
Chapter 10

Automating Tasks

In Chapter 9, “Understanding WMI, Scripting, and Hyper-V,” you were introduced to Windows
Management Instrumentation (WMI) and scripting concepts that are important to understand-
ing when effectively automating Hyper-V administrative tasks. The chapter used some relatively
simple automation tasks and code examples.

The focus of this chapter is to show you how to accomplish more complex automation tasks
for managing a Hyper-V virtualization environment. The examples in this chapter are exclusive
to Hyper-V, unlike the Windows PowerShell code generated by (and used with) System Center
Virtual Machine Manager (SCVMM) discussed in Chapter 11, “Using System Center Virtual
Machine Manager 2008.”

This chapter will discuss common administrative areas as well as automation and scripting
examples. Scripting samples are primarily written in Windows PowerShell and rely heavily on a
prewritten library of functions available on the Internet.

Common administrative tasks are often categorized in the following groups, which are the
topics we’ll cover in this chapter:

Building on the work of others•u	

Provisioning•u	

Configuration management•u	

Managing access•u	

Migration•u	

Backup and recovery•u	

Collecting and monitoring data•u	

Building on the Work of Others
Chapter 9 introduced the Hyper-V WMI provider and namespace. The script examples in Chapter 9
were fairly simple. Although they’re useful, they don’t accomplish much. Writing useful scripts
can take a great deal of time and effort. Developing an understanding of the right WMI classes to
access and how best to use them can be laborious. Using the insights of others and building on their
efforts is therefore an attractive approach to efficient Hyper-V automation. SCVMM (covered in
Chapter 12, “Protecting Virtualized Environments with System Center Data Protection Manager”)
is the best way to benefit from the expertise of others, but you can also use other approaches.

627006c10.indd 225 4/21/10 8:59:34 AM

226  | Chapter 10  Automating Tasks

Many of the examples in this chapter use an evolving, prewritten library of Windows
PowerShell Hyper-V functions. The library was created by James O’Neill and is available from
CodePlex (www.codeplex.com).

O’Neill has a wonderful blog at Tip  http://blogs.technet.com/jamesone/ where he goes
into great detail about Windows, virtualization, motor racing, and other topics.

CodePlex is Microsoft’s website for open source project hosting, and it’s home to numer-
ous useful development projects. You can find code for other Hyper-V–focused initiatives on
CodePlex, but James’ library is among the most complete currently available anywhere; it’s used
widely for Hyper-V automation. His HyperV.PS1 management library uses all the same WMI
calls discussed in Chapter 9. The difference is that the calls in the library are surrounded by
carefully written Windows PowerShell code. You can access the library for Hyper-V by navigat-
ing to www.codeplex.com/PSHyperv.

Original Hyper-V Library
There are multiple versions of the library, with some dating back to mid-2008. Each version is
bundled in a .zip file that you can find by clicking the page’s Downloads tab (there may also
be separate documentation available). An older iteration of the library, 0.95a Beta, released in
August 2008, is available as a single .ps1 function library via this link:

http://pshyperv.codeplex.com/releases/view/16422

You may wonder why we would show you a vintage version of the library. We still often Note 
use this older version of the library when we work with customers, because it is compatible with
PowerShell 1.0, it’s simple to load using the conventions we use every day, and it’s all contained
in one .ps1 file. Nearly every function or filter in the library includes helpful examples within
the source code to demonstrate its value. Browsing through the source can provide you with a
wealth of ideas about how to use the library, as well as fantastic examples of how to write great
Windows PowerShell code.

Inside the .zip file for the August 2008 version, you’ll find HyperV.PS1, which is the library
of functions O’Neill has created for Windows Server 2008, PowerShell 1.0, and Hyper-V.

Loading the HyperV.PS1 library of functions is straightforward, assuming the execution
policy is set and you follow proper calling conventions (see Figure 10.1).

Remember that you load prewritten Windows PowerShell libraries of functions in a similar Note 
way to running a script (specifying the path), except that the call to the library must be proceeded
by an additional period. Also recall that you must set the execution policy in Windows PowerShell
to allow for scripts to execute. See Chapter 9 for more information.

When the library loads, it lists the functions available for use (see Figure 10.2).

Figure 10.1
Calling the library

627006c10.indd 226 4/21/10 8:59:35 AM

Building on the Work of Others |  227

New R2 Library
Newer versions of the library have been revised to work exclusively with PowerShell 2.0. They
include numerous fixes and additional functionality. We’ll work through the chapter using the
latest available library (“R2 Gold” from January 18, 2010) available here:

http://pshyperv.codeplex.com/releases/view/38769

Newer versions of the library don’t load the same way as the early releases. O’Neill has chopped
up the library into smaller files that now can be loaded as modules. Unzipping the contents of the
install .zip file into a directory reveals a large collection of files rather than a single .ps1 file (see
Figure 10.3). Don’t let all these files scare you! They’re (mostly) there to make things easier.

Figure 10.2
Functions in the
0.95a Beta library

Figure 10.3
Files in ZIP
download

627006c10.indd 227 4/21/10 8:59:35 AM

228  | Chapter 10  Automating Tasks

To load the library, start PowerShell, and be certain you have administrative rights and
that the Execution Policy is set (we often execute a set-executionpolicy –executionpolicy
“Unrestricted” command to be certain we do not have any issues!). Loading the library can be as
simple as typing import-module .\HyperV (see Figure 10.4). Note that we ran the import-module
command while our PowerShell session was in the directory containing the library files.

Even with the Note  Unrestricted option, you may encounter security warning prompts that
need to be answered for each .ps1 and .ps1xml file in the module. If these prompts are not
answered with R, then the modules do not get imported, and the subsequent commands may
fail. To prevent this, use Windows Explorer to access the properties of each file in the library,
and choose to “unblock” access.

Using a newer version of the library has advantages, such as the integrated help you can get
with a fully developed, imported PowerShell module. Unlike older versions of the library, you
can access a list of cmdlets using get-command and specifying –module HyperV. The help and
get-help cmdlets also work with the newer libraries, so documentation is always handy. You
can even combine it with other fancy PowerShell cmdlets (assuming you have installed the
Windows PowerShell Integrated Scripting Environment [ISE] feature) like out-gridview to
generate a sortable, filterable module help reference, as shown in Figure 10.5.

get-command -module HyperV | get-help | select-object -property name, synopsis | out-gridview

Figure 10.4
Loading the
HyperV module

Figure 10.5
out-gridView list
of functions

627006c10.indd 228 4/21/10 8:59:35 AM

Provisioning |  229

Other Ways to Load the Library

The library is fantastic, but the documentation and some of the tools (like the install.cmd file)
may not be 100 percent accurate or applicable to your environment. You may want to run (and inves-
tigate) the install.cmd file that comes in the package in some situations to update the registry
as well as to enable PowerShell. We’ve chosen not to use this file and instead import the library as
demonstrated here.

Loading the library as show earlier in this section is the easiest way we’ve found to get started,
but feel free to experiment. After the installation is smoothed out, we often create a shortcut on
the desktop of our Hyper-V hosts (if the library is set up) to start PowerShell and load the library
automatically. We typically use the following command line (in a .bat file):

start powershell -noexit -command “import-module c:\hyperv\hyperv”

You can add the parameters to a PowerShell shortcut on your desktop instead of using a batch file
without the start command. Note that this particular command-line example assumes that the
library files have all been unzipped to the C:\HyperV directory.

Regardless of the version of the library you use and how you load it, the predefined
Windows PowerShell functions included in the library are the underpinning of all the use-
ful scripts in this chapter. The library is going to save you lots of time and effort if you want
to automate Hyper-V–related tasks without the burden of other, more costly tools. We’ll now
show how to automate the creation of virtual machines.

Provisioning
Creating new virtual machine (VM) instances is the first big, useful automation task to conquer.
With a good VM provisioning process, you can quickly and reliably create new VMs in minutes.

Creating a Bare-Bones VM
We’ll use the VM provisioning process to help make the point that using O’Neill’s library of
functions simplifies creating your own scripts. The following Windows PowerShell code creates
a new VM instance on the local server with the display name of New VM:

Set the display name of the VM
$New_VM_Name = “New VM”
$VM_Service = GWMI -namespace root\virtualization i
Msvm_VirtualSystemManagementService
$NewVM = $VM_Service.DefineVirtualSystem()

Parse the result and find the created VM
$resultID = $NewVM.DefinedSystem.Split(‘=’)[2]
$resultID = $resultid.split(‘“‘)[1]
$VM = GWMI -namespace root\virtualization Msvm_ComputerSystem |
 where {$_.Name -match “$resultID”}

$VMSettingData = GWMI -namespace root\virtualization i

627006c10.indd 229 4/21/10 8:59:36 AM

230  | Chapter 10  Automating Tasks

Msvm_VirtualSystemSettingData -filter “SystemName = `’$($VM.Name)`’”

Set the display name of the VM
$VMSettingData.ElementName = $New_VM_Name
$VM_Service.ModifyVirtualSystem($VM.__PATH, $VMSettingData.psbase.getText(1))

Not all that much code is shown, but then again, it doesn’t do much. You create a new VM on
the local physical system and give it the intended display name. By contrast, the following single
line of code accomplishes the same task using any version of the library:

$myVM = (New-VM “New VM”)

Using the library vastly simplifies VM management tasks by reducing the amount of code you
need to write. In either case, you set defaults for the number of processors (one) and the amount
of RAM (512 MB), but you do little else. The VM defined at this point is similar to a bare-bones PC
kit (see Figure 10.6). It has only a virtual case, a power supply, a motherboard, limited RAM, and a
single processor. The VM has no hard disks, no CD/DVD, and no network interface cards (NICs).
You must attach and configure all these resources before you can use the VM.

