate your database integration, it is more dif-
ficult to recreate your database and run tests on your workstation.
Figure 5-3 provides an illustration of each developer using a local
database instance.

Using automated database integration, you are able to get the latest
version of your database scripts along with your application source
code. Each developer is able to create a local instance of the database,
modify the version of the database on his workstation, test the
changes, and commit the changes back to the repository. These
changes will be integrated and tested with the rest of the software as
part of the CI system. When another developer refreshes her private
workspace with changes from the repository, the database changes are

FIGURE 5-3 Each developer uses a local database sandbox

Developers

SQL
Scripts

Build
Scripts

Local
Database
Sandbox

Local
Database
Sandbox

Local
Database
Sandbox

<@>

SQL
Scripts

Build
Scripts

<@>

SQL
Scripts

Build
Scripts

<@>

Duvall.book Page 118 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Use a Version Control Repository to Share Database Assets 119

copied down to her workstation along with the other source code
changes, and her next private build will incorporate the changes in her
local database instance.

The next section identifies the reasons and approach for using a
version control repository for database integration.

Use a Version Control Repository to Share
Database Assets

Sharing your database integration scripts is a best practice, plain and sim-
ple. All software assets need to be in a version control repository, and this
includes all database assets. Such assets might include the following:

• DDL to drop and create tables and views, including constraints
and triggers

• Stored procedures and functions

Supporting Multiple Database Environments

The next logical step after creating a local database sandbox is
creating different database instances to support multiple database
environments. For example, you may need to create a database
that contains all of your migrated production data. Assuming there
are many records in this database, you probably don’t want to
include it in your local development database. Usually, this will
only be the DML (data changes), not the DDL (create, alter, and
drop statements to the database). By automating your database
integration, you can modify build script parameters to include the
data to support these environments. This way, you can execute
one command to provide data for different database environ-
ments. The same goes for versions. You may want to test new
code against a prior version of the database. Use automated data-
base integration to provide this capability with a “push of the Inte-
grate button.”

Duvall.book Page 119 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

120 Chapter 5 ❑ Continuous Database Integration

• Entity relationship diagrams

• Test data for different environments

• Specific database configurations

For numerous project scenarios, you should be able to recreate
your entire database from “scratch” using the scripts in your version
control repository (for large data sets, you may store data export
scripts rather than row-by-row DML scripts). Once you’ve applied all
your database assets to the version control repository, you’ll have a
history of all of the database changes, so you can run prior versions of
the database with the latest code (or with prior versions of the code as
well). This also reduces the gridlock on projects when all the develop-
ers need to go to the DBA for everything. Once database assets are in
one place, you can make a change to a database column, perform a pri-
vate build on your machine, commit it to the version control system,
and know you will receive feedback after the integration build is run.

Sometimes during development the database will need to undergo
large-scale changes. In most cases, these changes will require the
expertise of several people on the team and a longer duration to com-
plete. When such situations arise, it is best to create a task branch5 to
commit the changes back into the version control repository rather
than break the mainline and slow the activity of the rest of the team.
Without CDBI, often the DBA will be making these large-scale data-
base alterations, and he may be less suited to make all the changes at
once to the database, dependent application source code, associated
test code, and shared scripts because he may lack the knowledge of the
source code that developers are writing.

Just as you have a consistent directory structure for your source
code, you’ll want to do the same for your database. Define the location
of database assets—probably somewhere in the implementation/con-
struction directory where your source code is located. In your database
directory, define subdirectories for each of the database entity types
and environments. Listing 5-7 shows a directory structure for an
implementation directory (using a MySQL database).

5. In Software Configuration Management Patterns, Stephen P. Berczuk and
Brad Appleton describe a task branch as having “part of your team perform a dis-
ruptive task without forcing the rest of the team to work around them. . . .”

Duvall.book Page 120 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Continuous Database Integration 121

LISTING 5-7 Sample Implementation Directory

 implementation
 bin
 build
 filtered-sql
 config
 properties
 xml
 database
 migration
 lib
 mysql
 src
 tests
 tools
 mysql

Just as with your source code, choose a directory structure that
works well for you, one that clearly defines the entities while making it
adaptable to changes.

Directory Structure and Script Maintenance
In the beginning, you may find that the directory structure is less
important, but beware of making frequent directory structure
changes, as you’ll spend additional time updating your scripts to
account for these changes.

Now that you’ve automated your database integration activities
and are checking them into the version control repository to share with
others on the team, let’s make the process continuous so that it is run
with every change to the software.

