
CHAPTER 21

Automating Tasks Using
PowerShell Scripting

IN THIS CHAPTER

. Understanding Shells

. Introduction to PowerShell

. Understanding the PowerShell
Basics

. Using Windows PowerShell

Shells are a necessity in using operating systems. They give
the ability to execute arbitrary commands as a user and the
ability to traverse the file system. Anybody who has used a
computer has dealt with a shell by either typing commands
at a prompt or clicking an icon to start a word processing
application. A shell is something that every user uses in
some fashion. It’s inescapable in whatever form when
working on a computer system.

Until now, Windows users and administrators primarily
have used the Windows Explorer or cmd command prompt
(both shells) to interact with most versions of the Window
operating systems. With Microsoft’s release of PowerShell,
both a new shell and scripting language, the current stan-
dard for interacting with and managing Windows is rapidly
changing. This change became very evident with the release
of Microsoft Exchange Server 2007, which used PowerShell
as its management backbone, the addition of PowerShell as
a feature within Windows Server 2008, and now the inclu-
sion of PowerShell as part of the Windows 7 and Windows
Server 2008 R2 operating systems.

In this chapter, we take a closer look at what shells are and
how they have developed. Next, we review Microsoft’s past
attempts at providing an automation interface (WSH) and
then introduce PowerShell. From there, we step into under-
standing the PowerShell features and how to use it to
manage Windows 2008. Finally, we review some best prac-
tices for using PowerShell.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 699

700 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Understanding Shells
A shell is an interface that enables users to interact with the operating system. A shell isn’t
considered an application because of its inescapable nature, but it’s the same

as any other process running on a system. The difference between a shell and an applica-
tion is that a shell’s purpose is to enable users to run other applications. In some operating
systems (such as UNIX, Linux, and VMS), the shell is a command-line interface (CLI); in
other operating systems (such as Windows and Mac OS X), the shell is a graphical user
interface (GUI).

Both CLI and GUI shells have benefits and drawbacks. For example, most CLI shells allow
powerful command chaining (using commands that feed their output into other
commands for further processing; this is commonly referred to as the pipeline). GUI
shells, however, require commands to be completely self-contained. Furthermore, most
GUI shells are easy to navigate, whereas CLI shells require a preexisting knowledge of the
system to avoid attempting several commands to discern the location and direction to
head in when completing an automation task. Therefore, choosing which shell to use
depends on your comfort level and what’s best suited to perform the task at hand.

NOTE

Even though GUI shells exist, the term “shell” is used almost exclusively to describe a
command-line environment, not a task that is performed with a GUI application, such
as Windows Explorer. Likewise, shell scripting refers to collecting commands normally
entered on the command line or into an executable file.

A Short History of Shells

The first shell in wide use was the Bourne shell, the standard user interface for the UNIX
operating system; UNIX systems still require it for booting. This robust shell provided
pipelines and conditional and recursive command execution. It was developed by C
programmers for C programmers.

Oddly, however, despite being written by and for C programmers, the Bourne shell didn’t
have a C-like coding style. This lack of similarity to the C language drove the invention of
the C shell, which introduced more C-like programming structures. While the C shell
inventors were building a better mousetrap, they decided to add command-line editing
and command aliasing (defining command shortcuts), which eased the bane of every
UNIX user’s existence: typing. The less a UNIX user has to type to get results, the better.

Although most UNIX users liked the C shell, learning a completely new shell was a chal-
lenge for some. So, the Korn shell was invented, which added a number of the C shell
features to the Bourne shell. Because the Korn shell is a commercially licensed product,
the open source software movement needed a shell for Linux and FreeBSD. The collabora-
tive result was the Bourne Again shell, or Bash, invented by the Free Software Foundation.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 700

701Understanding Shells

Throughout the evolution of UNIX and the birth of Linux and FreeBSD, other operating
systems were introduced along with their own shells. Digital Equipment Corporation
(DEC) introduced Virtual Memory System (VMS) to compete with UNIX on its VAX
systems. VMS had a shell called Digital Command Language (DCL) with a verbose syntax,
unlike that of its UNIX counterparts. Also, unlike its UNIX counterparts, it wasn’t case
sensitive, nor did it provide pipelines.

Somewhere along the way, the PC was born. IBM took the PC to the business market, and
Apple rebranded roughly the same hardware technology and focused on consumers.
Microsoft made DOS run on the IBM PC, acting as both kernel and shell and including
some features of other shells. (The pipeline syntax was inspired by UNIX shells.)

Following DOS was Windows, which went from application to operating system quickly.
Windows introduced a GUI shell, which has become the basis for Microsoft shells ever
since. Unfortunately, GUI shells are notoriously difficult to script, so Windows provided a
DOSShell-like environment. It was improved with a new executable, cmd.exe instead of
command.com, and a more robust set of command-line editing features. Regrettably, this
change also meant that shell scripts in Windows had to be written in the DOSShell syntax
for collecting and executing command groupings.

Over time, Microsoft realized its folly and decided systems administrators should have
better ways to manage Windows systems. Windows Script Host (WSH) was introduced in
Windows 98, providing a native scripting solution with access to the underpinnings of
Windows. It was a library that allowed scripting languages to use Windows in a powerful
and efficient manner. WSH is not its own language, however, so a WSH-compliant script-
ing language was required to take advantage of it, such as JScript, VBScript, Perl, Python,
Kixstart, or Object REXX. Some of these languages are quite powerful in performing
complex processing, so WSH seemed like a blessing to Windows systems administrators.

However, the rejoicing was short-lived because there was no guarantee that the WSH-
compliant scripting language you chose would be readily available or a viable option for
everyone. The lack of a standard language and environment for writing scripts made it
difficult for users and administrators to incorporate automation by using WSH. The only
way to be sure the scripting language or WSH version would be compatible on the system
being managed was to use a native scripting language, which meant using DOSShell and
enduring the problems that accompanied it. In addition, WSH opened a large attack
vector for malicious code to run on Windows systems. This vulnerability gave rise to a
stream of viruses, worms, and other malicious programs that have wreaked havoc on
computer systems, thanks to WSH’s focus on automation without user intervention.

The end result was that systems administrators viewed WSH as both a blessing and a
curse. Although WSH presented a good object model and access to a number of automa-
tion interfaces, it wasn’t a shell. It required using Wscript.exe and Cscript.exe, scripts had
to be written in a compatible scripting language, and its attack vulnerabilities posed a
security challenge. Clearly, a different approach was needed for systems management; over
time, Microsoft reached the same conclusion.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 701

702 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Introduction to PowerShell
The introduction of WSH as a standard in the Windows operating system offered a robust
alternative to DOSShell scripting. Unfortunately, WSH presented a number of challenges,
discussed in the preceding section. Furthermore, WSH didn’t offer the CLI shell experience
that UNIX and Linux administrators had enjoyed for years, resulting in Windows adminis-
trators being made fun of by the other chaps for the lack of a CLI shell and its benefits.

Luckily, Jeffrey Snover (the architect of PowerShell) and others on the PowerShell team
realized that Windows needed a strong, secure, and robust CLI shell for systems manage-
ment. Enter PowerShell. PowerShell was designed as a shell with full access to the under-
pinnings of Windows via the .NET Framework, Component Object Model (COM) objects,
and other methods. It also provided an execution environment that’s familiar, easy, and
secure. PowerShell is aptly named, as it puts the power into the Windows shell. For users
wanting to automate their Windows systems, the introduction of PowerShell was exciting
because it combined “the power of WSH with the warm-fuzzy familiarity of a CLI shell.”

PowerShell provides a powerful native scripting language, so scripts can be ported to all
Windows systems without worrying about whether a particular language interpreter is
installed. In the past, an administrator might have gone through the rigmarole of script-
ing a solution with WSH in Perl, Python, VBScript, JScript, or another language, only to
find that the next system that they worked on didn’t have that interpreter installed. At
home, users can put whatever they want on their systems and maintain them however
they see fit, but in a workplace, that option isn’t always viable. PowerShell solves that
problem by removing the need for nonnative interpreters. It also solves the problem of
wading through websites to find command-line equivalents for simple GUI shell opera-
tions and coding them into .cmd files. Last, PowerShell addresses the WSH security
problem by providing a platform for secure Windows scripting. It focuses on security
features such as script signing, lack of executable extensions, and execution policies
(which are restricted by default).

For anyone who needs to automate administration tasks on a Windows system or a
Microsoft platform, PowerShell provides a much-needed injection of power. As such, for
Windows systems administrators or scripters, becoming a PowerShell expert is highly
recommended. After all, PowerShell can now be used to efficiently automate management
tasks for Windows, Active Directory, Terminal Services, SQL Server, Exchange Server,
Internet Information Services (IIS), and even a number of different third-party products.

As such, PowerShell is the approach Microsoft had been seeking as the automation and
management interface for their products. Thus, PowerShell is now the endorsed solution
for the management of Windows-based systems and server products. Over time, PowerShell
could even possibly replace the current management interfaces, such as cmd.exe, WSH, CLI
tools, and so on, while becoming even further integrated into the Windows operating
system. The trend toward this direction can be seen with the release of Windows Server
2008 R2 and Windows 7, in which PowerShell is part of the operating system.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 702

703Introduction to PowerShell

PowerShell Uses

In Windows, an administrator can complete a number of tasks using PowerShell. The
following list is a sampling of these tasks:

. Manage the file system—To create, delete, modify, and set permissions for files
and folders.

. Manage services—To list, stop, start, restart, and even modify services.

. Manage processes—To list (monitor), stop, and start processes.

. Manage the Registry—To list (monitor), stop, and start processes.

. Use Windows Management Instrumentation (WMI)—To manage not only
Windows, but also other platforms such as IIS and Terminal Services.

. Use existing Component Object Model (COM) objects—To complete a wide
range of automation tasks.

. Manage a number of Windows roles and features—To add or remove roles and
features.

PowerShell Features

PowerShell is a departure from the current management interfaces in Windows. As such, it
has been built from the ground up to include a number of features that make CLI and
script-based administration easier. Some of PowerShell’s more key features are as follows:

. It has 240 built-in command-line tools (referred to as cmdlets).

. The scripting language is designed to be readable and easy to use.

. PowerShell supports existing scripts, command-line tools, and automation interfaces,
such as WMI, ADSI, .NET Framework, ActiveX Data Objects (ADO), and so on.

. It follows a strict naming convention for commands based on a verb-noun format.

. It supports a number of different Windows operating systems: Windows XP SP2 or
later, Windows Server 2003 SP1 or later, Windows Vista, Windows Server 2008, and
now Windows Server 2008 R2 and Windows 7.

. It provides direct “access to and navigation of” the Windows Registry, certificate
store, and file system using a common set of commands.

. PowerShell is object based, which allows data (objects) to be piped between
commands.

