
CHAPTER 2

IN THIS CHAPTER

• Fundamentals

• SQL Server 2005 Storage
Internals

• SQL Server 2005
Enhancements

• Data Recovery Best Practices

• Data Recovery
Troubleshooting Scenarios

• User Database Inaccessible

• BACKUP/RESTORE Failures

• Database Consistency Errors

Data Corruption and
Recovery Issues

By Bob Ward

All the troubleshooting concepts discussed in this
chapter relate to one common goal: protection and
recovery of your most important asset—your data!

What is the key to recovering your data? The answer
is simple. Restore from a valid backup. But you
bought this book to find out “tips and tricks” for
data recovery, and all I have told you is to restore
from backup. Is that all? Well, not just that, but I
am telling you that restoring from your backup is
absolutely the most reliable and consistent method
to recover your data. Why? BACKUP/RESTORE is SQL
Server’s primary mechanism for recovering your
data in the most reliable and consistent fashion.

I have supported customers for every SQL Server ver-
sion Microsoft has shipped over a 13-year period
and have seen many customers contact technical
support without the ability to restore a valid
backup. SQL Server has such excellent tools to back
up your data (and many ISVs have built products
using our VDI API) that there really is no reason not
to have a valid backup. It simply takes a well-
thought-out strategy and the right hardware to
ensure you have a backup to meet your recovery
needs. The point I make here is that I will present
many advanced features and techniques to recover
your data; but in some cases, these would not be
needed if you have the proper backups. But what if,
despite your best efforts, you cannot restore from a

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 47

backup? You’ve come to the right place. Although in some situations I discuss restoring
from a backup as the best (and perhaps only) solution to a problem, I present other
options specifically designed into SQL Server 2005.

Now let’s take a look at how this chapter is organized so you can decide how best to read
through this material. I have organized the chapter into three main sections that discuss
building your knowledge, data recovery troubleshooting scenarios, and exercises.

If you want to build your knowledge in the area of data recovery, focus on this first section.
I fill in some gaps from the product documentation on specific storage internal topics such
as new allocation structure terminology. Second, I make sure you are educated on impor-
tant SQL Server 2005 enhancements in the areas of backup/restore and DBCC CHECKDB. Third,
I provide some tips and suggestions for best practices to avoid data recovery problems
focusing on backup/restore, DBCC CHECKDB, and the system that supports SQL Server, the
operating system, and the hardware. I said I wouldn’t talk much about disaster recovery
strategies, but I can’t help it. One of my jobs at Microsoft is to educate and think of ways
for customers to avoid calling technical support, which means thinking of ways to pre-
vent problems. So I spend some time on best practices so that you can avoid using
advanced techniques to recover your data.

The next section is all about troubleshooting, the main reason you purchased this book.
Troubleshooting is all about solving problems. Problems can usually be categorized into
various scenarios. Therefore, this section is organized into various scenarios that you
might encounter, including failures to access, backup, restore, or check consistency on
your data. If you want to learn about how to solve problems for specific scenarios, you
should read this section. But as with all good books, many types of great technical tips
and internal information are woven into this chapter. To teach you about troubleshooting
data recovery, I first go over scenarios that require you to recover system databases. I then
review how to troubleshoot situations when your user database is inaccessible (for exam-
ple, your user database is marked SUSPECT). As mentioned previously, BACKUP/RESTORE is
critical to data recovery. But what if it fails? Well, we talk about how to handle some of
these situations. The last two subsections focus on database consistency. First, I review
certain types of database consistency runtime errors. These are errors that can occur dur-
ing execution of the most basic T-SQL queries (such as SELECT, INSERT, UPDATE, or DELETE)
after the database has been successfully opened. Some of these scenarios may require you
to use DBCC CHECKDB. So, I teach you what to do when DBCC CHECKDB reports errors. This
is one of the most important tools in your data recovery toolkit, so it is important to under-
stand more about how it works, proper usage, and what to do when it reports errors.

Chapter 2 Data Corruption and Recovery Issues48

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 48

Fundamentals
Anyone who is good at solving problems will tell you it is important to know something
about “how things work.” Therefore, in this section, I help build your knowledge of
important internal information for SQL Server 2005 related to the general topic of data
recovery. But first, I recommend you review the following sections of SQL Server Books
Online. Fundamental information in these sections provides a foundation for what I
discuss:

Database Engine Manageability Enhancements

Database Engine Availability Enhancements

Understanding Databases

Database Snapshots

Partitioned Tables and Indexes

Understanding and Managing Transaction Logs

Backing Up and Restoring Databases

Using a Dedicated Administrator Connection

Physical Database Architecture

ALTER DATABASE (Transact-SQL)

BACKUP (Transact-SQL)

DBCC CHECKDB (Transact-SQL)

System Views (Transact-SQL)

SQL Server 2005 Storage Internals

Database and File States
In SQL Server 2000, the state (or status) of the database was at best hard to understand.
You had to decode special bits in the sysdatabases table, and the behavior of when sta-
tuses changed was not consistent. SQL Server 2005 does a nice job of cleaning this up.
First, a descriptive state of the database can be found in the sys.databases catalog view
(in a column called state). Second, the meaning and behavior of database states are easy
to understand and consistent. For example, when you force a database offline with ALTER
DATABASE SET OFFLINE, the database goes to the OFFLINE state. This was not always the
case in SQL 2000.

To understand what these database states mean and how a database can move into each
state, look at Figure 2-1.

This does not represent every possible scenario for state change for a database, but it cov-
ers the most common scenarios. A database is typically started during server startup,
when it is first created, or when it is attached. When this occurs, the state of the
database is temporarily changed to RECOVERING. If there is a resource problem with the
database (such as a failure to open the database files), the state is changed to

SQL Server 2005 Storage Internals 49

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 49

RECOVERY_PENDING. This state is persisted, so after the resource problem has been cor-
rected, the user must use ALTER DATABASE SET ONLINE to start it again.

Figure 2-1
Status of the database

If no resource issues exist, the engine tries to run recovery on the database. If recovery is
successful, the database state changes to ONLINE and is persisted. If recovery fails, the data-
base state is changed to SUSPECT but is not persisted. This is a change from previous ver-
sions when the SUSPECT state was persisted. This caused customers and PSS headaches,
because if the server was restarted, the ERRORLOG did not contain the original reason for
the recovery failure. Now SUSPECT is temporary, so if the server is restarted, recovery runs
again at database startup. Therefore, the cause for a recovery failure can be investigated
from the ERRORLOG.

When the database is ONLINE, you can take if offline (which closes the database and the
database file handles along with it) by running ALTER DATABASE <dbname> SET OFFLINE.
This syntax changes the state to OFFLINE, which is persisted. At any persisted state, you
can use ALTER DATABASE <dbname> SET EMERGENCY to change the database state to
EMERGENCY, which is then persisted. This is another nice change from SQL Server 2000,
where changing to EMERGENCY state required an update to the sysdatabases table setting

Database Startup
Create Database
Attach Database

Recovery Failure
Resource
Problem

Recovery
Successful

Recovery Phase
of Restore

ALTER
DATABASE SET
EMERGENCY

RESTORE
DATABASE

ALTER
DATABASE
OFFLINE

ALTER
DATABASE SET

ONLINE

RESTORE
DATABASE

EMERGENCY

SUSPECT

Start Database

RECOVERING

RESTORING

RECOVERY
PENDING

ONLINE

OFFLINE

SQL Server 2005
Database States

Chapter 2 Data Corruption and Recovery Issues50

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 50

specific bits. This was error-prone, so putting this syntax into ALTER DATABASE made per-
fect sense. As the name implies, setting the database state to EMERGENCY makes sense only
when you cannot access the database, such as when it is marked SUSPECT. We discuss later
in the chapter why it sometimes makes sense to use EMERGENCY.

It is also important to mention the states that occur when you restore a database. When
you restore a database and the database is created as part of loading it from the backup,
the database state starts out as RESTORING. When all the database pages have been
restored, the state is changed to RECOVERING as the database is recovered. Then the process
is the same as normal database startup.

Database files also have states.

Resource Database
A major change for SQL Server 2005 is the resource database. In previous versions of SQL
Server 2000, all executable system objects were stored in the master database. By exe-
cutable, I mean any object not used to store data such as stored procedures, views, func-
tions, and triggers. If you look at a typical SQL Server 2000 master database, you will find
approximately 1,200 objects. With SQL Server 2005, there are now only about 70. So
where are these objects now stored? In a database called the resource database. The
actual name of this database is mssqlsystemresource, but there is a twist. You cannot
directly access this database. (In other words, you won’t see this in Management Studio,
and you get an error if you try to execute 'use mssqlsystemresource') So how do you
get a list of objects in this database and execute them?

SQL Server 2005 introduces a new ownership concept called schemas. One special
reserved schema is called sys. By using the sys schema, you can reference any system
object that is physically stored in the resource database in the context of your database.
For example, we discuss in the next section a view called sys.objects. The view defini-
tion for objects is stored in the resource database, but you can reference it in a select
statement in your database like this: 'select * from sys.objects'. So when you use the
sys schema name for an object, the engine looks for the definition of the object in the
resource database.

Why was this change made in SQL Server 2005? There are many reasons, but here is my
perspective.

System executable objects are like code from Microsoft, so they are now stored in a pro-
tected, read-only database much in a manner similar to a dynamic link library (DLL).
The files for this database are not actual DLL executable code. They are two files,
mssqlsystemresource.mdf and mssqlsystemresource.ldf, installed by default in the same
directory as the master database files.

These system objects are now in a self-contained location. It is now simple to identify all
of them and simpler to replace them. Changes to these objects come in the form of a new
database and log file. Copy in a new version of these files for upgrades to these objects. I
address versioning and servicing of this database later when I talk about system database
recovery.

SQL Server 2005 Storage Internals 51

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 51

Referencing a system object is now done in a consistent and clear approach. No more spe-
cial rules such as “If the name starts with sp_, first check the master database.” You just
use the sys schema name to reference a system executable object.

Catalog Views and Base System Tables
Around the same time the resource database was created, the system tables were also
redesigned. SQL Server has always been a design where the storage of metadata and the
interfaces to view them are the same. SQL Server 7.0 did implement INFORMATION_SCHEMA
views for ANSI compliance, but most users directly accessed system tables such as
sysobjects and sysindexes. But the access is wide open for administrators with the right
access. You can query, insert, delete, or update these tables directly. Great for enthusiasts
and certain PSS engineers trying to solve some advanced problem, but a nightmare for
those trying to ensure consistency of the database. I’ve seen the root cause of some fairly
complex customer case be the result of a mistake made by a customer trying to touch an
obscure system table column value.

The sheer scope and number of new features for SQL Server 2005 would require major
modifications to a 10-year-old system table architecture. An entirely new system table
design was needed to support new features (such as partitions). At the same time, the
design of these tables and the interfaces used to access and modify data within them
needed to be decoupled. The challenge was to prevent users from “shooting themselves in
the foot” while providing a comprehensive metadata interface so that users would have
access to everything they need. The result was catalog views. The catalog of the database
is all the metadata storage within any database. Approximately 200 views were created
and stored in the resource database for users to query the database catalog. Furthermore,
support for some operations that formerly required direct system table modification was
added to the Transact-SQL language. For example, to put the database in emergency
mode, you now use ALTER DATABASE instead of directly changing a system table.

This last point is important, because it highlights a restriction that was put in place as part
of this change for catalog views and system tables. Users cannot directly read or change
system tables. Your first reaction may be anger or frustration. Why is Microsoft taking away
something from me? The intention is not to take anything away from you. The intention
is to help you keep a consistent database, provide you with the best interface to view the
catalog, and to help avoid backward-compatibility problems should system tables change
in future releases. In fact, to help with backward compatibility with SQL Server 2000 users,
the “old” system tables such as sysobjects exist in SQL Server 2005 as catalog views.

To help put this together, let’s take a look at a few queries using catalog views to get meta-
data information about the database.

If I want to find out all objects physically stored in my database that I have access to, I
run the following query:

select * from sys.objects

If you were a system administrator and you ran this query in the old pubs sample data-
base (installed on SQL Server 2005), you would get the following results:

Chapter 2 Data Corruption and Recovery Issues52

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 52

name
object_id principal_id schema_id parent_object_id type type_desc
create_date modify_date is_ms_shipped is_published is_schema_
published
--
-- ----------- ------------ ----------- --
-------------- ---- --
----------------------- ----------------------- ------------- ------------ ---------

CK_ _publisher_ _pub_i_ _023D5A04
37575172 NULL 1 5575058 C CHECK_CONSTRAINT
2006-02-22 07:01:47.827 2006-02-22 07:01:47.827 0 0 0
CK_ _jobs_ _min_lvl_ _1920BF5C
421576540 NULL 1 373576369 C CHECK_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
CK_ _jobs_ _max_lvl_ _1A14E395
437576597 NULL 1 373576369 C CHECK_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
CK_emp_id
533576939 NULL 1 501576825 C CHECK_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
CK_ _authors_ _au_id_ _7D78A4E7
2105058535 NULL 1 2073058421 C CHECK_CONSTRAINT
2006-02-22 07:01:47.780 2006-02-22 07:01:47.780 0 0 0
CK_ _authors_ _zip_ _7F60ED59
2137058649 NULL 1 2073058421 C CHECK_CONSTRAINT
2006-02-22 07:01:47.780 2006-02-22 07:01:47.780 0 0 0
DF_ _authors_ _phone_ _7E6CC920
2121058592 NULL 1 2073058421 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.780 2006-02-22 07:01:47.780 0 0 0
DF_ _employee_ _hire_d_ _25869641
629577281 NULL 1 501576825 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.890 2006-02-22 07:01:47.890 0 0 0
DF_ _employee_ _job_id_ _20C1E124
549576996 NULL 1 501576825 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
DF_ _employee_ _job_lv_ _22AA2996
581577110 NULL 1 501576825 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.890 2006-02-22 07:01:47.890 0 0 0
DF_ _employee_ _pub_id_ _239E4DCF
597577167 NULL 1 501576825 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.890 2006-02-22 07:01:47.890 0 0 0
DF_ _jobs_ _job_desc_ _182C9B23
405576483 NULL 1 373576369 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
DF_ _publisher_ _count_ _03317E3D
53575229 NULL 1 5575058 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.827 2006-02-22 07:01:47.827 0 0 0
DF_ _titles_ _type_ _060DEAE8
101575400 NULL 1 69575286 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
DF_ _titles_ _pubdate_ _07F6335A
133575514 NULL 1 69575286 D DEFAULT_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0

SQL Server 2005 Storage Internals 53

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 53

FK_ _titles_ _pub_id_ _07020F21
117575457 NULL 1 69575286 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
FK_ _titleauth_ _au_id_ _0AD2A005
181575685 NULL 1 149575571 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
FK_ _titleauth_ _title_ _0BC6C43E
197575742 NULL 1 149575571 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
FK_ _sales_ _stor_id_ _108B795B
277576027 NULL 1 245575913 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
FK_ _sales_ _title_id_ _117F9D94
293576084 NULL 1 245575913 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
FK_ _roysched_ _title_ __1367E606
325576198 NULL 1 309576141 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
FK_ _discounts_ _stor_ __15502E78
357576312 NULL 1 341576255 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
FK_ _employee_ _pub_id_ _24927208
613577224 NULL 1 501576825 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.890 2006-02-22 07:01:47.890 0 0 0
FK_ _employee_ _job_id_ _21B6055D
565577053 NULL 1 501576825 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.890 2006-02-22 07:01:47.890 0 0 0
FK_ _pub_info_ _pub_id_ _1CF15040
485576768 NULL 1 453576654 F FOREIGN_KEY_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
queue_messages_1977058079
1993058136 NULL 4 1977058079 IT INTERNAL_TABLE
2005-10-14 01:36:25.360 2005-10-14 01:36:25.380 1 0 0
queue_messages_2009058193
2025058250 NULL 4 2009058193 IT INTERNAL_TABLE
2005-10-14 01:36:25.377 2005-10-14 01:36:25.383 1 0 0
queue_messages_2041058307
2057058364 NULL 4 2041058307 IT INTERNAL_TABLE
2005-10-14 01:36:25.377 2005-10-14 01:36:25.383 1 0 0
byroyalty
677577452 NULL 1 0 P SQL_STORED_PROCEDURE
2006-02-22 07:01:50.450 2006-02-22 07:01:50.450 0 0 0
reptq1
693577509 NULL 1 0 P SQL_STORED_PROCEDURE
2006-02-22 07:01:50.483 2006-02-22 07:01:50.483 0 0 0
reptq2
709577566 NULL 1 0 P SQL_STORED_PROCEDURE
2006-02-22 07:01:50.483 2006-02-22 07:01:50.483 0 0 0
reptq3
725577623 NULL 1 0 P SQL_STORED_PROCEDURE
2006-02-22 07:01:50.483 2006-02-22 07:01:50.483 0 0 0
UPKCL_auidind
2089058478 NULL 1 2073058421 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.780 2006-02-22 07:01:47.780 0 0 0

Chapter 2 Data Corruption and Recovery Issues54

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 54

UPKCL_pubinfo
469576711 NULL 1 453576654 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
PK_emp_id
517576882 NULL 1 501576825 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.873 2006-02-22 07:01:47.873 0 0 0
PK_ _jobs_ _173876EA
389576426 NULL 1 373576369 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
UPKCL_taind
165575628 NULL 1 149575571 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
UPKCL_sales
261575970 NULL 1 245575913 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.857 2006-02-22 07:01:47.857 0 0 0
UPK_storeid
229575856 NULL 1 213575799 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
UPKCL_pubind
21575115 NULL 1 5575058 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.827 2006-02-22 07:01:47.827 0 0 0
UPKCL_titleidind
85575343 NULL 1 69575286 PK PRIMARY_KEY_CONSTRAINT
2006-02-22 07:01:47.840 2006-02-22 07:01:47.840 0 0 0
sysrowsetcolumns
4 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.923 2005-10-14 01:36:15.923 1 0 0
sysrowsets
5 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.910 2005-10-14 01:36:15.910 1 0 0
sysallocunits
7 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.910 2005-10-14 01:36:15.910 1 0 0
sysfiles1
8 NULL 4 0 S SYSTEM_TABLE
2003-04-08 09:13:38.093 2003-04-08 09:13:38.093 1 0 0
syshobtcolumns
13 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.940 2005-10-14 01:36:15.940 1 0 0
syshobts
15 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.923 2005-10-14 01:36:15.923 1 0 0
sysftinds
25 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.063 2005-10-14 01:36:17.063 1 0 0
sysserefs
26 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.940 2005-10-14 01:36:15.940 1 0 0
sysowners
27 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.050 2005-10-14 01:36:17.050 1 0 0
sysprivs
29 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.877 2005-10-14 01:36:15.877 1 0 0

SQL Server 2005 Storage Internals 55

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 55

sysschobjs
34 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.987 2005-10-14 01:36:15.987 1 0 0
syscolpars
41 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.017 2005-10-14 01:36:17.017 1 0 0
sysnsobjs
44 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:16.000 2005-10-14 01:36:16.000 1 0 0
syscerts
46 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:25.173 2005-10-14 01:36:25.193 1 0 0
sysxprops
49 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:18.063 2005-10-14 01:36:18.063 1 0 0
sysscalartypes
50 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.847 2005-10-14 01:36:15.847 1 0 0
systypedsubobjs
51 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.033 2005-10-14 01:36:17.033 1 0 0
sysidxstats
54 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.033 2005-10-14 01:36:17.033 1 0 0
sysiscols
55 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.050 2005-10-14 01:36:17.050 1 0 0
sysbinobjs
58 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:22.110 2005-10-14 01:36:22.123 1 0 0
sysobjvalues
60 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.970 2005-10-14 01:36:15.970 1 0 0
sysclsobjs
64 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:16.000 2005-10-14 01:36:16.000 1 0 0
sysrowsetrefs
65 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:17.050 2005-10-14 01:36:17.050 1 0 0
sysremsvcbinds
67 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:24.127 2005-10-14 01:36:24.143 1 0 0
sysxmitqueue
68 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:24.143 2005-10-14 01:36:24.153 1 0 0
sysrts
69 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:24.143 2005-10-14 01:36:24.160 1 0 0
sysconvgroup
71 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:24.127 2005-10-14 01:36:24.147 1 0 0
sysdesend
72 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:24.160 2005-10-14 01:36:25.160 1 0 0

Chapter 2 Data Corruption and Recovery Issues56

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 56

sysdercv
73 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:25.157 2005-10-14 01:36:25.167 1 0 0
syssingleobjrefs
74 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.860 2005-10-14 01:36:15.860 1 0 0
sysmultiobjrefs
75 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.877 2005-10-14 01:36:15.877 1 0 0
sysdbfiles
76 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:15.953 2005-10-14 01:36:15.953 1 0 0
sysguidrefs
78 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:23.110 2005-10-14 01:36:23.123 1 0 0
sysqnames
90 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:23.110 2005-10-14 01:36:23.127 1 0 0
sysxmlcomponent
91 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:23.127 2005-10-14 01:36:23.140 1 0 0
sysxmlfacet
92 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:23.127 2005-10-14 01:36:23.137 1 0 0
sysxmlplacement
93 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:23.127 2005-10-14 01:36:24.137 1 0 0
sysobjkeycrypts
94 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:25.157 2005-10-14 01:36:25.177 1 0 0
sysasymkeys
95 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:25.173 2005-10-14 01:36:25.193 1 0 0
syssqlguides
96 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:25.190 2005-10-14 01:36:25.207 1 0 0
sysbinsubobjs
97 NULL 4 0 S SYSTEM_TABLE
2005-10-14 01:36:22.110 2005-10-14 01:36:23.120 1 0 0
ServiceBrokerQueue
2041058307 NULL 1 0 SQ SERVICE_QUEUE
2005-10-14 01:36:25.377 2005-10-14 01:36:25.377 1 0 0
QueryNotificationErrorsQueue
1977058079 NULL 1 0 SQ SERVICE_QUEUE
2005-10-14 01:36:25.360 2005-10-14 01:36:25.360 1 0 0
EventNotificationErrorsQueue
2009058193 NULL 1 0 SQ SERVICE_QUEUE
2005-10-14 01:36:25.377 2005-10-14 01:36:25.377 1 0 0
employee_insupd
645577338 NULL 1 501576825 TR SQL_TRIGGER
2006-02-22 07:01:47.903 2006-02-22 07:01:47.903 0 0 0
authors
2073058421 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.717 2006-02-22 07:01:49.997 0 0 0
publishers

SQL Server 2005 Storage Internals 57

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 57

5575058 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.793 2006-02-22 07:01:47.890 0 0 0
titles
69575286 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.840 2006-02-22 07:01:50.153 0 0 0
titleauthor
149575571 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.840 2006-02-22 07:01:50.263 0 0 0
sales
245575913 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.857 2006-02-22 07:01:50.090 0 0 0
stores
213575799 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.840 2006-02-22 07:01:47.860 0 0 0
roysched
309576141 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.857 2006-02-22 07:01:50.343 0 0 0
pub_info
453576654 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.873 2006-02-22 07:01:47.877 0 0 0
jobs
373576369 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.857 2006-02-22 07:01:47.890 0 0 0
discounts
341576255 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.857 2006-02-22 07:01:47.860 0 0 0
employee
501576825 NULL 1 0 U USER_TABLE
2006-02-22 07:01:47.873 2006-02-22 07:01:49.903 0 0 0
titleview
661577395 NULL 1 0 V VIEW
2006-02-22 07:01:50.373 2006-02-22 07:01:50.373 0 0 0

Notice all the rows with this type of SYSTEM_TABLE. But earlier I said you cannot read sys-
tem tables. This is true, but you can see a list of all of them. These system tables are the
base system tables stored in your database. Earlier beta releases did not expose these table
names in this view, but the decision was made to show them primarily because the object
ID values were showing up in error messages and users were confused when they tried to
figure out what table was associated with the message.

If you tried to query one of these tables like this:

select * from sysschobjs

you would get the following error:

Msg 208, Level 16, State 1, Line 1
Invalid object name 'sysschobjs'.