Defining a usable VM means more effort. You must write additional code to perform the
following actions:

Change the amount of RAM•u	

Alter the number of virtual CPUs•u	

Add NICs•u	

Figure 10.6
Virtual settings
after creating a
basic VM

627006c10.indd 230 4/21/10 8:59:36 AM

Provisioning |  231

Connect NICs to a particular virtual switch•u	

Create a virtual hard disk (VHD) file•u	

Add hard drive(s) attached to VHD file(s) or pass-through disk•u	

Add CD/DVD drive(s)•u	

Mount CD/DVD(s)•u	

All other provisioning tasks (you get the point—changing startup actions, BIOS boot order, •u	

and so on)

Each of these actions requires you to weave more code into the basic provisioning process. The
complexity of a script that must be handcrafted and maintained to handle all provisioning pro-
cesses can be substantial. Writing a script of this magnitude is similar to running a marathon—
not everyone has the capacity or even wants the challenge (especially if a free ride is available,
like O’Neill’s library!).

The following Windows PowerShell sample (using any version of the library) completes the
common VM provisioning tasks mentioned and starts the new VM, with the execution shown in
Figure 10.7:

$New_VM_Name = “New VM”
$New_VHD_Name = “c:\VHDs\$($New_VM_Name).VHD”

$myVM = (New-VM $New_VM_Name)
Set-VMMemory $myVM 1024MB
Set-VMCPUCount $myVM 2
Add-VMDrive $myVM 0 0
New-VHD $New_VHD_Name 20GB -wait
Add-VMDisk $myVM 0 0 $New_VHD_Name
Add-VMDrive $myVM 1 0 –dvd
Add-VMDisk $myVM 1 0 “C:\ISOs\2008R2.iso” –dvd
Add-VMNIC $myVM -virtualSwitch “Public”

Start-VM $myVM

You can immediately see the results of this compact and complete script in the Hyper-V console.
Each customized element of the VM’s settings are reflected in the settings (see Figure 10.8).

All the code examples shown have been tested with the latest versions of the library. Note 
Most of the code shown will work with either version of the library that we introduced earlier
in the chapter. Everything shown was specifically tested with the newer R2 Gold library from
January 18, 2010, using PowerShell 2.0.

Setting BIOS Options, Startup/Shutdown, and Additional Elements
You can set BIOS options (such as boot order) and startup/shutdown actions for a VM using the
set-VM function:

set-vm $myVM -bootorder @(3,2,0,1)

627006c10.indd 231 4/21/10 8:59:36 AM

232  | Chapter 10  Automating Tasks

You can find friendly names for boot media (rather than numbers) in the definition of the
$BootMedia global variable, as shown in Figure 10.9.

Additional global variables exist to clarify the codes behind the VM state as well as startup,
shutdown, and recovery actions. To set the default startup action for a VM to always start, use
either of the following lines (note that this code works only with the R2 Gold library):

set-vm -VM $myVM -AutoStartup $StartupAction[“AlwaysStartup”]
set-vm -VM $myVM -autoStartup 2

You can add error handling and management to the earlier basic provisioning script (checks
to ensure the ISO file exists, disk space is sufficient, the Public network switch is defined, and
each step of the process completes successfully), but it may not be necessary in all situations.

You may notice that we call all the useful tools in the library functions, when in actuality Note 
many of them are defined as filters. Functions and filters are essentially the same thing (filters are
a subset of functions). They’re both blocks of code that process data. The difference is in how they
process data that is piped into them from other functions. Through the evolution of the library,
many functions have been converted to filters to add support for piped input, and some filters
have changed to functions. Rather than split hairs and keep track, we’ll continue to call everything
a function.

Figure 10.7
Script execution

627006c10.indd 232 4/21/10 8:59:37 AM

Provisioning |  233

Remote Virtual Machine Provisioning
We haven’t explicitly mentioned this in the chapter yet, but most functions in the library have
been constructed to be executed against a remote server by specifying the -server <hostname>
argument. Remotely managing servers is key, because Windows PowerShell doesn’t run on the
more compact Core installations of Windows Server 2008 (but of course PowerShell does run
on Core for R2 as well as Hyper-V Server 2008 R2). Calling the new-VM function and specifying
a remote host (if successful) populates $myVM with information about a new VM created on that
remote host:

$New_VM_Name = “New VM”
$myVM = (New-VM $New_VM_Name -server “RemoteHost”)

Figure 10.8
VM settings
after creating a
complete VM

Figure 10.9
Script execution

627006c10.indd 233 4/21/10 8:59:37 AM

234  | Chapter 10  Automating Tasks

You can see the results of successful remote calls to a system named hypernode2 in
Figure 10.10. Any code in the examples that use $myVM to set VM settings (set-VMmemory,
set-VMCPUcount), add resources (add-VMdrive, add-VMdisk, add-VMNIC), or in other ways
affect the VM (start-VM) should work properly remotely.

When a variable containing the description of a VM is passed to any of the functions Note 
that affect the VM, the function automatically contacts the remote server. If no VM parameter
is passed to a function or if convenience dictates that you access the VM by name, you need to
specify the –server parameter.

Some functions, such as new-VHD (called to create a new VHD to be later attached to the VM),
don’t rely on the VM information found in $myVM. Calls to these functions must also include the
-server argument:

$New_VM_Name = “New VM”
$New_VHD_Name = “c:\VHDs\$($New_VM_Name).VHD”
$Target_Host = “RemoteHost”

$myVM = (New-VM $New_VM_Name -server $Target_Host)
Set-VMMemory $myVM 1024MB
Set-VMCPUCount $myVM 2
Add-VMDrive $myVM 0 0
New-VHD $New_VHD_Name 20GB -wait -Server $Target_Host
Add-VMDisk $myVM 0 0 $New_VHD_Name
Add-VMDrive $myVM 1 0 –dvd
Add-VMDisk $myVM 1 0 “C:\ISOs\XP_Pro.iso” –dvd
Add-VMNIC $myVM -virtualSwitch “Public”

Start-VM $myVM

Precreating Generic VHDs
In the previous provisioning example, the VM created has an ISO image file inserted in its virtual
CD/DVD drive from which you can install Windows Server 2008 R2. Automating the insertion of
an installation disc for a vanilla operating system is a convenient way to build VMs, but installation
still requires considerable time and manual intervention (clicking through).

Creating a generic VM for a given operating system instance is a more efficient way to
create multiple VMs. Installing a particular operating system version/edition once completely

Figure 10.10
Call to
remote server

627006c10.indd 234 4/21/10 8:59:37 AM

Provisioning |  235

(the x64 full installation of Windows Server 2008 R2 Enterprise Edition, for instance), followed by
properly executing SysPrep.exe, can save time and effort for repeated installations. SysPrep.exe
is Microsoft’s system preparation utility, which you can use to depersonalize a configured operat-
ing system instance for widespread deployment (commonly using an imaging tool such as ImageX
and/or an automated deployment tool like Windows Deployment Services). When you correctly
execute the command, you reset key system elements so that you can configure them again in setup
to ensure uniqueness and the appropriate personalization in your environment.

SysPrep.exeTip  is specific to each edition of Windows. For Windows Vista, Windows 7,
Windows Server 2008, and Windows Server 2008 R2, it ships with the product and can be found
in the C:\Windows\system32\sysprep directory.

You can run SysPrep.exe either by passing it various command-line arguments to guide
behavior (see Figure 10.11) or by using a graphical interface (see Figure 10.12).

You should keep in mind that not all software can be preinstalled and configured before you
run SysPrep.exe. The following list includes tasks you can perform before executing SysPrep.exe:

Installing updated integration components (ICs), if not already included in the installa-•u	

tion media

Setting the time zone•u	

Configuring the patching option•u	

Applying patches from Windows Update•u	

Adding common features (PowerShell, for example)•u	

The manual installation of Windows Server 2008 R2 Enterprise edition typically takes almost
an hour when you apply patches and complete common configuration tasks. Duplicating a VHD
file that has been Sysprepped and repersonalizing should take a small fraction of this time (80 to
90 percent less time is common, depending on system performance).