. It is extensible, which allows third parties (as noted earlier) to build upon and
extend PowerShell’s already rich interfaces for managing Windows and other
Microsoft platforms.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 703

704 CHAPTER 21 Automating Tasks Using PowerShell Scripting

PowerShell 2.0 Enhancements

Windows Server 2008 R2 has the Windows PowerShell 2.0 version built in to the operating
system. In this version of PowerShell, a number of enhancements have been made to both
PowerShell itself and the ability for managing Windows Server 2008 R2’s roles and features.
The following is a summary for some of the improvements in PowerShell 2.0 (these
features are talked about in greater detail later in this chapter and throughout this book):

. The number of built-in cmdlets has nearly doubled from 130 to 240.

. PowerShell 2.0 now includes the ability to manage a number of roles and features
such as the Active Directory Domain Services, Active Directory Rights Management
Services, AppLocker, Background Intelligent Transfer Service [BITS], Best Practices
Analyzer, Failover Clustering [WSFC], Group Policy, Internet Information Services
[IIS], Network Load Balancing [NLB], Remote Desktop Services [RDS], Server
Manager, Server Migration, and Windows Diagnostics roles and features.

. PowerShell 2.0 also includes the introduction of the Windows PowerShell debugger.
Using this feature, an administrator can identify errors or inefficiencies in scripts,
functions, commands, and expressions while they are being executed through a set
of debugging cmdlets or the Integrated Scripting Environment (ISE).

. The PowerShell Integrated Scripting Environment (ISE) is a multi-tabbed GUI-based
PowerShell development interface. Using the ISE, an administrator can write, test,
and debug scripts. The ISE includes such features as multiline editing, tab comple-
tion, syntax coloring, selective execution, context-sensitive help, and support for
right-to-left languages.

. Background jobs enable administrators to execute commands and scripts asynchro-
nously.

. Also through the inclusion of script functions, administrators can now create their
own cmdlets without having to write and compile the cmdlet using a managed-code
language like C#.

. PowerShell 2.0 also includes a new powerful feature, called modules, which allows
packages of cmdlets, providers, functions, variables, and aliases to be bundled and
then easily shared with others.

. The lack of remote command support has also been addressed in PowerShell 2.0
with the introduction of remoting. This feature enables an administrator to auto-
mate the management of many remote systems through a single PowerShell console.

However, with all of these features, the most important advancement that is found in
PowerShell 2.0 is the focus on what is called the Universal Code Execution model. The
core concept in this model is flexibility over how expressions, commands, and script-
blocks are executed across one or more machines.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 704

705Understanding the PowerShell Basics

Understanding the PowerShell Basics
To begin working with PowerShell, some of the basics like accessing PowerShell, working
from the command-line interface, and understanding the basic commands are covered in
this section of the book.

Accessing PowerShell

After logging in to your Windows interactive session, there are several methods to access and
use PowerShell. The first method is from the Start menu, as shown in the following steps:

1. Click Start, All Programs, Accessories, Windows PowerShell.

2. Choose either Windows PowerShell (x86) or Windows PowerShell.

To use the second method, follow these steps:

1. Click Start.

2. Type PowerShell in the Search Programs and Files text box and press Enter.

Both these methods open the PowerShell console, whereas the third method launches
PowerShell from a cmd command prompt:

1. Click Start, Run.

2. Type cmd and click OK to open a cmd command prompt.

3. At the command prompt, type powershell and press Enter.

Command-Line Interface (CLI)

The syntax for using PowerShell from the CLI is similar to the syntax for other CLI shells.
The fundamental component of a PowerShell command is, of course, the name of the
command to be executed. In addition, the command can be made more specific by using
parameters and arguments for parameters. Therefore, a PowerShell command can have the
following formats:

. [command name]

. [command name] -[parameter]

. [command name] -[parameter] -[parameter] [argument1]

. [command name] -[parameter] -[parameter] [argument1],[argument2]

When using PowerShell, a parameter is a variable that can be accepted by a command,
script, or function. An argument is a value assigned to a parameter. Although these terms
are often used interchangeably, remembering these definitions is helpful when discussing
their use in PowerShell.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 705

706 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Navigating the CLI

As with all CLI-based shells, an understanding is needed in how to effectively navigate
and use the PowerShell CLI. Table 21.1 lists the editing operations associated with various
keys when using the PowerShell console.

Luckily, most of the features in Table 21.1 are native to the cmd command prompt, which
makes PowerShell adoption easier for administrators already familiar with the Windows
command line. The only major difference is that the Tab key auto-completion is enhanced
in PowerShell beyond what’s available with the cmd command prompt.

TABLE 21.1 PowerShell Console Editing Features

Keys Editing Operation

Left and right
arrows

Move the cursor left and right through the current command line.

Up and down
arrows

Moves up and down through the list of recently typed commands.

PgUp Displays the first command in the command history.

PgDn Displays the last command in the command history.

Home Moves the cursor to the beginning of the command line.

End Moves the cursor to the end of the command line.

Insert Switches between insert and overstrike text-entry modes.

Delete Deletes the character at the current cursor position.

Backspace Deletes the character immediately preceding the current cursor position.

F3 Displays the previous command.

F4 Deletes up to the specified number of characters from the current cursor.

F5 Moves backward through the command history.

F7 Displays a list of recently typed commands in a pop-up window in the
command shell. Use the up and down arrows to select a previously typed
command, and then press Enter to execute the selected command.

F8 Moves backward through the command history with commands that match
the text that has been entered at the command prompt.

F9 Prompts for a command number and executes the specified command from
the command history (command numbers refer to the F7 command list).

Tab Auto-completes command-line sequences. Use the Shift+Tab sequence to
move backward through a list of potential matches.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 706

707Understanding the PowerShell Basics

2
1

As with the cmd command prompt, PowerShell performs auto-completion for file and
directory names. So, if you enter a partial file or directory name and press Tab, PowerShell
returns the first matching file or directory name in the current directory. Pressing Tab
again returns a second possible match and enables you to cycle through the list of results.
Like the cmd command prompt, PowerShell’s Tab key auto-completion can also auto-
complete with wildcards. The difference between Tab key auto-completion in cmd and
PowerShell is that PowerShell can auto-complete commands. For example, you can enter a
partial command name and press the Tab key, and PowerShell steps through a list of possi-
ble command matches.

PowerShell can also auto-complete parameter names associated with a particular
command. Simply enter a command and partial parameter name and press the Tab key,
and PowerShell cycles through the parameters for the command that has been specified.
This method also works for variables associated with a command. In addition, PowerShell
performs auto-completion for methods and properties of variables and objects.

Command Types

When a command is executed in PowerShell, the command interpreter looks at the
command name to figure out what task to perform. This process includes determining the
type of command and how to process that command. There are four types of PowerShell
commands: cmdlets, shell function commands, script commands, and native commands.

cmdlet
The first command type is a cmdlet (pronounced “command-let”), which is similar to the
built-in commands in other CLI-based shells. The difference is that cmdlets are imple-
mented by using .NET classes compiled into a dynamic link library (DLL) and loaded into
PowerShell at runtime. This difference means there’s no fixed class of built-in cmdlets;
anyone can use the PowerShell Software Developers Kit (SDK) to write a custom cmdlet,
thus extending PowerShell’s functionality.

A cmdlet is always named as a verb and noun pair separated by a “-” (hyphen). The verb
specifies the action the cmdlet performs, and the noun specifies the object being operated
on. An example of a cmdlet being executed is shown as follows:

PS C:\> Get-Process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

425 5 1608 1736 90 3.09 428 csrss

79 4 1292 540 86 1.00 468 csrss

193 4 2540 6528 94 2.16 2316 csrss

66 3 1128 3736 34 0.06 3192 dwm

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 707

708

412 11 13636 20832 125 3.52 1408 explorer

...

While executing cmdlets in PowerShell, you should take a couple of considerations into
account. Overall, PowerShell was created such that it is both forgiving and easy when it
comes to syntax. In addition, PowerShell also always attempts to fill in the blanks for a
user. Examples of this are illustrated in the following items:

. Cmdlets are always structured in a nonplural verb-noun format.

. Parameters and arguments are positional: Get-Process winword.

. Many arguments can use wildcards: Get-Process w*.

. Partial parameter names are also allowed: Get-Process –P w*.

NOTE

When executed, a cmdlet only processes a single record at a time.

Functions
The next type of command is a function. These commands provide a way to assign a
name to a list of commands. Functions are similar to subroutines and procedures in other
programming languages. The main difference between a script and a function is that a
new instance of the shell is started for each shell script, and functions run in the current
instance of the same shell.

NOTE

Functions defined at the command line remain in effect only during the current PowerShell
session. They are also local in scope and don’t apply to new PowerShell sessions.

Although a function defined at the command line is a useful way to create a series of
commands dynamically in the PowerShell environment, these functions reside only in
memory and are erased when PowerShell is closed and restarted. Therefore, although creat-
ing complex functions dynamically is possible, writing these functions as script commands
might be more practical. An example of a shell function command is as follows:

PS C:\> function showFiles {Get-ChildItem}

PS C:\> showfiles

Directory: Microsoft.PowerShell.Core\FileSystem::C:\

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 708

709Understanding the PowerShell Basics

2
1

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 9/4/2007 10:36 PM inetpub

d---- 4/17/2007 11:02 PM PerfLogs

d-r-- 9/5/2007 12:19 AM Program Files

d-r-- 9/5/2007 11:01 PM Users

d---- 9/14/2007 11:42 PM Windows

-a--- 3/26/2007 8:43 PM 24 autoexec.bat

-ar-s 8/13/2007 11:57 PM 8192 BOOTSECT.BAK

-a--- 3/26/2007 8:43 PM 10 config.sys

Advanced Functions
Advanced functions are a new feature that was introduced in PowerShell v2.0. The basic
premise behind advanced functions is to enable administrators and developers access to
the same type of functionality as a compiled cmdlet, but directly through the PowerShell
scripting language. An example of an advanced function is as follows:

function SuperFunction {

<#

.SYNOPSIS

Superduper Advanced Function.

.DESCRIPTION

This is my Superduper Advanced Function.

.PARAMETER Message

Message to write.

#>

param(

[Parameter(Position=0, Mandatory=$True, ValueFromPipeline=$True)]

[String] $Message

)

Write-Host $Message

}

In the previous example, you will see that one of the major identifying aspects of an
advanced function is the use of the CmdletBinding attribute. Usage of this attribute in an
advanced function allows PowerShell to bind the parameters in the same manner that it
binds parameters in a compiled cmdlet. For the SuperFunction example, CmdletBinding is
used to define the $Message parameter with position 0, as mandatory, and is able to accept
values from the pipeline. For example, the following shows the SuperFunction being
executed, which then prompts for a message string. That message string is then written to
the console:

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 709

710

PS C:\Users\tyson> SuperFunction

cmdlet SuperFunction at command pipeline position 1

Supply values for the following parameters:

Message: yo!

yo!