Chapter 2 Data Corruption and Recovery Issues58

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 58

SQL Server 2005 Storage Internals 59

What about the executable system objects stored in the resource database? If I cannot
actually access the resource database directly, how do I see a list of these object? Well,
SQL Server includes a catalog view just for this purpose:

select * from sys.system_objects
name
object_id principal_id schema_id parent_object_id type type_desc
create_date modify_date is_ms_shipped is_published is_schema_published
--
-- ----------- ------------ ----------- --
-------------- ---- --
----------------------- ----------------------- ------------- ------------ ---------

fn_cColvEntries_80
-61545096 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:43:52.820 2006-02-17 14:43:52.820 1 0 0
fn_fIsColTracked
-242919846 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:43:53.040 2006-02-17 14:43:53.040 1 0 0
fn_GetCurrentPrincipal
-986367695 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:43:46.130 2006-02-17 14:43:46.130 1 0 0
fn_GetRowsetIdFromRowDump
-633331936 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:41:07.853 2006-02-17 14:41:07.853 1 0 0
fn_IsBitSetInBitmask
-92987834 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:44:11.087 2006-02-17 14:44:11.087 1 0 0
fn_isrolemember
-977642094 NULL 4 0 FN SQL_SCALAR_FUNCTION
2006-02-17 14:44:15.147 2006-02-17 14:44:15.147 1 0 0
.
.
sp_help
-784136858 NULL 4 0 P SQL_STORED_PROCEDURE
2006-02-17 14:41:29.803 2006-02-17 14:41:29.803 1 0 0
sp_help_agent_default
-930237674 NULL 4 0 P SQL_STORED_PROCEDURE
2006-02-17 14:46:15.130 2006-02-17 14:46:15.130 1 0 0
sp_help_agent_parameter
-244913556 NULL 4 0 P SQL_STORED_PROCEDURE
2006-02-17 14:46:16.443 2006-02-17 14:46:16.443 1 0 0
sp_help_agent_profile
-463476349 NULL 4 0 P SQL_STORED_PROCEDURE
2006-02-17 14:46:14.913 2006-02-17 14:46:14.913 1 0 0
sp_help_datatype_mapping
-721021307 NULL 4 0 P SQL_STORED_PROCEDURE
2006-02-17 14:46:22.350 2006-02-17 14:46:22.350 1 0 0
.
.
.
indexes
-397 NULL 4 0 V VIEW
2006-02-17 14:38:43.433 2006-02-17 14:38:43.433 1 0 0

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 59

internal_tables
-468 NULL 4 0 V VIEW
2006-02-17 14:38:42.340 2006-02-17 14:38:42.340 1 0 0
KEY_COLUMN_USAGE
-784887024 NULL 3 0 V VIEW
2006-02-17 14:43:25.880 2006-02-17 14:43:25.880 1 0 0
key_constraints
-406 NULL 4 0 V VIEW
2006-02-17 14:38:46.057 2006-02-17 14:38:46.057 1 0 0
key_encryptions
-465 NULL 4 0 V VIEW
2006-02-17 14:39:26.200 2006-02-17 14:39:26.200 1 0 0
linked_logins
-222 NULL 4 0 V VIEW
2006-02-17 14:39:17.120 2006-02-17 14:39:17.120 1 0 0
login_token
-77438453 NULL 4 0 V VIEW
2006-02-17 14:39:49.777 2006-02-17 14:39:49.777 1 0 0
master_files
-216 NULL 4 0 V VIEW
2006-02-17 14:39:11.870 2006-02-17 14:39:11.870 1 0 0
master_key_passwords
-243 NULL 4 0 V VIEW
2006-02-17 14:39:14.167 2006-02-17 14:39:14.167 1 0 0
message_type_xml_schema_collection_usages
-478 NULL 4 0 V VIEW
2006-02-17 14:38:59.730 2006-02-17 14:38:59.730 1 0 0
messages
-225 NULL 4 0 V VIEW
2006-02-17 14:38:57.980 2006-02-17 14:38:57.980 1 0 0
module_assembly_usages
-484 NULL 4 0 V VIEW
2006-02-17 14:38:51.307 2006-02-17 14:38:51.307 1 0 0
numbered_procedure_parameters
-419 NULL 4 0 V VIEW
2006-02-17 14:38:52.510 2006-02-17 14:38:52.510 1 0 0
numbered_procedures
-418 NULL 4 0 V VIEW
2006-02-17 14:38:52.183 2006-02-17 14:38:52.183 1 0 0
objects
-385 NULL 4 0 V VIEW
2006-02-17 14:38:36.870 2006-02-17 14:38:36.870 1 0 0
.
.
.
sysindexes
-134 NULL 4 0 V VIEW
2006-02-17 14:39:33.090 2006-02-17 14:39:33.090 1 0 0
sysindexkeys
-135 NULL 4 0 V VIEW
2006-02-17 14:39:33.417 2006-02-17 14:39:33.417 1 0 0
syslanguages
-194 NULL 4 0 V VIEW
2006-02-17 14:39:26.853 2006-02-17 14:39:26.853 1 0 0

Chapter 2 Data Corruption and Recovery Issues60

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 60

syslockinfo
-204 NULL 4 0 V VIEW
2006-02-17 14:41:00.633 2006-02-17 14:41:00.633 1 0 0
syslogins
-205 NULL 4 0 V VIEW
2006-02-17 14:39:37.463 2006-02-17 14:39:37.463 1 0 0
sysmembers
-141 NULL 4 0 V VIEW
2006-02-17 14:39:34.400 2006-02-17 14:39:34.400 1 0 0
sysmessages
-206 NULL 4 0 V VIEW
2006-02-17 14:39:38.777 2006-02-17 14:39:38.777 1 0 0
sysobjects
-105 NULL 4 0 V VIEW
2006-02-17 14:38:39.823 2006-02-17 14:38:39.823 1 0 0
.
.
.
xp_adsirequest
-60872162 NULL 4 0 X EXTENDED_STORED_PROCEDURE
2006-02-17 14:53:06.237 2006-02-17 14:53:06.237 1 0 0
xp_availablemedia
-196500590 NULL 4 0 X EXTENDED_STORED_PROCEDURE
2006-02-17 14:53:06.033 2006-02-17 14:53:06.033 1 0 0
xp_cleanupwebtask
-113576977 NULL 4 0 X EXTENDED_STORED_PROCEDURE
2006-02-17 14:53:20.300 2006-02-17 14:53:20.300 1 0 0
xp_cmdshell
-1008137134 NULL 4 0 X EXTENDED_STORED_PROCEDURE
2006-02-17 14:41:25.383 2006-02-17 14:41:25.383 1 0 0

This is not a complete list, because more than 1,700 system objects are accessible via the
sys schema. You will see in this list some familiar names that used to be stored in the
master database in SQL Server 2000, such as sp_help. You will also see new names such as
views called indexes, master_files, and objects. Notice that names like sysindexes and
sysobjects have a type VIEW. Also, you can see at the end of this list that Microsoft inter-
nal extended stored procedures are stored in the resource database.

Notice something interesting about the object_id of these names. They are listed as val-
ues < 0. Whenever you see an object_id listed as < 0, you know it is a system object that
comes from the resource database.

I reference many of the catalog views in the remaining sections of this chapter. SQL
Server Books Online has a complete reference of all the views, including the descripton of
the column definitions.

One specific catalog view that I should mention is sys.system_sql_modules. In the early
versions of the beta, there was no method to see the text of any system object. Based on
user input during the beta, the SQL Server development team chose to expose the defini-
tions of these objects with sys.system_sql_modules. The following syntax:

select * from sys.system_sql_modules where object_id = object_id('sys.sysobjects')

SQL Server 2005 Storage Internals 61

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 61

shows you the definition of the sysobjects catalog view. If you run this query, you will see
it references the sys.sysschobjs base system table. Be careful relying on the results of this
view. The SQL Server development team exposed this information so that you can see
how views, procedures, and so on were built. But you cannot change the text, and the
development team certainly could change these over time as they fix bugs, enhance per-
formance, or change the design of base system tables. To help give you a quick start on
catalog views, Table 2-1 shows a comparison of what catalog view to use based on the
SQL 2000 equivalent system table.

TABLE 2-1 What catalog view to use based on the SQL 2000 equivalent system table

SQL Server 2000 System Table SQL Server 2005 Catalog View

sysobjects sys.objects

sysindexes sys.indexes+sys.partitions

+sys.allocation_units

syscolumns sys.columns

syscomments sys.sql_modules

sysdatabases sys.databases

sysfiles sys.database_files

sysaltfiles sys.master_files

Let me make one final comment about base system tables, catalog views, and the
resource database. Base system tables exist in every database and store all the metadata.
All the catalog views and executable system objects (sometimes called just system objects
in Books Online) are not stored in your database. The definition of these objects exists
only in the resource database. The resource database is a database, so it has base system
tables. Think of it this way. When you create a view in your database, SQL Server stores
the definition of this view in base system tables in your database. The resource database
is simply preloaded with a bunch of views, procedures, and so forth. No user tables exist
in the resource database.

Allocation Structures
The internal structures used to organize allocation for SQL Server 2005 have not changed
dramatically. Concepts such as GAM, IAM, SGAM, and PFS all still exist to internally track and
organize allocation of pages and extents.

There are some differences at a higher level of allocation. The first difference is support
for partitions. SQL Server 2000 enables you to place tables or indexes on specific disks by
using filegroups. SQL Server 2005 expands this capability to place horizontal slices of
tables or indexes on specific disks using partitions. Partitions allow you to specify that a
particular range of values within a table or index is stored on specific filegroups. Every
table or index has at least one partition, as can be seen by querying the sys.partitions
catalog view. Each partition can have up to three different allocation units. An allocation
unit is equivalent to an IAM chain. In SQL Server 2000, a table could have two different
IAM chains: one for the data and one for TEXT/IMAGE data. SQL Server 2005 supports three

Chapter 2 Data Corruption and Recovery Issues62

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 62

different IAM chains for an object: data, LOB (TEXT/IMAGE), and SLOB. A Small Large
Binary Object (SLOB) is also referred to as row overflow data. SQL Server 2005 enables you
to store data in a row that is larger than the SQL Server page size (8KB). This is done by
supporting a different IAM chain to store this extended row data.

Figure 2-2 shows the allocation structure objects and corresponding catalog views.

FIGURE 2-2 Allocation structure objects and corresponding catalog views

Let’s take a look at a few of the catalog views that describe allocation structures. Let’s cre-
ate a table and index using the following query:

create table test_table (col1 int primary key clustered, col2 int,
col3 text, col4 varchar(5000) not null, col5 varchar(5000) not null)
go
create index test_idx on test_table (col2)
go
insert into test_table values (1, 1, 'this is text', 'this is test', 'this is
test')
go

IN_ROW LOB SLOB

.

.

.

Table/lndex

Partition

Heap or Btree (hobt)

Allocation Unit (IAM)

Partition

sys.indexes

sys.partitions

sys.allocation_units

sys.system_internals_allocation_units

first_iam_page
first_page
root_page

SQL Server 2005
Allocation Architecture

SQL Server 2005 Storage Internals 63

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 63

To see the organization of allocation for this table and index, first look at the
sys.partitions catalog view:

select * from sys.partitions where object_id = object_id('test_table')
partition_id object_id index_id partition_number hobt_id rows
-------------------- ----------- ----------- ---------------- -------------------- -

72057594038583296 2137058649 1 1 72057594038583296 1
72057594038648832 2137058649 2 1 72057594038648832 1

As you can see, the table and nonclustered index each have one partition. Notice the sec-
ond column from the right, hobt_id. Hobt stands for heap or b-tree. Each partition is
made up of exactly one heap or b-tree index. Notice the value of hobt_id is the same as
partition_id. Why is the column needed? Very early designs of SQL Server 2005
included the ability for a heap or b-tree to store rows from multiple partitions. In other
words, a partition could have its data spread across multiple allocation units of the same
type. The final version of SQL Server 2005 doesn’t contain this capability, but the base
system tables still support this concept. (This is why you see in the list of tables the name
syshobts.) In SQL Server 2005, a partition and hobt are basically equivalent, which is
why the ID for both is the same. You can see a reflection of this design in the page header
of a database page. The following is part of the output for DBCC PAGE for a page in a table
I created in the master database:

PAGE HEADER:
Page @0x0386A000
m_pageId = (1:509) m_headerVersion = 1 m_type = 1
m_typeFlagBits = 0x4 m_level = 0 m_flagBits = 0xe200
m_objId (AllocUnitId.idObj) = 87 m_indexId (AllocUnitId.idInd) = 256
Metadata: AllocUnitId = 72057594043629568
Metadata: PartitionId = 72057594038779904 Metadata: IndexId = 1
Metadata: ObjectId = 1291151645 m_prevPage = (0:0) m_nextPage = (0:0)
pminlen = 12 m_slotCnt = 1 m_freeCnt = 8017
m_freeData = 173 m_reservedCnt = 0 m_lsn = (2006:16:1)
m_xactReserved = 0 m_xdesId = (0:0) m_ghostRecCnt = 0
m_tornBits = -1570474108

Instead of storing the object_id and index_id values as SQL Server did in previous ver-
sions, it stores the allocation_unit_id as seen in the sys.allocation_units catalog
view. DBCC PAGE decodes the allocation_unit id value such that it includes the
object_id and index_id from the system catalog metadata. You can see this from the
areas I highlighted that start with the word metadata.

Let’s now look at the allocation units for the table and index using the
sys.allocation_units catalog view:

-- The table has a text column and possible row overflow ---- data so there
should be 3 rows for the clustered index --- and 1 row for the ncl index
select object_name(pt.object_id), pt.index_id, au.* from sys.allocation_units au

Chapter 2 Data Corruption and Recovery Issues64

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 64

join sys.partitions pt
on au.container_id = pt.partition_id
and pt.object_id = object_id('test_table')
order by container_id
name
index_id allocation_unit_id type type_desc
container_id data_space_id total_pages used_pages data_pages
--
-- ----------- -------------------- ---- -
--- --------------------
------------- -------------------- -------------------- --------------------
test_table
1 72057594042843136 1 IN_ROW_DATA
72057594038583296 1 2 2 1
test_table
1 72057594042908672 3 ROW_OVERFLOW_DATA
72057594038583296 1 0 0 0
test_table
1 72057594042974208 2 LOB_DATA
72057594038583296 1 2 2 0
test_table
2 72057594043039744 1 IN_ROW_DATA
72057594038648832 1 2 2 1

Notice that index_id = 1 (the clustered index for test_table) has three types: IN_ROW_
DATA (the actual data rows), ROW_OVERFLOW_DATA (this is the SLOB because we created the
table with variable-length character columns that exceed 8KB), and LOB_DATA (the
TEXT/IMAGE data). index_id = 2, the nonclustered index, has one allocation unit. Notice in
the preceding query the column to join back to sys.partitions is container_id. Because
of what I described with hobts, you could join to either partition_id or hobt_id. If you
are a veteran SQL Server support engineer like me, you might see that something is miss-
ing from sys.allocation_units. What about first, root, and first_IAM? Initially, the
SQL Server development team did not think anyone needed to see these columns.
Feedback to Microsoft was that it would be valuable to still see these values. So, late in the
beta cycle, the sys.system_internals_allocation_units catalog view was created. Let’s
run the preceding query again, this time changing it to use this view:

-- IAM information is only found in this internal catalog --- view. This view
may change so could
-- break your application if you rely on the result set
select object_name(pt.object_id) as name, pt.index_id, sau.* from
sys.system_internals_allocation_units sau
join sys.partitions pt
on sau.container_id = pt.partition_id
and pt.object_id = object_id('test_table')
order by container_id
go
name index_id
allocation_unit_id type type_desc container_id
filegroup_id total_pages used_pages data_pages first_page
root_page first_iam_page

SQL Server 2005 Storage Internals 65

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 65

--
-- ----------- -------------------- ---- -
--- --------------------
------------ -------------------- -------------------- -------------------- --------
------ -------------- --------------
test_table 1
72057594042843136 1 IN_ROW_DATA 72057594038583296 1
2 2 1 0x9A0000000100 0x9A0000000100 0x9B0000000100
test_table 1
72057594042908672 3 ROW_OVERFLOW_DATA 72057594038583296 1
0 0 0 0x000000000000 0x000000000000 0x000000000000
test_table 1
72057594042974208 2 LOB_DATA 72057594038583296 1
2 2 0 0x980000000100 0x980000000100 0x990000000100
test_table 2
72057594043039744 1 IN_ROW_DATA 72057594038648832
1 2 2 1 0x9C0000000100 0x9C0000000100
0x9D0000000100

Now the same page numbers in hex as you could find from sysindexes in SQL Server 2000
are available. Be careful with the usage of this view. As mentioned in the documentation, it
might change over time, depending on changes to the architecture for allocation.

Database Checksum
One of the challenges in PSS for customer cases involving database corruption is to pin-
point whether the problem is specifically caused by a hardware or system problem. SQL
Server 2005 adds checksum capabilities for database pages and log blocks. This is an
important feature to determine how a database page might have become damaged. Here
is how it works.

If you enable a database for checksum (it is on by default, or you enable it with ALTER
DATABASE), right before the engine writes a page to disk, it calculates a checksum value
based on the bits on the page and writes this value into the page header. When the page
is read back from disk, SQL Server calculates the checksum value based on bits on the
page (excluding the checksum itself in the header) and compares that to the checksum
value in the page header. If they do not match, SQL Server knows the page must have
been altered after it submitted it to be written to disk. The server doesn’t know who
altered it, but the path of IO from the operating system to the disk is subject to scrutiny.

Fast Recovery
A number of customer cases come into PSS in which the customer is struggling because
the database is not accessible because of the length of database recovery on startup.
Database recovery has three basic phases: analysis, redo, and undo. The final phase, undo,
typically takes the longest and is the source of pain. SQL Server 2005 takes a step forward
in database availability by allowing access to the database during the undo phase of
recovery. How is this accomplished? The engine during recovery acquires locks during the
redo phase and holds these locks for any uncommitted transaction. When the undo
phase begins, recovery is in effect a “user” who is running transactions to undo

Chapter 2 Data Corruption and Recovery Issues66

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 66

operations that need to be rolled back. Because locks are acquired to perform this opera-
tion, transaction consistency can be maintained. Users can now access the database and
run standard transactions. The caveat is that users may get blocked by a system session
that is running recovery (because it is holding locks while processing undo). Users who
need to access data not related to any transactions being rolled back by recovery will not
be affected. The restrictions on this feature are as follows:

■ It is supported only for Enterprise Edition.

■ It works only for databases set up for full recovery.

■ It works only for crash recovery. (In other words, it does not work when restoring a
database.)

Deferred Transactions
Another important enhancement to database recovery is the concept of deferred transac-
tions. Consider this scenario. Your system has an unexpected crash and reboots. SQL Server
restarts and now has to run recovery on all databases. Because of a problem with your disk
system, one of the database pages needed by recovery is damaged. Because the database is
enabled for checksum, recovery detects a checksum error. In SQL Server 2000, a damaged
page detected during recovery would result in an instant SUSPECT database. The entire data-
base would be inaccessible, and the only method to recover reliably would be to restore the
entire database from backup. SQL Server addresses this with a clever solution. In situations
where damage to a single page is detected during recovery, the page is marked with a spe-
cial bit called RestorePending so that it cannot be accessed. Furthermore, the transaction
associated with the page is “deferred” if it is an active transaction that must be rolled back.
What this means is that locks associated with the transaction are held after redo and are
not released after undo. In fact, undo for the transaction is skipped.

So at the time recovery is complete, the database is still online, the page that is damaged
is not accessible, and any locks associated with an associated uncommitted transaction are
held. But the database status remains ONLINE and not SUSPECT. So, users can access the
database but will encounter an error when accessing the page. Also, if the transaction
associated with the page is deferred, a user could be blocked. (The locks are held by
session_id = -3.) Resolution to the problem could then be to just restore the damaged
page. More on the details behind this when I talk about recovering an inaccessible
database.

Deferred transactions are supported for both crash and restore recovery, but this does not
work for recovery when a database is attached.

Read-Only Compressed Databases
A frequent question I see about databases is whether you can use NTFS compression for
the database and log files. The largest concern is consistency, because the server cannot
guarantee sector-aligned writes. However, a read-only database has no consistency con-
cern. Therefore, the SQL Server development team decided to allow a read-only database

SQL Server 2005 Storage Internals 67

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 67

to be stored on NTFS compressed files. SQL Server 2000 did not prevent you from creating
a read-write database on an NTFS compressed volume, even though this is not a sup-
ported configuration. However, in SQL Server 2005, if you shut down SQL Server, com-
press the files of a read-write database, and then try to restart SQL Server, you see the
following errors in the ERRORLOG:

2006-03-18 22:49:14.87 spid15s Starting up database 'pubs'.
2006-03-18 22:49:15.01 spid15s Error: 5118, Severity: 16, State: 1.
2006-03-18 22:49:15.01 spid15s The file "C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\pubs.mdf" is compressed but does not reside in a
read-only database or filegroup. The file must be decompressed.

As the message implies, it is also possible to mark a filegroup as read-only and compress
the files just for that filegroup even though the rest of the database is read-write.

SQL Server 2005 Enhancements
I have discussed several storage internal concepts, including several enhancements for
SQL Server 2005 based on customer and PSS experience with data recovery in SQL Server
2000 and previous versions.

A discussion of new enhancements for SQL Server 2005 data recovery would not be com-
plete without talking about BACKUP/RESTORE and DBCC CHECKDB.

BACKUP Enhancements
The most noteworthy enhancement to BACKUP is verification. If you execute the T-SQL
BACKUP command using the WITH CHECKSUM option, two things happen:

■ As each database page is read from the database file from disk, the server verifies the
checksum value in the page header if it exists. If it fails, the server raises an error
and stops the backup.

■ The server calculates a checksum value for all the bits from all pages in the backup
and writes this in the backup media. This is called the backup checksum.

These both serve important purposes. By verifying the checksum on pages before the
server writes them to the backup, you can prevent the server writing bad pages in your
backup. Second, by writing a checksum value for the entire backup stream, the server can
verify using RESTORE whether any bits in the backup media itself were damaged after
backup writes were submitted to the target media. It is important to know that no new
checksum value is written during BACKUP. So, if the database page did not contain a
checksum value, a new one is not calculated and then written to the page before it is
written to the backup media. But this page is still used as part of calculating the backup
checksum.

If you do encounter an error when using WITH CHECKSUM because of a damaged page, you
can choose to ignore any error using the WITH CONTINUE_AFTER_ERROR option. The best

Chapter 2 Data Corruption and Recovery Issues68

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 68

course of action is to resolve the checksum problem before taking the backup; in an emer-
gency situation to ensure the rest of the database is backed up, however, you might con-
sider using this option.

One other nice addition for SQL Server 2005 BACKUP is full-text data. Previously, to back
up your full-text data, you had to manually back up the full-text catalog files associated
with the database. Now if your database has full-text data, SQL Server automatically
includes the full-text catalog information into the backup information associated with the
database. You can even just back up the full-text catalog on it own using the T-SQL
BACKUP command. (Refer to the Books Online reference for BACKUP for the proper syntax.)

RESTORE Enhancements
Until SQL Server 2005, the RESTORE VERIFYONLY command was not all that useful. This is
because this option did not really verify much of what was contained in the backup set.
That has changed for SQL Server 2005 in two ways:

■ If the backup media contains a backup checksum, by default the server verifies it.
The server also verifies any checksum that exists on a given page in the backup.

■ Even if the backup does not contain any checksum, the server verifies that the page
ID in the page header is valid.

The same verification occurs by default for the standard RESTORE command, not just with
VERIFYONLY. But VERIFYONLY is now a useful command in your arsenal. With checksums,
it becomes a quick solution to verifying the integrity of the backup media. (Remember,
however, this doesn’t mean the backup will actually restore successfully, because recovery
could still fail.)

Another option for the RESTORE command that will be useful in emergency situations is
CONTINUE_AFTER_ERROR. Before this option was added and a customer encountered a cor-
rupt backup, there was no way to know whether a single page was damaged or whether
the entire backup was bad.

If you encounter an error with RESTORE (such as failure verifying checksum) on SQL Server
2005, you can use the CONTINUE_AFTER_ERROR option. The engine just ignores all errors
and loads all pages in the database as they exist in the backup. You can then decide how
to fix any remaining errors (for example, using DBCC CHECKDB with repair options). This is
not an option you want to use on a regular basis. If you do, it means you have problems
with your backups. However, it might come in handy on some late night when you do
have bad backups but want to extract as much as you can from them.