Figure 10.11
SysPrep.exe
arguments

Figure 10.12
SysPrep.exe
graphical interface

627006c10.indd 235 4/21/10 8:59:38 AM

236  | Chapter 10  Automating Tasks

Automated installation (using answer files and scripts) can further reduce the install effort
by automating domain joining, system renaming, and license activation, as well as the installa-
tion and configuration of application software and server roles.

You can find detailed information and guidance about how to automate these tasks using Tip 
SysPrep.exe online at http://technet.microsoft.com and other websites.

Here’s a modified version of the VM provisioning script, including code to copy and register
a preconfigured VHD file without an installation ISO or a new, blank VHD:

$New_VM_Name = “New VM”
$New_VHD_Name = “c:\VHDs\$($New_VM_Name).VHD”
Copy “c:\SYSPREPed\Windows Server 2008R2.VHD” $New_VHD_Name

$myVM = (New-VM $New_VM_Name)
Set-VMMemory $myVM 1024MB
Set-VMCPUCount $myVM 2
Add-VMDrive $myVM 0 0
Add-VMDisk $myVM 0 0 $New_VHD_Name
Add-VMDrive $myVM 1 0 –dvd
Add-VMNIC $myVM -virtualSwitch “Public”

Start-VM $myVM

Deprovisioning
You can automate the removal of VMs as well. You may think twice about creating scripts to
remove VMs, because (operationally) simplifying the deletion of a VM presents risks. As with the
Hyper-V Manager, removing a VM programmatically requires that the VM not be in a running
state (in other words, it must be stopped or saved). Only the configuration of the VM is removed;
associated VHD files are left behind and may also need to be deleted. You can remove a VM with
one line of code that uses the function library:

Remove-VM “New VM”

You may also remove resources attached to a VM using functions from the library. Table 10.1
lists these destructive functions.

Table 10.1:	 Hyper-V Library Remove Functions

Function Name Description

remove-VM Deletes the VM configuration

remove-VMdrive Detaches a disk (VHD or pass-through)

remove-VMfloppydisk Removes a floppy disk

remove-VMKVP Removes key/value pair

627006c10.indd 236 4/21/10 8:59:38 AM

Provisioning |  237

Function Name Description

remove-VMNIC Removes a virtual NIC

remove-VMSCSIcontroller Removes a virtual SCSI controller

remove-VMRASD Removes virtual hardware described by Resource Allocation Setting Data

remove-VMsnapshot Deletes snapshot

remove-VMswitch Deletes virtual switch

remove-VMswitchNIC Removes the parent (physical) NIC associated to a virtual switch

Physical Server Setup
Jumping ahead to show basic VM creation (as we did here) may seem like putting the cart before
the horse. You want to ensure that the physical server is ready to accommodate VMs before you set
up VMs. You have some common tasks to perform on a physical host, all of which you can auto-
mate for consistency. There is more value in automating some configuration tasks than others. For
example, changing the default path for new VHDs and configuration files can be important but
may not be entirely useful. If you configure failover clustering on a series of hosts, defaulting the
settings to a particular volume may be useless, because these settings are typically ignored (VM
configuration information and VHDs are often on unique shared storage unless a common file
share, CSVs, or a cluster file system is used). Automating the creation of virtual network switches
may be more important in a clustered environment, because virtual network switches across
cluster nodes must be named consistently to ensure smooth operation.

Functions are available to create each of the three kinds of virtual network switches: private,
internal, and external. Creating private and internal virtual switches programmatically is a relatively
straightforward process:

New-VMInternalSwitch “VM and Host Network”
New-VMPrivateSwitch “VM ONLY Network”

Creating a virtual switch with external connectivity is a bit more complicated, because you
must specify a physical network card:

New-VMExternalSwitch -virtualSwitchName “Wired Network” -ExternalEthernet
“Intel(R) PRO/1000 MT Desktop Adapter”

Knowing the name ahead of time for the desired physical NIC is important but not always
practical. To simplify virtual switch creation, use the choose-VMexternalethernet function.
This function queries the host operating system to discover Ethernet connections not already in
use by Hyper-V. If more than one connection is found, you’re prompted to select one, which is
returned as the result:

choose-VMExternalEthernet |
New-VMExternalSwitch -virtualSwitchName “Wired Network””

Table 10.1:	 Hyper-V Library Remove Functions   (continued)

627006c10.indd 237 4/21/10 8:59:38 AM

238  | Chapter 10  Automating Tasks

Configuration Management
Discovering, managing, and maintaining the configurations of systems are core tasks in any
well-managed infrastructure. Locating virtual hosts and VMs is a first step. Accessing and
decoding configuration information for hosts and VMs is key to sustaining the health of the
overall environment.

Discovery
The ease with which you can create VMs is both a blessing and a curse. The ability to create
entire new virtual system instances with a few lines of code or clicks of a mouse means the
traditional barriers to server deployment have dramatically changed. No longer do you need
to purchase a new server for each new project. Now, a primary goal of server virtualization is
often to reduce costs through server consolidation.

Once users begin to understand the speed with which you can create new servers, expecta-
tions for new servers increase. As you realize the promise of virtualization, enterprising users
will create their own VMs in their own ways. Sometimes they will create systems without trig-
gering processes to ensure that appropriate software licenses are ordered, backup capacity is
reserved, or security audits are performed. The impact and cost implications of an unmanaged
virtual environment can be enormous.

More than once, innovative users have built their own virtual test infrastructures, Note 
exposing (for example) Dynamic Host Configuration Protocol (DHCP) servers to production
networks and interrupting business. (Let’s just say we know a guy who did something really
bad, and we’ll leave it at that!)

Detecting Virtualization Hosts

You can locate installed Hyper-V hosts in a number of ways, including searching servers for run-
ning services (vhdsvc, nvspwmi, vmms), scanning volumes for files (including .vhd and .vsv),
enumerating WMI namespaces, and using the power and efficiency of Active Directory (AD). You
may not know that properly configured virtualization servers (those running Hyper-V and Virtual
Server 2005) publish their binding information in AD as service connection point (SCP) objects.

For more information about service connection points, go to the Service Publication page on the Tip 
MSDN website at http://msdn.microsoft.com/en-us/library/ms677950(VS.85).aspx.

Querying AD for Hyper-V hosts is a great starting point for gathering a bounty of information
about virtualization in an enterprise environment. The following sample VBScript generates a list
and a count of Hyper-V hosts from the current domain:

‘ Adapted from Alex A. Kibkalo –
‘ (his is more complete) available from
‘ http://blogs.technet.com/vm/attachment/3048135.ashx

Set objSystemInfo = CreateObject(“ADSystemInfo”)
Set objRootDSE = GetObject(“LDAP://rootDSE”)
szDomainShortName = objSystemInfo.DomainShortName
szDomainDN = objRootDSE.Get(“defaultNamingContext”)

627006c10.indd 238 4/21/10 8:59:38 AM

Configuration Management |  239

Set oConnection = CreateObject(“ADODB.Connection”)
Set oCommand = CreateObject(“ADODB.Command”)
oConnection.Provider = (“ADsDSOObject”)
oConnection.Open “Ads Provider”
oCommand.ActiveConnection = oConnection
oCommand.Properties(“Page Size”) = 99
oCommand.Properties(“Searchscope”) = &H2 ‘ADS_SCOPE_SUBTREE
oCommand.Properties(“Chase Referrals”) = &H60 ‘ADS_CHASE_REFERRALS_ALWAYS
oCommand.CommandText = “select distinguishedName from ‘LDAP://” _
 & szDomainDN & “‘ “ & _
 “where objectCategory=’serviceConnectionPoint’ and cn=’Microsoft Hyper-V’”
Set oRecordSet = oCommand.Execute
oRecordSet.MoveFirst
Do Until oRecordSet.EOF
 szNodeName = oRecordSet.Fields(“distinguishedName”)
 ‘ Trim “CN=<szSCP>,CN=”
 szNodeName = Mid(szNodeName, InStr(szNodeName, “,CN=”) + 4)
 ‘ Trim the domain DN
 szNodeName = Left(szNodeName, InStr(szNodeName, “,”) - 1)
 wscript.echo szNodeName
 oRecordSet.MoveNext
Loop
wscript.echo “Domain: “ & szDomainShortName & _
“: “ & oRecordSet.RecordCount & “ hosts”

John Howard posted a similar script on his virtualization blog at Tip  http://blogs.technet
.com/jhoward/. The entry is dated June 30, 2008, and entitled “Hyper-V: Locate Hyper-V
Enabled Servers In Your Domain.”

Once again, O’Neill’s library demonstrates its value by simplifying the task of searching AD
for Hyper-V hosts. Using the get-VMhost function returns a list of registered Hyper-V servers in
the current domain.