Finally, advanced functions can also use all of the methods and properties of the PSCmdlet
class, for example:

. Usage of all the input processing methods (Begin, Process, and End)

. Usage of the ShouldProcess and ShouldContinue methods, which can be used to get
user feedback before performing an action

. Usage of the ThrowTerminatingError method, which can be used to generate error
records

. Usage of a various number of Write methods

Scripts
Scripts, the third command type, are PowerShell commands stored in a .ps1 file. The
main difference from functions is that scripts are stored on disk and can be accessed any
time, unlike functions that don’t persist across PowerShell sessions.

Scripts can be run in a PowerShell session or at the cmd command prompt. To run a script
in a PowerShell session, type the script name without the extension. The script name can
be followed by any parameters. The shell then executes the first .ps1 file matching the
typed name in any of the paths located in the PowerShell $ENV:PATH variable.

To run a PowerShell script from a cmd command prompt, first use the CD command to
change to the directory where the script is located. Then run the PowerShell executable
with the command parameter and specifying which script to be run, as shown here:

C:\Scripts>powershell -command .\myscript.ps1

If you don’t want to change to the script’s directory with the cd command, you can also
run it by using an absolute path, as shown in this example:

C:\>powershell -command C:\Scripts\myscript.ps1

An important detail about scripts in PowerShell concerns their default security restrictions.
By default, scripts are not enabled to run as a method of protection against malicious
scripts. You can control this policy with the Set-ExecutionPolicy cmdlet, which is
explained later in this chapter.

Native Commands
The last type of command, a native command, consists of external programs that the
operating system can run. Because a new process must be created to run native
commands, they are less efficient than other types of PowerShell commands. Native

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 710

711Understanding the PowerShell Basics

2
1

commands also have their own parameters for processing commands, which are usually
different from PowerShell parameters.

.NET Framework Integration

Most shells operate in a text-based environment, which means you typically have to
manipulate the output for automation purposes. For example, if you need to pipe data
from one command to the next, the output from the first command usually must be refor-
matted to meet the second command’s requirements. Although this method has worked
for years, dealing with text-based data can be difficult and frustrating.

Often, a lot of work is necessary to transform text data into a usable format. Microsoft has
set out to change the standard with PowerShell, however. Instead of transporting data as
plain text, PowerShell retrieves data in the form of .NET Framework objects, which makes
it possible for commands (or cmdlets) to access object properties and methods directly.
This change has simplified shell use. Instead of modifying text data, you can just refer to
the required data by name. Similarly, instead of writing code to transform data into a
usable format, you can simply refer to objects and manipulate them as needed.

Reflection
Reflection is a feature in the .NET Framework that enables developers to examine objects
and retrieve their supported methods, properties, fields, and so on. Because PowerShell is
built on the .NET Framework, it provides this feature, too, with the Get-Member cmdlet.
This cmdlet analyzes an object or collection of objects you pass to it via the pipeline. For
example, the following command analyzes the objects returned from the Get-Process
cmdlet and displays their associated properties and methods:

PS C:\> get-process | get-member

Developers often refer to this process as “interrogating” an object. This method of accessing
and retrieving information about an object can be very useful in understanding its methods
and properties without referring to MSDN documentation or searching the Internet.

Extended Type System (ETS)
You might think that scripting in PowerShell is typeless because you rarely need to
specify the type for a variable. PowerShell is actually type driven, however, because it
interfaces with different types of objects from the less-than-perfect .NET to Windows
Management Instrumentation (WMI), Component Object Model (COM), ActiveX Data
Objects (ADO), Active Directory Service Interfaces (ADSI), Extensible Markup Language
(XML), and even custom objects. However, you don’t need to be concerned about object
types because PowerShell adapts to different object types and displays its interpretation of
an object for you.

In a sense, PowerShell tries to provide a common abstraction layer that makes all object
interaction consistent, despite the type. This abstraction layer is called the PSObject, a
common object used for all object access in PowerShell. It can encapsulate any base object
(.NET, custom, and so on), any instance members, and implicit or explicit access to
adapted and type-based extended members, depending on the type of base object.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 711

712

Furthermore, it can state its type and add members dynamically. To do this, PowerShell
uses the Extended Type System (ETS), which provides an interface that allows PowerShell
cmdlet and script developers to manipulate and change objects as needed.

NOTE

When you use the Get-Member cmdlet, the information returned is from PSObject.
Sometimes PSObject blocks members, methods, and properties from the original
object. If you want to view the blocked information, use the BaseObject property with
the PSBase standard name. For example, you could use the $Procs.PSBase | get-
member command to view blocked information for the $Procs object collection.

Needless to say, this topic is fairly advanced, as PSBase is hidden from view. The only time
you should need to use it is when the PSObject doesn’t interpret an object correctly or
you’re digging around for hidden jewels in PowerShell.

Static Classes and Methods
Certain .NET Framework classes cannot be used to create new objects. For example, if
you try to create a System.Math typed object using the New-Object cmdlet, the following
error occurs:

PS C:\> New-Object System.Math

New-Object : Constructor not found. Cannot find an appropriate constructor for type

System.Math.

At line:1 char:11

+ New-Object <<<< System.Math

+ CategoryInfo : ObjectNotFound: (:) [New-Object], PSArgumentException

+ FullyQualifiedErrorId : CannotFindAppropriateCtor,Microsoft.PowerShell.

Commands.NewObjectCommand

PS C:\>

The reason this occurs is because static members are shared across all instances of a class
and don’t require a typed object to be created before being used. Instead, static members
are accessed simply by referring to the class name as if it were the name of the object
followed by the static operator (::), as follows:

PS > [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest()

In the previous example, the DirectoryServices.ActiveDirectory.Forest class is used to
retrieve information about the current forest. To complete this task, the class name is
enclosed within the two square brackets ([...]). Then, the GetCurrentForest method is
invoked by using the static operator (::).

NOTE

To retrieve a list of static members for a class, use the Get-Member cmdlet: Get-
Member -inputObject ([System.String]) -Static.

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 712

713Understanding the PowerShell Basics

2
1

Type Accelerators
A type accelerator is simply an alias for specifying a .NET type. Without a type accelerator,
defining a variable type requires entering a fully qualified class name, as shown here:

PS C:\> $User = [System.DirectoryServices.DirectoryEntry]”LDAP:

//CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com”

PS C:\> $User

distinguishedname:{CN=Fujio Saitoh,OU=Accounts,OU=Managed

Objects,DC=companyabc,DC=com}

path : LDAP:

//CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com

PS C:\>

Instead of typing the entire class name, you just use the [ADSI] type accelerator to define
the variable type, as in the following example:

PS C:\> $User = [ADSI]”LDAP://CN=Fujio Saitoh,OU=Accounts, OU=Managed

Objects,DC=companyabc,DC=com”

PS C:\> $User

distinguishedname:{CN=Fujio Saitoh,OU=Accounts,OU=Managed

Objects,DC=companyabc,DC=com}

path : LDAP:

//CN=Fujio Saitoh,OU=Accounts,OU=Managed Objects,DC=companyabc,DC=com

PS C:\>

Type accelerators have been included in PowerShell mainly to cut down on the amount of
typing to define an object type. However, for some reason, type accelerators aren’t covered
in the PowerShell documentation, even though the [WMI], [ADSI], and other common
type accelerators are referenced on many web blogs.

Regardless of the lack of documentation, type accelerators are a fairly useful feature of
PowerShell. Table 21.2 lists some of the more commonly used type accelerators.

TABLE 21.2 Important Type Accelerators in PowerShell

Name Type

Int System.Int32

Long System.Int64

String System.String

Char System.Char

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 713

714 CHAPTER 21 Automating Tasks Using PowerShell Scripting

TABLE 21.2 Important Type Accelerators in PowerShell
Name Type

Bool System.Boolean

Byte System.Byte

Double System.Double

Decimal System.Decimal

Float System.Float

Single System.Single

Regex System.Text.RegularExpressions.Regex

Array System.Array

Xml System.Xml.XmlDocument

Scriptblock System.Management.Automation.ScriptBlock

Switch System.Management.Automation.SwitchParameter

Hashtable System.Collections.Hashtable

Type System.Type

Ref System.Management.Automation.PSReference

Psobject System.Management.Automation.PSObject

pscustomobject System.Management.Automation.PSCustomObject

Psmoduleinfo System.Management.Automation.PSModuleInfo

Powershell System.Management.Automation.PowerShell

runspacefactory System.Management.Automation.Runspaces.RunspaceFactory

Runspace System.Management.Automation.Runspaces.Runspace

Ipaddress System.Net.IPAddress

Wmi System.Management.ManagementObject

Wmisearcher System.Management.ManagementObjectSearcher

Wmiclass System.Management.ManagementClass

Adsi System.DirectoryServices.DirectoryEntry

Adsisearcher System.DirectoryServices.DirectorySearcher

TABLE 21.2 Important Type Accelerators in PowerShell

Name Type

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 714

715Understanding the PowerShell Basics

The Pipeline

In the past, data was transferred from one command to the next by using the pipeline,
which makes it possible to string a series of commands together to gather information
from a system. However, as mentioned previously, most shells have a major disadvantage:
The information gathered from commands is text based. Raw text needs to be parsed
(transformed) into a format the next command can understand before being piped.

The point is that although most UNIX and Linux shell commands are powerful, using
them can be complicated and frustrating. Because these shells are text based, often
commands lack functionality or require using additional commands or tools to perform
tasks. To address the differences in text output from shell commands, many utilities and
scripting languages have been developed to parse text.

The result of all this parsing is a tree of commands and tools that make working with
shells unwieldy and time consuming, which is one reason for the proliferation of manage-
ment interfaces that rely on GUIs. This trend can be seen among tools Windows adminis-
trators use, too; as Microsoft has focused on enhancing the management GUI at the
expense of the CLI.

Windows administrators now have access to the same automation capabilities as their
UNIX and Linux counterparts. However, PowerShell and its use of objects fill the automa-
tion need Windows administrators have had since the days of batch scripting and WSH in
a more usable and less parsing-intense manner. To see how the PowerShell pipeline works,
take a look at the following PowerShell example:

PS C:\> get-process powershell | format-table id -autosize

Id

--

3628

PS C:\>

NOTE

All pipelines end with the Out-Default cmdlet. This cmdlet selects a set of properties
and their values and then displays those values in a list or table.