The last important enhancement for RESTORE is the page-level restore. A PAGE option has
been added to the RESTORE command to specify page numbers (maximum of 1,000). The
addition of this option is yet another to help increase database availability. Consider a
case where you encounter a checksum error on a single page for a 10TB database. If you
want to restore just this page, you can from the latest full backup and restore subsequent
log backups to make the transactions affecting the page consistent. And with Enterprise
Edition, you can do all of this online, allowing other users to access unaffected areas of

SQL Server 2005 Enhancements 69

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 69

Chapter 2 Data Corruption and Recovery Issues70

the database. Of course, the speed of the RESTORE alone is improved, because the server
only has to write one or more pages from the backup to the database. (It still takes time
to find and read the page from the backup.) I fully expect customers to take advantage of
this option, especially those who call PSS and want us to help with some type of
advanced recovery because they cannot afford the downtime of a full restore. There is an
exercise at the end of chapter you can use to see how to use page-level restore after
encountering a damaged page.

DBCC CHECKDB Enhancements
Another area of significant investment for SQL Server 2005 is DBCC CHECKDB. A former PSS
colleague of mine, Ryan Stonecipher, now owns this code. He worked with Paul Randal,
who used to own it, to incorporate feedback from customers and PSS throughout the beta.
The result is some of the following feature enhancements.

DATA_PURITY
DBCC CHECKDB can verify all types of things. But in previous releases of SQL Server, one
thing it did not verify was the validity of values within certain data types (such as
date/time). The SQL Server development team actually added an undocumented trace flag
in SQL Server 2000 to check this because a few customers reported databases with invalid
datetime or decimal data within the column values. This led to some strange problems
including what appeared to be incorrect results. So, the development team decided in SQL
Server 2005 to just add an option to check datetime and decimal columns for valid
ranges of values as specified for that type.

For a new SQL Server 2005 database, DATA_PURITY checks are on by default (unless you
use the WITH PHYSICAL_ONLY option). For an upgraded database, you must use WITH
DATA_PURITY one time, and then it is implied from that point forward.

Progress Reporting
One common question for users of DBCC CHECKDB is a bit like your kids asking you in the
car, “When do we get there?” Customers call PSS after DBCC CHECKDB has been running for
an hour and say, “When will it be done?” So, the SQL Server development team added
progress reporting capabilities for CHECKDB. A user can query the percent_complete and
command columns of the sys.dm_exec_requests dynamic management view to see the
current progress of CHECKDB. The command column displays a set of predefined values
that describe the phase of execution of CHECKDB. (For example, DBCC SYS CHECK means
CHECKDB is checking the consistency of system tables. The percent_complete column
marks the progress within this phase.) SQL Server Books Online has a complete descrip-
tion of the phases and whether progress is reported for that phase.

“Last Known Good”
One of the questions I have asked customers when investigating a case involving database
corruption is this: “When was the last time DBCC CHECKDB reported no errors for this data-
base?” If the customer did not save all CHECKDB results or if the ERRORLOG files have
wrapped, there is no way to answer this question. SQL Server 2005 saves in the database
information about the last time a DBCC CHECKDB was run without errors on the database.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 70

SQL Server 2005 Enhancements 71

Anytime the database is started, the information about the “last known good” clean DBCC
is reported in the ERRORLOG like the following:

2005-09-22 11:56:48.42 Server Database mirroring has been enabled on this
instance of SQL Server.
2005-09-22 11:56:48.42 spid5s Starting up database 'master'.
2005-09-22 11:56:48.73 spid5s Recovery is writing a checkpoint in database
'master' (1). This is an informational message only. No user action is required.
2005-09-22 11:56:48.84 spid5s CHECKDB for database 'master' finished without
errors on 2005-09-22 11:31:45.990 (local time). This is an informational
message only; no user action is required.

As you can see in this message, a CHECKDB was deemed to be “good.” This information is
updated every time a CHECKDB completes without errors for a specific database.

In addition to saving and recording the last clean CHECKDB, the SQL Server development
team also enhanced the report in the ERRORLOG for each CHECKDB execution. The server
now includes a duration value, so you can see how long it typically takes to run CHECKDB
for your database. Here is an example of this ERRORLOG output:

2006-03-19 19:35:40.15 spid51 DBCC CHECKDB (troy) executed by NORTHAMERICA

\bobward found 0 errors and repaired 0 errors. Elapsed time: 0 hours 0 minutes 2

seconds.

Online Uses Database Snapshot
In SQL Server 2000, online DBCC CHECKDB reads the transaction log to check the consis-
tency of the database. By online, I mean that the database is in MULTI_USER mode.
Although this technique works, in some cases this might cause false CHECKDB errors.
Therefore, in SQL Server 2005, CHECKDB takes advantage of the new snapshot database fea-
ture. An online CHECKDB now creates a database snapshot of the current database and uses
the snapshot to check database consistency. This now makes online CHECKDB extremely
simple. Just run the consistency check on the snapshot and you are guaranteed a consis-
tent set of pages at the point in time CHECKDB was run. If a snapshot cannot be created
(for example, because the databases are stored on the FAT file system), the table locks are
used to ensure consistency.

Enhanced CHECKCATLOG Integrated
Any veteran SQL Server support engineer knows that DBCC CHECKCATALOG is not really
worth running. In SQL Server 2000 and previous versions, only a few system tables were
actually included in this check. Furthermore, the number of times an actual system table
referential integrity occurs is few. Along with the new system table architecture, the SQL
Server development team decided to actually implement a full catalog consistency check
and include it by default when DBCC CHECKDB runs. DBCC CHECKCATALOG can still be run
independently, but it is a quick operation as part of the overall CHECKDB execution.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 71

Chapter 2 Data Corruption and Recovery Issues72

Emergency Mode Repair
In SQL Server 2000, if the database is marked SUSPECT and you do not have a backup to
restore, your options are pretty limited. One option some customers have chosen is to call
Microsoft PSS to see whether they can help repair the database. This procedure involves
some advanced undocumented commands that could end up resulting in a rebuild of the
transaction log. This procedure can result in a CHECKDB with no errors, but logical consis-
tency is now compromised. This request has come in so often that the SQL Server devel-
opment team decided to include a recovery feature in the product so that customers
could perform this operation themselves.

Data Recovery Best Practices
Before I dig into troubleshooting scenarios for various types of database recovery prob-
lems, let me share with you perspective on best practices for you to use to avoid prob-
lems. This section is not a complete study of disaster recovery strategies, but I give you
some information you might find helpful based on my experience with data recovery cus-
tomer cases.

BACKUP/RESTORE Best Practices
Your database is only as good as your last backup.

If you have a great backup strategy, more power to you. If you have any doubts, read on.
You would be surprised how many customers call Microsoft PSS and have not backed up
their database (or don’t have a recent backup). If I had responsibility for any database
being used in a business, my number one priority would be the safety and security of that
data, which includes disaster recovery situations. I have many non-computer-savvy
friends who I talk to about the files on their computer. They ask me how often they
should back them up. I always tell them, “Your data is only as good as your most recent
backup.” As good as computer hardware is today, I’ve seen too many situations where
someone didn’t have a recent backup and lost data. It just takes one time of losing key
data to learn to have timely and good backups. Don’t let yourself run into that situation.
You could run for years without ever needing a backup, but when you really need it, you
will be so thankful that you spent careful time and consideration ensuring your backups
are recent and up-to-date based on your needs and requirements.

Use the BACKUP CHECKSUM feature.

I personally would take any hit in backup performance that you may encounter when
using the WITH CHECKSUM option of BACKUP. There is simply no better method in the data-
base engine to detect whether the pages written to the backup are valid and to verify that
the backup medium has not been damaged or altered after it is written. This feature actu-
ally makes RESTORE VERIFYONLY a viable option to determine whether you have a reason-
able chance of restoring the database.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 72

RESTORE is the only guaranteed method to verify backups.

Even with the checksum feature, if you want a guarantee that a backup can be verified,
the only way is to restore it. This is because even if you use the WITH CHECKSUM feature,
other problems could occur. For example, what if there is some logical problem with
transaction log records so that when recovery runs during restore, a failure occurs? If the
log record is physically correct but some logical problem exists that prevents redoing that
log record within the engine, restoring the backup is the only way to find out.

As part of my advice on restore, I think it is important to test your disaster recovery strat-
egy. For example, how long does it take to restore your backups at any given day or time
of day? If your business requires the database to be back and available within 30 minutes
during the day Monday through Friday, but with your current disaster recovery strategy, it
would take 4 hours to restore your backups on Thursday at 2 p.m., clearly you have a
problem. You may need to seek high-availability solutions such as database mirroring or
log shipping.

Avoid network drive backups.

Customers seem to encounter more problems than not when backing up their databases
or logs to a network drive. I’ve seen everything from damaged backups to network errors
during the backup to Windows errors due to insufficient kernel resources when customers
back up large databases to network drives. Using a storage area network (SAN) system
seems to be fairly reliable, but I personally don’t recommend you back up your database
to a network mapped drive on another server on your network. If you have to store your
backups on another server and you don’t have a SAN system, I recommend you try to
back up the database to a local drive, use a program or utility to compress the file (they
usually put a checksum on the file as part of this), and then copy this file over the net-
work to the remote server. If the compression utility supports checksum features, such as
a cyclic redundancy check (CRC), when you uncompress you can at least safely know the
bytes were copied to the remote server. Another alternative is to use a vendor backup
solution that uses SQL Server VDI to stream the backup remotely to another computer.

Don’t forget about page-level restore.

Remember when making key decision about restoring a database that you have a new fea-
ture to reduce the time to restore a backup sequence called page-level restore. Of course,
to use this feature you need to know what page to restore, but in some cases, you may
have damage to a single page for a multiterabyte database. If you have Enterprise Edition,
why not then restore just the damaged page using database and log backups while users
are online in the database? It could save you a lot of time and grief. I highly recommend
you test this feature and understand exactly how it works before you rely on this possible
strategy. An exercise at the end of this chapter helps you understand what is required to
use this feature.

Back up system databases.

Don’t forget the importance of your system databases. The failure to open these databases
at startup can result in a failure to start SQL Server. If you can’t restore from a backup,
you could be looking at a longer recovery process to rebuild the system databases, attach

Data Recovery Best Practices 73

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 73

Chapter 2 Data Corruption and Recovery Issues74

user databases, re-create user logins, and so on. Because tempdb is re-created at each server
startup, you (of course) don’t back this up, but model is important because you may add
objects in model for new databases, and tempdb requires model to be available to be cre-
ated at server startup. I have an entire section of this chapter on recovery of system data-
bases, and I think you will see that having a valid backup to restore makes your life easier.

Database and Transaction Log Best Practices
Don’t delete your transaction log.

I hope one thing you get out of this chapter is how important your transaction log is to
the logical consistency of your database. So, just because database recovery is taking a
long time or the log is getting really big, don’t think that simply shutting down SQL
Server and deleting the log is a good idea. As with other scenarios, this is not uncommon
for customers calling Microsoft PSS. They delete the log file and then call us wondering
what to do because the database cannot be started.

If recovery is taking a long time, and you think it is stuck or will never recover, it is possi-
ble Microsoft PSS may have to help you rebuild the log, but consider contacting PSS first.
You might just choose to restore from a backup, but if the backup is good, that is a much
better alternative than just deleting your log.

The one scenario in which you can safely delete the log is if the database is detached and
shut down cleanly and the recovery mode is SIMPLE. In this case, the log has nothing in it
for recovery purposes, so you could delete it. Personally, I would use this method. I would
simply shrink the log file using DBCC SHRINKFILE. Remember, if you choose to do this,
you have to detach the database first.

Always detach before attaching a database.

The proper method to attach a database requires that you detach it first. Don’t just shut
down SQL Server, copy the database and log files to another computer, and then attach
them. If you need to copy the database, use BACKUP/RESTORE or the Copy Database Wizard
in Management Studio.

The process of detaching cleanly shuts down the database. Furthermore, if the database is
suspect, detach fails in SQL Server 2005 (SQL Server 2000 didn’t do this), preventing you
from getting into a situation where you can’t attach.

Moving the resource database.

If you need to move the resource database, there is a documented method to do this in
SQL Server 2005 Books Online. However, you must move the database to the exact same
drive and directory as the master database. Failure to do this will result in problems when
trying to install a service pack or hotfix package.

Don’t ignore runtime errors.

If you encounter any error related to a database that indicates possible consistency prob-
lems, don’t ignore these or take care of them “when you have time.” Take these seriously
and put them on your high-priority list of things to do. The read retry feature is nice in

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 74

Data Recovery Best Practices 75

SQL Server 2005, but it means some underlying problem might exist with your disk sys-
tem. A successful read retry one day could be a checksum failure the next. If you have any
doubts or questions about these errors related to a possible database consistency problem
and I don’t have the information in this chapter, consult with experts such as MVPs in
the SQL Server newsgroups, or contact Microsoft PSS.

DBCC CHECKDB Best Practices
Just use DBCC CHECKDB.

In SQL Server 2005, DBCC CHECKDB does it all. No need to run CHECKALLOC or CHECKCATALOG
separately in SQL Server 2005. CHECKDB does it all. You may choose to use CHECKTABLE on
individual tables, but if CHECKDB runs in a reasonable time frame, I recommend you check
the entire database. You can also consider the WITH PHYSICAL_ONLY option to perform a
reasonable minimum check for the database and reduce the time of overall execution.

Don’t just run REPAIR.

I talk more about restoring a backup versus repair in the section on CHECKDB errors, but I’ll
say briefly here that I recommend that you not just blindly run CHECKDB with the
REPAIR_ALLOW_DATA_LOSS option. Just because DBCC CHECKDB doesn’t report errors after
repair doesn’t mean you don’t have issues to deal with. Repair may de-allocate a page
containing data rows, which now means you have logical inconsistency of your data. If
you have to use repair because you can’t restore a database, try to keep information about
errors in CHECKDB and either a backup of the damaged database or a copy of the damaged
page(s) before using repair. This is the only way to learn about the possible cause of the
damage to the database.

Use RESTORE rather than emergency mode REPAIR.

Emergency mode repair is a great feature (especially for PSS). It makes the process to
repair and rebuild a log simple and easy to use. But the key to its usage is the term emer-
gency. The SQL Server development team put in this feature for situations that you simply
didn’t account for in your disaster recovery strategy. But don’t rely on this feature. I hope
you never have to use this in your usage and administration of SQL Server, but it is nice
to know the feature exists should it be needed.

You can’t overuse CHECKDB.

So how often should you use CHECKDB? Well, I would say first that you can’t run this too
often. It might affect performance because of its resource usage, but you won’t burn up
your hard drive by using this command every day. Having said that, you probably should
use this command only on some type of regular, but minimal, basis. There is no single
formula for how often to run this command, but here is my opinion of some checkpoints
for when CHECKDB should be run:

■ Whenever you see a critical error in the ERRORLOG, especially ones I’ve documented
as runtime consistency problems.

■ Before and after any SQL Server service pack or hotfix installations.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 75

■ Before and after any major database application upgrades.

■ Before and after any Windows operating system service pack or hotfix installations
or upgrade.

■ Before and after any hardware or system maintenance such as drivers, firmware
updates, new hardware installation, or replacement of hardware components.

■ On a regular basis that makes you comfortable with the consistency of your data-
base. (This may be daily, weekly, or monthly. I wouldn’t go any longer than one
month to use CHECKDB unless you have something like a read-only database you can
easily re-create at any time.)

CHECKDB on backup servers is not a guarantee.

If you choose to restore backups to another server to keep an updated copy of your data-
base available, be careful if regular DBCC CHECKDB on the backup server reports no errors.
The primary server could have problems unique to that machine that are not carried into
a restore on the backup server. Now if you restore a full database backup and immediately
run CHECKDB on that restored backup, it is reasonable to assume the primary databases
based on that backup are clean.

Data Recovery Troubleshooting Scenarios
I’ve organized the various type of data recovery scenarios I want to teach you how to
troubleshoot into system database recovery, user database inaccessible, BACKUP/RESTORE
failures, runtime consistency errors, and CHECKDB errors. Each section is self-contained so
that you can focus on the area you are most interested in.

System Database Recovery
In most cases, recovering your database is your primary concern, because it contains the
data that supports your application and business. However, understanding how to recover
system databases can be important even though it occurs less often. This is because in
most cases, a problem with a system database can mean SQL Server cannot start. The
exception in this chapter is the MSDB database, but this too can be critical if you rely on
it for its capability to run SQLAgent jobs.

Recovering Master
There are two possible scenarios where SQL Server cannot access any database including
master or your user database:

■ A resource problem opening database or log files.

■ Recovery fails, causing the database to become SUSPECT.

A resource problem means that the engine encountered an error when trying to open a
database or log file.

Chapter 2 Data Corruption and Recovery Issues76

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 76

Data Recovery Troubleshooting Scenarios 77

Scenario 1: Failure to Open the Master Database File (master.mdf)
Let’s consider this scenario first. The master database is a unique database because it is the
single database used to bootstrap the execution of the engine. Server-wide information is
only stored in the master database, such as the registration of all other databases, login
accounts, configuration values, error messages, and linked server information.

When the engine first starts, it must first open the master database to read the server-wide
configuration information. At this point, if the master database file (master.mdf) cannot
be opened, SQL Server does not start. The ERRORLOG would look something like this:

2006-01-28 11:07:37.06 Server Microsoft SQL Server 2005 - 9.00.1399.06
(Intel X86)

Oct 14 2005 00:33:37
Copyright (c) 1988-2005 Microsoft Corporation
Developer Edition on Windows NT 5.1 (Build 2600: Service Pack 2)

2006-01-28 11:07:37.06 Server (c) 2005 Microsoft Corporation.
2006-01-28 11:07:37.06 Server All rights reserved.
2006-01-28 11:07:37.06 Server Server process ID is 4036.
2006-01-28 11:07:37.06 Server Logging SQL Server messages in file 'C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG'.
2006-01-28 11:07:37.06 Server This instance of SQL Server last reported using a
process ID of 2952 at 1/26/2006 5:04:21 PM (local) 1/26/2006 11:04:21 PM (UTC).
This is an informational message only; no user action is required.
2006-01-28 11:07:37.06 Server Registry startup parameters:
2006-01-28 11:07:37.06 Server -d C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\master.mdf2
2006-01-28 11:07:37.06 Server -e C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG\ERRORLOG
2006-01-28 11:07:37.06 Server -l C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\mastlog.ldf
2006-01-28 11:07:37.07 Server Error: 17113, Severity: 16, State: 1.
2006-01-28 11:07:37.07 Server Error 2(The system cannot find the file
specified.) occurred while opening file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\master.mdf2' to obtain configuration information at
startup. An invalid startup option might have caused the error. Verify your
startup options, and correct or remove them if necessary.

You can see that Msg 17113 indicates a problem trying to read the configuration informa-
tion from the master database file.

Troubleshooting Steps
Look at the error information right after the 17113 message. In this case, it says this:

2006-01-28 11:07:37.07 Server Error 2(The system cannot find the file specified.)

occurred while opening file 'C:\Program Files\Microsoft SQL

Server\MSSQL.1\MSSQL\DATA\master.mdf2'

Error 2 is the Windows error returned from the Windows API CreateFile call. The text
description follows the error number.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 77

Determine the cause of the Windows error. In this case, error 2 means that the filename
SQL Server passed to CreateFile does not exist. This means the path is wrong or the file
does not exit. Check the full name of the path in the message. The standard name for the
master database file is master.mdf, not master.mdf2.

If this is true, why does the engine think the name is master.mdf2? Because the master
database is the bootstrap database, the engine has to get the location of the master data-
base files from a source other than a database. It uses program parameters to do this. -d is
used to specify the location of the master database file, and -l for the master transaction
log file. Because SQL Server is normally run as a service, it must get the default startup
parameter values from the registry.

Rather than edit the registry directly, use the SQL Server Configuration Manager. This is a
good time to point out that any startup parameter setting or service configuration option
(such as the startup account for SQL Server) should be done using the SQL Configuration
Manager. Figure 2-3 shows what the interface looks like to change startup parameters for
SQL Server.

FIGURE 2-3 Changing startup parameters for SQL Server

One tip when using this dialog box. The Startup Parameters is a single text field. To add a
new parameter, you need to add it to the end of the parameters delimited by a semicolon.

Chapter 2 Data Corruption and Recovery Issues78

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 78

Even though a failure to open the transaction log file can be resolved using the same
technique, the errors reported in the ERRORLOG are slightly different:

2006-02-04 17:25:15.37 spid5s Error: 17207, Severity: 16, State: 1.
2006-02-04 17:25:15.37 spid5s FCB::Open: Operating system error 2(The system
cannot find the file specified.) occurred while creating or opening file
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\mastlog.ldf2'. Diagnose
and correct the operating system error, and retry the operation.
2006-02-04 17:25:15.40 spid5s Error: 17204, Severity: 16, State: 1.
2006-02-04 17:25:15.40 spid5s FCB::Open failed: Could not open file C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\mastlog.ldf2 for file number 2. OS
error: 2(The system cannot find the file specified.).
2006-02-04 17:25:15.48 spid5s Error: 5120, Severity: 16, State: 101.
2006-02-04 17:25:15.48 spid5s Unable to open the physical file "C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\mastlog.ldf2". Operating system
error 2: "2(The system cannot find the file specified.)".

Scenario 2: Master Database Recovery Failure
Like any user database, if recovery fails, the database is marked SUSPECT. However, one
major difference is that the server shuts down when it detects that recovery has failed.
Consider a situation where SQL Server attempts to start but fails. You look at the ERRORLOG
and see the following:

2006-03-19 22:35:02.14 Server Microsoft SQL Server 2005 - 9.00.1399.06
(Intel X86)

Oct 14 2005 00:33:37
Copyright (c) 1988-2005 Microsoft Corporation
Developer Edition on Windows NT 5.1 (Build 2600: Service Pack 2)

2006-03-19 22:35:02.14 Server (c) 2005 Microsoft Corporation.
2006-03-19 22:35:02.14 Server All rights reserved.
2006-03-19 22:35:02.14 Server Server process ID is 2040.
2006-03-19 22:35:02.14 Server Logging SQL Server messages in file 'C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\ERRORLOG'.
2006-03-19 22:35:02.15 Server This instance of SQL Server last reported using a
process ID of 3628 at 3/19/2006 10:32:33 PM (local) 3/20/2006 4:32:33 AM (UTC).
This is an informational message only; no user action is required.
2006-03-19 22:35:02.15 Server Registry startup parameters:
2006-03-19 22:35:02.15 Server -d C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\master.mdf
2006-03-19 22:35:02.15 Server -e C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\LOG\ERRORLOG
2006-03-19 22:35:02.15 Server -l C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\mastlog.ldf
2006-03-19 22:35:02.18 Server SQL Server is starting at normal priority base
(=7). This is an informational message only. No user action is required.
2006-03-19 22:35:02.18 Server Detected 1 CPUs. This is an informational message;
no user action is required.
2006-03-19 22:35:02.56 Server Using dynamic lock allocation. Initial allocation
of 2500 Lock blocks and 5000 Lock Owner blocks per node. This is an informational
message only. No user action is required.
2006-03-19 22:35:02.56 Server Attempting to initialize Microsoft Distributed

Data Recovery Troubleshooting Scenarios 79

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 79

Chapter 2 Data Corruption and Recovery Issues80

Transaction Coordinator (MS DTC). This is an informational message only. No user
action is required.
2006-03-19 22:35:02.59 Server The Microsoft Distributed Transaction Coordinator
(MS DTC) service could not be contacted. If you would like distributed transaction
functionality, please start this service.
2006-03-19 22:35:02.59 Server Database Mirroring Transport is disabled in the
endpoint configuration.
2006-03-19 22:35:02.59 spid5s Starting up database 'master'.
2006-03-19 22:35:04.34 spid5s Error: 824, Severity: 24, State: 2.
2006-03-19 22:35:04.34 spid5s SQL Server detected a logical consistency-based I/O
error: incorrect pageid (expected 1:506; actual 39321:-1717986919). It occurred
during a read of page (1:506) in database ID 1 at offset 0x000000003f4000 in file
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\master.mdf'. Additional
messages in the SQL Server error log or system event log may provide more detail.
This is a severe error condition that threatens database integrity and must be
corrected immediately. Complete a full database consistency check (DBCC CHECKDB).
This error can be caused by many factors; for more information, see SQL Server
Books Online.
2006-03-19 22:35:04.34 spid6s Error: 922, Severity: 14, State: 1.
2006-03-19 22:35:04.34 spid6s Database 'master' is being recovered. Waiting until
recovery is finished.
2006-03-19 22:35:04.34 spid6s System Task System Task produced an error that was
not handled. Major: 9, Minor: 22, Severity:14, State:1
2006-03-19 22:35:04.34 spid5s Error: 3313, Severity: 21, State: 2.
2006-03-19 22:35:04.34 spid5s During redoing of a logged operation in database
'master', an error occurred at log record ID (2017:314:13). Typically, the specific
failure is previously logged as an error in the Windows Event Log service. Restore
the database from a full backup, or repair the database.
2006-03-19 22:35:04.34 spid5s Cannot recover the master database. SQL Server
is unable to run. Restore master from a full backup, repair it, or rebuild
it. For more information about how to rebuild the master database, see SQL
Server Books Online.