Enumerating Virtual Machines

Creating a list of VMs on a particular host is a relatively simple process, as shown in
Chapter 9. Creating such a list is even simpler using the functions included in the library
(see Figure 10.13):

get-vm | format-table elementname

You can access all the externally viewable properties of a VM via the information available
from the command get-vm | FL *.

Wrapping a call to get-vm with a loop that can access a list of virtualization hosts provides
a useful building block for later automation. A simple text file with the name of each server on
a single line can be the input (perhaps created from a query of Active Directory). For our pur-
poses, we’ve created a file named serverlist.txt, which contains two server names:

HPDL380t
HPDL380b

627006c10.indd 239 4/21/10 8:59:39 AM

240  | Chapter 10  Automating Tasks

Customizing the Output of Library Commands

PowerShell allows you to use an XML file to set the default output format for different classes of
objects. The early versions of the library didn’t use this facility, so get-VM (for example) output a
list of all the object properties, and the companion function list-VM provided formatted output.
The newer versions of the library have an associated Hyperv.Format.PS1XML file that defines
the default output format. In some cases, the XML file processes a property of an object and dis-
plays something that isn’t available as a property—for example, it translates the value 2 in the
EnabledState property to the text “running.”

With the newer versions, if you want to see all the available properties from get-VM, you can pipe
its output into Format-List -Property *; this can be shortened to FL *.

If you want to display output that is different from the default, you can either pipe the output of the
function into Format-Table (which can be abbreviated to FT) or customize the PS1.XML file.

Iterating through the text file using get-content and foreach-object can generate a list of
configured VMs (see Figure 10.14):

get-content .\serverlist.txt |
foreach-object {get-VM -server $_ |
format-table __SERVER, elementname, enabledstate -auto}

Figure 10.13
List of local VMs

Figure 10.14
List of VMs using
host input

627006c10.indd 240 4/21/10 8:59:39 AM

Configuration Management |  241

Yes, you could pipeline the output from Note  get-VMhost to foreach-object, but not all
Hyper-V hosts may be online or accessible to you. In that case, exceptions are generated and/or
additional error handling is required. You could also call get-VM and pass it all the host names
(get-VM -server hypernode1, hypernode2 HPDL380B | FT __SERVER, elementname,
enabledstate -auto) to achieve a similar result, but that may be more difficult to automate
using a generated list of hosts.

You can extend or alter this basic host loop to gather additional useful information beyond
those pieces of data exposed by get-VM (which uses the MSVM_ComputerSystem class shown in
Chapter 9). Other VM interrogation functions such as get-VMstate can access additional infor-
mation and handle common formatting tasks (see Figure 10.15).

get-content .\serverlist.txt | foreach-object {get-VMState -server $_}

get-VMstate decodes the numeric VM state and displays it in a more understandable man-
ner. The function also can access the fully qualified domain name (FQDN) of running VMs
with installed ICs (which is super useful!). Fully enlightened VMs (those with installed ICs) that
are running can communicate key information about the installed operating system to the par-
ent partition via the ICs. The get-VMKVP function exposes more of these available attributes.
Figure 10.16 shows the output from the August 2008 version of the library.

get-vmkvp “Core #1”

Figure 10.15
Using get-
VMstate with a
host input file

Figure 10.16
The get-VMKVP
output from the
0.95a Beta version
of HyperV.PS1

627006c10.indd 241 4/21/10 8:59:40 AM

242  | Chapter 10  Automating Tasks

The R2 Gold version of the library returns more information, as shown in Figure 10.17.

This Hyper-V PowerShell library is a work in progress and continues to evolve. To get the most Tip 
value from the library, remember to periodically check www.codeplex.com for updates.

Collecting information such as the operating system version, service pack level, and FQDN
without directly accessing a VM can be valuable when you’re troubleshooting or auditing
your environment. Combining the server loop with get-vmkvp is fairly straightforward (see
Figure 10.18):

get-content .\serverlist.txt |
foreach-object {get-VM -server $_ | get-VMKVP} |
format-table FullyQualifiedDomainName, OSName, CSDVersion -auto

Windows PowerShell allows you to create output in a great many formats besides standard
text, including comma-separated (CSV) and XML. Altering the format of your output can make
the information easier for other tools and applications to use. You can create a CSV file of the
information shown in Figure 10.18 by calling the export-CSV cmdlet:

get-content .\serverlist.txt |
foreach-object {get-VM -server $_ | get-VMKVP} |
export-csv -path c:\VMInfo.csv

CSV and XML files are handy formats for producing output to pass to other applications.
Windows PowerShell version 2 includes a useful out-gridview cmdlet that you can use to
view and manipulate data interactively (remember you have to install the Windows PowerShell

Figure 10.17
The get-VMKVP
output from the R2
Gold version of the
Hyper-V library

627006c10.indd 242 4/21/10 8:59:40 AM

Configuration Management |  243

Integrated Scripting Environment [ISE] feature). The graphical interface lets you sort, search,
and group data. Figure 10.19 shows output similar to Figure 10.18, but sent to out-gridview and
grouped by operating system name. The full command would be something like this:

get-content .\serverlist.txt | foreach-object {get-VM -server $_ | get-VMKVP} |
out-gridview

Collecting Other Virtual Machine Details

 The library includes numerous get functions (and one list function). Table 10.2 provides a
complete list of these functions and their results.

Table 10.2:	 get Functions

Function Name Description

get-firstavailabledriveletter Gets the drive letter of the first available drive letter on the host

get-VHD Retrieves VHD file information from a directory

get-Vhddefaultpath Retrieves the default VHD path (parent specific)

get-VHDinfo Retrieves information about a VHD file

get-VHDmountpoint Returns a mount point of a VHD (if mounted)

get-VM Accesses general VM information

get-VMByMACaddress Retrieves VM information by Media Access Control (MAC) address

get-VMclustergroup Shows the cluster group for a VM

Figure 10.18
Looping with
Get-VMKVP

Figure 10.19
get-VMKVM set to
out-gridview

627006c10.indd 243 4/21/10 8:59:40 AM

244  | Chapter 10  Automating Tasks

Function Name Description

get-VMCPUcount Retrieves the CPU count

get-VMdisk Displays VM disk controller and drive information

get-VMdiskbydrive Accesses a VM disk by drive

get-VMdiskcontroller Accesses a VM disk by controller

get-VMdrivebycontroller Accesses a VM drive by controller

get-VMfloppydisk Displays VM floppy disks

get-VMhost Queries AD for Hyper-V hosts

get-VMintegrationcomponent Returns IC data for a VM

get-VMKVP Returns key/value pairs for running VMs

get-VMlivemigrationnetwork Gets the list of cluster networks

get-VMmemory Displays the RAM allocated to a VM

get-VMNIC Retrieves NIC information for a VM

get-VMNICport Accesses network port information

get-VMNICswitch Shows the switch connected to a virtual NIC

get-VMNICVLAN Retrieves the VLAN ID for a NIC

get-VMprocessor Returns CPU information for each VM

get-VMserialport Retrieves VM serial port information

get-VMsettingdata Gets active settings for a VM (BIOS, asset tag, other)

get-VMsnapshot Accesses VM snapshot information

get-VMsnapshottree Accesses VM snapshot information and shows it as a tree

get-VMstate Alias for get-VMsummary

get-VMsummary Retrieves/decodes the VM state and FQDN

get-VMswitch Gets virtual switch information

get-VMthumbnail Retrieves a JPEG image of a VM display (replace get-VMJPEG)

get-ZIPcontent Returns information about the contents of a ZIP file

Table 10.2:	 get Functions   (continued)

627006c10.indd 244 4/21/10 8:59:41 AM

Configuration Management |  245

Get to know these functions. Experiment with them and read the examples included, and
you’ll gain a wealth of configuration knowledge.

Real-life, useful examples abound for the Tip  get functions. For example, only one VM at a time
can access a physical CD/DVD resource. A stopped VM may expect access to a drive when it
starts and will fail to start if the drive is already being used. Adding a filter to the get-VMdisk
function can help you find VMs that are using the physical CD/DVD: get-VMdisk * | where
{$_.diskpath -match “^IDE”} | select VMElementname.

Creating Simple Reports
Windows PowerShell enables nearly limitless options for report generation. You may not have
time or the PowerShell savvy to construct the ideal report. The supplied get functions do a
fantastic job of exposing the components of Hyper-V and VMs, but sometimes the output is
missing important information. The get-VMNIC cmdlet provides a great example of this point;
it retrieves a list of configured VMs and their corresponding NICs with MAC address and the
connected virtual network switch (see Figure 10.20):

get-vmnic

This function can be useful for collecting the MAC addresses for all VMs in your environment,
but the default output lacks the name of the physical host. The server (host) name is available; you
just have to ask for it, as in Figure 10.21.

get-vmnic | ft __Server, VMElementName, ResourceSubType, SwitchName, Address -Auto

Remember that you can use the -server parameter to pass multiple server names to most of
the functions in the library (as shown in Figure 10.22). This lets you see information on multiple
hosts at once.