Modules and Snap-Ins

One of the main design goals behind PowerShell was to make extending the default func-
tionality in PowerShell and sharing those extensions easy enough that anyone could do it.
In PowerShell 1.0, part of this design goal was realized through the use of snap-ins.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 715

716 CHAPTER 21 Automating Tasks Using PowerShell Scripting

PowerShell snap-ins (PSSnapins) are dynamic-link library (DLL) files that can be used to
provide access to additional cmdlets or providers. By default, a number of PSSnapins are
loaded into every PowerShell session. These default sets of PSSnapins contain the built-in
cmdlets and providers that are used by PowerShell. You can display a list of these cmdlets
by entering the command Get-PSSnapin at the PowerShell command prompt, as follows:

PS C:\> get-pssnapin

Name : Microsoft.PowerShell.Core

PSVersion : 2.0

Description : This Windows PowerShell snap-in contains Windows PowerShell manage-

ment cmdlets used to manage components

of Windows PowerShell.

Name : Microsoft.PowerShell.Host

PSVersion : 2.0

Description : This Windows PowerShell snap-in contains cmdlets used by the Windows

PowerShell host.

...

PS C:\>

In theory, PowerShell snap-ins were a great way to share and reuse a set of cmdlets and
providers. However, snap-ins by definition must be written and then compiled, which
often placed snap-in creation out of reach for many IT professionals. Additionally, snap-
ins can conflict, which meant that attempting to run a set of snap-ins within the same
PowerShell session might not always be feasible.

That is why in PowerShell 2.0, the product team decided to introduce a new feature, called
modules, which are designed to make extending PowerShell and sharing those extensions
significantly easier. In its simplest form, a module is just a collection of items that can be
used in a PowerShell session. These items can be cmdlets, providers, functions, aliases,
utilities, and so on. The intent with modules, however, was to allow “anyone” (developers
and administrators) to take and bundle together a collection of items. These items can
then be executed in a self-contained context, which will not affect the state outside of the
module, thus increasing portability when being shared across disparate environments.

Remoting

With PowerShell 1.0, one of its major disadvantages was the lack of an interface to execute
commands on a remote machine. Granted, you could use Windows Management
Instrumentation (WMI) to accomplish this and some cmdlets like Get-Process and Get-
Service, which enable you to connect to remote machines. But, the concept of a native-
based “remoting” interface was sorely missing when PowerShell was first released. In fact,

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 716

717Understanding the PowerShell Basics

the lack of remote command execution was a glaring lack of functionality that needed to
be addressed. Naturally, the PowerShell product team took this functionality limitation to
heart and addressed it by introducing a new feature in PowerShell 2.0, called “remoting.”

Remoting, as its name suggests, is a new feature that is designed to facilitate command (or
script) execution on remote machines. This could mean execution of a command or
commands on one remote machine or thousands of remote machines (provided you have
the infrastructure to support this). Additionally, commands can be issued synchronously
or asynchronously, one at time or through a persistent connection called a runspace, and
even scheduled or throttled.

To use remoting, you must have the appropriate permissions to connect to a remote
machine, execute PowerShell, and execute the desired command(s). In addition, the
remote machine must have PowerShell 2.0 and Windows Remote Management (WinRM)
installed, and PowerShell must be configured for remoting.

Additionally, when using remoting, the remote PowerShell session that is used to execute
commands determines execution environment. As such, the commands you attempt to
execute are subject to a remote machine’s execution policies, profiles, and preferences.

WARNING

Commands that are executed against a remote machine do not have access to infor-
mation defined within your local profile. As such, commands that use a function or
alias defined in your local profile will fail unless they are defined on the remote
machine as well.

How Remoting Works
In its most basic form, PowerShell remoting works using the following conversation flow
between “a client” (most likely the machine with your PowerShell session) and “a server”
(remote host) that you want to execute command(s) against:

1. A command is executed on the client.

2. That command is transmitted to the server.

3. The server executes the command and then returns the output to the client.

4. The client displays or uses the returned output.

At a deeper level, PowerShell remoting is very dependent on WinRM for facilitating the
command and output exchange between a “client” and “server.” WinRM, which is a
component of Windows Hardware Management, is a web-based service that enables
administrators to enumerate information on and manipulate a remote machine. To
handle remote sessions, WinRM was built around a SOAP-based standards protocol called
WS-Management. This protocol is firewall-friendly, and was primarily developed for the
exchange of management information between systems that might be based on a variety
of operating systems on various hardware platforms.

When PowerShell uses WinRM to ship commands and output between a client and server,
that exchange is done using a series of XML messages. The first XML message that is

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 717

718 CHAPTER 21 Automating Tasks Using PowerShell Scripting

exchanged is a request to the server, which contains the desired command to be executed.
This message is submitted to the server using the SOAP protocol. The server, in return,
executes the command using a new instance of PowerShell called a runspace. Once execu-
tion of the command is complete, the output from the command is returned to the
requesting client as the second XML message. This second message, like the first, is also
communicated using the SOAP protocol.

This translation into an XML message is performed because you cannot ship “live” .NET
objects (how PowerShell relates to programs or system components) across the network.
So, to perform the transmission, objects are serialized into a series of XML (CliXML) data
elements. When the server or client receives the transmission, it converts the received
XML message into a deserialized object type. The resulting object is no longer live.
Instead, it is a record of properties based on a point in time and, as such, no longer
possesses any methods.

Remoting Requirements
To use remoting, both the local and remote computers must have the following:

. Windows PowerShell 2.0 or later

. Microsoft .NET Framework 2.0 or later

. Windows Remote Management 2.0

NOTE

Windows Remote Management 2.0 is part of Windows 7 and Windows Server 2008
R2. For down-level versions of Windows, an integrated installation package must be
installed, which includes PowerShell 2.0.

Configuring Remoting
By default, WinRM is installed on all Windows Server 2008 R2 machines as part of the
default operating system installation. However, for security purposes, PowerShell remoting
and WinRM are, by default, configured to not allow remote connections. You can use
several methods to configure remoting, as described in the following sections.

Method One The first and easiest method to enable PowerShell remoting is to execute the
Enable-PSRemoting cmdlet. For example:

PS C:\> enable-pssremoting

Once executed, the following tasks are performed by the Enable-PSRemoting cmdlet:

. Runs the Set-WSManQuickConfig cmdlet, which performs the following tasks:

. Starts the WinRM service.

. Sets the startup type on the WinRM service to Automatic.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 718

719Understanding the PowerShell Basics

. Creates a listener to accept requests on any IP address.

. Enables a firewall exception for WS-Management communications.

. Enables all registered Windows PowerShell session configurations to receive instruc-
tions from a remote computer.

. Registers the “Microsoft.PowerShell” session configuration, if it is not already
registered.

. Registers the “Microsoft.PowerShell32” session configuration on 64-bit computers, if
it is not already registered.

. Removes the “Deny Everyone” setting from the security descriptor for all the regis-
tered session configurations.

. Restarts the WinRM service to make the preceding changes effective.

NOTE

To configure PowerShell remoting, the Enable-PSRemoting cmdlet must be executed
using the Run As Administrator option.

Method Two The second method to configure remoting is to use Server Manager. Use the
following steps to use this method:

1. Open Server Manager.

2. In the Server Summary area of the Server Manager home page, click Configure Server
Manager Remote Management.

3. Next, select Enable Remote Management of This Server from Other Computers.

4. Click OK.

Method Three Finally, the third method to configure remoting is to use GPO. Use the
following steps to use this method:

1. Create a new GPO, or edit an existing one.

2. Expand Computer Configuration, Policies, Administrative Templates, Windows
Components, Windows Remote Management, and then select WinRM Service.

3. Open the Allow Automatic Configuration of Listeners Policy, select Enabled, and
then define the IPv4 filter and IPv6 filter as *.

4. Click OK.

5. Next, expand Computer Configuration, Policies, Windows Settings, Security Settings,
Windows Firewall with Advanced Security, Windows Firewall with Advanced
Security, and then Inbound Rules.

6. Right-click Inbound Rules, and then click New Rule.

7. In the New Inbound Rule Wizard, on the Rule Type page, select Predefined.

8. On the Predefined pull-down menu, select Remote Event Log Management. Click Next.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 719

720 CHAPTER 21 Automating Tasks Using PowerShell Scripting

9. On the Predefined Rules page, click Next to accept the new rules.

10. On the Action page, select Allow the Connection, and then click Finish. Allow the
Connection is the default selection.

11. Repeat steps 6 through 10 and create inbound rules for the following predefined
rule types:

. Remote Service Management

. Windows Firewall Remote Management

Background Jobs
Another new feature that was introduced in PowerShell 2.0 is the ability to use back-
ground jobs. By definition, a background job is a command that is executed asynchro-
nously without interacting with the current PowerShell session. However, once the
background job has finished execution, the results from these jobs can then be retrieved
and manipulated based on the task at hand. In other words, by using a background job,
you can complete automation tasks that take an extended period of time to run without
impacting the usability of your PowerShell session.

By default, background jobs can be executed on the local computer. But, background jobs
can also be used in conjunction with remoting to execute jobs on a remote machine.

NOTE

To use background jobs (local or remote), PowerShell must be configured for remoting.

PowerShell ISE

Another new feature that was introduced in PowerShell 2.0 is called the Integrated
Scripting Environment (ISE). The ISE, as shown in Figure 21.1, is a Windows Presentation
Foundation (WPF)–based host application for Windows PowerShell. Using the ISE, an IT
professional can both run commands and write, test, and debug scripts.

Additional features of the ISE include the following:

. A Command pane for running interactive commands.

. A Script pane for writing, editing, and running scripts. You can run the entire script
or selected lines from the script.

. A scrollable Output pane that displays a transcript of commands from the Command
and Script panes and their results.

. Up to eight independent PowerShell execution environments in the same window,
each with its own Command, Script, and Output panes.

. Multiline editing in the Command pane, which lets you paste multiple lines of code,
run them, and then recall them as a unit.

. A built-in debugger for debugging commands, functions, and scripts.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 720

721Understanding the PowerShell Basics

FIGURE 21.1 The PowerShell ISE.

. Customizable features that let you adjust the colors, font, and layout.

. A scriptable object model that lets you further customize and extend the
PowerShell ISE.

. Line and column numbers, keyboard shortcuts, tab completion, context-sensitive
Help, and Unicode support.

The PowerShell ISE is an optional feature in Windows Server 2008 R2. To use the ISE, it
first must be installed using the Add Features Wizard. Because the ISE requires the .NET
Framework 3.5 with Service Pack 1, the Server Manager will also install this version of the
.NET Framework if it is not already installed. Once installed, use either of the following
methods to start it:

1. Start Windows PowerShell ISE by clicking Start, All Programs, Accessories, Windows
PowerShell, and then click Windows PowerShell ISE or Windows PowerShell ISE (x86).

2. Or execute the powershell_ise.exe executable.

ISE Requirements
The following requirements must be met to use the ISE:

. Windows XP and later versions of Windows

. Microsoft .NET Framework 3.5 with Service Pack 1

NOTE

Being a GUI-based application, the PowerShell ISE does not work on Server Core instal-
lations of Windows Server.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 721

722 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Variables

A variable is a storage place for data. In most shells, the only data that can be stored in a
variable is text data. In advanced shells and programming languages, data stored in vari-
ables can be almost anything, from strings to sequences to objects. Similarly, PowerShell
variables can be just about anything.