Troubleshooting Steps
First, read the errors from the bottom up. You can see that the problem is a recovery prob-
lem for master, the error was during the redo of a log operation, and that the cause of
that problem is an 824 error on the database page. The 824 error in this case is due to an
incorrect page ID on page 1:506.

Because deferred transactions don’t apply to the master database, your choices are the
following:

■ Restore a backup of the master database.

■ Rebuild it using the setup program that comes with the installation medium.

Let’s address how to restore a backup in this situation. You always have to start SQL Server
in single user mode (using the -m startup parameter) to restore master, but in this case,
SQL Server cannot be started because of the master recovery failure. Well, a nice trace flag
helps you in this situation, trace flag 3607. Trace flag 3607 tells the engine to open just
the master database, but don’t run recovery on it. It is only to be used in this type of
emergency situation, when master database recovery fails.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 80

Data Recovery Troubleshooting Scenarios 81

So the steps are as follows:

1. Start SQL Server with -m and -T3607 as startup parameters using the SQL Server
Configuration Manager.

2. Restore your backup of the master database.

You see a message indicating SQL Server is being shut down:

Processed 360 pages for database 'master', file 'master' on file 1.
Processed 2 pages for database 'master', file 'mastlog' on file 1.
The master database has been successfully restored. Shutting down SQL Server.
SQL Server is terminating this process.

SQL Server shuts down by design whenever you restore master. It is important to
pay attention to the message to the client, because the ERRORLOG will not show a
reason why SQL Server was shut down in this situation.

3. Remove the -m and -T3607 startup parameters and restart SQL Server.

So if you don’t happen to have a backup of the master database, your only choice is to
rebuild it. After you rebuild it, you lose any previous information in master.
Unfortunately, trace flag 3607 is only helpful to restore master. When you use this trace
flag, any attempt to access an object in master results in the following error:

Msg 904, Level 16, State 1, Line 1
Database 32767 cannot be autostarted during server shutdown or startup.

Putting master in emergency mode won’t help either, because it is not allowed for the
master database.

So now that you are faced with the prospect of rebuiding master, how do you go about it?
The first step is to find the installation media or source for your install (perhaps a net-
work drive). Why? Because the method to rebuild the master database is contained within
the SQL Server Setup program that only comes with the installation media. The steps to
use setup to rebuild master are actually well documented in SQL Server Books Online in
the section “Rebuilding System Databases, Rebuilding the Registry,” so I don’t list them
here. An important point for you to keep in mind is that after rebuilding master, you
must reapply any service packs or hotfixes you have previously installed, because they
might have updated catalog information or the resource database.

The third scenario that I didn’t call out specifically is simply a need to restore master
because of a corruption problem or perhaps a change made that you want undone (for
example, dropping some important logins). If the master database is fully available and
ONLINE, all you need to do is RESTORE your backup.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 81

Chapter 2 Data Corruption and Recovery Issues82

Recovering Model
Just like the master database, if the model database cannot be started, SQL Server will not
start successfully. If the problem was due to a problem with opening the model database
file, the ERRORLOG shows entries such as the following:

2006-03-19 23:52:11.06 spid9s Error: 17207, Severity: 16, State: 1.
2006-03-19 23:52:11.06 spid9s FCB::Open: Operating system error 2(The system
cannot find the file specified.) occurred while creating or opening file
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\model.mdf'. Diagnose and
correct the operating system error, and retry the operation.
2006-03-19 23:52:11.06 Server Server is listening on [127.0.0.1 <ipv4> 1434].
2006-03-19 23:52:11.06 spid9s Error: 17204, Severity: 16, State: 1.
2006-03-19 23:52:11.06 spid9s FCB::Open failed: Could not open file C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\model.mdf for file number 1. OS
error: 2(The system cannot find the file specified.).
2006-03-19 23:52:11.06 Server Dedicated admin connection support was established
for listening locally on port 1434.
2006-03-19 23:52:11.06 spid9s Error: 5120, Severity: 16, State: 101.
2006-03-19 23:52:11.06 spid9s Unable to open the physical file "C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\model.mdf". Operating system error 2:
"2(The system cannot find the file specified.)".
2006-03-19 23:52:11.12 spid9s Error: 945, Severity: 14, State: 2.
2006-03-19 23:52:11.12 spid9s Database 'model' cannot be opened due to
inaccessible files or insufficient memory or disk space. See the SQL Server
errorlog for details.
2006-03-19 23:52:11.14 spid9s Could not create tempdb. You may not have
enough disk space available. Free additional disk space by deleting other
files on the tempdb drive and then restart SQL Server. Check for additional
errors in the event log that may indicate why the tempdb files could not be
initialized.

This is similar to the situation with the master database; just the error numbers have
changed. In this case, error 5120 contains the Windows error to explain why the model
database file could not be opened. In the preceding scenario, it is Windows error 2, which
means the file could not be found. Troubleshoot the same way as master, except the loca-
tion for where the engine believes the file should exist is stored in the master database
rather than in the registry. If I encountered this error, I would check to see whether the
file existed in the path. If it did not, I would see if the model.mdf file existed anywhere on
the drive. If I found it, I could copy it to the path as listed in the message or change the
location where the engine should look for the file.

How do I do this if the engine will not start? Here are the steps:

1. Add the startup parameter -T3608 to start SQL Server. This tells the engine to not
start any database except master.

2. Use ALTER DATABASE and the MODIFY FILE option to change the path of the model
database file to its correct path.

3. Shut down and restart SQL Server without -T3608 so that all system and user data-
bases can recover.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 82

A more obscure scenario would be for recovery to fail for the model database. I say this
because the model database is not changed very often by customers. Customers who do
want to add objects to the model database so that every new database will have them usu-
ally do this infrequently. But should recovery fail for the model database, you need to use
trace flag 3608 again to start the server so that you can restore model from a backup. This
was not possible in SQL Server 2000, because the engine would attempt to use tempdb
during the RESTORE command. Because tempdb first requires model to be started, the
RESTORE command would fail. Now that restriction is removed, and RESTORE should work
with trace flag 3608. What about that cool feature I told you about called emergency
mode repair with CHECKDB? Is that possible for model? Does it make sense? First of all, it
doesn’t make sense. You don’t want to create new databases based on a possible logically
inconsistent model database. But it really doesn’t matter anyway, because ALTER DATABASE
SET EMERGENCY is not allowed on the model database. (For that matter, it isn’t allowed on
any system database.)

Recovering MSDB
The msdb database is considered a system database even though it is not required to start
SQL Server. One reason that you can consider it a system database is that if you rebuild
the master database with setup, you are in effect rebuilding all system databases,
including model, MSDB, and the resource database. Furthermore, MSDB (in case you were
wondering, MSDB stands for Microsoft System Database) is used to store important infor-
mation such as backup/restore history and SQL Server Agent jobs. In fact, the SQL Server
Agent service will not start if the MSDB database is not available.

The scenarios for problems accessing MSDB are the same as master and model. Either you
can encounter a resource problem (such as problems opening the database/log files), or
recovery could fail, causing the database to become SUSPECT.

Because MSDB is more like a user database than model, you can use more-conventional
techniques to recover it. For example, because SQL Server can start if a problem exists
with MSDB, you don’t need any special trace flags to restore a backup of MSDB. If the MSDB
database becomes SUSPECT, you can just restore from a backup. If you don’t have a backup
available, you must rebuild the system databases using the same technique as you would
rebuild master or model. In previous versions, you could get away with manually running
the instmsdb.sql script in the INSTALL directory of SQL Server. Unfortunately, this tech-
nique is no longer that simple (the gyrations to make it work are pretty complex, and I
don’t think they are reliable), so the safest bet is to rebuild system databases.

If the MSDB database or log files cannot be opened, the database state appears as
RECOVERY_PENDING, as described in the “Storage Internals” section. The errors you will see
in the ERRORLOG look much like the scenario with model:

2006-03-20 18:58:47.71 spid12s Error: 17207, Severity: 16, State: 1.
2006-03-20 18:58:47.71 spid12s FCB::Open: Operating system error 2(The system
cannot find the file specified.) occurred while creating or opening file
'c:\program files\microsoft sql server\mssql.1\mssql\data\msdbdata.mdf'. Diagnose
and correct the operating system error, and retry the operation.

Data Recovery Troubleshooting Scenarios 83

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 83

Chapter 2 Data Corruption and Recovery Issues84

2006-03-20 18:58:47.71 spid12s Error: 17204, Severity: 16, State: 1.
2006-03-20 18:58:47.71 spid12s FCB::Open failed: Could not open file c:\program
files\microsoft sql server\mssql.1\mssql\data\msdbdata.mdf for file number 1. OS
error: 2(The system cannot find the file specified.).
2006-03-20 18:58:47.73 spid12s Error: 5120, Severity: 16, State: 101.
2006-03-20 18:58:47.73 spid12s Unable to open the physical file "c:\program
files\microsoft sql server\mssql.1\mssql\data\msdbdata.mdf". Operating system
error 2: "2(The system cannot find the file specified.)".

In fact, as you will see in the next section on user databases, these errors look the same as
if a user database files could not be opened. The difference between this scenario and the
model database is that the server is still up and running. You can then try to resolve the
problem (perhaps by getting the msdbdata.mdf file in its right location) and simply exe-
cute ALTER DATABASE msdb SET ONLINE to start it up. By the way, don’t get nervous when
doing this in SQL Server Management Studio. If you attempt to connect to Object
Explorer for the server in this state, you will get the error shown in Figure 2-4.

FIGURE 2-4 Error message from attempting to connect to Object Explorer for the server

After you click OK, you won’t see anything under the server name from Object Explorer.
This is because Object Explorer tries to execute a stored procedure in the msdb database to
show properties for SQL Server Agent after it connects. If this fails, it just doesn’t show
you anything. That’s okay. Get MSDB back online, and then right-click the server instance
listed. Select Disconnect, which removes the server instance from the screen. Now you
can select the Connect drop-down option and reconnect to Object Explorer.

Recovering the Resource Database
You recall the resource database is read-only and “hidden.” This means you can’t refer-
ence this in commands such as ALTER DATABASE. So the techniques to recover from prob-
lems with it are different than even other system databases. For example, there is no way
to BACKUP the resource database online. But because you can’t modify it, there is no need
to. The only way to back up the resource database is to back up the files themselves.

This scenario is very much the model database, because the server cannot start if it cannot
open the resource database. In fact, the errors are identical to what you see in this situa-
tion for model. So look at the Windows error and resolve this to restart SQL Server. There
is one big difference from the model situation. Even if you want to start SQL Server with
-T3608 to avoid starting the resource database, you really cannot do anything. What I
mean is that you can’t query any catalog view, because they require the resource database.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 84

Data Recovery Troubleshooting Scenarios 85

Furthermore, as I’ve said, T-SQL commands can’t reference the resource database by
name. Given this information, the only way to encounter a problem opening the resource
database files is something occurring external to SQL Server (for example, someone going
into the DATA directory and renaming the mssqlsystemresource.mdf file).

The other scenario could simply be damage to the resource database caused by some
external factor (perhaps the portion of the disk containing this database was damaged).
Because there is no way to BACKUP the database or RESTORE it, the only method to recover
is to copy the resource database files themselves from the proper source. What is the
proper source? This is where you have to manage these files a bit. For the RTM version of
SQL Server 2005, no problem. These files are on the installation media. You may not have
this lying around, which is why I recommend you copy them to some backup source you
can get to easily. For any hotfixes or service packs you apply, you should also keep this
copy of the files handy to replace.

When you start applying hotfixes or future service packs, you may ask, “How do I know if
I’ve got the correct version to copy?” There is a method to find out the version of the
resource database. Remember I told you to think of the resource database as DLL. The
problem with versions is that the resource database files are not DLLs, so there is no way
with Windows to put in a version value in the property of these files. So, the SQL Server
development team built in the version to the resource database and provided you a way
to query it:

select ServerProperty('ResourceVersion')

For the RTM version of SQL Server, this returns the following result:

--
9.00.1399

So how do I know whether this is the “right” version of the resource database? This ver-
sion matches the engine’s build number. And the query to find out the build number is
the following:

select ServerProperty('ProductVersion')

For the original shipping version of SQL Server 2005 (known internally as the RTM ver-
sion), this returns the following:

--
9.00.1399.06

You can ignore the .06 on this version for comparison’s sake. This is just an internal num-
ber used as part of the final builds for SQL Server 2005 RTM. So if you run these two
queries and you receive the same results for the first three numbers separated by the deci-
mal, you have the correct resource database. If they don’t match, you have a problem and
need to find the correct version. This is why I recommend whenever you apply a hotfix

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 85

or service pack, you take the resource database files copied to the DATA directory and keep
them tucked away in a safe place. What would happen if these two versions differ? For
SQL Server 2005 RTM, maybe nothing. The true answer is the behavior of catalog views
and system objects in the engine is unpredictable. For future versions of the engine (hint:
perhaps in the first service pack of SQL Server 2005), an error may be produced in the
ERRORLOG, and the engine might not start.

Failure to Create tempdb
As with previous versions of SQL Server, tempdb is created from scratch each time SQL
Server is started. This means recovery is not run for tempdb. This does not mean there
won’t be problems creating tempdb at server startup. One such problem I’ve seen as
reported by customers is not having enough disk space to create the tempdb files. By
default, tempdb is created with a single 8MB database file and 512KB transaction log file.
So no matter how large tempdb grows, when SQL Server is restarted, it is re-created with
these default sizes. However, you can change these default sizes using ALTER DATABASE or
SQL Server Management Studio. In fact, for performance reasons, I highly recommend
you not rely on autogrowth of these files and change tempdb to a size that meets the
needs of your application. (Unfortunately, I do not get into a recommendation here, but
there is a section in Books Online called “Capacity Planning for tempdb.”)

Reinstalling the Operating System
One other possible scenario to mention about system databases is reusing them if you
have to reinstall the operating system. Consider the scenario where for whatever reason
you decide to reinstall the Windows operating system. This will also require you to rein-
stall SQL Server. But if the drive containing the system database files and your user data-
base files is valid and intact, why should you have to rebuild the system databases? In
SQL Server 2000, this was exactly what you had to do. In SQL Server 2005, the setup pro-
gram is smart enough to detect existing system databases.

When you run the setup for SQL Server, you can specify a path for the DATA directory
where system databases will reside. Simply point that DATA directory to the same path
where the valid system databases exist. If you do this, you see the dialog box from setup,
as shown in Figure 2-5.

FIGURE 2-5 Dialog box from setup

Chapter 2 Data Corruption and Recovery Issues86

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 86

User Database Inaccessible 87

Just click OK and setup will use your existing system databases. When setup is done, you
should be at the same state as you were before reinstalling the operating system (unless
you had applied hotfixes or service packs, because they must be reapplied after this).

User Database Inaccessible
Let’s shift focus now and talk about scenarios where you may have problems accessing
your database. The scenarios are similar to some of the system database situations, but
other options are available for recovery, because SQL Server can start even if your database
cannot.

Database Marked RECOVERY_PENDING
Remember the database state diagram I explained earlier in the chapter. If there is any
problem opening the database or transaction log files for a database, the database state is
changed to RECOVERY_PENDING. In this scenario, if you attempt to access the database, you
get the following error:

use pubs
go
Msg 945, Level 14, State 2, Line 1
Database 'pubs' cannot be opened due to inaccessible files or insufficient
memory or disk space. See the SQL Server errorlog for details.

Much like the case with MSDB, the ERRORLOG shows errors like these:

2006-03-23 14:26:05.99 spid18s Error: 17207, Severity: 16, State: 1.
2006-03-23 14:26:05.99 spid18s FCB::Open: Operating system error 2(The system
cannot find the file specified.) occurred while creating or opening file
'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs.mdf'. Diagnose and
correct the operating system error, and retry the operation.
2006-03-23 14:26:06.10 spid18s Error: 17204, Severity: 16, State: 1.
2006-03-23 14:26:06.10 spid18s FCB::Open failed: Could not open file C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs.mdf for file number 1. OS error:
2(The system cannot find the file specified.).
2006-03-23 14:26:06.21 spid18s Error: 5120, Severity: 16, State: 101.
2006-03-23 14:26:06.21 spid18s Unable to open the physical file "C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs.mdf". Operating system
error 2: "2(The system cannot find the file specified.)".

Unfortunately in this case, Management Studio does not give you any clue in Object
Explorer that the database may have a problem (see Figure 2-6).

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 87

Chapter 2 Data Corruption and Recovery Issues88

FIGURE 2-6 Management Studio does not indicate that the database may have a
problem.

You can see, though, that next to the pubs database icon there is no plus sign (+) to
examine objects in that database. This is a clue that there may be an issue with pubs. If
you run into this situation, try to right-click the database icon and select Properties. This
forces Management Studio to try and access the database (trying to obtain metadata about
the state of files in the database).

In this particular scenario, you get a dialog box with any errors encountered trying to
access properties for the database (in this case, Msg 945), as shown in Figure 2-7.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 88

User Database Inaccessible 89

FIGURE 2-7 Dialog box with errors encountered while trying to access properties for the
database

If you query the sys.databases catalog view, you can see the pubs database status of
RECOVERY_PENDING:

select state_desc, name from sys.databases where name = 'pubs'
go

state_desc name
-- -----------------------

RECOVERY_PENDING pubs

If the transaction log file is not available, the database state is marked RECOVERY_PENDING,
but errors reported in the ERRORLOG are slightly different:

2006-03-23 14:47:12.81 spid13s Error: 17207, Severity: 16, State: 1.
2006-03-23 14:47:12.81 spid13s FileMgr::StartLogFiles: Operating system error
2(The system cannot find the file specified.) occurred while creating or opening
file 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF'.
Diagnose and correct the operating system error, and retry the operation.
2006-03-23 14:47:12.81 spid13s File activation failure. The physical file
name "C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF"
may be incorrect.

There is an interesting exception to this scenario when the transaction log file cannot be
opened and the database uses a recovery mode of SIMPLE. If the database was shut down
“cleanly,” which means no recovery is required for the database on startup and the data-
base recovery mode is SIMPLE, it is a safe operation for SQL Server to rebuild the transac-
tion log. Why?

■ A SIMPLE recovery has no log backups, so media recovery is not an issue.

■ If there is no recovery to run on the database, no consistency is lost by rebuilding
the log.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 89

Chapter 2 Data Corruption and Recovery Issues90

In this situation, on database startup, you will see some failures in the ERRORLOG but also a
message indicating the transaction log is being rebuilt:

2006-03-23 14:42:59.28 spid13s Error: 17207, Severity: 16, State: 1.
2006-03-23 14:42:59.28 spid13s FileMgr::StartLogFiles: Operating system error
2(The system cannot find the file specified.) occurred while creating or opening
file 'C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF'.
Diagnose and correct the operating system error, and retry the operation.
2006-03-23 14:42:59.36 spid13s File activation failure. The physical file name
"C:\Program Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF" may be
incorrect.
2006-03-23 14:42:59.68 spid12s Starting up database 'troy'.
2006-03-23 14:43:00.23 spid15s CHECKDB for database 'test_checksum' finished
without errors on 2005-09-22 11:31:57.547 (local time). This is an informational
message only; no user action is required.
2006-03-23 14:43:01.06 spid12s CHECKDB for database 'troy' finished without
errors on 2006-03-19 19:36:09.937 (local time). This is an informational message
only; no user action is required.
2006-03-23 14:43:01.17 spid13s New log file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF' was created.
2006-03-23 14:43:01.17 spid13s New log file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF' was created.

As I discuss later in this section, this comes in handy for attaching SIMPLE model databases
with a single transaction log file. You don’t even need the transaction log file to attach,
because it is perfectly safe for SQL Server to rebuild one for you. Unfortunately, the log is
rebuilt to a default size of 1MB, so you need to resize this to your needs.

Troubleshooting Steps
If the cause for RECOVERY_PENDING is inability to open the database files, the steps are sim-
ple, exactly as they were for MSDB:

1. Correct the problem that caused the file open failure.

2. Run ALTER DATABASE <dbname> SET ONLINE.

3. If ALTER DATABASE doesn’t report any errors, you know that the database started
successfully. You can also see your actions allowed the database to start in the
ERRORLOG:

2006-03-23 15:07:44.18 spid51 Setting database option ONLINE to ON for
database pubs.
2006-03-23 15:07:44.25 spid51 Starting up database 'pubs'.

If no errors exist in the ERRORLOG after the “Starting up” message, the database should
now be ONLINE (which you can also confirm by looking at sys.databases).

There is an interesting situation involving a failure to open a database or log file I want
you to know about because it is tricky to troubleshoot. Look at the following ERRORLOG
entries and notice the OS Error description for why the file cannot be opened:

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 90

2006-03-23 15:15:25.71 spid15s Error: 17207, Severity: 16, State: 1.
2006-03-23 15:15:25.71 spid15s FCB::Open: Operating system error 32(The process
cannot access the file because it is being used by another process.) occurred while
creating or opening file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\pubs.mdf'. Diagnose and correct the operating system
error, and retry the operation.
2006-03-23 15:15:25.71 spid15s Error: 17204, Severity: 16, State: 1.
2006-03-23 15:15:25.71 spid15s FCB::Open failed: Could not open file C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs.mdf for file number 1. OS error:
32(The process cannot access the file because it is being used by another
process.).
2006-03-23 15:15:25.71 spid15s Error: 5120, Severity: 16, State: 101.
2006-03-23 15:15:25.71 spid15s Unable to open the physical file "C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\pubs.mdf". Operating system
error 32: "32(The process cannot access the file because it is being used by
another process.)".

How can this situation occur? Why would SQL Server not be able to open a file because
another program had it open? How do I find what program is doing this? There is a nice
utility on the web called Process Explorer (which you can download from
www.sysinternals.com).

To find which program has this open, launch Process Explorer and select the Find, Find
Handle menu option. Type in the name of the file in the SQL error, and the program will
tell you exactly what process has your database file handle open (see Figure 2-8).

FIGURE 2-8 What process your database file handle opened

In this case, someone has accidentally opened the file using Microsoft Word. Well, okay, it
was me deliberately doing this to demonstrate the problem.

The same troubleshooting steps I’ve provided for database files apply to transaction log
files. But what if you cannot resolve the problem with accessing the transaction log
file? Do you have any other options? You do, but there are limits on how successful
they will be.

User Database Inaccessible 91

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 91

Chapter 2 Data Corruption and Recovery Issues92

In this situation, you can change the database state to EMERGENCY using ALTER DATABASE
<dbname> SET EMERGENCY. At this point, you can access the database to query your data.
But only SELECT statements to read data. You will encounter the following error if you try
to modify the database:

Msg 3908, Level 16, State 1, Line 1
Could not run BEGIN TRANSACTION in database 'pubs' because the database is in
bypass recovery mode.

You can run some diagnostics like DBCC CHECKDB. However, you may get errors from this
command, because the transaction log file was not available and recovery could not run.
Recovery may be necessary to bring the database into a consistent state. So, your options
are to copy all the data from your database to a new one or to use emergency mode
repair. I covered this in the earlier section on enhancements to DBCC CHECKDB for SQL
Server 2005.