Figure 10.20
get-VMNIC output

Figure 10.21
get-VMNIC
including server
(host) name

627006c10.indd 245 4/21/10 8:59:41 AM

246  | Chapter 10  Automating Tasks

It may not always be easy to pass all the server names into a function at once. It might be more
convenient for you to use a list of servers contained in a file (as shown in the “Enumerating Virtual
Machines” section earlier). Using get-content and foreach-object can help you collect informa-
tion from a larger number of targets, as shown in Figure 10.23, without too much extra code.

You may have noticed that the output isn’t presented in the most easy-to-read format. By call-
ing get-vmnic multiple times, you get multiple tables of information returned (one for each host).
A better way to use get-content is within the get-vmnic, rather than the other way around:

get-vmnic -server (get-content .\serverlist.txt)

This actually outputs a single table, as shown in Figure 10.24. You can add extra code to select
just the columns you want, similar to the output in Figure 10.21, earlier in this chapter.

get-vmnic -server (get-content .\serverlist.txt) |
ft __Server, VMElementName, ResourceSubType,
SwitchName, Address -Auto

Figure 10.22
get-VMNIC output
including
two servers

Figure 10.23
get-VMNIC
using loop

Figure 10.24
get-VMNIC output
presented as a
single table

627006c10.indd 246 4/21/10 8:59:42 AM

Configuration Management |  247

We like to simply dump the output to out-gridview and select the data we’re interested in
by “selecting columns” in the GUI (Figure 10.25 shows the output):

get-vmnic -server (get-content .\serverlist.txt) |
select * | out-gridview

Regardless of your approach for creating usable scripts and reports, using the HyperV
library will save you the time and effort of creating custom code. To make this point again, the
following is the Windows PowerShell code that is roughly equivalent to the previous loop but
does not use O’Neill’s functions:

foreach ($s in (gc c:\serverlist.txt)) {
 $vms=gwmi -computer $s -namespace “root\virtualization” i
 msvm_computersystem -filter “name <> ‘$s’”
 foreach ($vm in $vms) {
 gwmi -computer $s -NameSpace “root\virtualization” i
 -query “Select * From MsVM_EmulatedEthernetPortSettingData i
 Where instanceId Like ‘Microsoft:$($vm.name)%’”|
 select-object i
@{name=”VM”;expression={$vm.elementname}},i
@{name=”MACAddress”;expression={$_.address}},i
@{name=”Server”;expression={$_.__SERVER}},i
@{name=”Type”;expression={$_.ResourceSubType}},i
@{name=”Network”;expression={(gwmi -computer $s i
-NameSpace “root\virtualization” -Query “ASSOCIATORS OF i
{$(gwmi -computer $s -NameSpace “”root\virtualization”“ i
-Query “”Select * From Msvm_SwitchPort where
__Path=’$($_.connection[0].replace(“”“”\”“”“,”“”“\\”“”“))’”“)} i
where resultclass = Msvm_VirtualSwitch”).elementname}}
 gwmi -computer $s -NameSpace “root\virtualization” i
-query “Select * From MsVM_SyntheticEthernetPortSettingData i
Where instanceId Like ‘Microsoft:$($vm.name)%’”|select-object
@{name=”VM”;expression={$vm.elementname}},i
@{name=”MACAddress”;expression={$_.address}},i
@{name=”Server”;expression={$_.__SERVER}},i
@{name=”Type”;expression={$_.ResourceSubType}},i
@{name=”Network”;expression={(gwmi -computer $s i

Figure 10.25
get-VMNIC infor-
mation sent to
out-gridview

627006c10.indd 247 4/21/10 8:59:42 AM

248  | Chapter 10  Automating Tasks

-NameSpace “root\virtualization” -Query “ASSOCIATORS OF i
{$(gwmi -computer $s -NameSpace “”root\virtualization”“ i
-Query “”Select * From Msvm_SwitchPort where
__Path=’$($_.connection[0].replace(“”“”\”“”“,”“”“\\”“”“))’”“)} i
where resultclass = Msvm_VirtualSwitch”).elementname}}
 }
}

Managing the Virtual Environment
Creating VMs and collecting configuration information about your environment are only the
first steps. Managing your virtual environment is critical to realizing the benefits of virtualiza-
tion. You should strive to use enterprise system management tools if at all possible. The Microsoft
System Center family of products provides comprehensive tools to manage physical and virtual
environments and is covered in Chapters 11 through 13.

System management can mean many different things, such as managing system configuration,
provisioning, performance, security policies, hardware configuration, storage, and even the power
state of a system. For our purposes, we’ll only discuss managing the system state (power state) for
VMs and the management tasks for VHD files. The scripts shown earlier for provisioning VMs
demonstrated how to alter the configuration of a VM (add/set resources). We’ll review additional
VM configuration tasks later, in the “Maintaining Virtual Systems” section of this chapter.

Managing State

Chapter 9 included verbose examples of how to show and alter the system state of VMs. In this
chapter, Figures 10.14 and 10.15 illustrate accessing and viewing the state of all VMs on a group
of hosts to demonstrate information discovery. The system/power state of a VM is represented
by an integer value, discussed and shown in Table 9.5 in Chapter 9. You may not need to care
much about this table, because the Hyper-V library discussed in this chapter understands the
friendly names of these states. The codes and decodes are contained in the $VMState global
variable, found near the beginning of the library. Calling get-VMsummary (or get-VMstate,
which is the same) returns the state information of all VMs on the local host (see Figure 10.26):

get-vmsummary | ft Host, VMelementname,
CPUcount, EnabledState, Heartbeat, FQDN -auto

To access the state of a single VM, use the get-VMsummary function and specify the friendly
name of the VM (see Figure 10.27):

Get-VMSummary “New VM”

Figure 10.26
get-VMsummary
output

627006c10.indd 248 4/21/10 8:59:43 AM

Configuration Management |  249

In the beta version of the library, when you run Note  get-VMsummary or get-VMstate, you’ll
see an error if a paused VM is found. A fix for this and other enhancements are in the R2 Gold
version of the library.

Changing the state of a VM is just as simple as retrieving it. Table 10.3 shows state
management functions.

Table 10.3:	 Hyper-V Library State Management Functions

Function Name Description

get-VMstate or get-VMsummary Shows the state of VMs

start-VM Turns on/resumes VMs

stop-VM Turns off VMs

suspend-VM Suspends VMs (pause)

shutdown-VM Shuts down VMs via ICs

set-VMState Specifies the desired VM state

You use start-VM, stop-VM, suspend-VM, and shutdown-VM the same way. To call each of
these functions, specify the name of the target VM:

Start-VM “New VM”

Figure 10.27
get-VMstate
output for one VM

627006c10.indd 249 4/21/10 8:59:43 AM

250  | Chapter 10  Automating Tasks

As with many functions in the library, you may also specify a remote physical host:

Start-VM “New VM” -server HyperNode1

It’s important to know the state a VM is in before you make a change request. For example,
you can’t transition from a saved (suspended) state to a paused state. If a VM is already running,
a request to start it will fail (see Figure 10.28).

You can change the state of all VMs on a host at once. For example, it could be valuable to put
all VMs on a given host into a saved state for backup or while you perform maintenance on the
physical system. Using an asterisk instead of the individual VM name with suspend-VM saves
the state of all running or paused VMs (see Figure 10.29):

suspend-vm *

Understanding the role of ICs is also important. They allow for a coordinated shutdown of a
VM. You can facilitate an orderly power-down of a VM with installed ICs by using shutdown-VM
(see Figure 10.30):

shutdown-VM “Windows XP”

Figure 10.28
Trying to start a
running VM

Figure 10.29
Suspending all
running VMs

Figure 10.30
Shutting down a
VM with ICs

627006c10.indd 250 4/21/10 8:59:43 AM

Configuration Management |  251

A VM without installed and running ICs can’t take advantage of shutdown integration. An
unenlightened VM must be shut down from within the VM or via another means (perhaps sim-
ply turned off). Currently, only supported versions of Windows with installed ICs support inte-
grated shutdown. For the example in Figure 10.31, new-VM is a VM with no operating system (or
ICs) installed. Attempting to shut down this VM using the HyperV library fails.

You also can’t shut down VMs with ICs if the ICs aren’t available. For example, if VMs are in
a saved (suspended) state, the ICs are unavailable (see Figure 10.32).

Managing VHDs

The common container for storing a VM-accessible disk is the VHD file. You can create, change,
test, and compact these disks while they aren’t in use by a VM. Table 10.4 lists common VHD
management functions.