To define a PowerShell variable, you must name it with the $ prefix, which helps delineate
variables from aliases, cmdlets, filenames, and other items a shell operator might want to
use. A variable name can contain any combination of alphanumeric characters (a–z and
0–9) and the underscore (_) character. Although PowerShell variables have no set naming
convention, using a name that reflects the type of data the variable contains is recom-
mended, as shown in this example:

PS C:\> $Stopped = get-service | where {$_.status -eq “stopped”}

PS C:\> $Stopped

Status Name DisplayName

------ ---- -----------

Stopped ALG Application Layer Gateway Service

Stopped Appinfo Application Information

Stopped AppMgmt Application Management

Stopped aspnet_state ASP.NET State Service

Stopped AudioEndpointBu... Windows Audio Endpoint Builder

Stopped Audiosrv Windows Audio

...

As you can see from the previous example, the information that is contained within the
$Stopped variable is a collection of services that are currently stopped.

NOTE

A variable name can consist of any characters, including spaces, provided the name is
enclosed in curly braces ({ and } symbols).

Aliases

Like most existing command-line shells, command aliases can be defined in PowerShell.
Aliasing is a method that is used to execute existing shell commands (cmdlets) using a
different name. In many cases, the main reason aliases are used is to establish abbreviated
command names in an effort to reduce typing. For example:

PS C:\> gps | ? {$_.Company -match “.*Microsoft*”} | ft Name, ID, Path –Autosize

The preceding example shows the default aliases for the Get-Process, Where-Object, and
Format-Table cmdlets.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 722

723Understanding the PowerShell Basics

Alias cmdlets
In PowerShell, several alias cmdlets enable an administrator to define new aliases, export
aliases, import aliases, and display existing aliases. By using the following command, an
administrator can get a list of all the related alias cmdlets:

PS C:\> get-command *-Alias

CommandType Name Definition

----------- ---- ----------

Cmdlet Export-Alias Export-Alias [-Path] <String...

Cmdlet Get-Alias Get-Alias [[-Name] <String[]...

Cmdlet Import-Alias Import-Alias [-Path] <String...

Cmdlet New-Alias New-Alias [-Name] <String> [...

Cmdlet Set-Alias Set-Alias [-Name] <String> [...

Use the Get-Alias cmdlet to produce a list of aliases available in the current PowerShell
session. The Export-Alias and Import-Alias cmdlets are used to export and import alias lists
from one PowerShell session to another. Finally, the New-Alias and Set-Alias cmdlets allow
an administrator to define new aliases for the current PowerShell session.

Creating Persistent Aliases
The aliases created when using the New-Alias and Set-Alias cmdlets are valid only in the
current PowerShell session. Exiting a PowerShell session discards any existing aliases. To
have aliases persist across PowerShell sessions, they can be defined in a profile file, as
shown in this example:

set-alias new new-object

set-alias time get-date

...

Although command shortening is appealing, the extensive use of aliases isn’t recom-
mended. One reason is that aliases aren’t very portable in relation to scripts. For example,
if a lot of aliases are used in a script, each alias must be included via a Set-Aliases sequence
at the start of the script to make sure those aliases are present, regardless of machine or
session profile, when the script runs.

However, a bigger concern than portability is that aliases can often confuse or obscure the
true meaning of commands or scripts. The aliases that are defined might make sense to a
scripter, but not everyone shares the logic in defining aliases. So if a scripter wants others
to understand their scripts, they shouldn’t use too many aliases.

NOTE

If aliases will be used in a script, use names that other people can understand. For
example, there’s no reason, other than to encode a script, to create aliases consisting
of only two letters.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 723

724 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Scopes

A scope is a logical boundary in PowerShell that isolates the use of functions and vari-
ables. Scopes can be defined as global, local, script, and private. They function in a hierar-
chy in which scope information is inherited downward. For example, the local scope can
read the global scope, but the global scope can’t read information from the local scope.
Scopes and their use are described in the following sections.

Global
As the name indicates, a global scope applies to an entire PowerShell instance. Global
scope data is inherited by all child scopes, so any commands, functions, or scripts that run
make use of variables defined in the global scope. However, global scopes are not shared
between different instances of PowerShell.

The following example shows the $Processes variable being defined as a global variable in
the ListProcesses function. Because the $Processes variable is being defined globally,
checking $Processes.Count after ListProcesses completes returns a count of the number
of active processes at the time ListProcesses was executed:

PS C:\> function ListProcesses {$Global:Processes = get-process}

PS C:\> ListProcesses

PS C:\> $Processes.Count

37

NOTE

In PowerShell, an explicit scope indicator can be used to determine the scope a vari-
able resides in. For instance, if a variable is to reside in the global scope, it should be
defined as $Global:variablename. If an explicit scope indicator isn’t used, a variable
resides in the current scope for which it’s defined.

Local
A local scope is created dynamically each time a function, filter, or script runs. After a
local scope has finished running, information in it is discarded. A local scope can read
information from the global scope but can’t make changes to it.

The following example shows the locally scoped variable $Processes being defined in the
ListProcesses function. After ListProcesses finishes running, the $Processes variable
no longer contains any data because it was defined only in the ListProcesses function.
Notice how checking $Processes.Count after the ListProcesses function is finished
produces no results:

PS C:\> function ListProcesses {$Processes = get-process}

PS C:\> ListProcesses

PS C:\> $Processes.Count

PS C:\>

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 724

725Understanding the PowerShell Basics

Script
A script scope is created whenever a script file runs and is discarded when the script
finishes running. To see an example of how a script scope works, create the following
script and save it as ListProcesses.ps1:

$Processes = get-process

write-host “Here is the first process:” -Foregroundcolor Yellow

$Processes[0]

After creating the script file, run it from a PowerShell session. The output should look
similar to this example:

PS C:\> .\ListProcesses.ps1

Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

105 5 1992 4128 32 916 alg

PS C:\> $Processes[0]

Cannot index into a null array.

At line:1 char:12

+ $Processes[0 <<<<]

PS C:\>

Notice that when the ListProcesses.ps1 script runs, information about the first process
object in the $Processes variable is written to the console. However, when you try to
access information in the $Processes variable from the console, an error is returned
because the $Processes variable is valid only in the script scope. When the script finishes
running, that scope and all its contents are discarded.

What if an administrator wants to use a script in a pipeline or access it as a library file for
common functions? Normally, this isn’t possible because PowerShell discards a script
scope whenever a script finishes running. Luckily, PowerShell supports the dot-sourcing
technique, a term that originally came from UNIX. Dot sourcing a script file tells
PowerShell to load a script scope into the calling parent’s scope.

To dot source a script file, simply prefix the script name with a period (dot) when running
the script, as shown here:

PS C:\> . .\coolscript.ps1

Private
A private scope is similar to a local scope, with one key difference: Definitions in the
private scope aren’t inherited by any child scopes.

The following example shows the privately scoped variable $Processes defined in the
ListProcesses function. Notice that during execution of the ListProcesses function, the

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 725

726 CHAPTER 21 Automating Tasks Using PowerShell Scripting

$Processes variable isn’t available to the child scope represented by the script block
enclosed by { and } in lines 6–9.

PS C:\> function ListProcesses {$Private:Processes = get-process

>> write-host “Here is the first process:” -Foregroundcolor Yellow

>> $Processes[0]

>> write-host

>>>> &{

>> write-host “Here it is again:” -Foregroundcolor Yellow

>> $Processes[0]

>> }

>> }

>>PS C:\> ListProcesses

Here is the first process:

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

105 5 1992 4128 32 916 alg

Here it is again:

Cannot index into a null array.

At line:7 char:20

+ $Processes[0 <<<<]

PS C:\>

This example works because it uses the & call operator. With this call operator, you can
execute fragments of script code in an isolated local scope. This technique is helpful for
isolating a script block and its variables from a parent scope or, as in this example, isolat-
ing a privately scoped variable from a script block.

Providers and Drives

Most computer systems are used to store data, often in a structure such as a file system.
Because of the amount of data stored in these structures, processing and finding informa-
tion can be unwieldy. Most shells have interfaces, or providers, for interacting with data
stores in a predictable, set manner. PowerShell also has a set of providers for presenting
the contents of data stores through a core set of cmdlets. You can then use these cmdlets
to browse, navigate, and manipulate data from stores through a common interface. To get
a list of the core cmdlets, use the following command:

PS C:\> help about_core_commands

...

ChildItem CMDLETS

Get-ChildItem

CONTENT CMDLETS

Add-Content

Clear-Content

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 726

727Understanding the PowerShell Basics

Get-Content

Set-Content

...

To view built-in PowerShell providers, use the following command:

PS C:\> get-psprovider

Name Capabilities Drives

---- ------------ ------

WSMan Credentials {WSMan}

Alias ShouldProcess {Alias}

Environment ShouldProcess {Env}

FileSystem Filter, ShouldProcess {C, D, E}

Function ShouldProcess {Function}

Registry ShouldProcess, Transactions {HKLM, HKCU}

Variable ShouldProcess {Variable}

Certificate ShouldProcess {cert}

PS C:\>

The preceding list displays not only built-in providers, but also the drives each provider
currently supports. A drive is an entity that a provider uses to represent a data store
through which data is made available to the PowerShell session. For example, the Registry
provider creates a PowerShell drive for the HKEY_LOCAL_MACHINE and
HKEY_CURRENT_USER Registry hives.

To see a list of all current PowerShell drives, use the following command:

PS C:\> get-psdrive

Name Used (GB) Free (GB) Provider Root

---- --------- --------- -------- ----

Alias Alias

C 68.50 107.00 FileSystem C:\

cert Certificate \

D 8.98 1.83 FileSystem D:\

E FileSystem E:\

Env Environment

Function Function

HKCU Registry HKEY_CURRENT_USER

HKLM Registry HKEY_LOCAL_MACHINE

Variable Variable

WSMan WSMan

PS C:\>

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 727

728 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Profiles

A PowerShell profile is a saved collection of settings for customizing the PowerShell envi-
ronment. There are four types of profiles, loaded in a specific order each time PowerShell
starts. The following sections explain these profile types, where they should be located,
and the order in which they are loaded.

The All Users Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\profile.ps1.
Settings in the All Users profile are applied to all PowerShell users on the current machine.
If you plan to configure PowerShell settings across the board for users on a machine, this
is the profile to use.