Here are the steps to use CHECKDB in this situation (assuming the preceding example,
where the pubs transaction log file could not be opened):

1. ALTER DATABASE pubs SET EMERGENCY.

2. ALTER DATABASE pubs SET SINGLE_USER.

3. DBCC CHECKDB (pubs, REPAIR_ALLOW_DATA_LOSS).

4. CHECKDB returns the following messages:

File activation failure. The physical file name "C:\Program Files\Microsoft
SQL Server\MSSQL.1\MSSQL\DATA\pubs_log.LDF" may be incorrect.
Warning: The log for database 'pubs' has been rebuilt. Transactional consistency
has been lost. The RESTORE chain was broken, and the server no longer has context
on the previous log files, so you will need to know what they were. You should run
DBCC CHECKDB to validate physical consistency. The database has been put in dbo-
only mode. When you are ready to make the database available for use, you will need
to reset database options and delete any extra log files.
DBCC results for 'pubs'.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
Service Broker Msg 9667, State 1: Services analyzed: 3.
Service Broker Msg 9668, State 1: Service Queues analyzed: 3.
Service Broker Msg 9669, State 1: Conversation Endpoints analyzed: 0.
Service Broker Msg 9674, State 1: Conversation Groups analyzed: 0.
Service Broker Msg 9670, State 1: Remote Service Bindings analyzed: 0.
DBCC results for 'sys.sysrowsetcolumns'.
There are 626 rows in 6 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
There are 97 rows in 1 pages for object "sys.sysrowsets".
DBCC results for 'sysallocunits'.
There are 110 rows in 2 pages for object "sysallocunits".
DBCC results for 'sys.sysfiles1'.
There are 2 rows in 1 pages for object "sys.sysfiles1".
DBCC results for 'sys.syshobtcolumns'.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 92

User Database Inaccessible 93

There are 626 rows in 6 pages for object "sys.syshobtcolumns".
DBCC results for 'sys.syshobts'.
There are 97 rows in 1 pages for object "sys.syshobts".
DBCC results for 'sys.sysftinds'.
There are 0 rows in 0 pages for object "sys.sysftinds".
DBCC results for 'sys.sysserefs'.
There are 110 rows in 1 pages for object "sys.sysserefs".
DBCC results for 'sys.sysowners'.
There are 14 rows in 1 pages for object "sys.sysowners".
DBCC results for 'sys.sysprivs'.
There are 123 rows in 1 pages for object "sys.sysprivs".
DBCC results for 'sys.sysschobjs'.
There are 99 rows in 2 pages for object "sys.sysschobjs".
DBCC results for 'sys.syscolpars'.
There are 497 rows in 9 pages for object "sys.syscolpars".
DBCC results for 'sys.sysnsobjs'.
There are 1 rows in 1 pages for object "sys.sysnsobjs".
DBCC results for 'sys.syscerts'.
There are 0 rows in 0 pages for object "sys.syscerts".
DBCC results for 'sys.sysxprops'.
There are 0 rows in 0 pages for object "sys.sysxprops".
DBCC results for 'sys.sysscalartypes'.
There are 30 rows in 1 pages for object "sys.sysscalartypes".
DBCC results for 'sys.systypedsubobjs'.
There are 0 rows in 0 pages for object "sys.systypedsubobjs".
DBCC results for 'sys.sysidxstats'.
There are 127 rows in 2 pages for object "sys.sysidxstats".
DBCC results for 'sys.sysiscols'.
There are 244 rows in 1 pages for object "sys.sysiscols".
DBCC results for 'sys.sysbinobjs'.
There are 23 rows in 1 pages for object "sys.sysbinobjs".
DBCC results for 'sys.sysobjvalues'.
There are 147 rows in 22 pages for object "sys.sysobjvalues".
DBCC results for 'sys.sysclsobjs'.
There are 14 rows in 1 pages for object "sys.sysclsobjs".
DBCC results for 'sys.sysrowsetrefs'.
There are 0 rows in 0 pages for object "sys.sysrowsetrefs".
DBCC results for 'sys.sysremsvcbinds'.
There are 0 rows in 0 pages for object "sys.sysremsvcbinds".
DBCC results for 'sys.sysxmitqueue'.
There are 0 rows in 0 pages for object "sys.sysxmitqueue".
DBCC results for 'sys.sysrts'.
There are 1 rows in 1 pages for object "sys.sysrts".
DBCC results for 'sys.sysconvgroup'.
There are 0 rows in 0 pages for object "sys.sysconvgroup".
DBCC results for 'sys.sysdesend'.
There are 0 rows in 0 pages for object "sys.sysdesend".
DBCC results for 'sys.sysdercv'.
There are 0 rows in 0 pages for object "sys.sysdercv".
DBCC results for 'sys.syssingleobjrefs'.
There are 163 rows in 1 pages for object "sys.syssingleobjrefs".
DBCC results for 'sys.sysmultiobjrefs'.
There are 133 rows in 1 pages for object "sys.sysmultiobjrefs".
DBCC results for 'sys.sysdbfiles'.
There are 2 rows in 1 pages for object "sys.sysdbfiles".

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 93

DBCC results for 'sys.sysguidrefs'.
There are 0 rows in 0 pages for object "sys.sysguidrefs".
DBCC results for 'sys.sysqnames'.
There are 91 rows in 1 pages for object "sys.sysqnames".
DBCC results for 'sys.sysxmlcomponent'.
There are 93 rows in 1 pages for object "sys.sysxmlcomponent".
DBCC results for 'sys.sysxmlfacet'.
There are 97 rows in 1 pages for object "sys.sysxmlfacet".
DBCC results for 'sys.sysxmlplacement'.
There are 17 rows in 1 pages for object "sys.sysxmlplacement".
DBCC results for 'sys.sysobjkeycrypts'.
There are 0 rows in 0 pages for object "sys.sysobjkeycrypts".
DBCC results for 'sys.sysasymkeys'.
There are 0 rows in 0 pages for object "sys.sysasymkeys".
DBCC results for 'sys.syssqlguides'.
There are 0 rows in 0 pages for object "sys.syssqlguides".
DBCC results for 'sys.sysbinsubobjs'.
There are 0 rows in 0 pages for object "sys.sysbinsubobjs".
DBCC results for 'publishers'.
There are 8 rows in 1 pages for object "publishers".
DBCC results for 'titles'.
There are 18 rows in 1 pages for object "titles".
DBCC results for 'titleauthor'.
There are 25 rows in 1 pages for object "titleauthor".
DBCC results for 'stores'.
There are 6 rows in 1 pages for object "stores".
DBCC results for 'sales'.
There are 21 rows in 1 pages for object "sales".
DBCC results for 'roysched'.
There are 86 rows in 1 pages for object "roysched".
DBCC results for 'discounts'.
There are 3 rows in 1 pages for object "discounts".
DBCC results for 'jobs'.
There are 14 rows in 1 pages for object "jobs".
DBCC results for 'pub_info'.
There are 8 rows in 1 pages for object "pub_info".
DBCC results for 'employee'.
There are 43 rows in 1 pages for object "employee".
DBCC results for 'x'.
There are 0 rows in 0 pages for object "x".
DBCC results for 'sys.queue_messages_1977058079'.
There are 0 rows in 0 pages for object "sys.queue_messages_1977058079".
DBCC results for 'sys.queue_messages_2009058193'.
There are 0 rows in 0 pages for object "sys.queue_messages_2009058193".
DBCC results for 'sys.queue_messages_2041058307'.
There are 0 rows in 0 pages for object "sys.queue_messages_2041058307".
DBCC results for 'authors'.
There are 23 rows in 1 pages for object "authors".
CHECKDB found 0 allocation errors and 0 consistency errors in database 'pubs'.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

Chapter 2 Data Corruption and Recovery Issues94

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 94

User Database Inaccessible 95

Pay special attention to the following message in this chain:

Warning: The log for database 'pubs' has been rebuilt. Transactional consistency

has been lost. The RESTORE chain was broken, and the server no longer has context

on the previous log files, so you will need to know what they were. You should run

DBCC CHECKDB to validate physical consistency. The database has been put in dbo-

only mode. When you are ready to make the database available for use, you will need

to reset database options and delete any extra log files.

What does this message mean? Well, it has a bunch of warnings, so let me summarize
them for you:

■ Transactional consistency

Even though DBCC CHECKDB reports no errors, it doesn’t mean that the database is
logically consistent. What I mean is that since the log was rebuilt there could have
been modifications to the database that need to be redone or undone during recov-
ery for transactions to be consistent.

Consider the following scenario. Your application credits a customer account for
$10,000. The rows on the database page are updated to reflect a credit to the cus-
tomer’s account. Let’s say the user of the application is not done with this customer,
so by design the transaction for this operation is still active. But, because of memory
pressure in the engine, this page is flushed to disk. To ensure consistency, SQL
Server also flushes the log records associated with the transaction to disk. But the
user realizes he made a mistake and clicks the Cancel button. This causes the appli-
cation to roll back the transaction. In memory, the page and log records are
changed. Within the next few minutes, a serious problem occurs on the server, and
it crashes and reboots. SQL Server is robust to crash recovery. Even though the data-
base page on disk shows a credit for $10,000, the transaction log never shows this
transaction was committed. So when recovery runs, the modification undone. But
what if the engine encountered an error opening the transaction log file and you
choose to use emergency mode repair? Recovery never ran, so a credit exists for
$10,000 for this customer account. Who would be able to find this problem? Could
this really occur? The timing might be difficult, but who would want to take this
risk? This is why the SQL Server development team put the text in this message and
is why Microsoft PSS always has a serious conversation with customers who want to
rebuild their transaction log.

■ RESTORE chain broken

Because we rebuild the transaction log, your backup log chain sequence is broken.
You cannot rely on these backups, and you need to take a full backup of the data-
base to restart a new backup sequence.

■ Database options

The database is left in SINGLE_USER mode and is changed to the SIMPLE recovery
model.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 95

Chapter 2 Data Corruption and Recovery Issues96

The SQL Server development team put emergency mode repair in the product for
customers to use, but only, as the name implies, for emergency situations. The
development team also put in this message so that it would be clear to you that the
server cannot vouch for the transactional consistency of your database. Just to make
sure you understand that you or another DBA performed this operation, the server
writes the following messages to the ERRORLOG:

2006-03-23 15:37:48.01 spid51 Warning: The log for database 'pubs' has been
rebuilt. Transactional consistency has been lost. The RESTORE chain was
broken, and the server no longer has context on the previous log files, so
you will need to know what they were. You should run DBCC CHECKDB to validate
physical consistency. The database has been put in dbo-only mode. When you are
ready to make the database available for use, you will need to reset database
options and delete any extra log files.
2006-03-23 15:37:48.01 spid51 Warning: The log for database 'pubs' has been
rebuilt. Transactional consistency has been lost. The RESTORE chain was broken, and
the server no longer has context on the previous log files, so you will need to
know what they were. You should run DBCC CHECKDB to validate physical consistency.
The database has been put in dbo-only mode. When you are ready to make the database
available for use, you will need to reset database options and delete any extra log
files.
2006-03-23 15:37:48.57 spid51 EMERGENCY MODE DBCC CHECKDB (pubs,
repair_allow_data_loss) executed by NORTHAMERICA\bobward found 0 errors and
repaired 0 errors. Elapsed time: 0 hours 0 minutes 0 seconds.

Handling Deferred Transactions
As discussed in the “Storage Internals” section, when recovery fails for a user database but
the cause of the recovery is damage to a database page, SQL Server may not mark the
database SUSPECT. Instead, the engine marks a bit on the damaged page in the header (set
to a status called RestorePending). If the transaction associated with the operation that
encountered the damaged page is still active after redo, all locks are held that are part of
the transaction, and undo for the transaction is skipped (or deferred). The good news is
that the database is still ONLINE and not SUSPECT. Only users who need to access this page
or access data associated with any deferred transaction are affected.

How do you know whether recovery had to defer transactions but not mark the database
SUSPECT?

■ You see evidence in the ERRORLOG.

■ You encounter an error when accessing a page that is marked RestorePending.

■ You are blocked by session_id = -3.

The choices and steps for recovering a deferred transaction are simple:

■ Restore a backup. But in this case, because only a single page is damaged, you could
use online page restore to keep the rest of the database online and affect only the
deferred transaction.

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 96

■ If you don’t have a backup to use, you can repair the page (but lose the data on it)
by using DBCC CHECKDB and the REPAIR_ALLOW_DATA_LOSS option.

The steps for using page-level restore are documented in Books Online in the section
“Performing Page Restores.” Although I won’t add anything about these steps in this sec-
tion, there is an exercise in the end of this chapter to walk you through using this feature
during a data recovery scenario.

Finding the root cause for a deferred transaction is not complicated, because the cause is
damage to the database page, as outlined in the ERRORLOG (for example, a checksum error
on a page). Therefore, you must investigate the cause of this problem just like you would
for any checksum failure. As I mentioned earlier in this chapter, the cause of a checksum
page error is not SQL Server but a problem in the IO path.

Database Marked SUSPECT
Suppose recovery fails and one of the conditions for a deferred transaction doesn’t qualify
or the failure is not associated with a single database page (for example, damage to the
transaction log is detected). In this situation, the engine changes the database state to
SUSPECT.

The following is an example of an ERRORLOG entry for a database marked SUSPECT:

2006-03-26 22:14:10.98 spid13s Error: 824, Severity: 24, State: 4.
2006-03-26 22:14:10.98 spid13s SQL Server detected a logical consistency-based
I/O error: (bad checksum). It occurred during a read of page (0:-1) in database ID
8 at offset 0x00000000013800 in file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\suspect_db_log.LDF'. Additional messages in the SQL
Server error log or system event log may provide more detail. This is a severe
error condition that threatens database integrity and must be corrected
immediately. Complete a full database consistency check (DBCC CHECKDB). This error
can be caused by many factors; for more information, see SQL Server Books Online.
2006-03-26 22:14:11.43 spid13s Error: 3414, Severity: 21, State: 1.
2006-03-26 22:14:11.43 spid13s An error occurred during recovery, preventing
the database 'suspect_db' (database ID 8) from restarting. Diagnose the
recovery errors and fix them, or restore from a known good backup. If errors
are not corrected or expected, contact Technical Support.

Any attempt to access the database results in the following error:

Msg 926, Level 14, State 1, Line 1
Database 'suspect_db' cannot be opened. It has been marked SUSPECT by
recovery. See the SQL Server errorlog for more information.

Fortunately, Management Studio gives us a visual clue to the status of the database (see
Figure 2-9).

User Database Inaccessible 97

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 97

FIGURE 2-9 Management Studio gives a visual clue to the status of the database

As in the case of a deferred transaction, your options to recover are similar:

■ You can restore from a backup. Page-level restore is not an option here, because the
problem is not specific to a database page.

■ Use DBCC CHECKDB for emergency mode repair. I outlined how this works when I dis-
cussed the scenario of the transaction log being unavailable.

■ If emergency mode repair does not work, you could change the database state to
EMERGENCY and try to copy as much data as possible.

Remember that the SUSPECT state for a database is temporary. This means to find the origi-
nal cause for why the database was marked SUSPECT, you can either restart SQL Server or
you can try to change the database state to ONLINE. Consider the example of the database
suspect_db. If I try to change the database state to ONLINE, I get the following messages:

Chapter 2 Data Corruption and Recovery Issues98

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 98

User Database Inaccessible 99

Msg 926, Level 14, State 1, Line 1
Database 'suspect_db' cannot be opened. It has been marked SUSPECT by recovery. See
the SQL Server errorlog for more information.
Msg 5069, Level 16, State 1, Line 1
ALTER DATABASE statement failed.
Msg 824, Level 24, State 4, Line 1
SQL Server detected a logical consistency-based I/O error: (bad checksum). It
occurred during a read of page (0:-1) in database ID 8 at offset 0x00000000013800
in file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\suspect_db_log.LDF'. Additional messages in the SQL
Server error log or system event log may provide more detail. This is a severe
error condition that threatens database integrity and must be corrected
immediately. Complete a full database consistency check (DBCC CHECKDB). This error
can be caused by many factors; for more information, see SQL Server Books Online.
Msg 3414, Level 21, State 1, Line 1
An error occurred during recovery, preventing the database 'suspect_db'
(database ID 8) from restarting. Diagnose the recovery errors and fix them, or
restore from a known good backup. If errors are not corrected or expected,
contact Technical Support.

The first message after 5069 is the root cause of the SUSPECT failure, which in this exam-
ple is a checksum failure (Msg 824) when reading the transaction log. (Yes, the transaction
log uses checksum technology, too, to detect IO consistency.)

Attach Database Failures
It is possible to encounter different types of errors when attaching a database. First, let me
eliminate one consideration that could occur in previous versions of SQL Server. You can’t
detach a database whose state is SUSPECT. Attempting to do this results in the following
error:

Msg 3707, Level 16, State 2, Line 1
Cannot detach a suspect database. It must be repaired or dropped.

Although this may be true, you could technically do something you are not supposed to
do. You could shut down SQL Server and still use the files from a SUSPECT database to
attach to another server. In this case, the attach fails because the database was SUSPECT.
Of course, you are supposed to always detach a database before you attach it. I’ve just
now showed you an example of why it is important to do this.

Most problems I see with attaching databases have to do with missing some of the files
associated with the database. If the database was detached properly (which means it was
cleanly shut down) and the database has only one transaction log file, all you need to
attach the database are the database files. The log will be rebuilt safely as I’ve described
earlier when the log file is not available at startup (even for a database using FULL recov-
ery). But if you do not have all the transaction log files as they existed for the original
database, the server returns the following error:

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 99

File activation failure. The physical file name "C:\Program Files\Microsoft
SQL Server\MSSQL.1\MSSQL\DATA\test_attach_log2.ldf" may be incorrect.
The log was not rebuilt because there is more than one log file.
Msg 1813, Level 16, State 2, Line 1
Could not open new database 'test_attach'. CREATE DATABASE is aborted

In SQL Server 2000, you had no options at this point. SQL Server 2005 offers a new
option to FOR ATTACH_REBUILD_LOG. This option still requires the database to be detached
properly, but it lets you rebuild the log if you don’t have all transaction log files.

BACKUP/RESTORE Failures
Because BACKUP and RESTORE are your most important tools to recover your data, I think
it’s important to briefly discuss some scenarios where these commands can fail and how
to handle them.

BACKUP Failures
The T-SQL BACKUP command can fail for various reasons, some of them simpler to solve
than others. For example, if you try to use BACKUP LOG and the database is using SIMPLE
recovery, you will encounter the following error:

Msg 4208, Level 16, State 1, Line 1
The statement BACKUP LOG is not allowed while the recovery model is SIMPLE. Use
BACKUP DATABASE or change the recovery model using ALTER DATABASE.
Msg 3013, Level 16, State 1, Line 1
BACKUP LOG is terminating abnormally.

This error is descriptive and tells you exactly the problem. Other errors or problems are
not as intuitive and simple to resolve, so I focus on those in this section.

Media Failures
One of the most common issues I’ve seen in technical support regarding backup is a fail-
ure writing to the target media. Target media is the destination for the backup stream,
such as a disk file(s) or tape.

Tape failures were more common with previous releases of SQL Server because tape was
the most common format for backing up large databases. I don’t see as many of these
cases anymore, but when they do occur, the cause of the failure is almost always a prob-
lem with the tape drive, the tape, or device drivers associated with the tape drive. I’ve
seen this time and time again. Here is a sample ERRORLOG showing a failure writing to the
tape that doesn’t appear very intuitive.

spid324 BackupMedium::ReportIoError: write failure on backup device '\\.\tape0'.

Operating system error 1117(The request could not be performed because of an I/O

device error.).

Chapter 2 Data Corruption and Recovery Issues100

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 100

The steps to resolve a problem such as this or other tape errors is to focus on the tape
drive, tape, or device drivers. Try a different tape or a different tape drive. Make sure the
device drivers for the tape drive are up-to-date. One common misconception for trou-
bleshooting a problem with writing to tape is that if the Windows NTBACKUP program
works, the problem must be SQL Server. Although it is a good idea to see whether you can
back up a file using NTBACKUP to the tape drive, if it works but you still encounter an error
with SQL Server, the problem could still be the tape system. This is because SQL Server
uses Windows API calls that NTBACKUP doesn’t when writing to the tape.

Before I talk about some common issues when writing to a disk drive, one simple trou-
bleshooting step to help in many backup cases is to simplify what you are backing up. For
example, if you are struggling to back up a 30GB database, try backing up just a small
database, such as the sample AdventureWorks database. If you cannot back up even a
small sample database, there is a good chance you should focus on the target media,
whether it is a tape system, local disk, SAN, or network drive. If a small database sample
works, but your database does not, it could still be the target media system, but there is a
little more evidence that it could be a SQL Server problem. This is good information to
give to a technical support engineer should you decide to contact Microsoft for assistance.

Let’s talk about a few more common scenarios that you could encounter today—failures
writing to a local disk, SAN, or network drive. As with tape, the cause of these problems is
almost always something to do with the target media, current operating system environ-
ment, or target operating system environment. Let’s take a look at two possible scenarios
you may encounter where the solution to the problem is not obvious.

2005-05-02 09:15:28.05 spid69 BackupMedium::ReportIoError: write failure on backup

device 'G:\MSSQL\Backups\caamdb.BAK'. Operating system error 64(The specified

network name is no longer available.).

In this situation, the error is indicative of a network problem. The error has nothing to do
with SQL Server. You should troubleshoot this problem as though there was a network I/O
issue communicating with whatever disk is mapped to the G: drive. This may even be a
SAN drive.

BackupMedium::ReportIoError: read failure on backup device
'\\FFGPS\D$\MSSQL\BACKUP\FSPRD_DB.BAK'. Operating system error
1450(Insufficient system resources exist to complete the requested service.).

In this situation, the error is coming from Windows when writing the backup file. I’ve
especially seen this situation when backing up to a network drive. I’ve also seen this prob-
lem with the use of the /3GB switch in boot.ini because there is not enough nonpaged
pool memory for Windows to handle the I/O associated with the backup. Your choices are
1) Don’t back up to a networked drive, 2) Remove the use of /3GB, 3) Tune nonpaged pool
according to the guidelines in Knowledge Base article 304101.

BACKUP/RESTORE Failures 101

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 101

Chapter 2 Data Corruption and Recovery Issues102

CHECKSUM Failures
I discussed earlier in the chapter a new feature for SQL Server 2005 called backup check-
sum. When the WITH CHECKSUM option is specified for the BACKUP command, the engine
verifies the checksum for any pages it reads from the database file that previously had a
checksum calculated for it. If any page fails this verification check, BACKUP fails with the
following error:

Msg 3043, Level 16, State 1, Line 1
BACKUP 'test_checksum' detected an error on page (1:177) in file 'C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\test_checksum.mdf'.
Msg 3013, Level 16, State 1, Line 1
BACKUP DATABASE is terminating abnormally.

The ERRORLOG shows the following information:

2006-08-25 14:18:21.49 Backup Error: 3043, Severity: 16, State: 1.
2006-08-25 14:18:21.49 Backup BACKUP 'test_checksum' detected an error on page
(1:177) in file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\test_checksum.mdf'.
2006-08-25 14:18:21.52 Backup Error: 3041, Severity: 16, State: 1.
2006-08-25 14:18:21.52 Backup BACKUP failed to complete the command
BACKUP DATABASE test_checksum. Check the backup application log for detailed
messages.

Your choices here are simple:

■ Correct the checksum problem.

■ Remember the cause of the problem is something within the disk system, so be sure
to check all is well here first. I say this because if you choose to repair the database
to correct the problem, but the disk still has problems, you will continue to run into
other inconsistency issues. To repair the current problem, you can choose to restore
from a backup (remember page-level backup restore is a possible option) or you can
use DBCC CHECKDB to repair the page (which will result in data loss as the page will
be de-allocated to “fix” it).

■ Ignore the error and continue the BACKUP.

Let’s say you just want to go ahead and back up the database ignoring this error, knowing
it will be a bad page. You have an option with BACKUP called CONTINUE_AFTER_ERROR that
will let you do just that. If you use this option, you will get the following warning after
the BACKUP completes:

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 102

Processed 208 pages for database 'test_checksum', file 'test_checksum' on
file 1.
Processed 1 pages for database 'test_checksum', file 'test_checksum_log' on file 1.
BACKUP WITH CONTINUE_AFTER_ERROR successfully generated a backup of the damaged
database. Refer to the SQL Server error log for information about the errors that
were encountered.
BACKUP DATABASE successfully processed 209 pages in 1.879 seconds (0.910
MB/sec).