Continuous Database Integration

This is where the “rubber meets the road.” The reason to automate,
share, and build the database integration processes is so you can make
these processes continuous. Using CDBI, your database and your
source code are synchronized many times a day. Once you commit

Duvall.book Page 121 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

122 Chapter 5 ❑ Continuous Database Integration

your database changes to your version control repository, the CI sys-
tem proceeds like this: It gets a complete copy of the system source
code, including your database data definition and manipulation scripts;
recreates your database from the source; integrates your other source
code; and then runs through your automated tests and inspections to
ensure that the change(s) didn’t introduce defects into your system’s
code base. Figure 5-4 demonstrates how the changes made by each
developer are synchronized with the integration build based on the
mainline in the version control repository.

Figure 5-4 shows that the changes that were made at 10 AM (by
Mike) and the changes that were made at 10:15 AM (by Sandy) are

FIGURE 5-4 Single source for database changes

Mike

Version
Control
System

Integration
Build

Machine

DB

data_definition.sql

Sandy

data_manipulation.sql

Integration Build Database
Contains Changes from
Sandy and Mike

Duvall.book Page 122 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Give Developers the Capability to Modify the Database 123

included in the integration build that occurred at 10:30 AM. The inte-
gration build machine uses a single source point, provided by the ver-
sion control repository, to synchronize and test changes as a part of the
integration build.

Once you have automated your database integration and incorpo-
rated it into your build scripts, making it run continuously is simple.
Your database integration tasks, along with the rest of your build,
should be executed using one command (such as an Ant/NAnt target).
To run your database integration tasks continuously, you only need to
make sure these database integration build task commands are exe-
cuted as a part of the automated build.

Give Developers the Capability to Modify the
Database

Each developer should have the capability to modify any of the data-
base scripts. This doesn’t mean that every developer will modify these
database scripts, because not every developer will have the necessary
database expertise. Because each developer will have his own database
sandbox, each can modify the local database and then commit the
changes to the version control repository. This will reduce the DBA
bottleneck and empower developers to make necessary changes. The
DBA can evaluate the new changes to the repository by reviewing the
integration builds or working with the developers if the build breaks.

As the adage goes, with this additional authority comes additional
responsibility. Changes to the underlying database structure can have
far-reaching impacts on the system. The developer who makes changes
to the database structure must assume the responsibility for thorough
testing before committing these changes. We feel it is far more likely
in today’s industry for a developer to have a knowledge of databases
and database scripting—and the DBA is still there to “oversee” what
changes, if any, move into the system.

Duvall.book Page 123 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

124 Chapter 5 ❑ Continuous Database Integration

The Team Focuses Together on Fixing
Broken Builds

Since you treat the database the same as the other source code, you
may experience broken builds because of a database error. Of course,
errors may occur in any part of your build: source code, deployment,
tests, inspections, as well as the database. When using CDBI, database
integration is just another part of the build, so the playing field is lev-
eled: Whatever breaks the build, the priority is to fix it. The payoff
comes after this; the fix is now integrated, and that particular issue is
prevented from recurring.

Make the DBA Part of the Development Team

Break down barriers and make members of your database team a part
of the development team. You may already be doing this, but all too
often there is a “wall” between the DBA and the software developers.
As mentioned earlier, treat your database code and your other source
code in the same manner. The same goes for the people on your team.
This is probably the most controversial of the CDBI practices. We’ve
worked on teams that have used CDBI with the DBA on the develop-
ment team, and we’ve also seen the more traditional approach with the
DBA on another team, the database team. CDBI worked in both envi-
ronments, but it worked significantly better when the DBA was a part
of the team.

Some people ask, “If the DBA is no longer dropping and recreat-
ing tables, creating test environments, and granting access, then what
is she doing?” The simple answer is, “Now she can do her job!”—
spending more time on higher-level tasks such as improving database
performance, improving SQL performance, data normalization, and
other value-added improvements.

Duvall.book Page 124 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Database Integration and the Integrate Button 125

Database Integration and the Integrate Button

The rest of this book covers topics concerning the additional parts of
the Integrate button: continuous testing, inspection, deployment, and
feedback. This section covers some specific issues concerning these
practices when it comes to database integration.

Testing
Just as with source code, you’ll want to test your database. We cover
testing in detail in Chapter 6. There are tools you can use for database-
specific testing such as PL/Unit, OUnit for Oracle, and SQLUnit. Your
database may contain behavior in stored procedures or functions that
needs to be tested and executed as a part of the build script, just like
the behavior of your other source code. You may also want to test the
interactions of constraints, triggers, and transactional boundaries by
performing application security data tests.

Inspection
As with your other source code, you should be running inspections on
your data source. This includes not just your DDL, but reference and
testing data as well. There are tools you can incorporate and run in
your automated build process so that you do not need to run these
inspections manually. Here are a few ideas for inspections on your
database.

• Ensure efficient data performance by running set explain
against your project’s rules to target optimizations for your SQL
queries.

• Analyze data to ensure data integrity.