The All Users Host-Specific Profile
This profile is located in %windir%\system32\windowspowershell\v1.0\ShellID_
profile.ps1. Settings in the All Users host-specific profile are applied to all users of the
current shell (by default, the PowerShell console). PowerShell supports the concept of
multiple shells or hosts. For example, the PowerShell console is a host and the one most
users use exclusively. However, other applications can call an instance of the PowerShell
runtime to access and run PowerShell commands and scripts. An application that does
this is called a hosting application and uses a host-specific profile to control the
PowerShell configuration. The host-specific profile name is reflected by the host’s ShellID.
In the PowerShell console, the ShellID is the following:

PS C:\ $ShellId

Microsoft.PowerShell

PS C:\

Putting this together, the PowerShell console’s All Users host-specific profile is named
Microsoft.PowerShell_profile.ps1. For other hosts, the ShellID and All Users host-specific
profile names are different. For example, the PowerShell Analyzer (www.powershellana-
lyzer.com) is a PowerShell host that acts as a rich graphical interface for the PowerShell
environment. Its ShellID is PowerShellAnalyzer.PSA, and its All Users host-specific profile
name is PowerShellAnalyzer.PSA_profile.ps1.

The Current User’s Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\profile.ps1.
Users who want to control their own profile settings can use the current user’s profile.
Settings in this profile are applied only to the user’s current PowerShell session and don’t
affect any other users.

The Current User’s Host-Specific Profile
This profile is located in %userprofile%\My Documents\WindowsPowerShell\ShellID_

profile.ps1. Like the All Users host-specific profile, this profile type loads settings for
the current shell. However, the settings are user specific.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 728

729Understanding the PowerShell Basics

NOTE

When PowerShell is started for the first time, you might see a message indicating that
scripts are disabled and no profiles are loaded. This behavior can be modified by
changing the PowerShell execution policy.

Security

When WSH was released with Windows 98, it was a godsend for Windows administrators
who wanted the same automation capabilities as their UNIX brethren. At the same time,
virus writers quickly discovered that WSH also opened up a large attack vector against
Windows systems.

Almost anything on a Windows system can be automated and controlled by using WSH,
which is an advantage for administrators. However, WSH doesn’t provide any security in
script execution. If given a script, WSH runs it. Where the script comes from or its purpose
doesn’t matter. With this behavior, WSH became known more as a security vulnerability
than an automation tool.

Execution Policies
Because of past criticisms of WSH’s security, when the PowerShell team set out to build a
Microsoft shell, the team decided to include an execution policy to mitigate the security
threats posed by malicious code. An execution policy defines restrictions on how
PowerShell allows scripts to run or what configuration files can be loaded. PowerShell has
four primary execution policies, discussed in more detail in the following sections:
Restricted, AllSigned, RemoteSigned, and Unrestricted.

NOTE

Execution policies can be circumvented by a user who manually executes commands
found in a script file. Therefore, execution policies are not meant to replace a security
system that restricts a user’s actions and instead should be viewed as a restriction
that attempts to prevent malicious code from being executed.

Restricted By default, PowerShell is configured to run under the Restricted execution
policy. This execution policy is the most secure because it allows PowerShell to operate
only in an interactive mode. This means no scripts can be run, and only configuration
files digitally signed by a trusted publisher are allowed to run or load.

AllSigned The AllSigned execution policy is a notch under Restricted. When this policy is
enabled, only scripts or configuration files that are digitally signed by a publisher you

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 729

730 CHAPTER 21 Automating Tasks Using PowerShell Scripting

trust can be run or loaded. Here’s an example of what you might see if the AllSigned
policy has been enabled:

PS C:\Scripts> .\evilscript.ps1

The file C:\Scripts\evilscript.ps1 cannot be loaded. The file

C:\Scripts\evilscript.ps1 is not digitally signed. The script will not

execute on the system. Please see “get-help about_signing” for more

details.

At line:1 char:16

+ .\evilscript.ps1 <<<<

PS C:\Scripts>

Signing a script or configuration file requires a code-signing certificate. This certificate can
come from a trusted certificate authority (CA), or you can generate one with the
Certificate Creation Tool (Makecert.exe). Usually, however, you want a valid code-signing
certificate from a well-known trusted CA, such as VeriSign, Thawte, or your corporation’s
internal Public Key Infrastructure (PKI). Otherwise, sharing your scripts or configuration
files with others might be difficult because your computer isn’t a trusted CA by default.

RemoteSigned The RemoteSigned execution policy is designed to prevent remote
PowerShell scripts and configuration files that aren’t digitally signed by a trusted publisher
from running or loading automatically. Scripts and configuration files that are locally
created can be loaded and run without being digitally signed, however.

A remote script or configuration file can be obtained from a communication application,
such as Microsoft Outlook, Internet Explorer, Outlook Express, or Windows Messenger.
Running or loading a file downloaded from any of these applications results in the follow-
ing error message:

PS C:\Scripts> .\interscript.ps1

The file C:\Scripts\interscript.ps1 cannot be loaded. The file

C:\Scripts\interscript.ps1 is not digitally signed. The script will not execute on

the system. Please see “get-help about_signing” for more details..

At line:1 char:17

+ .\interscript.ps1 <<<<

PS C:\Scripts>

To run or load an unsigned remote script or configuration file, you must specify whether
to trust the file. To do this, right-click the file in Windows Explorer and click Properties.
On the General tab, click the Unblock button (see Figure 21.2).

After you trust the file, the script or configuration file can be run or loaded. If it’s digitally
signed but the publisher isn’t trusted, however, PowerShell displays the following prompt:

PS C:\Scripts> .\signed.ps1

Do you want to run software from this untrusted publisher?

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 730

731Understanding the PowerShell Basics

FIGURE 21.2 Trusting a remote script or configuration file.

File C:\Scripts\signed.ps1 is published by CN=companyabc.com, OU=IT,

O=companyabc.com, L=Oakland, S=California, C=US and is not trusted on your

system. Only run scripts from trusted publishers.

[V] Never run [D] Do not run [R] Run once [A] Always run [?] Help

(default is “D”):

In this case, you must choose whether to trust the file content.

Unrestricted As the name suggests, the Unrestricted execution policy removes almost all
restrictions for running scripts or loading configuration files. All local or signed trusted
files can run or load, but for remote files, PowerShell prompts you to choose an option for
running or loading that file, as shown here:

PS C:\Scripts> .\remotescript.ps1

Security Warning

Run only scripts that you trust. While scripts from the Internet can be useful,

this script can potentially harm your computer. Do you want to run

C:\Scripts\remotescript.ps1?

[D] Do not run [R] Run once [S] Suspend [?] Help (default is “D”):

In addition to the primary execution policies, two new execution policies were introduced
in PowerShell 2.0, as discussed in the following sections.

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 731

732 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Bypass
When this execution policy is used, nothing is blocked and there is no warning or
prompts. This execution policy is typically used when PowerShell is being used by another
application that has its own security model or a PowerShell script has been embedded into
another application.

Undefined
When this execution policy is defined, it means that there is no execution policy set in
the current scope. If Undefined is the execution policy for all scopes, the effective execu-
tion policy is Restricted.

Setting the Execution Policy
By default, when PowerShell is first installed, the execution policy is set to Restricted. To
change the execution policy, you use the Set-ExecutionPolicy cmdlet, shown here:

PS C:\> set-executionpolicy AllSigned

Or, you can also use a Group Policy setting to set the execution policy for number of
computers. In a PowerShell session, if you want to know the current execution policy for a
machine, use the Get-ExecutionPolicy cmdlet:

PS C:\> get-executionpolicy

AllSigned

PS C:\>

Execution policies can not only be defined for the local machine, but can also be defined
for the current user or a particular process. These boundaries between where an execution
policy resides is called an execution policy scope. To define the execution policy for a
scope, you would use the Scope parameter for the Set-ExecutionPolicy cmdlet.
Additionally, if you wanted to know the execution policy for a particular scope, you
would use the Scope parameter for the Get-ExecutionPolicy cmdlet. The valid arguments
for the Scope parameter for both cmdlets are Machine Policy, User Policy, Process,
CurrentUser, and LocalMachine.

NOTE

The order of precedence for the execution policy scopes is Machine Policy, User Policy,
Process, CurrentUser, and LocalMachine.

Using Windows PowerShell
PowerShell is a powerful tool that enables administrators to manage Windows platform
applications and to complete automation tasks. This section sheds some light on how
PowerShell’s many uses can be discovered and how it can be used to manage Windows
Server 2008 R2.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 732

733Using Windows PowerShell

Exploring PowerShell

Before using PowerShell, you might want to become more familiar with its cmdlets and
features. To assist administrators with exploring PowerShell, the PowerShell team decided
to do two things. First, they included a cmdlet that functions very similarly to how the
UNIX man pages function. Second, they also included a cmdlet that returns information
about commands available in the current session. Together, these cmdlets allow a novice
to tap into and understand PowerShell without secondary reference materials; explana-
tions of these cmdlets are discussed in the following sections.

Getting Help
The Get-Help cmdlet is used to retrieve help information about cmdlets, aliases, and from
help files. To display a list of all help topics this cmdlet supports, enter Get-Help * at the
PowerShell command prompt, as shown here:

PS C:\> get-help *

Name Category Synopsis

---- -------- --------

ac Alias Add-Content

asnp Alias Add-PSSnapin

clc Alias Clear-Content

cli Alias Clear-Item

clp Alias Clear-ItemProperty

clv Alias Clear-Variable

cpi Alias Copy-Item

cpp Alias Copy-ItemProperty

cvpa Alias Convert-Path

...

If that list seems too large to work with, it can be shortened by filtering on topic name
and category. For example, to get a list of all cmdlets starting with the verb Get, try the
command shown in the following example:

PS C:\> get-help -Name get-* -Category cmdlet

Name Category Synopsis

---- -------- --------

Get-Command Cmdlet Gets basic information...

Get-Help Cmdlet Displays information a...

Get-History Cmdlet Gets a list of the com...

Get-PSSnapin Cmdlet Gets the Windows Power...

Get-EventLog Cmdlet Gets information about...

Get-ChildItem Cmdlet Gets the items and chi...

Get-Content Cmdlet Gets the content of th...

...

PS C:\>

2
1

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 733

734 CHAPTER 21 Automating Tasks Using PowerShell Scripting

After selecting a help topic, that topic can be retrieved by using the topic name as the
parameter to the Get-Help cmdlet. For example, to retrieve help for the Get-Content
cmdlet, enter the following command:

PS C:\> get-help get-content

After executing this command, a shortened view of the help content for the Get-Content
cmdlet is displayed. To view the full help content, include the full switch parameter with
the command:

PS C:\> get-help get-content –full

After executing the command with the full switch parameter, you will find that the full
help content is divided into several sections. Table 21.3 describes each of these sections.