The ERRORLOG will contain the following information:

2006-08-25 14:20:30.83 Backup Error: 3043, Severity: 16, State: 1.
2006-08-25 14:20:30.83 Backup BACKUP 'test_checksum' detected an error on page
(1:177) in file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\test_checksum.mdf'.
2006-08-25 14:20:31.03 Backup Database backed up. Database:
test_checksum, creation date(time): 2006/02/22(11:35:35), pages dumped: 219,
first LSN: 22:16:26, last LSN: 22:28:1, number of dump devices: 1, device
information: (FILE=1, TYPE=DISK: {'c:\test_checksum.bak'}). This is an
informational message only. No user action is required.

Why would you consider this option? One reason may be that you want to back up the
database in its current state before trying to repair it and correct the damaged page. I’m
not saying repair will cause problems for you so you must back up your current database,
but I’ve met careful DBAs who want to back up the current state of the database before
trying any fairly major modification operation. The only way for you to do this is to use
the CONTINUE_AFTER_ERROR option.

One point of clarification about the WITH CHECKSUM option for BACKUP. The BACKUP com-
mand itself does not verify any data after writing it to disk. In other words, BACKUP
doesn’t verify checksums, write the backup stream checksum, and then go back and verify
everything. What it does is verify database page checksums as it reads pages from the
database file, write these pages to the backup media, and then write a backup checksum
value based on all data written to the media. You can do this yourself by immediately
executing RESTORE WITH VERIFYONLY right after the BACKUP.

If you use Management Studio to back up a database, you are presented with an Options
dialog box where you can select to use checksum and verify the integrity of the database
(see Figure 2-10).

BACKUP/RESTORE Failures 103

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 103

FIGURE 2-10 Option to use checksum and verify the integrity of the database

Look at the options in the Reliability section of the dialog box. If you select these options
and use the Script menu at the top of the dialog box (this is a nice feature in
Management Studio where you can generate scripts based on options picked in a dialog
box for different types of tasks), the resulting T-SQL script will look like this:

BACKUP DATABASE [pubs] TO DISK = N'c:\pubs.bak' WITH NOFORMAT, NOINIT, NAME =
N'pubs-Full Database Backup', SKIP, NOREWIND, NOUNLOAD, STATS = 10, CHECKSUM
GO
declare @backupSetId as int
select @backupSetId = position from msdb..backupset where database_name=N'pubs' and
backup_set_id=(select max(backup_set_id) from msdb..backupset where
database_name=N'pubs')
if @backupSetId is null begin raiserror(N'Verify failed. Backup information for
database ''pubs'' not found.', 16, 1) end
RESTORE VERIFYONLY FROM DISK = N'c:\pubs.bak' WITH FILE = @backupSetId, NOUNLOAD,
NOREWIND
GO

This is effectively what Management Studio (through SMO) will use to back up the data-
base with checksum and then verify the backup when it is complete.

Performance Problems: Memory
One possible scenario you may encounter will not show up as an error message. The issue
is performance problems with your BACKUP. Perhaps you have seen this before and were
not sure as to the cause. We have had customers contact technical support and say that

Chapter 2 Data Corruption and Recovery Issues104

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 104

their backups are slowing down and in some cases taking twice as long. In some situa-
tions, this degradation has occurred over time. Let’s explore how to recognize this behav-
ior and what you can do to resolve it.

When customers have contacted us and complained about backup performance, we
quickly noticed in most cases Performance Monitor would show a significant drop in
backup throughput via the following counter: Physical Disk/Avg Disk Bytes Per Transfer.
We observed this for the disk drive where the customer was writing backup. We noticed
that this value on that drive was something much lower than we expected. For a normal
SQL Server disk backup, this number should be close to 1MB. This is because we knew
internally in SQL Server that the backup code will write out buffers of ~1MB in size to the
target disk. The numbers we observed were more like 64KB. What this means is that the
SQL engine is writing out a large number of small disk writes versus a smaller number of
larger writes. This is not efficient for writing out to a disk drive (assuming no bottlenecks
exist).

After some investigation, we discovered the problem. The SQL Server backup code calcu-
lates what will be its buffer size (called MAXTRANSERSIZE) based on the number of files for
the database/log and the number of target disk drives. (Remember you can back up to
multiple disk files at the same time, called a stripe dump.) The backup code then takes the
total number of buffers and tries to allocate memory for them at a default size of 960KB.
If any of these memory allocations fail, the code downgrades its MAXTRANSFERSIZE to 64KB.
In SQL Server 2005 (and in SQL Server 2000 SP4), if you observe the following message in
the ERRORLOG:

2005-12-02 02:00:21.93 spid100 Downgrading backup buffers from 960K to 64K

you know that the default MAXTRANSERSIZE could not work. As with any memory prob-
lem, the issue is not having enough free memory for these allocations. But here is the
twist to this problem. The issue is not having enough contiguous memory to allocate a
960KB block. Furthermore, the memory for the backup buffers doesn’t come from the
SQL Server buffer pool. This comes from the remaining virtual address space after the
buffer pool reserves its memory. This is a precious resource for systems with 2GB+ of
physical memory, because the buffer pool consumes most of the virtual address space.
This means there are two resolutions to this problem:

■ Free up more virtual address space or find out why it is fragmented.

■ Use the new MAXTRANSFERSIZE for a lower default setting than 960KB.

RESTORE Failures
Like BACKUP, there are various reasons for restore failing, but two that are the most com-
plex are as follows:

■ A consistency problem with the backup media

■ A failure during recovery

BACKUP/RESTORE Failures 105

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 105

The second scenario should be investigated just like the scenarios I’ve already described
for deferred transactions and a SUSPECT database. This is because the problems are the
same. One is a failure during crash recovery (when the database comes online), and the
other is a failure of recovery during media recovery (when the database is being restored).

The first case is the one for us to focus on. This is where database and backup checksums
can make the process of determining the cause of a restore failure so valuable. Remember
we talked about how restore verifies database page checksums and the backup stream
checksum if they exist in the backup.

As we talked about for verifying the integrity of a backup, you can use RESTORE WITH
VERIFYONLY. If this fails with the following error, you know the backup media was altered
after it was written. You can’t tell from this message whether the problem was with a
damaged page, but you know the backup media itself was altered and the checksum is
now different than when it was written.

Msg 3189, Level 16, State 1, Line 1
Damage to the backup set was detected.
Msg 3013, Level 16, State 1, Line 1
VERIFY DATABASE is terminating abnormally.

If you run the actual RESTORE DATABASE command and the damage was to a database page
that has checksum values on it, you can see this type of error:

Msg 3183, Level 16, State 1, Line 1
RESTORE detected an error on page (1:177) in database "test_checksum" as read from
the backup set.
Msg 3013, Level 16, State 1, Line 1
RESTORE DATABASE is terminating abnormally.

In either case, a problem was detected with the integrity of the backup. In the case of an
error with a database page checksum in the backup, the error could be due to the use of
CONTINUE_AFTER_ERROR with BACKUP, or it could be that the page was damaged after the
backup was written. Remember this key point about checksum. As with a standard data-
base page checksum, the intention is for SQL Server to detect that data was modified after
SQL Server wrote it to disk. So if you get one of the preceding two errors (assuming you
didn’t use BACKUP WITH CONTINUE_AFTER_ERROR) you must focus your root cause analysis
of the disk system used to store the backup media.

You can always restore a different backup should you encounter these errors. But if that is
not an option, you do have another choice. One of the difficult problems we had in tech-
nical support when we determined that a customer’s backup was damaged was to deter-
mine the severity of the problem. In other words, if the RESTORE fails when restoring the
fifth page in the backup, it stops. How can we determine whether the rest of the backup
is good? In some extremely urgent cases, I even had to resort to a debugger to “skip”
errors during the restore to see how badly it was damaged. SQL Server 2005 introduces a

Chapter 2 Data Corruption and Recovery Issues106

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 106

new option for RESTORE called CONTINUE_AFTER_ERROR. If you use this option, RESTORE
ignores any error and proceeds to copy all data from the backup media. This way you can
try to recover as much data as you possibly can. At this point, you can use DBCC CHECKDB
WITH REPAIR_ALLOW_DATA_LOSS to de-allocate the damaged page(s). The damaged page
from the backup was lost anyway, but now you can use the rest of the database that is
still valid. One key point when using CHECKDB here: You must use the WITH TABLOCK
option, too, because online repair will not provide consistent results after you have used
CONTINUE_AFTER_ERROR.

Database Consistency Errors
At this point, we have covered three major areas of data recovery: issues with accessing
system databases, problems accessing user databases, and backup/restore failures. Now
let’s talk about detecting database consistency problems during the normal database oper-
ation. I classify database consistency detection (errors) into two types:

■ Runtime error, errors detected by the engine during standard usage of the database
(SELECT, UPDATE, background thread such as lazywrite, and so on)

■ Errors detected by DBCC CHECKDB

Handling Database Consistency Runtime Errors
The SQL Server engine contains code to perform some validation of the data (and transac-
tion) log as you execute commands such as SELECT, INSERT, and so on against a database.
The following is not a complete list of these errors, but these are the ones I anticipate you
may encounter the most.

Msg 823 and 824
The SQL Server engine has two methods to report problems reading database pages (and
transaction log blocks):

■ If the Windows API calls return an error when reading the page, Msg 823 is raised.

■ If the Windows API call is successful, the engine performs a series of logical checks
on the page (based on database options configured). If any of these checks fails, an
Msg 824 is raised.

The following is an example of a Msg 823 error:

2005-09-07 10:51:05.16 spid18s Error: 823, Severity: 24, State: 6.
2005-09-07 10:51:05.16 spid18s The operating system returned
error 1117(The request could not be performed because of an I/O device error.)
to SQL Server during a read at offset 0000000000000000 in
file 'E:\EdgeTachyonDatabaseFiles\EdgePerfTachyonDB.mdf'.

Database Consistency Errors 107

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 107

Additional messages in the SQL Server error log and system event log may provide more
detail. This is a severe system-level error condition that threatens database integrity and
must be corrected immediately. Complete a full database consistency check (DBCC
CHECKDB). This error can be caused by many factors; for more information, see SQL Server
Books Online.

As you can see from the message, the SQL Server development team included the
Windows error returned from the Windows API call to read the page from disk. Almost
every 823 error is caused by a system problem. In this case, SQL Server reports only the
error the operating system reported when reading from the file. Look at preceding the
example. The text of the message even indicates there is a problem with a disk storage
device. The one exception to this guideline that I’ve seen is error 6, “Invalid handle.” In
this situation, it is possible SQL Server passed an invalid file handle to the Windows API
call, so this should be investigated with technical support.

If the Windows API call to read the page is successful, the following logical checks are
applied in this order:

1. Is the page torn (torn page detection)?

2. Did a checksum fail when reading the page (checksum error)?

3. Is the pageid on the page different from the page we expected to read from disk
(bad pageid)?

The following is an example of a Msg 824 due to a database checksum validation check
failure:

2006-08-25 14:38:39.34 spid53 Error: 824, Severity: 24, State: 2.
2006-08-25 14:38:39.34 spid53 SQL Server detected a logical consistency-
based I/O error: incorrect checksum (expected: 0x6cbf615; actual: 0x6dacdc1).
It occurred during a read of page (1:177) in database ID 13 at offset
0x00000000162000 in file 'C:\Program Files\Microsoft SQL
Server\MSSQL.1\MSSQL\DATA\test_checksum.mdf'. Additional messages in the SQL
Server error log or system event log may provide more detail. This is a
severe error condition that threatens database integrity and must be corrected
immediately. Complete a full database consistency check (DBCC CHECKDB). This
error can be caused by many factors; for more information, see SQL Server
Books Online.

Should you see an 824 error in the ERRORLOG, take immediate action, because this means
the engine has detected a consistency problem in the database. The damage may be iso-
lated to the page reported in the log, but it could go beyond that. Therefore, I recom-
mend you run DBCC CHECKDB on the database as soon as possible. But which database?
The server cannot provide you database context for this error, but it does provide you the
filename associated with the physical filename it was reading for this page. If you can’t
recognize the database associated with the filename in the error, take the filename from
the message and use it in the catalog view query:

select * from master.sys.master_files where physical_name = '<filename>'

Chapter 2 Data Corruption and Recovery Issues108

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 108

At minimum, I expect DBCC CHECKDB to report an error for the page associated with Msg
824. At this point, if only a single page is damaged, you could restore from a backup
(remember page-level restore here), or you can repair the database WITH
REPAIR_ALLOW_DATA_LOSS. If more errors exist, your options may be more limited, or your
data loss may be more severe. The point is, don’t ignore 824 errors. It could be the tip of
the iceberg of larger damage to your database.

Msg 825 (Read Retry)
While investigating a series of Exchange storage consistency problems, the Exchange
development team discovered that if they were to retry failed read operations from disk,
in some cases the second, third, or even fourth read attempt would succeed. So, instead of
taking a beating from their customers for Exchange store corruption, they decided to add
in logic to retry database read failures.

The SQL Server development team decided to adopt this same strategy for SQL Server
2005. Any read failure (823 or 824) will first be retried up to four times by the SQL
Engine, before reporting the failure. If at any point the read succeeds, the following mes-
sage is written to the ERRORLOG:

2005-04-27 16:06:35.98 spid346 A read of the file
'f:\mssql\mssql.1\mssql\data\stressdb2.ndf'
at offset 0x00000000302000 succeeded after failing 1 time(s) with error:
incorrect pageid (expected 4:385; actual 0:0).
Additional messages in the SQL Server error log and system event log may provide
more detail. This error condition threatens database integrity and must be
corrected. Complete a full database consistency check (DBCC CHECKDB).
This error can be caused by many factors; for more information, see SQL Server
Books Online.

Remember that because the retry succeeded, the user will not see any error. The only dif-
ference will be a slight delay in performance (which may or may not truly be seen by the
application user). But this does not mean you do not need to address this problem. Think
of this message the same as you would an 823 or 824 error, but perhaps at a slightly less-
urgent pace. The engine avoided a failure, but this doesn’t mean this retry will work all
the time. Some disk system issue caused at least one read to fail and therefore should be
investigated.

Msg 5242 and 5243 (RecBase Error)
The SQL Server engine also has logical checks to detect consistency problems for a row
within a database page. In previous versions of SQL Server, this check would result in an
assertion (a fatal error that results in a stack dump) with the expression containing the
word RecBase. RecBase is the name of a class used to logically read the elements of a row
on a page. See Microsoft Knowledge Base article 828337 for more information.

In SQL Server 2005, two errors were introduced to report all row consistency errors
detected while reading a row as part of a standard SELECT, UPDATE, and so on, Msg 5242
and 5243. The following is an example of an ERRORLOG containing a Msg 5242 error (with
some sections omitted for brevity):

Database Consistency Errors 109

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 109

2006-02-18 19:33:09.40 spid51 ex_raise2: Exception raised, major=52,
minor=42, state=1, severity=22, attempting to create symptom dump
2006-02-18 19:33:09.58 spid51 Using 'dbghelp.dll' version '4.0.5'
2006-02-18 19:33:09.59 spid51 **Dump thread - spid = 51, PSS = 0x048B9278,
EC = 0x048B9280
2006-02-18 19:33:09.59 spid51 *
2006-02-18 19:33:09.59 spid51 * User initiated stack dump. This is not a server
exception dump.
2006-02-18 19:33:09.59 spid51 *
2006-02-18 19:33:09.61 spid51 ***Stack Dump being sent to C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\LOG\SQLDump0001.txt
2006-02-18 19:33:09.61 spid51 *

2006-02-18 19:33:09.61 spid51 *
2006-02-18 19:33:09.61 spid51 * BEGIN STACK DUMP:
2006-02-18 19:33:09.61 spid51 * 02/18/06 19:33:09 spid 51
2006-02-18 19:33:09.61 spid51 *
2006-02-18 19:33:09.61 spid51 * ex_raise2: Exception raised, major=52, minor=42,
state=1, severity=22
2006-02-18 19:33:09.61 spid51 *

2006-02-18 19:33:09.61 spid51 * ---

2006-02-18 19:33:09.61 spid51 * Short Stack Dump
2006-02-18 19:33:09.62 spid51 77E55DEA Module(kernel32+00015DEA)
2006-02-18 19:33:09.62 spid51 02172CE4 Module(sqlservr+01172CE4)
2006-02-18 19:33:09.62 spid51 02176BA0 Module(sqlservr+01176BA0)
2006-02-18 19:33:09.62 spid51 0217674D Module(sqlservr+0117674D)
2006-02-18 19:33:09.62 spid51 01597EA2 Module(sqlservr+00597EA2)
2006-02-18 19:33:09.62 spid51 01095FFE Module(sqlservr+00095FFE)
2006-02-18 19:33:09.62 spid51 02389FB0 Module(sqlservr+01389FB0)
2006-02-18 19:33:09.62 spid51 0158E526 Module(sqlservr+0058E526)
2006-02-18 19:33:09.62 spid51 0100C833 Module(sqlservr+0000C833)
2006-02-18 19:33:09.62 spid51 0100BF0F Module(sqlservr+0000BF0F)
2006-02-18 19:33:09.62 spid51 010106EB Module(sqlservr+000106EB)
2006-02-18 19:33:09.62 spid51 01010B3A Module(sqlservr+00010B3A)
2006-02-18 19:33:09.62 spid51 01010932 Module(sqlservr+00010932)
2006-02-18 19:33:09.62 spid51 010C0E2B Module(sqlservr+000C0E2B)
2006-02-18 19:33:09.62 spid51 01210454 Module(sqlservr+00210454)
2006-02-18 19:33:09.62 spid51 013F65A8 Module(sqlservr+003F65A8)
2006-02-18 19:33:09.62 spid51 013B3E42 Module(sqlservr+003B3E42)
2006-02-18 19:33:09.62 spid51 013B35EC Module(sqlservr+003B35EC)
2006-02-18 19:33:09.62 spid51 012101C2 Module(sqlservr+002101C2)
2006-02-18 19:33:09.62 spid51 01188FC9 Module(sqlservr+00188FC9)
2006-02-18 19:33:09.62 spid51 01189021 Module(sqlservr+00189021)
2006-02-18 19:33:09.62 spid51 01330A25 Module(sqlservr+00330A25)
2006-02-18 19:33:09.62 spid51 01330421 Module(sqlservr+00330421)
2006-02-18 19:33:09.62 spid51 01332C55 Module(sqlservr+00332C55)
2006-02-18 19:33:09.62 spid51 0100889F Module(sqlservr+0000889F)
2006-02-18 19:33:09.62 spid51 010089C5 Module(sqlservr+000089C5)
2006-02-18 19:33:09.62 spid51 010086E7 Module(sqlservr+000086E7)
2006-02-18 19:33:09.62 spid51 010D764A Module(sqlservr+000D764A)
2006-02-18 19:33:09.62 spid51 010D7B71 Module(sqlservr+000D7B71)
2006-02-18 19:33:09.62 spid51 010D746E Module(sqlservr+000D746E)

Chapter 2 Data Corruption and Recovery Issues110

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 110

2006-02-18 19:33:09.62 spid51 010D83F0 Module(sqlservr+000D83F0)
2006-02-18 19:33:09.62 spid51 781329AA Module(MSVCR80+000029AA)
2006-02-18 19:33:09.64 spid51 78132A36 Module(MSVCR80+00002A36)
2006-02-18 19:33:09.65 spid51 * ---

2006-02-18 19:33:09.65 spid51 Stack Signature for the dump is 0xE09D5555
2006-02-18 19:33:10.48 spid51 External dump process return code 0x20000001.
External dump process returned no errors.

2006-02-18 19:33:10.58 spid51 Error: 5242, Severity: 22, State: 1.
2006-02-18 19:33:10.58 spid51 An inconsistency was detected during an
internal operation in database 'master'(ID:1) on page (1:306). Please contact
technical support. Reference number 3.

The error message says to contact technical support (I sure hate when our errors say that),
but in reality you need to first run a DBCC CHECKDB in the database listed in the message.
If it returns errors indicating row damage, you need to address those problems as a true
database corruption problem. If CHECKDB does not report errors, it may be a good idea to
contact technical support. Have the stack dump and ERRORLOG available for them to
review.

Msg 605
Msg 605 is a legacy carryover from the original SYBASE code for SQL Server. In fact, it was
pretty much the only way to know about a database consistency problem aside from DBCC
CHECKDB. This error check still remains in the SQL Server 2005 code. You should treat this
error much like the row-level consistency errors 5242 and 5243. If CHECKDB reports errors,
treat the problem as database corruption. If not, consider contacting technical support if
the errors occur frequently. It could indicate some problem in the SQL Server code that
should be addressed.

Access Violations
For performance reasons, the SQL Server development team cannot put in validation
checks for every bit on the database page at every place in the engine code. Therefore, it
is possible the engine will run into an access violation because of database corruption.
How can you recognize this case? Well, because an access violation could occur at so
many different places due to corruption, there is one stack dump signature I could show
you to say the problem is corruption. My advice is that if you are getting access violations
frequently, you should always ensure DBCC CHECKDB is run for all databases before pursu-
ing the cause of the access violation as a SQL Server bug.

Failed Rollback
Another example is online rollback recovery. If the rollback of a user transaction fails, this
is a critical problem. So, the engine reacts by taking the user database offline and restart-
ing it. This allows recovery to run on the database with the hopeful effect of rolling back
the transaction that couldn’t roll back online. This technique actually is quite successful,
because in some cases the online rollback failure is an interim problem that won’t reoccur
when the transactions are rolled back from the log on disk. Again, in this situation, SQL
Server attempts to isolate the failure. Only the database associated with the failed rollback

Database Consistency Errors 111

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 111

is affected. The rest of the engine remains intact, and other databases are not affected. As
with any reliability feature, there are always exceptions. Any failure to roll back a transac-
tion in tempdb results in a server shutdown because there is no method to run recovery
on tempdb, and it is a critical shared resource for all users.

Handling DBCC CHECKDB Errors
I’ve recommended that you run DBCC CHECKDB if you encounter some of the errors
described here. You may also decide to run DBCC CHECKDB at any point in time to check
the consistency of your database. I presented earlier in the chapter some nice enhance-
ments to CHECKDB to help provide more consistency checks (for example, DATA_PURITY and
CHECKCATALOG). Let’s talk about a strategy to address errors that you can encounter with
DBCC CHECKDB. In this section, I do not go over every error that CHECKDB can report. I talk
later about how you can look for information on the web about each of the errors (docu-
mented by the authors of DBCC CHECKDB, Ryan Stonecipher and Paul Randal).

Look at Summaries and Recommendation First
When you run DBCC CHECKDB and it reports errors, I recommend you do two things first:

■ Look at what I call the summary messages.

■ Look at the recommendation messages.