Table 10.4:	 Common Storage Management Functions in the Hyper-V Library

Function Name Description

new-VHD Creates a new VHD file

compress-VHD Compacts a VHD file

convert-VHD Changes to/from fixed or dynamic; creates new VHD

expand-VHD Increases the size of a VHD

get-VHDInfo Retrieves information about a VHD

merge-VHD Merges a child with a parent disk (untested at time of writing)

mount-VHD Mounts a VHD on a host for access

unmount-VHD Unmounts a VHD from a host

test-VHD Validates the integrity of a VHD file

Figure 10.31
Failed shutdown
request

Figure 10.32
Failed shutdown—
all VMs are
suspended

627006c10.indd 251 4/21/10 8:59:44 AM

252  | Chapter 10  Automating Tasks

You learned how to create a new VHD file using new-VHD as part of VM provisioning (see
“Creating a Bare-Bones VM” earlier in this chapter). As you’re likely aware, you can create VHD
files with either a static (fixed) or dynamic size; dynamic is the default. To create a new VHD
file, you must supply a name and the desired size (see Figure 10.33) in the default directory for
virtual hard disks. The following code creates a dynamic VHD named tiny with a size of 2 GB:

new-vhd tiny 2gb

You may notice that the call to new-VHD spawns a job that runs in the background. Some
Hyper-V administrative tasks (like VHD creation) can take a long time. In the case of new-VHD,
you can opt to have your script wait for the task to complete by using the -wait parameter:

New-VHD “big” 20GB -fixed -wait

You can periodically check the status of the WMI job by using the included test-WMIjob
function (see Figure 10.34):

new-vhd BIGDisk 200gb -Fixed
Test-WMIJob $Diskjob

get-VHDinfo can provide basic information about a VHD file, including the actual file size,
the maximum internal size, the type, and whether it’s in use at a given time (see Figure 10.35):

get-vhdinfo ”Windows XP”

Just like new-VHD, get-VHDinfo defaults to the Hyper-V virtual hard disk directory.
Monitoring storage used by VHDs can be a critical management function, particularly when

you’re using dynamic VHDs. Unexpected VHD growth on a shared physical disk can lead to
performance issues for all VMs homed there. You can create a tiny and useful VHD storage
report like the one in Figure 10.36:

get-vhdinfo *| out-gridview

Figure 10.33
Using the new-VHD
function

Figure 10.34
Using the test-
WMIjob function

627006c10.indd 252 4/21/10 8:59:44 AM

Configuration Management |  253

If your VHDs reside somewhere other than in the default virtual hard disk directory, you can
get a similar report by stringing together the path and additional formatting information:

dir “d:\VMs*.vhd” | get-vhdinfo *| out-gridview

It’s useful to access the contents of a VHD file from the virtualization host as if it were a
locally attached drive. Being able to add files to or remove files from a VHD without starting
a VM can save you time and can facilitate offline maintenance. You can use mount-VHD and
unmount-VHD to simplify the mounting of local VHD files:

Mount-VHD HUGE

The mount-VHD function doesn’t return much useful information in the PowerShell
user interface, but you can see the VHD listed as a volume within Server Manager’s Disk
Management (Figure 10.37).

Figure 10.35
get-VHDinfo
retrieves basic
information.

Figure 10.36
VHD size report

Figure 10.37
Mounted VHD in
Server Manager

627006c10.indd 253 4/21/10 8:59:45 AM

254  | Chapter 10  Automating Tasks

This mounted VHD wasn’t formatted as part of the creation process (it hadn’t yet been exposed
to an operating system installation process). After mounting, you can locate the VHD on the host
either by using the Computer Management console or by using the diskpart command (see
Figure 10.38). Once you identify the volume, you can then perform additional storage tasks from
the host.

The capability to mount a VHD within the parent partition is so useful that it was added Note 
to Server Manager in Windows Server 2008 R2. The functions dismount-VHD, compress-VHD,
convert-VHD, expand-VHD, test-VHD, and merge-VHD all help you manage and alter your
VHDs in ways consistent with their names. For more information about how to use them, you
can review the examples contained in the Hyper-V library.

Maintaining Virtual Systems
Your virtual systems depend on you to keep them properly maintained. Automating required
configuration changes, installing software updates, and sometimes rolling back changes are all
tasks necessary to keep physical systems and VMs running efficiently.

Configuration Changes

Business and technical pressures may require you to alter the configurations of existing VMs.
Perhaps the applications on a given VM require more RAM or CPU resources. Maybe a physi-
cal NIC is experiencing a high network load, and some VM traffic must be offloaded to a new
interface. Earlier in the chapter, we reviewed functions for automating configuration changes
for VMs. Table 10.5 lists functions commonly used from the library to define or alter the con-
figuration of a VM.

Table 10.5:	 HyperV Library VM Configuration Management Functions

Function Name Description

add-VMdisk Adds a disk (VHD or ISO) to a defined drive

add-VMdrive Adds a drive to a defined controller

Figure 10.38
Using diskpart
to see information
about a
mounted VHD

627006c10.indd 254 4/21/10 8:59:45 AM

Configuration Management |  255

Function Name Description

add-VMKVP Adds key/value pairs to be sent to a VM

add-VMfloppydisk Adds a floppy disk

add-VMnewharddisk Creates a new VHD and attaches it to a VM

add-VMNIC Adds a NIC to a VM

add-VMpassthrough Connects pass-through disk to a VM

add-VMRASD Adds hardware described by virtual Resource Allocation Setting Data

add-VMSCSIcontroller Adds a synthetic SCSI controller

add-ZIPcontent Adds content to a ZIP file (extra bonus!)

new-VFD Creates a new virtual floppy drive

new-VHD Creates a new VHD file

new-VM Creates a new VM

new-VMswitchport Creates a new virtual switch port

set-VM Sets the BIOS boot order and startup/shutdown actions

set-VMCPUcount Sets the CPU count (1–4)

set-VMdisk Changes the configuration of an existing disk

set-VMintegrationcomponent Enables/disables ICs for one or more VMs

set-VMmemory Sets the amount of RAM

set-VMNICaddress Sets the MAC address for a virtual NIC

set-VMNICswitch Connects a NIC to a virtual switch

set-VMNICVLAN Sets VLAN ID for a NIC

set-VMRASD Changes virtual hardware described by Resource Allocation Setting
Data to a VM

set-VMSerialPort Connects serial port to a named pipe

set-VMNICSwitch Connects NIC to a virtual switch

Table 10.5:	 HyperV Library VM Configuration Management Functions   (continued)

627006c10.indd 255 4/21/10 8:59:45 AM

256  | Chapter 10  Automating Tasks

Patching

You can update the software components of a running VM the same way you do for a physical sys-
tem. You can also patch VMs while they’re offline using the Offline Virtual Machine Servicing Tool,
discussed briefly in Chapter 4, “Utilizing Virtualization Best Practices.” You can use mount-VHD to
access the disk for offline VMs and prestage software for later installation.

Snapshots

Hyper-V can create point-in-time VM snapshots. You can use retained snapshot information to
revert a VM to a known state in the past. Table 10.6 lists the snapshot-related functions found in
the library.

Table 10.6:	 HyperV Library Snapshot Management Functions

Function Name Description

merge-VHD Merges VHDs from snapshots

restore-VMsnapshot Reverts to a previous snapshot

choose-VMsnapshot Selects a snapshot

get-VMsnapshot Accesses VM snapshot information

get-VMsnapshottree Accesses VM snapshot information and shows it as a tree

new-VMsnapshot Creates a new snapshot

remove-VMsnapshot Deletes a snapshot

rename-VMsnapshot Changes the name of an existing snapshot

update-VMsnapshot Creates a new snapshot using an existing name

Snapshots aren’t backups. We hate snapshots! They are very useful for development and Note 
testing purposes (to roll back changes), but they aren’t suitable for all situations and should
never ever be used in production scenarios.

Creating a snapshot is a straightforward process of calling new-VMsnaphot and specifying or
passing the target VMs to be snapped (see Figure 10.39):

new-vmsnapshot “SCO UNIX 5.0.7” -wait

A more useful function for creating new snapshots may be update-VMsnapshot. This func-
tion creates a new snapshot and alters the displayed name to something of your choosing (see
Figure 10.40 and Figure 10.41):

 Update-VMSnapshot “SCO UNIX 5.0.7” “Before Scary Update”

627006c10.indd 256 4/21/10 8:59:46 AM

Configuration Management |  257

Reverting and applying snapshots is also simplified with the library when you use
select-VMsnapshot in conjunction with restore-VMsnapshot (see Figure 10.42):

select-vmsnapshot “SCO UNIX 5.0.7” | Restore-VMSnapshot

Figure 10.39
New snapshot

Figure 10.40
New snapshot with
specified name

Figure 10.41
New snapshot In
Hyper-V GUI

Figure 10.42
Restoring and
applying snapshots

627006c10.indd 257 4/21/10 8:59:46 AM

258  | Chapter 10  Automating Tasks

Managing Access
Controlling access to VMs is an important task for IT managers. When you encapsulate an entire
system into a single file, you run into new security challenges. Poorly secured network links to
a physical host or shaky backup processes can quickly bypass locked data-center doors. If you
have bad security practices, entire virtual systems can be pilfered without detection.