Get-Command
The Get-Command is used to gather basic information about cmdlets and other
commands that are available. For example, when executed, the Get-Command lists all the
cmdlets available to the PowerShell session:

TABLE 21.3 PowerShell Help Sections

Help
Section

Description

Name The name of the cmdlet

Synopsis A brief description of what the cmdlet does

Description A detailed description of the cmdlet’s behavior, usually including usage examples

Syntax Specific usage details for entering commands with the cmdlet

Parameters Valid parameters that can be used with this cmdlet

Inputs The type of input this cmdlet accepts

Outputs The type of data that the cmdlet returns

Notes Additional detailed information on using the cmdlet, including specific scenarios
and possible limitations or idiosyncrasies

Examples Common usage examples for the cmdlet

Related
Links

References other cmdlets that perform similar tasks

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 734

735Using Windows PowerShell

2
1

PS C:\> get-command

CommandType Name Definition

----------- ---- ----------

Cmdlet Add-Content Add-Content [-Path] <String[...

Cmdlet Add-History Add-History [[-InputObject] ...

Cmdlet Add-Member Add-Member [-MemberType] <PS...

Cmdlet Add-PSSnapin Add-PSSnapin [-Name] <String...

Cmdlet Clear-Content Clear-Content [-Path] <Strin...

Cmdlet Clear-Item Clear-Item [-Path] <String[]...

Cmdlet Clear-ItemProperty Clear-ItemProperty [-Path] <...

Cmdlet Clear-Variable Clear-Variable [-Name] <Stri...

Cmdlet Compare-Object Compare-Object [-ReferenceOb...

...

PS C:\>

Next, to retrieve basic information about a particular cmdlet, you would then include that
cmdlet’s name and argument. For example:

PS C:\> Get-Command Get-Process

CommandType Name Definition

----------- ---- ----------

Cmdlet Get-Process Get-Process [[-Name] <String...

PS C:\>

The Get-Command cmdlet is more powerful than Get-Help because it lists all available
commands (cmdlets, scripts, aliases, functions, and native applications) in a PowerShell
session, as shown in this example:

PS C:\> get-command note*

CommandType Name Definition

----------- ---- ----------

Application NOTEPAD.EXE C:\WINDOWS\NOTEPAD.EXE

Application notepad.exe C:\WINDOWS\system32\notepad.exe

PS C:\>

When using Get-Command with elements other than cmdlets, the information returned
is a little different from information you see for a cmdlet. For example, with an existing

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 735

736

application, the value of the Definition property is the path to the application. However,
other information about the application is also available, as shown here:

PS C:\> get-command ipconfig | format-list *

FileVersionInfo : File: C:\WINDOWS\system32\ipconfig.exe

InternalName: ipconfig.exe

OriginalFilename: ipconfig.exe

FileVersion: 5.1.2600.2180 (xpsp_sp2_rtm.040803-2158)

FileDescription: IP Configuration Utility

Product: Microsoftr Windowsr Operating System

ProductVersion: 5.1.2600.2180

Debug: False

Patched: False

PreRelease: False

PrivateBuild: False

SpecialBuild: False

Language: English (United States)

Path : C:\WINDOWS\system32\ipconfig.exe

Extension : .exe

Definition : C:\WINDOWS\system32\ipconfig.exe

Name : ipconfig.exe

CommandType : Application

With a function, the Definition property is the body of the function:

PS C:\> get-command Prompt

CommandType Name Definition

----------- ---- ----------

Function prompt Write-Host (“PS “ + $(Get-Lo...

PS C:\>

With an alias, the Definition property is the aliased command:

PS C:\> get-command write

CommandType Name Definition

----------- ---- ----------

Alias write Write-Output

PS C:\>

With a script file, the Definition property is the path to the script. With a non-PowerShell
script (such as a .bat or .vbs file), the information returned is the same as other existing
applications.

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 736

737Using Windows PowerShell

2
1

Managing Services

In PowerShell, a number of cmdlets can be used to manage services on a local machine. A
list of these cmdlets is as follows:

. Get-Service—Used to gather service information from Windows.

. New-Service—Used to create a new service in Windows.

. Restart-Service—Used to restart services.

. Resume-Service—Used to resume suspended services.

. Set-Service—Used to modify service configurations.

. Start-Service—Used to start services.

. Stop-Service—Used to stop services.

. Suspend-Service—Used to suspend services.

Getting Service Information
When the Get-Service cmdlet is executed, it returns a collection of objects that contains
information about all the services that are present on a Windows system. A representation
of that object collection is then outputted into a formatted table, as shown in the follow-
ing example:

PS C:\> get-service

Status Name DisplayName

------ ---- -----------

Running AeLookupSvc Application Experience

Stopped ALG Application Layer Gateway Service

Running AppHostSvc Application Host Helper Service

Stopped Appinfo Application Information

Stopped AppMgmt Application Management

Stopped aspnet_state ASP.NET State Service

Stopped AudioEndpointBu... Windows Audio Endpoint Builder

Stopped AudioSrv Windows Audio

...

To filter the information returned based on the service status, the object collection can be
piped to the Where-Object cmdlet, as shown in the following example:

PS C:\> get-service | where-object {$_.Status -eq “Stopped”}

Status Name DisplayName

------ ---- -----------

Stopped ALG Application Layer Gateway Service

Stopped Appinfo Application Information

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 737

738

Stopped AppMgmt Application Management

Stopped aspnet_state ASP.NET State Service

Stopped AudioEndpointBu... Windows Audio Endpoint Builder

Stopped AudioSrv Windows Audio

...

As shown in the preceding example, the Where-Object object cmdlet is used in conjunc-
tion with a code block {...}, which is executed as the filter. In this case, the code block
contained an expression that filtered the object collection based on services that were
“Stopped.” The same type of logic can also be applied to return information about a
particular service. For example:

PS C:\> get-service | where-object {$_.Name -eq “DNS”} | fl

Name : DNS

DisplayName : DNS Server

Status : Running

DependentServices : {}

ServicesDependedOn : {Afd, Tcpip, RpcSs, NTDS}

CanPauseAndContinue : True

CanShutdown : True

CanStop : True

ServiceType : Win32OwnProcess

PS C:\>

In the preceding example, the object collection from the Get-Service cmdlet is piped to
the Where-Object cmdlet. The filter statement defined script block then instructs the
Where-Object cmdlet to return an object for the DNS service. The object that is returned
by this cmdlet is then piped to the Format-List cmdlet, which writes a formatted list
(containing information about the object) back to the console session.

NOTE

A shorter method for performing the preceding action is to use the name switch, as
shown in the following command: get-service –name DNS.

Managing Service Statuses
To stop a service in PowerShell, the Stop-Service cmdlet is used, as shown in this example:

PS C:\> stop-service -name dns

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 738

739Using Windows PowerShell

2
1

Notice that when the cmdlet has finished executing, no status information about the
service’s status is returned. To gather that information, the passthru switch parameter can
be used to pass the object created by a cmdlet through to the pipeline. For example:

PS C:\> start-service -name dns -pass | ft

Status Name DisplayName

------ ---- -----------

Running DNS DNS Server

In the preceding example, the passthru switch parameter is used in conjunction with the
Start-Service cmdlet. When the cmdlet has finished executing, thus starting the DNS
service, the object is piped to the Format-Table cmdlet, which then displays status infor-
mation about the DNS service.

Modifying Services
The Set-Service cmdlet is used to change a service’s properties (such as its description,
display name, and start mode). To use this cmdlet, either pass it a service object or specify
the name of the service to be modified, plus the property to be modified. For example, to
modify the startup type of the DNS service, use the following command:

PS C:\> set-service -name DNS -start “manual”

A startup type can be defined as Automatic, Manual, or Disabled. To change a service’s
description, a command might look as follows:

PS C:\> set-service -name DNS -description “My Important DNS Service”

NOTE

The service management cmdlets in PowerShell are not end-alls for managing Windows
services. There are a number of areas in which these cmdlets are lacking—for example,
not being able to define a service’s logon account or report on its startup type. Luckily,
if a more in-depth interface is needed, an administrator can always fall back onto WMI.

Gathering Event Log Information

In PowerShell, the Get-EventLog cmdlet can be used to gather information from a Windows
event log and list the event logs that are present on a system. To gather event log informa-
tion, the name of the event log must be specified, as shown in the following example:

PS C:\> get-eventlog -logname application

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 739

740

Index Time Type Source EventID Message

----- ---- ---- ------ ------- -------

1778 Oct 05 19:44 Info MSExchangeFBPublish 8280 When initializing ses...

1777 Oct 05 19:38 Info MSExchangeIS 9826 Starting from 10/5/20...

1776 Oct 05 19:38 Info MSExchange ADAccess 2080 Process MSEXCHANGEADT...

1775 Oct 05 19:16 Info MSExchange ADAccess 2080 Process MAD.EXE (PID=...

...

To create a list of all the event logs on the local system, use the list switch parameter, as
shown in the following command:

PS C:\> get-eventlog -list

Max(K) Retain OverflowAction Entries Name

------ ------ -------------- ------- ----

20,480 0 OverwriteAsNeeded 1,778 Application

15,168 0 OverwriteAsNeeded 44 DFS Replication

512 0 OverwriteAsNeeded 1,826 Directory Service

16,384 0 OverwriteAsNeeded 38 DNS Server

20,480 0 OverwriteAsNeeded 0 Hardware Events

512 7 OverwriteOlder 0 Internet Explorer

20,480 0 OverwriteAsNeeded 0 Key Management Service

512 7 OverwriteOlder 155 PowerShell

131,072 0 OverwriteAsNeeded 9,596 Security

20,480 0 OverwriteAsNeeded 3,986 System

15,360 0 OverwriteAsNeeded 278 Windows PowerShell

PS C:\>

To gather in-depth information about a particular set of events or event, the information
returned from the Get-EventLog cmdlet can be further filtered. For example:

PS C:\> $Errors = get-eventLog -logname application | where {$_.eventid -eq 8196}

PS C:\> $Errors[0] | fl -Property *

EventID : 8196

MachineName : dc01.companyabc.com

Data : {}

Index : 1772

Category : (0)

CategoryNumber : 0

EntryType : Information

Message : License Activation Scheduler (SLUINotify.dll) was not able

to automatically activate. Error code:

0x8007232B

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 740

741Using Windows PowerShell

2
1

Source : Software Protection Platform Service

ReplacementStrings : {0x8007232B}

InstanceId : 1073750020

TimeGenerated : 10/5/2009 6:56:36 PM

TimeWritten : 10/5/2009 6:56:36 PM

UserName :

Site :

Container :

PS C:\>

In the preceding example, the Get-EventLog cmdlet is used in conjunction with the
Where-Object cmdlet to create a collection of objects that all have an EventID equal to
8196. This collection is then defined as the variable $Errors. In the next command, the
first object in the $Errors variable is passed to the Format-List cmdlet, which then writes
a list of all the object’s properties to the console.