Let’s look at some example output that contains errors so that I can show you what I
mean:

DBCC results for 'checkdb_test'.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
Service Broker Msg 9667, State 1: Services analyzed: 3.
Service Broker Msg 9668, State 1: Service Queues analyzed: 3.
Service Broker Msg 9669, State 1: Conversation Endpoints analyzed: 0.
Service Broker Msg 9674, State 1: Conversation Groups analyzed: 0.
Service Broker Msg 9670, State 1: Remote Service Bindings analyzed: 0.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:153) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:154) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:155) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:156) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type

Chapter 2 Data Corruption and Recovery Issues112

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 112

Unknown), page ID (1:157) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:158) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
CHECKDB found 0 allocation errors and 6 consistency errors not associated with any
single object.
DBCC results for 'sys.sysrowsetcolumns'.
There are 544 rows in 5 pages for object "sys.sysrowsetcolumns".
DBCC results for 'sys.sysrowsets'.
There are 81 rows in 1 pages for object "sys.sysrowsets".
DBCC results for 'sysallocunits'.
There are 92 rows in 1 pages for object "sysallocunits".
DBCC results for 'sys.sysfiles1'.
There are 2 rows in 1 pages for object "sys.sysfiles1".
DBCC results for 'sys.syshobtcolumns'.
There are 544 rows in 5 pages for object "sys.syshobtcolumns".
DBCC results for 'sys.syshobts'.
There are 81 rows in 1 pages for object "sys.syshobts".
DBCC results for 'sys.sysftinds'.
There are 0 rows in 0 pages for object "sys.sysftinds".
DBCC results for 'sys.sysserefs'.
There are 92 rows in 1 pages for object "sys.sysserefs".
DBCC results for 'sys.sysowners'.
There are 14 rows in 1 pages for object "sys.sysowners".
DBCC results for 'sys.sysprivs'.
There are 120 rows in 1 pages for object "sys.sysprivs".
DBCC results for 'sys.sysschobjs'.
There are 50 rows in 1 pages for object "sys.sysschobjs".
DBCC results for 'sys.syscolpars'.
There are 423 rows in 7 pages for object "sys.syscolpars".
DBCC results for 'sys.sysnsobjs'.
There are 1 rows in 1 pages for object "sys.sysnsobjs".
DBCC results for 'sys.syscerts'.
There are 0 rows in 0 pages for object "sys.syscerts".
DBCC results for 'sys.sysxprops'.
There are 0 rows in 0 pages for object "sys.sysxprops".
DBCC results for 'sys.sysscalartypes'.
There are 27 rows in 1 pages for object "sys.sysscalartypes".
DBCC results for 'sys.systypedsubobjs'.
There are 0 rows in 0 pages for object "sys.systypedsubobjs".
DBCC results for 'sys.sysidxstats'.
There are 106 rows in 1 pages for object "sys.sysidxstats".
DBCC results for 'sys.sysiscols'.
There are 218 rows in 1 pages for object "sys.sysiscols".
DBCC results for 'sys.sysbinobjs'.
There are 23 rows in 1 pages for object "sys.sysbinobjs".
DBCC results for 'sys.sysobjvalues'.
There are 104 rows in 16 pages for object "sys.sysobjvalues".
DBCC results for 'sys.sysclsobjs'.
There are 14 rows in 1 pages for object "sys.sysclsobjs".
DBCC results for 'sys.sysrowsetrefs'.
There are 0 rows in 0 pages for object "sys.sysrowsetrefs".

Database Consistency Errors 113

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 113

DBCC results for ‘sys.sysremsvcbinds’.
There are 0 rows in 0 pages for object "sys.sysremsvcbinds".
DBCC results for ‘sys.sysxmitqueue’.
There are 0 rows in 0 pages for object "sys.sysxmitqueue".
DBCC results for ‘sys.sysrts’.
There are 1 rows in 1 pages for object "sys.sysrts".
DBCC results for ‘sys.sysconvgroup’.
There are 0 rows in 0 pages for object "sys.sysconvgroup".
DBCC results for ‘sys.sysdesend’.
There are 0 rows in 0 pages for object "sys.sysdesend".
DBCC results for ‘sys.sysdercv’.
There are 0 rows in 0 pages for object "sys.sysdercv".
DBCC results for ‘sys.syssingleobjrefs’.
There are 133 rows in 1 pages for object "sys.syssingleobjrefs".
DBCC results for ‘sys.sysmultiobjrefs’.
There are 102 rows in 1 pages for object "sys.sysmultiobjrefs".
DBCC results for ‘sys.sysdbfiles’.
There are 2 rows in 1 pages for object "sys.sysdbfiles".
DBCC results for ‘sys.sysguidrefs’.
There are 0 rows in 0 pages for object "sys.sysguidrefs".
DBCC results for ‘sys.sysqnames’.
There are 91 rows in 1 pages for object "sys.sysqnames".
DBCC results for ‘sys.sysxmlcomponent’.
There are 93 rows in 1 pages for object "sys.sysxmlcomponent".
DBCC results for ‘sys.sysxmlfacet’.
There are 97 rows in 1 pages for object "sys.sysxmlfacet".
DBCC results for ‘sys.sysxmlplacement’.
There are 17 rows in 1 pages for object "sys.sysxmlplacement".
DBCC results for ‘sys.sysobjkeycrypts’.
There are 0 rows in 0 pages for object "sys.sysobjkeycrypts".
DBCC results for ‘sys.sysasymkeys’.
There are 0 rows in 0 pages for object "sys.sysasymkeys".
DBCC results for ‘sys.syssqlguides’.
There are 0 rows in 0 pages for object "sys.syssqlguides".
DBCC results for ‘sys.sysbinsubobjs’.
There are 0 rows in 0 pages for object "sys.sysbinsubobjs".
DBCC results for ‘sys.queue_messages_1977058079’.
There are 0 rows in 0 pages for object "sys.queue_messages_1977058079".
DBCC results for ‘sys.queue_messages_2009058193’.
There are 0 rows in 0 pages for object "sys.queue_messages_2009058193".
DBCC results for ‘sys.queue_messages_2041058307’.
There are 0 rows in 0 pages for object "sys.queue_messages_2041058307".
DBCC results for ‘table1’.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:153) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:154) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:155) could not be processed. See

Chapter 2 Data Corruption and Recovery Issues114

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 114

other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:156) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:157) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:158) could not be processed. See
other errors for details.
There are 88 rows in 44 pages for object "table1".
CHECKDB found 0 allocation errors and 6 consistency errors in table ‘table1’
(object ID 2073058421).
DBCC results for ‘table2’.
Msg 2511, Level 16, State 1, Line 1
Table error: Object ID 2089058478, index ID 2, partition ID 72057594038452224,
alloc unit ID 72057594042449920 (type In-row data). Keys out of order on page
(1:210), slots 157 and 158.
There are 1000 rows in 3 pages for object “table2".
CHECKDB found 0 allocation errors and 1 consistency errors in table ‘table2’
(object ID 2089058478).
CHECKDB found 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.
repair_allow_data_loss is the minimum repair level for the errors found by
DBCC CHECKDB (checkdb_test).
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

Go to the bottom of the output and look at the summary and recommendation messages
for the database:

CHECKDB found 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.
repair_allow_data_loss is the minimum repair level for the errors found by
DBCC CHECKDB (checkdb_test).

You know from this message that 13 errors related to the consistency of pages or indexes
have been detected (as opposed to allocation errors that are specific to problems with allo-
cation structures found by the CHECKALLOC phase). You also know that in order to repair
all 13 errors, you must use the REPAIR_ALLOW_DATA_LOSS repair option. You could just
move forward with this recommendation and check the results. However, if you want to
know what the repair recommendation is for each table found to have problems, you
could check each one. Which tables do I check? Look at the summary messages for each
table:

CHECKDB found 0 allocation errors and 6 consistency errors not associated with any
single object.
CHECKDB found 0 allocation errors and 6 consistency errors in table ‘table1’
(object ID 2073058421).

Database Consistency Errors 115

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 115

CHECKDB found 0 allocation errors and 1 consistency errors in table ‘table2’

(object ID 2089058478).

First, you should know that CHECKDB won’t produce this summary message for a table
unless it detects problems with that table. Second, notice the first summary message says
“not associated with any single object.” This message indicates that CHECKDB found errors
associated with pages that don’t appear to belong to a known table.

In this situation, what is happening is that CHECKDB is in a way “double-reporting” errors,
but that is to your advantage in this situation. Let’s look at the errors “not associated with
any single object.”

Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:153) contains an incorrect page ID in its page header.
The PageId in the page header = (0:0).

This message indicates a problem with the page ID as found on the page header. The page
ID was expected to be 153, but on the page it was found to be 0:0. The routine that
detects this problem is used throughout the CHECKDB code to read a page. In this routine,
the table associated with the page is found by looking up the allocation unit ID on the
page header. As you can see from the error message, that value is 0, and therefore CHECKDB
doesn’t know what table this page belongs to.

Now look at the errors associated with table1:

Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit
ID 72057594042318848 (type In-row data): Page (1:153) could not be processed.
See other errors for details.

If you look closely, you will notice this error is for the same page as the one I just talked
about for 8909. In fact, all the pages in errors 8909 and 8928 are the same. Why does the
server report two different errors for the same page? I just mentioned that the 8909 error
is reported in a general routine to read a page. This routine is self-contained and so relies
on finding the object from the allocation unit id on the page. The code that raises the
8928 error is part of a routine that is checking “facts” about pages associated with an
index. (In this case, it was actually just a heap for table1.) This code already “knows”
what index it was checking (table1) and knows what page it was trying to read, so it can
accurately report that it had a problem reading a page and what table it thought the page
was associated with. You will notice this error says, “See other errors for details.” What
this message is saying is this: “I’ve detected a problem with this page, but there should be
another error describing the actual problem.” In this case, the other error is 8909, but it is
not associated with table1 for the reasons I just described. Perhaps by now you can guess
the problem in this scenario with some of these pages. A quick glance at page 1:153 using
DBCC PAGE would tell you. (I didn’t include the entire output because it is not important
for this situation.)

dbcc traceon(3604)
go
dbcc page(10, 1, 153, 2)

Chapter 2 Data Corruption and Recovery Issues116

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 116

go
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.
PAGE: (0:0)

BUFFER:

BUF @0x02BF096C
bpage = 0x05052000 bhash = 0x00000000 bpageno = (1:153)
bdbid = 10 breferences = 1 bUse1 = 50447
bstat = 0xc00809 blog = 0x32159 bnext = 0x00000000
PAGE HEADER:

Page @0x05052000
m_pageId = (0:0) m_headerVersion = 0 m_type = 0

m_typeFlagBits = 0x0 m_level = 0 m_flagBits = 0x0

m_objId (AllocUnitId.idObj) = 0 m_indexId (AllocUnitId.idInd) = 0 Metadata:
AllocUnitId = 0
Metadata: PartitionId = 0 Metadata: IndexId = -1 Metadata: ObjectId = 0
m_prevPage = (0:0) m_nextPage = (0:0) pminlen = 0
m_slotCnt = 0 m_freeCnt = 0 m_freeData = 0
m_reservedCnt = 0 m_lsn = (0:0:0) m_xactReserved = 0
m_xdesId = (0:0) m_ghostRecCnt = 0 m_tornBits = 0
Allocation Status
GAM (1:2) = ALLOCATED SGAM (1:3) = NOT ALLOCATED
PFS (1:1) = 0x64 MIXED_EXT ALLOCATED 100_PCT_FULL DIFF (1:6) = CHANGED
ML (1:7) = NOT MIN_LOGGED
DATA:

Memory Dump @0x44C7C000
44C7C000: 00000000 00000000 00000000 00000000 †................
44C7C010: 00000000 00000000 00000000 00000000 †................
44C7C020: 00000000 00000000 00000000 00000000 †................
44C7C030: 00000000 00000000 00000000 00000000 †................
44C7C040: 00000000 00000000 00000000 00000000 †................
44C7C050: 00000000 00000000 00000000 00000000 †................
44C7C060: 1000a80f 02000000 4d595441 42202020 †........MYTAB
44C7C070: 20202020 20202020 20202020 20202020 †
44C7C080: 20202020 20202020 20202020 20202020 †
44C7C090: 20202020 20202020 20202020 20202020 †
44C7C0A0: 20202020 20202020 20202020 20202020 †
44C7C0B0: 20202020 20202020 20202020 20202020 †
44C7C0C0: 20202020 20202020 20202020 20202020 †
44C7C0D0: 20202020 20202020 20202020 20202020 †

44C7C0E0: 20202020 20202020 20202020 20202020 †

The first 96 bytes of any page is the page header. I think you can easily see that just about
the entire header has all values of 0. If in this situation the page ID were the only prob-
lem with the page, Msg 8909 would have correctly shown up as a problem for table1. So,
in this example, you can see that of the 13 errors, six of them are reported more than
once. In reality, therefore, only seven pages have problems from this database.

Database Consistency Errors 117

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 117

Let’s take a look at the errors for table2:

Msg 2511, Level 16, State 1, Line 1

Table error: Object ID 2089058478, index ID 2, partition ID 72057594038452224,

alloc unit ID 72057594042449920 (type In-row data). Keys out of order on page

(1:210), slots 157 and 158.

In this case, there is only one error, and as you can see it is associated with a nonclustered
index (index ID 2). You saw that the 8928 errors were associated with data pages (index
ID 0). Can you guess what the recommended repair level for table2 would be? Because the
output may not always be this simple, let’s use DBCC CHECKTABLE on each table to know
for sure.

Here are the results for CHECKTABLE for table1:

Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:153) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:154) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:155) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:156) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:157) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:158) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).
CHECKTABLE found 0 allocation errors and 6 consistency errors not associated with
any single object.
DBCC results for ‘table1’.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:153) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:154) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:155) could not be processed. See
other errors for details.

Chapter 2 Data Corruption and Recovery Issues118

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 118

Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:156) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:157) could not be processed. See
other errors for details.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:158) could not be processed. See
other errors for details.
There are 88 rows in 44 pages for object "table1".
CHECKTABLE found 0 allocation errors and 6 consistency errors in table ‘table1’
(object ID 2073058421).
repair_allow_data_loss is the minimum repair level for the errors found by
DBCC CHECKTABLE (checkdb_test.dbo.table1).

DBCC execution completed. If DBCC printed error messages, contact your system

administrator.

Notice the repair recommendation is still REPAIR_ALLOW_DATA_LOSS. Because these six
pages are all data pages, a repair will actually result in lost data, because the pages will be
de-allocated.

Here are the results of CHECKTABLE for table2:

DBCC results for ‘table2’.
Msg 2511, Level 16, State 1, Line 1
Table error: Object ID 2089058478, index ID 2, partition ID 72057594038452224,
alloc unit ID 72057594042449920 (type In-row data). Keys out of order on page
(1:210), slots 157 and 158.
There are 1000 rows in 3 pages for object "table2".
CHECKTABLE found 0 allocation errors and 1 consistency errors in table
‘table2’ (object ID 2089058478).
repair_rebuild is the minimum repair level for the errors found by DBCC
CHECKTABLE (checkdb_test.dbo.table2).

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

You can see that the repair recommendation is REPAIR_REBUILD, which means a rebuild of
an index will correct any errors, and no data loss should occur.

Let’s see what the output of CHECKDB looks like in this situation (because CHECKDB will
report messages on what actions it took to repair any error it can fix):

DBCC results for ‘checkdb_test’.
Service Broker Msg 9675, State 1: Message Types analyzed: 14.
Service Broker Msg 9676, State 1: Service Contracts analyzed: 6.
Service Broker Msg 9667, State 1: Services analyzed: 3.
Service Broker Msg 9668, State 1: Service Queues analyzed: 3.
Service Broker Msg 9669, State 1: Conversation Endpoints analyzed: 0.
Service Broker Msg 9674, State 1: Conversation Groups analyzed: 0.

Database Consistency Errors 119

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 119

Service Broker Msg 9670, State 1: Remote Service Bindings analyzed: 0.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:153) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:154) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:155) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:156) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:157) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
Msg 8909, Level 16, State 1, Line 1
Table error: Object ID 0, index ID -1, partition ID 0, alloc unit ID 0 (type
Unknown), page ID (1:158) contains an incorrect page ID in its page header. The
PageId in the page header = (0:0).

The error has been repaired.
CHECKDB found 0 allocation errors and 6 consistency errors not associated with any
single object.
CHECKDB fixed 0 allocation errors and 6 consistency errors not associated with any
single object.
DBCC results for ‘sys.sysrowsetcolumns’.
There are 544 rows in 5 pages for object "sys.sysrowsetcolumns".
DBCC results for ‘sys.sysrowsets’.
There are 81 rows in 1 pages for object "sys.sysrowsets".
DBCC results for ‘sysallocunits’.
There are 92 rows in 1 pages for object "sysallocunits".
DBCC results for ‘sys.sysfiles1’.
There are 2 rows in 1 pages for object "sys.sysfiles1".
DBCC results for ‘sys.syshobtcolumns’.
There are 544 rows in 5 pages for object "sys.syshobtcolumns".
DBCC results for ‘sys.syshobts’.
There are 81 rows in 1 pages for object "sys.syshobts".
DBCC results for ‘sys.sysftinds’.
There are 0 rows in 0 pages for object "sys.sysftinds".
DBCC results for ‘sys.sysserefs’.
There are 92 rows in 1 pages for object "sys.sysserefs".
DBCC results for ‘sys.sysowners’.
There are 14 rows in 1 pages for object "sys.sysowners".
DBCC results for ‘sys.sysprivs’.

Chapter 2 Data Corruption and Recovery Issues120

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 120

There are 120 rows in 1 pages for object "sys.sysprivs".
DBCC results for ‘sys.sysschobjs’.
There are 50 rows in 1 pages for object "sys.sysschobjs".
DBCC results for ‘sys.syscolpars’.
There are 423 rows in 7 pages for object "sys.syscolpars".
DBCC results for ‘sys.sysnsobjs’.
There are 1 rows in 1 pages for object "sys.sysnsobjs".
DBCC results for ‘sys.syscerts’.
There are 0 rows in 0 pages for object "sys.syscerts".
DBCC results for ‘sys.sysxprops’.
There are 0 rows in 0 pages for object "sys.sysxprops".
DBCC results for ‘sys.sysscalartypes’.
There are 27 rows in 1 pages for object "sys.sysscalartypes".
DBCC results for ‘sys.systypedsubobjs’.
There are 0 rows in 0 pages for object "sys.systypedsubobjs".
DBCC results for ‘sys.sysidxstats’.
There are 116 rows in 2 pages for object "sys.sysidxstats".
DBCC results for ‘sys.sysiscols’.
There are 228 rows in 1 pages for object "sys.sysiscols".
DBCC results for ‘sys.sysbinobjs’.
There are 23 rows in 1 pages for object "sys.sysbinobjs".
DBCC results for ‘sys.sysobjvalues’.
There are 114 rows in 17 pages for object "sys.sysobjvalues".
DBCC results for ‘sys.sysclsobjs’.
There are 14 rows in 1 pages for object "sys.sysclsobjs".
DBCC results for ‘sys.sysrowsetrefs’.
There are 0 rows in 0 pages for object "sys.sysrowsetrefs".
DBCC results for ‘sys.sysremsvcbinds’.
There are 0 rows in 0 pages for object "sys.sysremsvcbinds".
DBCC results for ‘sys.sysxmitqueue’.
There are 0 rows in 0 pages for object "sys.sysxmitqueue".
DBCC results for ‘sys.sysrts’.
There are 1 rows in 1 pages for object "sys.sysrts".
DBCC results for ‘sys.sysconvgroup’.
There are 0 rows in 0 pages for object "sys.sysconvgroup".
DBCC results for ‘sys.sysdesend’.
There are 0 rows in 0 pages for object "sys.sysdesend".
DBCC results for ‘sys.sysdercv’.
There are 0 rows in 0 pages for object "sys.sysdercv".
DBCC results for ‘sys.syssingleobjrefs’.
There are 133 rows in 1 pages for object "sys.syssingleobjrefs".
DBCC results for ‘sys.sysmultiobjrefs’.
There are 102 rows in 1 pages for object "sys.sysmultiobjrefs".
DBCC results for ‘sys.sysdbfiles’.
There are 2 rows in 1 pages for object "sys.sysdbfiles".
DBCC results for ‘sys.sysguidrefs’.
There are 0 rows in 0 pages for object "sys.sysguidrefs".
DBCC results for ‘sys.sysqnames’.
There are 91 rows in 1 pages for object "sys.sysqnames".
DBCC results for ‘sys.sysxmlcomponent’.
There are 93 rows in 1 pages for object "sys.sysxmlcomponent".
DBCC results for ‘sys.sysxmlfacet’.
There are 97 rows in 1 pages for object "sys.sysxmlfacet".
DBCC results for ‘sys.sysxmlplacement’.

Database Consistency Errors 121

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 121

There are 17 rows in 1 pages for object "sys.sysxmlplacement".
DBCC results for ‘sys.sysobjkeycrypts’.
There are 0 rows in 0 pages for object "sys.sysobjkeycrypts".
DBCC results for ‘sys.sysasymkeys’.
There are 0 rows in 0 pages for object "sys.sysasymkeys".
DBCC results for ‘sys.syssqlguides’.
There are 0 rows in 0 pages for object "sys.syssqlguides".
DBCC results for ‘sys.sysbinsubobjs’.
There are 0 rows in 0 pages for object "sys.sysbinsubobjs".
DBCC results for ‘sys.queue_messages_1977058079’.
There are 0 rows in 0 pages for object "sys.queue_messages_1977058079".
DBCC results for ‘sys.queue_messages_2009058193’.
There are 0 rows in 0 pages for object "sys.queue_messages_2009058193".
DBCC results for ‘sys.queue_messages_2041058307’.
There are 0 rows in 0 pages for object "sys.queue_messages_2041058307".
DBCC results for ‘table1’.
Repair: The page (1:153) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:154) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:155) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:156) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:157) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:158) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:153) could not be processed. See
other errors for details.

The error has been repaired.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:154) could not be processed. See
other errors for details.

The error has been repaired.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:155) could not be processed. See
other errors for details.

The error has been repaired.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:156) could not be processed. See
other errors for details.

The error has been repaired.

Chapter 2 Data Corruption and Recovery Issues122

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 122

Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:157) could not be processed. See
other errors for details.

The error has been repaired.
Msg 8928, Level 16, State 1, Line 1
Object ID 2073058421, index ID 0, partition ID 72057594038321152, alloc unit ID
72057594042318848 (type In-row data): Page (1:158) could not be processed. See
other errors for details.

The error has been repaired.
There are 88 rows in 44 pages for object "table1".
CHECKDB found 0 allocation errors and 6 consistency errors in table ‘table1’
(object ID 2073058421).
CHECKDB fixed 0 allocation errors and 6 consistency errors in table ‘table1’
(object ID 2073058421).
DBCC results for ‘table2’.
Repair: The Nonclustered index successfully rebuilt for the object "dbo.table2,
PK_ _table2_ _7D78A4E7" in database "checkdb_test".
Msg 8945, Level 16, State 1, Line 1
Table error: Object ID 2089058478, index ID 2 will be rebuilt.

The error has been repaired.
Msg 2511, Level 16, State 1, Line 1
Table error: Object ID 2089058478, index ID 2, partition ID 72057594038452224,
alloc unit ID 72057594042449920 (type In-row data). Keys out of order on page
(1:210), slots 157 and 158.

The error has been repaired.
There are 1000 rows in 3 pages for object "table2".
CHECKDB found 0 allocation errors and 1 consistency errors in table ‘table2’
(object ID 2089058478).
CHECKDB fixed 0 allocation errors and 1 consistency errors in table ‘table2’
(object ID 2089058478).
CHECKDB found 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.
CHECKDB fixed 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.
DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

In this case, I’ve highlighted the important messages that are added as part of repair:

Repair: The page (1:153) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:154) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:155) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).
Repair: The page (1:156) has been deallocated from object ID 2073058421, index ID
0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type In-row
data).

Database Consistency Errors 123

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 123

Repair: The page (1:157) has been deallocated from object ID 2073058421, index
ID 0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type
In-row data).
Repair: The page (1:158) has been deallocated from object ID 2073058421, index
ID 0, partition ID 72057594038321152, alloc unit ID 72057594042318848 (type
In-row data).

You can see from these messages that the method to repair these pages is to de-allocate
them. There is no method to retrieve any data that could have been on these pages:

Repair: The Nonclustered index successfully rebuilt for the object "dbo.table2,
PK_ _table2_ _7D78A4E7" in database "checkdb_test".
Msg 8945, Level 16, State 1, Line 1
Table error: Object ID 2089058478, index ID 2 will be rebuilt.

This is the error for table2. You can see that the only method needed to repair the table is
to rebuild the nonclustered index:

CHECKDB found 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.
CHECKDB fixed 0 allocation errors and 13 consistency errors in database
‘checkdb_test’.

This is the most important message to look for. Was the repair successful? If the number
of messages fixed is less than those found, the repair couldn’t fix all the problems.

Repair Versus Restore
How do you know whether you should restore from a database backup or use repair?
One consideration is what I’ve described in the section “Best Practices”: the primary
feature for a recovery of data for the SQL Server product is RESTORE. Repair has been a
great feature of DBCC CHECKDB, but you should use it only for emergency purposes. We
talk shortly about what REPAIR_ALLOW_DATA_LOSS really means, but you should know
that in most cases it does mean you will probably lose data. Here is the problem. Aside
from knowing what table is affected by the data loss, you won’t know what rows you
lost. It is now your responsibility to understand what level of logical consistency you
now have in your database.