Virtualization enables a new mechanism for system access: remote desktop interaction. You can
remotely view and interact with the console of a VM. Before virtualization, server consoles could
be secured in a data center or computer room unless remote-access tools (IP-based keyboard/
video/mouse [KVM] or lights-out/remote console hardware) were employed. Virtualization can
create a security opportunity for these formerly inaccessible system consoles.

Securing access to VM consoles is just as important as other means of securing virtual systems.
Virtual hosting of desktops also requires careful access control management for VMs. Chapter 5,
“Securing Hyper-V,” discusses access management for individual VMs. After you set up proper
security for users or administrative access, you can start remote display sessions to a particular
VM by calling VMConnect.exe. The VMConnect client is typically found in C:\Program Files\
Hyper-V, and it has its own set of command-line options, which are shown in Figure 10.43.

You can create a remote access session without calling VMConnect.exe directly by using the
new-VMconnectsession function.

Migration
In many situations, you need to migrate a VM from one physical server to another. Hardware
failures, capacity limitations, and maintenance are all reasons to relocate a VM. You can auto-
mate the move of a VM between systems in a number of ways. Common methods include
importing/exporting (discussed in Chapter 6, “Migrating Virtual Machines”), using failover
clustering (covered in Chapter 8, “High Availability),” performing a simple file copy, or under-
taking a virtual to virtual (V2V) migration. SCVMM 2008 and SCVMM 2008 R2 support the
automation of VM migration better than any other solution; we’ll cover it in Chapter 11.

Simple File Copy
VM information lives in files. Why not copy or move the files that define a VM from one host
to another? Finding all the necessary files and ensuring they’re properly migrated can be a

Figure 10.43
VMConnect
parameters

627006c10.indd 258 4/21/10 8:59:47 AM

Migration |  259

complicated task. Guaranteeing the VM is in a movable state (off or saved) is important, as is
handling host-specific dependencies such as the migration of virtual network resources and
security settings.

Copying all the files from one host to another doesn’t work without careful coordination.
The export and import capabilities exposed through the Hyper-V Manager handle these checks
fairly well, and they’re a supported way to migrate VMs. SCVMM also has a supported move
process as well as V2V capability.

Still, you may choose to move a VM using an entirely unsupported copy process. For more
information about how to do this, review the diskshadow backup and recovery process detailed
in Chapter 7, “Backing Up and Recovering VMs.” Using xcopy parameters can address the spe-
cifics of file security issues, but you’re still likely to run into issues.

Export/Import
Exporting a VM from one host and importing it on another is perhaps the simplest and clean-
est migration method to automate without SCVMM. Exporting requires that a VM be either off
or in a saved state. The HyperV library supports the exporting and importing of VMs by using
the export-VM and import-VM functions. Calling export-VM requires a reference to the VM to be
exported as well as the export path, with optional parameters that include the name of the physical
server, whether to export state (VHDs), and the ability to wait for the process to complete:

export-VM “New VM” c:\exports -server localhost -copystate -wait

The import-VM function only requires the path to the exported VM as a parameter, with
optional parameters similar to those of export-VM:

import-VM “C:\exports\New VM” -wait

SCVMM’s ability to move VMs between hosts masks the storage and security dependency of
Hyper-V export and is a more suitable approach for automating migrations in many environments.

Failover Clustering
Failover clustering facilitates the migration of VMs from one physical host to another with
limited or no perceptible downtime, but it requires preconfiguration. Hyper-V clusters are pre-
sented in Chapter 8. Hyper-V failover clustering (Quick Migration and Live Migration) requires
identically configured physical hosts as well as shared storage. You typically automate cluster
management tasks—creation, configuration, and workload migration—using cluster.exe or
via PowerShell. Clustering tasks can also be performed using the failover-clustering WMI pro-
vider (root\MSCluster). SCVMM provides cluster management capabilities for Hyper-V that
you can automate using its set of Windows PowerShell cmdlets.

The R2 Gold version of the library includes failover cluster management functions, such as
get-VMclustergroup, get-VMlivemigrationnetwork, move-VM, select-clustersharedvolume,
select-VMlivemigrationnetwork, and sync-VMclusterconfig. A simple, real-world example of
the cluster management functions is the common requirement to migrate all VMs from a failover
cluster node. In our test cluster, we have one VM still running on a system (HPDL380T) that we
need to migrate in order to perform hardware maintenance. The following command migrates
all clustered VMs from HPDL380T to the other node in the cluster (HPDL380B), as shown in
Figure 10.44:

Get-VM -server HPDL380T | move-vm -Destination HPDL380B

627006c10.indd 259 4/21/10 8:59:47 AM

260  | Chapter 10  Automating Tasks

Virtual to Virtual Migration
Virtual to virtual (V2V) migrations are similar to physical to virtual (P2V) migrations; they’re
discussed in Chapter 6. Automating V2V migrations is a tricky process and is largely unneces-
sary if you’re moving a VM from one host to another. You can also automate V2V migrations
with SCVMM cmdlets.

Backup and Recovery
In Chapter 7, we covered backup and recovery without the use of enterprise tools. System Center
Data Protection Manager (DPM) is the best option for enterprise-class backup with Hyper-V; we
discuss that process in Chapter 12.

Earlier versions of the library included a diskshadow script-generating function
(get-VMbackupscript). Calling the function generated a diskshadow script similar to the one
used in Chapter 7. It has been removed from the R2 Gold version of the library, so you should look
to the processes in Chapter 7 or Chapter 12 for more sustainable backup and recovery processes.

Collecting and Monitoring Data
Monitoring how your virtual environment performs is key to ensuring smooth operation.
You’ve seen how to locate virtual hosts, enumerate their child VMs, and access configuration
information. Visibility into the health and performance of each VM is also important.

Enterprise tools like those found in the Microsoft System Center family are the best solution
for collecting, analyzing, and monitoring health and performance. System Center Operations
Manager (SCOM), which can be connected to SCVMM, can serve as a repository for historical per-
formance data for your entire Microsoft-centric computing environment. SCOM 2007 R2 also has
the capability to monitor systems running common Linux and UNIX operating systems, so moni-
toring non-Microsoft-centric VMs is also possible. It is challenging to do comprehensive monitor-
ing if you don’t have access to System Center tools.

Viewing the Desktop
Before you go too far down the path of data collection, you have to please corporate management.
Data centers and operations rooms often have banks of monitors filled with color images includ-
ing graphs, charts, maps, and system consoles. A dirty little secret of many of these rooms is that
certain screens are simply for show—some of the big, blinking displays exist only to create the
appearance of a well-monitored environment.

Another truth of large data centers is that operators (personnel who work regularly in the
computer room) often need to see what is on the screen of a particular system. It’s also a reality
that these employees aren’t always trusted to interact with these same systems for regulatory
reasons or by management mandate.

Figure 10.44
Moving all VMs
from a node

627006c10.indd 260 4/21/10 8:59:47 AM

Collecting and Monitoring Data |  261

The virtualization provider allows you to request a JPEG picture of a VM’s desktop. You can
capture and display these images in any number of ways, and they can be useful to operators
and administrators for auditing/monitoring purposes (or handy to show on a large display).
The get-VMthumbnail function creates a JPEG file of a running VM with a name based on the
VM’s display (element) name and writes it to the current directory (as shown in Figure 10.45):

Get-VM | Get-VMThumbnail

You can post the generated image files to a website, save them into SharePoint, or easily view
them using Windows Explorer. Regularly capturing an image of the desktop can be useful for
troubleshooting or compliance purposes.

Testing for Service
Ping is often the first monitoring tool most administrators use to check the health of a system.
It’s not a comprehensive test, but it can show that a particular system’s TCP/IP stack is accessible
under normal circumstances, as well as point out environmental issues on a network (name
resolution, routing, firewall settings, or latency challenges). The ping-VM function makes it con-
venient to ping configured VMs (see Figure 10.46):

get-vm | ping-VM |
FT VMElementName, FullyQualifiedDomainName, Status -auto

Firewall status for contemporary versions of Microsoft Windows may not allow a response Tip 
from Ping, so this function may not provide much value in a secure environment.

You can also use test-VMheartbeat and get-VMKVP to verify that a VM is running and func-
tioning (get-VMKVP was discussed earlier in the chapter). You can think of test-VMheartbeat
as a sort of a ping to the ICs running in a VM. If the heartbeat component included in the ICs is

Figure 10.45
Using
get-VMthumbnail
to create images of
VM desktops

Figure 10.46
Using ping-VM to
check the status of
configured VMss

627006c10.indd 261 4/21/10 8:59:48 AM

262  | Chapter 10  Automating Tasks

functioning, the test is successful. O’Neill has included a timeout parameter for managing the
startup sequence of VMs. Using test-VMheartbeat, you can stagger an environment’s power-
up until key network services are ready:

start-vm “TestDC”
Test-vmheartBeat “TestDC” -Timeout 300
start-vm “TestExchange”

Staggering/delaying the startup of a VM is such a common need that O’Neill recently added Tip 
more options to the start-VM function. You can alternately use start-VM “Test-DC” - wait
-Heartbeat 300 to achieve the same result.