• Use a SQL recorder tool to determine which queries are being
run the most. These queries might be candidates for stored pro-
cedures.

• Ensure adherence to data naming conventions and standards.

Duvall.book Page 125 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

126 Chapter 5 ❑ Continuous Database Integration

Deployment
As we have indicated, the goal of CDBI is to treat your database
source code and other source code in the same manner. The Continu-
ous Deployment process will deploy your database to your develop-
ment and test database instances just as it deploys your other code to
its different environments (e.g., application servers). If you need to
migrate from one database to another, you will be able to better test the
migration process by running through the process on a continuous or
scheduled basis.

Feedback and Documentation
When you incorporate continuous feedback and CDBI into your CI
system, you will find out if your build failed because of the latest data-
base changes. By default, most CI systems send the build status to the
people who last applied changes to the version control repository. Just
like with the source code, the CI system notifies those who made data-
base changes quickly so that they can make the necessary fixes to the
database.

Documentation is about communication, and there is much about
the database you’ll want to communicate to other project members or
your customer. Your Entity Relationship Diagram (ERD) and data dic-
tionary are excellent candidates for generating as a part of your contin-
uous build process, perhaps as a secondary build (described in Chapter 4).

❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑ ❑

Summary
This chapter demonstrated that database assets are the same as
other source code. Therefore, the same principles apply.

■ Automate your database integration using orchestrated build
scripts that are run continuously, after any change to your database
or its source code.

■ Ensure a single source for database assets by placing them in a
version control repository.

Duvall.book Page 126 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

Summary 127

■ Test and inspect your database scripts and code.

■ Change database development practices by ensuring that all database
integration is managed through the build scripts, that all database
assets are checked into version control, and that all developers
(who interact with the database) have a database sandbox.

Table 5-2 summarizes the practices covered in this chapter.

Let’s see how Julie, Scott, and Nona are doing now that they’re
using CDBI.

Nona (Developer): I need to refresh my test data. What do I need to
do?

Scott (Technical Lead): Just run ant db:refresh from the command
line. Before you do that, get the latest changes out of Subversion by
typing ant scm:update, because I made a few changes to the USER
database table and the source code that uses this change.

TABLE 5-2 CI Practices Discussed in This Chapter

Practice Description

Automate database
integration

Rebuild your database and insert test data as part of
your automated build.

Use a local database
sandbox

All developers should have their own copy of the
database that can be generated via SQL scripts. This
can be on their workstations or even shared on a
development server—as long as all developers have
their own copy on this shared server.

Use a version control
repository to share
database assets

Commit your DDL and DML scripts to your version
control system so that other developers can run the
same scripts to rebuild the database and test data.

Give developers the
capability to modify
the database

Avoid the DBA bottleneck that occurs when database
changes are restricted to just one or two people. Give
developers the capability to modify the DDL and DML
scripts and commit them to the version control
repository.

Make the DBA part
of the development
team

Be sure the DBA can run the same automated
build—which includes a database rebuild that other
developers run—to ensure consistency. By making
the DBA a part of the development team, the shared
experiences can benefit both the database and the
development teams.

Duvall.book Page 127 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

128 Chapter 5 ❑ Continuous Database Integration

Julie (DBA): Do you guys need any help?

Scott: Yeah, we are having a performance problem on one of the que-
ries. Do you have time to look at it? Also, I think we need to denormal-
ize the PRODUCT table. Can you model the table changes, prototype
the DDL changes, and set up a code branch so Nona can modify her
code for your changes? When you two are satisfied with the changes,
merge the branch and commit it to Subversion so that they run as part
of the integration build. Thanks, Julie.

Nona: . . . Sure, Scott. Should we use the test database rather than the
development database?

Scott: Yeah, just run ant –Denvironment=test db:refresh.

The developers and DBAs, who often perform roles that seem oppos-
ing or distant, are now continually working toward the same goal, and
both are accomplishing more of their tasks that require analysis or
design.

Questions
These questions can help you determine your level of automation and
continuous database integration.

■ Are you capable of recreating your database from your automated
build process? Can you rebuild your database at the “push of a
button?”

■ Are the scripts (build and SQL) to your database integration auto-
mation committed to your version control repository?

■ Is everyone on your project capable of recreating the database
using the automated build process?

■ During development, are you able to go back to prior versions of
the database using your version control repository?

■ Is your database integration process continuous? Are your software
code changes integrated and tested with the latest database when-
ever you apply those changes to the version control repository?

■ Are you running tests to verify the behavior of your database stored
procedures and triggers?

■ Is your automated database integration process configurable? Are
you able to modify the userid, password, unique database identifier,
tablespace size, and so on using a single configuration file?

Duvall.book Page 128 Thursday, May 31, 2007 9:30 AM

Copyright © 2007 Pearson Education, Inc.