If you have the proper backup strategy in place, you should almost never have to rely on
repair. But the functionality is still there in case you need it. (Perhaps you couldn’t predict
that a disk that holds backups and is always reliable has an unexpected failure. Of course,
I think you should have a plan for even this scenario.) You will find that if you call
Microsoft PSS to talk about a situation where you have a damaged database and want to
talk about whether repair will fix the problem, instead of just helping you run REPAIR, PSS
will almost always talk to you about using a backup first.

Chapter 2 Data Corruption and Recovery Issues124

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 124

What Does Each Error Mean?
Each error produced by DBCC CHECKDB is documented on the Events and Errors Message
Center. Some of these errors that apply to both SQL Server 2000 and 2005 are docu-
mented under SQL Server 2000. Here is an example of the documentation of an error that
can be encountered in CHECKDB:

Details

Product: SQL Server

Event ID: 2531

Source: MSSQLServer

Version: 9.00.1281.60

Symbolic Name: DBCC_BTREE_SIBLING_LEVEL_MISMATCH

Message: Table error: object ID %d, index ID %d, partition ID %I64d, alloc
unit ID %I64d (type %.*ls) B-tree level mismatch, page %S_PGID.
Level %d does not match level %d from the previous %S_PGID.

Explanation
Two pages are linked as immediate neighbors on a level of a B-tree. The level, LEVEL2, on
the right page, P_ID2, does not match the level, LEVEL1, on the left page, P_ID1.

To determine which page is incorrect, examine the surrounding pages and the contents of
the two pages in question. Also, look for MSSQLEngine_8931 errors, which indicate B-tree
parent-child-level mismatches.

Possible Causes
This error can be caused by one of the following problems:

■ A random page corruption.

■ A bug in the B-tree manager.

■ If LEVEL1 and LEVEL2 are 0 or 1 and the index is a clustered index, there might be
a bug in the Access Methods code that determines page levels. In ssVersion2005, for
a clustered index, page levels progress from 0, 1, 2 to X, but in ssVersion2000, for a
clustered index, page levels progress from 0, 0, 1, 2 to X, where X is the maximum
depth of the B-tree.

User Action
Run hardware diagnostics and correct any problems. Also examine the Microsoft
Windows system and application logs and the SQL Server error log to see whether the
error occurred as the result of hardware failure. Fix any hardware-related problems that
are contained in the logs.

Database Consistency Errors 125

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 125

If you have persistent data corruption problems, try to swap out different hardware com-
ponents to isolate the problem. Check to make sure that the system does not have write
caching enabled on the disk controller. If you suspect write caching to be the problem,
contact your hardware vendor.

Finally, you might find it useful to switch to a new hardware system. This switch may
include reformatting the disk drives and reinstalling the operating system.

Results of Running Repair Options
Repair will rebuild the index.

This is the general format for each message:

■ An explanation of what the error means with regard to what type of data is
damaged

■ Possible causes of the problem

■ What actions you can take

■ What repair will do to correct the problem

The actions to take seem general (check the hardware and so forth), but you will see
when I talk about finding the root cause of corruption that these actions make sense for
many errors detected by CHECKDB.

What Does REPAIR_ALLOW_DATA_LOSS Really Mean?
This repair option means that CHECKDB has detected at least one error that could result in
data loss. I’ve already talked about how this may not apply to every error detected. This is
why the repair recommendation message says the minimum repair level:

repair_allow_data_loss is the minimum repair level…

The method for repair to correct a problem recommended by REPAIR_ALLOW_DATA_LOSS
usually is to de-allocate the page or groups of pages (extent) based on the error. In some
scenarios, a data row could be deleted rather than the entire page, but they are limited
(for example, if the LOB pages associated with the row are damaged and must be de-
allocated). If any part of the structure of the data row itself is damaged, the entire page
must be de-allocated.

I know of two situations in which the recommendation is REPAIR_ALLOW_DATA_LOSS but
repair actually can correct the problem without a loss of data.

Damaged index page

If DBCC CHECKDB encounters an error such as a checksum failure for a nonclustered or
nonleaf page of a clustered index, it recommends REPAIR_ALLOW_DATA_LOSS. This is
because it cannot trust the allocation unit ID information on the page to know for sure it
is a nonclustered index page. So it must de-allocate the page. However, the repair logic in
this case also rebuilds the index so that the result is simply to rebuild the nonclustered
index.

Chapter 2 Data Corruption and Recovery Issues126

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 126

PFS free space error

You may encounter the following error when running DBCC CHECKDB:

Msg 8914, Level 16, State 1, Line 1
Incorrect PFS free space information for page (1:128) in object ID 60, index
ID 1, partition ID 281474980642816, alloc unit ID 71776119065149440 (type LOB
data). Expected value 0_PCT_FULL, actual value 100_PCT_FULL.

In this case, the CHECKDB code recommends REPAIR_ALLOW_DATA_LOSS but repair simply
fixes the free space information in the PFS page with no data loss occurring as a result.

Root Cause Analysis Before Recovering
It is perfectly understandable for you in situations where CHECKDB reports an error to want
to correct the problem as soon as possible, either by restoring from a backup or by using
repair. However, if you want to have the ability to determine the possible root cause of
the problem, I recommend you take the following steps:

1. Try to back up the damaged database, and keep it before restoring or repair.

You may not have time to do this. That is understandable in production situations.
But if you have the time and disk space, please take this step. If you contact
Microsoft technical support, this is one of the things they will want you to do.

2. Take the time to investigate any possible hardware or system problems.

3. Use some of the techniques I describe later in this chapter for root cause analysis to
check your system.

What if Repair Doesn’t Work?
There are some errors that CHECKDB cannot fix:

■ Critical system table damage

■ PFS page damage

■ Data purity errors

So what if you run repair and it doesn’t fix all errors? In previous versions, I would tell
you to just try it again. There were some situations where repair had to be run more than
once to clean up all errors. Those have been corrected for SQL Server 2005. If repair sim-
ply can’t fix all of your errors, your only choice is to copy all data possible from the data-
base using BCP or SELECT and move it to another database.

Database Consistency Errors 127

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 127

Copying Data Versus Repair
Are there situations where you should consider trying to copy data using BCP or SELECT
before you try to use repair? The only example I know of is where you may want to try
and copy valid rows from a page where only a single row or a few rows are damaged.
Because a damaged row would cause repair to de-allocate the page, you may want to see
whether you can copy valid rows from the page except for these damaged rows. Of
course, this makes sense only if these specific rows are that crucial to your business.

The only method to do this is to force the use of a nonclustered index to select specific
rows (using the index hint in the SELECT statement) based on values using the index to
obtain rows “around” the damaged row(s). This assumes the nonclustered index itself is
intact. If you don’t have a valid nonclustered index, you cannot create one in this situa-
tion. This technique can work because when the engine finds a specific row based on
using the nonclustered index (assuming you have the right WHERE criteria), it can avoid
scanning unnecessary rows. I’ve included an exercise at the end of this chapter for you to
walk through an example of how to do this.

Find the Root Cause of Corruption: The Checklist
So, let’s say you encounter errors from DBCC CHECKDB, but this is the first time you have
ever seen it. You decide you don’t want to invest much time in finding the cause. A
restore of the database resolves the problem, it didn’t take long, and you want to move
on to other problems you need to solve. That may be fine, but what if at some point a
few weeks you run CHECKDB and the same database has errors again? What if a different
database is now damaged?

I’ve put together here a checklist of what I as a PSS engineer over the years use when a
customer wants me to investigate the root cause of a database corruption problem as evi-
dence of reoccurring errors from CHECKDB (or perhaps checksum errors on various pages).

As you read through this list, keep in mind one key fact about root cause of database cor-
ruption: Almost all database corruption situations are caused by a problem with the underlying
disk system (drivers, controllers, firmware, disk, and so on). I’m not just telling you this
because I work for Microsoft. I give you this observation based on my experience of see-
ing many customer reports of database corruption through the years of supporting SQL
Server 7.0, 2000, and now 2005. As I go through this list, I indicate whether a particular
piece of information you collect could point to a system problem or perhaps some other
possible cause.

Chapter 2 Data Corruption and Recovery Issues128

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 128

You should also know that in my experience many corruption problems go unsolved.
Typically this is because

■ There may not be an obvious sign of why the corruption occurred (for example, no
system event log entry for a hardware problem).

■ Many corruption problems do not reoccur.

■ The diagnostics and time required to find the cause can be expensive.

Time will tell, but I’m hopeful that the database checksum feature for SQL Server 2005
will help improve the first reason. This is because a checksum error (Msg 824) would indi-
cate some alteration to a database page had occurred since the engine wrote the page to
disk.

As you read through this checklist, keep in mind that just about any information I discuss
for data collection can be obtained using the SQLDIAG.EXE utility. This is the primary data
collection tool to ensure all information is captured at a consistent point in time.

Keep Track of Problem Details and History
The root cause of any problem is always difficult if you don’t have the right information
and, in some cases, the history behind the problem. For reoccurring corruption problems,
this is important.

Review ERRORLOG and Event Log
I hope you know how important it is to have the SQL ERRORLOG and System/Application
event logs when working on problems of this magnitude. The typical information I look
for when reviewing an ERRORLOG for this type of problem is as follows:

■ “Last known good” for CHECKDB of databases

■ Summary message on errors and repair

■ Any stack dumps or critical errors (such as Msg 824)

■ The use of any extended procedures or sp_OA COM objects (memory scribblers)

The event log is important, too. First, perhaps your ERRORLOG files have wrapped, but
important past information in the event log has not been cleared.

Next, the System event log may contain information about possible disk, hardware, or
Windows system problems. Table 2-2 contains a few common event log entries seen by
PSS in the context of corruption cases, with pointers on content to read about each type
of error.

Database Consistency Errors 129

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 129

TABLE 2-2 Event log entries seen by PSS

Source Error Notes

<any> The device, \Device\Scsi\ See KB 259237 and 154690.
cpqcissm1, did not respond
within the timeout period.

Disk The driver detected a controller See KBs 259237 and 154690.
error on \Device\Harddisk4\DR4.

Disk The device, \Device\Harddisk14\ See KB 259237.
DR14, is not ready for access yet.

SaveDump The computer has rebooted from Engage Windows Support.
Bluescreen...a bugcheck.
The bugcheck was: ...

Disk An error was detected on device This error indicates an I/O
\Device\Harddisk3\DR3 during a error during a hard page fault.
paging operation. Discussed in KBs 304415 and

305547.

ClusSvc Cluster disk resource Disk J:: is KB 259237: “can be the result
corrupt. Running ChkDsk /F to of SCSI host adapter configu-
repair problems. ration issues” or a malfunction-

ing device. Also see 311081
and 259237.

Ntfs The file system structure on the disk Note that there is at least one
is corrupt and unusable. Please run case (320866) where this error
the chkdsk utility on the volume F:. is erroneously raised.

Disk Data was recovered using error
correction code on device \Device\
Harddisk5\DR5.

EventLog The previous system shutdown at Typically indicates a hard
9:45:36 AM on 9/5/2004 was server cycle after a hang or a
unexpected. blue screen. Could also indi-

cate something more mundane
such as a power failure if the
system isn’t protected by UPS.

Ftdisk {Lost Delayed-Write Data} The Indicates a failed I/O request.
system was attempting to transfer Discussed in KBs 311081 and
file data from buffers to \Device\ 304415. Could be anything
HarddiskVolume4. The write operation from a firmware bug to faulty
failed, and only some of the data SCSI cables.
may have been written to the file.

Chapter 2 Data Corruption and Recovery Issues130

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 130

Perform Hardware Evaluation and Updates
As previously mentioned, many corruption cases turn out to be caused by fault disk sys-
tems. Yet for as many of these I’ve seen, I also find that many customers don’t keep their
disk hardware and system up-to-date. Some disk vendors provide basic diagnostics you
can run regularly for the disk system, and many have updates for their drivers and
firmware (much like Microsoft has for its software). So, include evaluation and updates for
your disk system (plus all of your server hardware) as a regular part of your maintenance
plan and strategy.

Install the Windows PAE Fix (KB 838765)
If you read anything in this section, pay attention to what I’m about to tell you. Any
Windows 2000 or 2003 server using the physical addressing extensions (PAE) should make
sure they have the necessary Windows fixes as described in Microsoft Knowledge Base
article 8387765 applied. If you are running Windows 2003 Service Pack 1, you are cov-
ered. If not, read the article and get the fixes the article describes.

This problem in Windows can result in unpredictable behavior, including access viola-
tions and database corruption. The reason is that the bug can result in unexpected frames
from Windows pages for other processes to be written on top of memory pages for the
SQL Server process.

Note that on some systems, PAE is enabled even if you don’t specify the /PAE switch in
your boot.ini. My advice is to get the fixes for this problem installed on your server.

Run CHKDSK.EXE
This program is often forgotten when analyzing root cause of corruption problems. If the
CHKDSK.EXE program from Windows shows damage to the NTFS file system for the drive
where SQL Server database and log files exist, your search for a cause should stop there.
Any damage to the file system could result in database or log corruption.

One common question for CHKDSK.EXE is “Can I run the repair option for SQL Server
files?” The answer is yes, but you lose data if repair moves NTFS clusters where SQL Server
data is stored. The actions to take before running CHKDSK repair depend on your available
backups and the state of the disk system. If you believe the disk system is not a problem
(perhaps you don’t see any disk-related problems aside from NTFS errors in the event log)
and you can restore from a backup, proceed with CHKDSK repair. If you cannot restore
from a backup, however, you might want to consider copying data from the SQL database
in question before you do anything else. This is because CHKDSK repair could move clusters
of your SQL Server database file, and you might not know what is really damaged or
available to copy. One thing you should not do is rely on DBCC CHECKDB repair when NTFS
problems exist. This is the same advice I have provided for disk system problems. If the
disk is damaged, running CHECKDB repair is not a wise decision. Why repair SQL Server
pages based on a faulty disk system? Who knows whether repair will work or itself
encounter corruption problems.

Database Consistency Errors 131

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 131

Evaluate CHECKDB Results
Saving the result of DBCC CHECKDB when errors are detected is the most important piece of
information to analyze the possible root cause of corruption. If you don’t know what
errors were encountered, it is difficult to discuss the cause of corruption. My philosophy is
that you should save any execution of DBCC CHECKDB whether it was successful or not.
Keep the results of CHECKDB in the same LOG directory where ERRORLOG files are kept.

Inspect Damaged Databases
In some cases, just looking at the errors raised by DBCC CHECKDB is not enough to
understand a possible root cause. It is important to look at the actual damage to a page to
understand a possible cause. It may be important to also look at previous copies of the
database (through older backups) to look for any special patterns of the damage.

This is one reason why it is important to back up a database before you repair it or at least
dump the pages with DBCC PAGE.

Let’s say you encounter a checksum error on a page like the following:

Msg 824, Level 24, State 2, Line 1
SQL Server detected a logical consistency-based I/O error: incorrect checksum
(expected: 0xc3e99060; actual: 0x78dc1f61). It occurred during a read of page
(1:152) in database ID 17 at offset 0x00000000130000 in file ‘C:\Program
Files\Microsoft SQL Server\MSSQL.1\MSSQL\DATA\test.mdf’. Additional messages
in the SQL Server error log or system event log may provide more detail. This
is a severe error condition that threatens database integrity and must be
corrected immediately. Complete a full database consistency check (DBCC
CHECKDB). This error can be caused by many factors; for more information, see
SQL Server Books Online.

Let’s say you look at this page with DBCC PAGE and get the following output (I included
only a portion of the page):

DBCC PAGE(17, 1, 152, 2)

DBCC execution completed. If DBCC printed error messages, contact your system
administrator.

PAGE: (1:152)

BUFFER:

BUF @0x02BEA7C0

bpage = 0x04DC0000 bhash = 0x00000000
bpageno = (1:152)
bdbid = 17 breferences = 3
bUse1 = 25322
bstat = 0xc00809 blog = 0x999a2159
bnext = 0x00000000

Chapter 2 Data Corruption and Recovery Issues132

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 132

PAGE HEADER:

Page @0x04DC0000

m_pageId = (1:152) m_headerVersion = 1
m_type = 1
m_typeFlagBits = 0x4 m_level = 0
m_flagBits = 0x8200
m_objId (AllocUnitId.idObj) = 67 m_indexId (AllocUnitId.idInd) = 256
Metadata: AllocUnitId = 72057594042318848
Metadata: PartitionId = 72057594038321152
Metadata: IndexId = 0
Metadata: ObjectId = 2073058421 m_prevPage = (0:0)
m_nextPage = (0:0)
pminlen = 12 m_slotCnt = 1
m_freeCnt = 8079
m_freeData = 111 m_reservedCnt = 0
m_lsn = (37:79:3)
m_xactReserved = 0 m_xdesId = (0:0)
m_ghostRecCnt = 0
m_tornBits = -1008103328

Allocation Status

GAM (1:2) = ALLOCATED SGAM (1:3) = ALLOCATED
PFS (1:1) = 0x61 MIXED_EXT ALLOCATED 50_PCT_FULL
DIFF (1:6) = CHANGED
ML (1:7) = NOT MIN_LOGGED

DATA:

Memory Dump @0x4454C000

4454C000: 01010400 00820001 00000000 00000c00 †................
4454C010: 00000000 00000100 43000000 8f1f6f00 †........C.....o.
4454C020: 98000000 01000000 25000000 4f000000 †........%...O...
4454C030: 03000000 00000000 00000000 6090e9c3 †............`...
4454C040: 00000000 00000000 00000000 00000000 †................
4454C050: 00000000 00000000 00000000 00000000 †................
4454C060: 10000c00 01000000 01000000 0200fc00 †................
4454C070: 68656c6c 6f776f72 6c640000 00000000 †helloworld......
4454C080: 0000ba03 00000000 00000000 00000000 †................
4454C090: 00000000 00000000 00000000 00000000 †................
4454C0A0: c0000080 00000000 00000000 00000000 †................
4454D9A0: 00000000 00000000 00000000 00000000 †................
4454D9B0: 00000000 00000000 00000000 00000000 †................
4454D9C0: 00000000 00000000 00000000 00000000 †................
4454D9D0: 00000000 00000000 00000000 00000000 †................
4454D9E0: 00000000 00000000 00000000 00000000 †................

Database Consistency Errors 133

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 133

Let’s say you know that this page is for a table that shouldn’t contain any character
columns. Notice the “helloworld” string stored on the page. This may be a hint to you
that something wrote incorrectly the string helloworld on a database page in memory and
then the page was written to disk. Now it is damaged. I’ve seen this exact type of problem
occur when a buggy extended stored procedure wrote strings on database pages, causing
corruption.

Use the Database/Log “Replay” Technique
Suppose you don’t see any common disk system type of errors in the event log,
SQLIOSTRESS doesn’t encounter any errors, and CHKDSK doesn’t report any problems. Now
what? Well, first you should know that the underlying cause could still be the disk sys-
tem. I’ve seen situations where the event log has no errors, CHDDSK is clean, and
SQLIOSTRESS running for hours showed no errors. Yet when the customer replaced the
SCSI adapter or disk drive, the problem went away. I don’t have scientific explanations for
these situations except to say that some problems could be timing-related and specific to
IO patterns from the use of SQL Server in production. Existing tools or utilities don’t
expose the problem.

Having said that, I’ve also been in situations in which I suspected SQL Server could be the
cause due to symptoms such as the following:

■ The errors from CHECKDB are always with the same table and perhaps are even the
same type of errors (say row damage to an index).

■ A “replay” of a clean database full backup and a series of transaction log backups
show the errors from CHECKDB.

I’ve seen situations where the first point is true, but the problem was still system-driven
just because the index or table was a hotspot and was used frequently. I’ve even seen the
second point being a system problem just because of the nature of what was recorded in
the transaction log.

Having said that, if you can take a full database backup and restore a series of transaction
log backups to replay errors from CHECKDB, you should engage Microsoft PSS. Be careful
here. You must first ensure that the full database backup is clean. In other words, if you
just restored the database backup, CHECKDB should report no errors.

The reason this technique is important is that it indicates some transaction log record can
be redone or undone and cause an error to occur with CHECKDB. If you replay a backup
and transaction logs and you don’t find any errors from CHECKDB, the problem must have
occurred on the original database or log file and is not baked into a record from the trans-
action log.

One possible explanation at this point is that a database page was damaged when it was
written to disk or after being written to disk. Database checksum is the primary technique
to discover if a page was damaged after SQL Server wrote it to disk. Let’s look at another
alternative and methods to detect damage to a page before it is written to disk.

Chapter 2 Data Corruption and Recovery Issues134

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 134

Use SQL Server IO Audits
I’ve described in this chapter the new database checksum feature for SQL Server 2005.
Now I show you some more advanced techniques used to detect certain types of damage
to pages in addition to checksum. It is important to know that the use of some of these
features, usually by trace flags, can have performance implications for your server.
Database checksum was designed into the product and tested for performance (which is
why it is the default option for a database in 2005). My recommendation is that you con-
sult with Microsoft PSS when considering these options.

Stale Read (Trace Flag 818)
A stale read occurs when SQL Server writes a modified page to disk but the disk system
returns a previous version of the page (perhaps from hardware cache). A lost write occurs
when SQL Server modifies a page and writes it to disk, but the disk system never stores
this modification to disk, so the previous version is returned when reading the page from
disk. These differences are subtle, and the symptoms of the problem can appear to be the
same: A modification to disk appears to be lost. One primary difference is that a stale read
can result in correct data after something like a system reboot occurs to clear the cache.

It is important to know that this situation would not be detected by a database checksum.
This is because the page itself is valid based on the checksum value; the hardware is sim-
ply giving back an unexpected version of the page.

In SQL Server 2000, the SQL Server development team added logic to detect this problem
if an error for a page was encountered such as Msg 823 or 605. If you enabled trace flag
818, the engine would keep track of the latest LSN value for a database page in memory.
When an error was encountered, the engine would compare the LSN value on the read
page to the last known modified LSN in its “list of LSN values.” If they didn’t match, an
error like the following was written to the ERRORLOG:

SQL Server has detected an unreported OS/hardware level read or write
problem on Page (1:75007) of database 12
LSN returned (63361:16876:181), LSN expected (63361:16876:500)
Contact the hardware vendor and consider disabling caching mechanisms to
correct the problem

In SQL Server 2000 Service Pack 4 and SQL Server 2005, the SQL Server development team
enhanced the design of this trace flag to perform the LSN check on every read of a page
and to store the LSN list in a more efficient hash table design. This auditing is not only
by default and requires the trace flag to be enabled at server startup time. Again, you
should use this trace flag only if you are having difficulty tracking down the cause of the
corruption problem.

Eliminate Possible Memory Scribbler Software
If you think the problem is a damaged database page before it is written to disk, seriously
consider eliminating any software running in the SQL Server process space that could
cause unexpected memory damage. This includes user-written extended stored proce-
dures, COM objects loaded by sp_OA, and linked server providers. I’m not saying this

Database Consistency Errors 135

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 135

because it is a safe thing to do. I’m telling you this because I’ve seen things like user-
written extended stored procedures have bugs that overwrite SQL Server database pages
leading to corruption as they are written to disk.

If you can’t disable these custom objects and procedures, considering moving them out of
the process space for SQL Server. The SQL Server documentation provides information on
how to run COM objects out of process with sp_OA and linked servers out of process
when configuring the linked server. An extended procedure would be run out of process
on the primary SQL Server by installing it on another SQL Server and executing it from
the primary as a SQL remote stored procedure call.

Relocate Files to an Alternative Location
The last item on the root cause checklist may sound too simple, but I put this here
because I’ve seen it work before. If you have tried all these options and are still scratching
your head for a possible cause, it could still be your disk system. I’ve had customers sim-
ply move their database (or a system database such as tempdb) to another disk drive or
disk system (such as a SAN or off of a SAN), and the problem has disappeared. To be fair
and accurate, the move of the files might have changed the timing of the problem, and it
could still be SQL Server. In many of these cases, however, I’ve seen customers then
replace the original disk controller or disk system, and the problem will permanently go
away. Don’t discount this simple technique when you are thinking of all of these trace
flags and tools to use.

Chapter 2 Data Corruption and Recovery Issues136

02_0321447743_CH02.qxd 11/15/06 9:56 AM Page 136