Accessing Processor Performance Data
You may have noticed that the memory used by VMs is reflected on the Windows Task Manager’s
Performance tab. Every time you start a VM, the amount of memory used by the physical system
increases, which is reflected by the Windows Task Manager. This isn’t true for processor (CPU)
utilization: the CPU load of child VMs isn’t reflected in the Windows Task Manager of the host/
parent. Figure 10.47 shows the CPU and memory usage history of a quad-core system.

The Task Manager reflects relatively low CPU usage. But the system is the host for a two-pro-
cessor Server 2003 VM running at more than 90 percent processor load (Figure 10.48 is the Task
Manager from within the VM).

You could query each individual VM remotely to access and retrieve the CPU load, but that
wouldn’t give you an accurate view of the actual load on the host. It would also require network
access to the VM as well as an appropriate level of security.

You can access information about the performance of individual VM virtual processors
through the parent using the virtualization provider and the MSVM_Processor class, as reflected
by the WMI query in Figure 10.49:

GWMI –Class MSVM_Processor –Namespace root\virtualization |
ft SystemName,LoadPercentage -auto

Figure 10.47
Host’s Task
Manager: low load

627006c10.indd 262 4/21/10 8:59:48 AM

Collecting and Monitoring Data |  263

The query shows the CPU load percentage and the unfriendly name of the associated VM.
HyperV.PS1 didn’t include any processor performance-related functions, but O’Neill has enhanced
newer versions of the library with the get-VMprocessor function (we’ll show you that later). The
following is a sample Windows PowerShell function that collects the virtual processor information
from a local host and ties in the VM name:

function List-VMCPULoad
{Param ($server=”.”)
 $Procs= GWMI -computerName $server –Namespace i
root\virtualization -Class MSVM_Processor
 foreach ($Proc in $Procs) {
 GWMI -computerName $server -Namespace i
root\virtualization -Query i
“Select * From MSVM_ComputerSystem Where Name = ‘$($Proc.SystemName)’” |
 add-member -passthru noteproperty “Load%” $Proc.LoadPercentage |
 add-member -passthru noteproperty “CPUID” $Proc.deviceid.split(“\”)[-1]
 }
}

list-vmcpuload | ft elementname, CPUID, Load% -auto

Figure 10.48
VM: high CPU load

Figure 10.49
CPU load-
percentage query

627006c10.indd 263 4/21/10 8:59:48 AM

264  | Chapter 10  Automating Tasks

This function lists all individual running virtual processors on a system, showing each VM
name. This may not be entirely useful in developing a clear picture of processor performance,
because other processes on the physical host (including other VMs) can reduce the available
compute cycles. This interference can artificially reduce the LoadPercentage value retrieved
from MSVM_Proccessor. For example, two VMs are listed in Figure 10.50 (one with four cores
and one with two) using about as much CPU as they’re allowed (the six virtual cores are run-
ning on a host with only four cores). The individual LoadPercentage value for each virtual CPU
can appear to be low (55 percent for one) because of the sharing of resources. The VMs them-
selves believe they’re running at full steam, but LoadPercentage doesn’t clearly reflect this.
Adding an additional four-core VM under extreme CPU load makes this point more clearly, as
shown in Figure 10.51.

With 10 virtual cores all taxed and competing for the power of the 4 physical cores (along
with processes on the parent partition), the LoadPercentage value is reduced. Looking solely
at the LoadPercentage of a single VM can mislead you into believing that a VM isn’t low on
processing power. To get the actual utilization of each physical processor, it’s recommended
that you don’t use the virtualization provider but instead use the tried-and-true Common
Information Model (CIM) version 2.

Figure 10.50
Nice CPU load
percentage query

Figure 10.51
More load, lower
percentage

627006c10.indd 264 4/21/10 8:59:49 AM

Collecting and Monitoring Data |  265

Several good performance resources describe how to access counters and troubleshoot per-Tip 
formance issues for Hyper-V, including “Measuring Performance on Hyper-V” (http://msdn
.microsoft.com/en-us/library/cc768535.aspx) and an “All Topics Performance” post titled
“How to Get Processor Utilization for Hyper-V via WMI” (http://blogs.msdn.com/tvoellm/
archive/2008/07/14/how-to-get-processor-utilization-for-hyper-v-via-wmi
.aspx). They’re both informative and can help you create a comprehensive and accurate view of
CPU utilization. They also have too much math and too many formulas for day-to-day use.

Accessing the WMI CIMv2 class Win32_PerfRawData_HVStats_
HyperVHypervisorLogicalProcessor is the recommended approach, but the formulas to
derive processor utilization are a hassle. You can approximate the overall utilization by add-
ing together the loadPercentage values from each virtual processor and dividing the total
by the number of physical cores. The following function creates a useful CPU utilization
report with color coding to connote high CPU load on individual virtual CPUs, as well as on
the host system (see Figure 10.52):

function Report-VMCPU
{Param ($server=”.”)
 $LoadSum = 0
 $PCores = 0
 $VProcs= GWMI -computerName $server –Namespace i
root\virtualization -Class MSVM_Processor
 write-host “`n CPU Load”
 write-host “VM Name # %”
 write-host “------------------------------------ ---- -----”
 foreach ($VProc in $VProcs) {
 $VM = GWMI -computerName $server -Namespace i
root\virtualization -Query i
“Select * From MSVM_ComputerSystem Where Name = ‘$($VProc.SystemName)’”
 $VMname = $VM.Elementname.PadRight(39,” “)
 $VMCPU = $VProc.deviceid.split(“\”)[-1]
 $VMCPULOAD = $VProc.LoadPercentage
 Write-Host “$VMname $VMCPU “ -nonewline
 if ($VMCPULOAD -lt 30) {
 write-host $VMCPULOAD -backgroundcolor green
 }
 elseif ($VMCPULOAD -gt 80) {
 write-host $VMCPULOAD -backgroundcolor red
 }
 else {write-host $VMCPULOAD}
 $LoadSum = $LoadSum + $VMCPULOAD
 }
 $PProcs= GWMI -computerName $server –Namespace i
root\CIMV2 -Class Win32_Processor
 foreach ($PProc in $PProcs) {
 $PCores = $PCores + $PProc.NumberOfCores }
 $VLoad = $LoadSum / $PCores
 write-host “`n---”

627006c10.indd 265 4/21/10 8:59:49 AM

266  | Chapter 10  Automating Tasks

 Write-Host “Physical Host Virtual CPU Perf Summary” -nonewline
 if($Server -ne “.”) {
 write-host “ for $Server”} else {write-host “ “}
 Write-Host “`n Total Physical Cores: “ $PCores
 Write-Host “Approx. Virt. CPU Utilization: “ -nonewline
 if ($VLoad -lt 30) {write-host $VLoad -backgroundcolor green}
 elseif ($VLoad -gt 80) {write-host $VLoad -backgroundcolor red}
 else {write-host $VLoad}
 write-host “---`n”
}

The code may not reflect the acme of Windows PowerShell or mathematics elegance, but you
can use the output to clearly show a high CPU load condition.

MSVM_ProcessorNote  also includes LoadPercentageHistory, which is an array of recent
measurements of LoadHistory.

As we mentioned earlier, James has included the get-VMprocessor function in later ver-
sions of the library, which generates a very similar report. Figure 10.53 shows the output of
get-VMprocessor on a different system.

Figure 10.52
Better CPU
load report

627006c10.indd 266 4/21/10 8:59:49 AM

Summary |  267

Performance Monitoring and PowerGadgets
The previous code sample produces some usable and ugly output. SoftwareFX sells a great set
of inexpensive graphical tools, called PowerGadgets, that connect right into PowerShell. You can
use PowerGadgets to quickly and easily create interactive tools using gauges, charts, graphs, and
maps; you can then use these tools with Windows PowerShell to monitor and manage Hyper-V.
Gadgets you create can even be added to the Vista or Windows 7 Sidebar. You can download an
evaluation copy of PowerGadgets from the SoftwareFX website at www.softwarefx.com.

Summary
The WMI provider combined with Windows PowerShell or another scripting language can help
you automate virtually any Hyper-V administrative task. Building on the work and insight of
others can save you time. The library maintained in www.codeplex.com is a useful resource.
Learning basic tricks in Windows PowerShell can magnify your capabilities and the value of
your Hyper-V environment.

Figure 10.53
The
get-VMprocessor
output

627006c10.indd 267 4/21/10 8:59:49 AM

627006c10.indd 268 4/21/10 8:59:49 AM