Managing the Files and Directories

As mentioned earlier in this chapter, specifically in the section “Providers and Drives,” a
set of core cmdlets can be used to access and manipulate PowerShell data stores. Because
the Windows file system is just another PowerShell data store, it is accessed through the
FileSystem provider. Each mounted drive or defined location is represented by a PSDrive
and can be managed by using the core cmdlets. Details about how these core cmdlets are
used are discussed in the following sections.

Listing Directories of Files
In PowerShell, you can use several cmdlets to explore the file system. The first cmdlet,
Get-Location, is used to display the current working location:

PS C:\> get-location

Path

C:\

PS C:\>

To get information about a specified directory or file, you can use the Get-Item cmdlet:

PS C:\temp> get-item autorun.inf

Directory: C:\temp

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 741

742

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 8/7/2007 10:06 PM 63 autorun.inf

PS C:\temp>

To get information about directories or files under a specified directory, you can use the
Get-ChildItem cmdlet:

PS C:\> get-childitem c:\inetpub\wwwroot

Directory: C:\inetpub\wwwroot

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 10/4/2009 11:09 PM aspnet_client

-a--- 10/4/2009 2:10 PM 689 iisstart.htm

-a--- 10/4/2009 2:10 PM 184946 welcome.png

PS C:\>

Creating Directories or Files
Creating a directory or file in PowerShell is a simple process and just involves the use of
the New-Item cmdlet:

PS C:\> new-item -path c:\ -name work -type dir

Directory: C:\

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 10/7/2009 11:44 AM work

PS C:\>

In the preceding example, it should be noted that the itemtype parameter is a parameter
that must be defined. If this parameter is not defined, PowerShell prompts you for the
type of item to be created. An example of this is shown here:

PS C:\work> new-item -path c:\work -name script.log

Type: file

Directory: C:\work

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 742

743Using Windows PowerShell

2
1

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 10/7/2009 8:58 PM 0 script.log

PS C:\work>

In the previous example, PowerShell prompts you to define the value for the itemtype
parameter. However, because you wanted to create a file, the value is defined as “file.”

NOTE

With files, in addition to using the New-Item cmdlet, you can use several other
cmdlets to create files. Examples of these are Add-Content, Set-Content, Out-Csv, and
Out-File. However, the main purpose of these cmdlets is for adding or appending con-
tent within a file.

Deleting Directories and Files
To delete directories and files in PowerShell, the Remote-Item cmdlet is used. Usage of this
cmdlet is shown in the next example:

PS C:\work> remove-item script.log

Notice how PowerShell doesn’t prompt you for any type of confirmation. Considering
that the deletion of an item is a very permanent action, you might want to use one of the
PowerShell common parameters to confirm the action before executing the command.
For example:

PS C:\work> remove-item test.txt -confirm

Confirm

Are you sure you want to perform this action?

Performing operation “Remove File” on Target “C:\work\test.txt”.

[Y] Yes [A] Yes to All [N] No [L] No to All [S] Suspend [?] Help

(default is “Y”):

In the prior example, the confirm common parameter is used to verify the deletion of the
test.txt file. Usage of this parameter can help prevent you from making mistakes when
executing commands that might or might not be intended actions.

NOTE

In addition to the Remove-Item cmdlet, you can use the Clear-Content cmdlet to wipe
content from a file instead of deleting it.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 743

744

Renaming Directories and Files
To rename directories and files in PowerShell, use the Rename-Item cmdlet:

PS C:\> rename-item c:\work scripts

When using the Rename-Item cmdlet, the argument for the first parameter named path is
defined as the path to the directory or file being renamed. The secondary parameter,
newName, is then defined as the new name for the directory or file.

Moving or Copying Directories and Files
To move and copy directories or files in PowerShell, you can use either the Move-Item or
Copy-Item cmdlets. An example of using the Move-Item cmdlet is as follows:

PS C:\> move-item -path c:\scripts -dest c:\work

PS C:\> get-childitem c:\work

Directory: C:\work

Mode LastWriteTime Length Name

---- ------------- ------ ----

d---- 10/7/2009 9:20 PM scripts

PS C:\>

The syntax for using the Copy-Item cmdlet is very similar, as shown in the next example:

PS C:\work> copy-item 4444.log .\logs

PS C:\work> gci .\logs

Directory: C:\work\logs

Mode LastWriteTime Length Name

---- ------------- ------ ----

-a--- 10/7/2009 10:41 PM 6 4444.log

PS C:\work>

Reading Information from Files
To read information from a file, you can use the Get-Content cmdlet. An example of using
this cmdlet is as follows:

PS C:\work\logs> get-content 4444.log

PowerShell was here!

When the Get-Content cmdlet is executed, it reads content from the specified file line-by-
line and returns an object for each line that is read. For example:

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 744

745Using Windows PowerShell

2
1

PS C:\work\logs> $logs = get-content 4444.log

PS C:\work\logs> $logs[0]

PowerShell was here!

PS C:\work\logs>

Managing the Registry

PowerShell has a built-in provider, Registry, for accessing and manipulating the Registry on
a local machine. The Registry hives available in this provider are HKEY_LOCAL_MACHINE
(HKLM) and HKEY_CURRENT_USER (HKCU). These hives are represented in a PowerShell
session as two additional PSDrive objects named HKLM: and HKCU:.

NOTE

The WshShell object has access to not only the HKLM: and HKCU: hives, but also
HKEY_CLASSES_ROOT (HKCR), HKEY_USERS, and HKEY_CURRENT_CONFIG. To access
these additional Registry hives in PowerShell, you use the Set-Location cmdlet to
change the location to the root of the Registry provider.

Because the Windows Registry is treated as a hierarchy data store, like the Windows file
system, it can also be managed by the PowerShell core cmdlets. For example, to read a
Registry value, you use the Get-ItemProperty cmdlet:

PS C:\> $Path = “HKLM:\Software\Microsoft\Windows NT\CurrentVersion”

PS C:\> $Key = get-itemproperty $Path

PS C:\> $Key.ProductName

Windows Server 2008 R2 Enterprise

PS C:\>

To create or modify a Registry value, you use the Set-ItemProperty cmdlet:

PS C:\> $Path = “HKCU:\Software”

PS C:\> set-itemproperty -path $Path -name “PSinfo” –type “String” –value “Power-

Shell_Was_Here”

PS C:\>

PS C:\> $Key = get-itemproperty $Path

PS C:\> $Key.PSinfo

PowerShell_Was_Here

PS C:\>

Remember that the Windows Registry has different types of Registry values. You use the
Set-ItemProperty cmdlet to define the Type parameter when creating or modifying Registry
values. As a best practice, you should always define Registry values when using the Set-
ItemProperty cmdlet. Otherwise, the cmdlet defines the Registry value with the default
type, which is String. Other possible types are as follows:

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 745

746

. ExpandString

. Binary

. DWord

. MultiString

. Qword

NOTE

Depending on the Registry value you’re creating or modifying, the data value you set
the named value to needs to be in the correct format. So, if the Registry value is type
REG_BINARY, you use a binary value, such as $Bin = 101, 118, 105.

To delete a Registry value, you use the Remove-ItemProperty cmdlet, as shown here:

PS C:\> $Path = “HKCU:\Software”

PS C:\> remove-itemproperty -path $Path -name “PSinfo”

PS C:\>

Managing Processes

In PowerShell, you can use two cmdlets to manage processes. The first cmdlet, Get-
Process, is used to get information about the current processes that are running on the
local Windows system:

PS C:\> get-process

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

782 12 2500 4456 113 4.02 448 csrss

237 10 3064 6228 113 76.70 488 csrss

292 26 20180 14632 356 12.94 1496 dfsrs

160 13 3020 5536 55 0.34 2696 dfssvc

203 24 6368 5888 64 1.75 3220 dns

...

To filter the object collection that is returned by the Get-Process cmdlet to a particular
process, you can specify the process name or ID, as shown in the following example:

PS C:\> get-process dns

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

203 24 6368 5888 64 1.77 3220 dns

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 746

747Using Windows PowerShell

2
1

PS C:\> get-process -id 3220

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

203 24 6368 5888 64 1.77 3220 dns

PS C:\>

In addition to the preceding examples, you could also combine the Get-Process cmdlet
with the Where-Object cmdlet. For example:

PS C:\> get-process | ? {$_.workingset -gt 100000000} | sort ws -descending

Handles NPM(K) PM(K) WS(K) VM(M) CPU(s) Id ProcessName

------- ------ ----- ----- ----- ------ -- -----------

471 29 108608 104972 658 95.88 4208 mmc

629 39 130716 104208 705 108.58 4332 mmc

PS C:\>

By using these cmdlets together, a more robust view of the current running processes
based on a specified filter statement can be created. In the previous example, the resulting
object collection includes processes that only have a working set greater than 100,000,000
bytes. In addition, the Sort-Object cmdlet is used to sort the formatted table’s WS(K)
column in descending order.

The second cmdlet that is used to manage processes is the Stop-Process cmdlet. Usage of
this cmdlet is as follows:

PS C:\work\logs> stop-process -name notepad

The process that is being stopped can either be defined by its name, ID, or as an object
that is passed to the Stop-Process cmdlet via the pipeline.

Using WMI

Using WMI in PowerShell has similar conceptual logic as in WSH. The main difference is
that the PowerShell methods are based on WMI .NET instead of the WMI Scripting API.
You have three methods for using WMI in PowerShell: WMI .NET (which is the .NET
System.Management and System.Management.Instrumentation namespaces), the Get-
WmiObject cmdlet, or the PowerShell WMI type accelerators: [WMI], [WMIClass], and
[WMISearcher].

The first method, using the System.Management and System.Management.Instrumentation
namespaces, isn’t discussed in this chapter because it’s not as practical as the other
methods. It should be only a fallback method in case PowerShell isn’t correctly encapsu-
lating an object within a PSObject object when using the other two methods.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 747

748

The second method, the Get-WmiObject cmdlet, retrieves WMI objects and gathers infor-
mation about WMI classes. This cmdlet is fairly simple. For example, getting an instance
of the local Win32_ComputerSystem class just requires the name of the class, as shown here:

PS C:\> get-wmiobject “Win32_ComputerSystem”

Domain : companyabc.com

Manufacturer : Hewlett-Packard

Model : Pavilion dv8000 (ES184AV)

Name : Wii

PrimaryOwnerName : Damon Cortesi

TotalPhysicalMemory : 2145566720

PS C:\>

The next example, which is more robust, connects to the remote machine named Jupiter
and gets an instance of the Win32_Service class in which the instance’s name equals
Virtual Server. The result is an object containing information about the Virtual Server
service on Jupiter:

PS C:\> get-wmiobject -class “Win32_Service” -computerName “Jupiter” -filter

“Name=’Virtual Server’”

ExitCode : 0

Name : Virtual Server

ProcessId : 656

StartMode : Auto

State : Running

Status : OK

PS C:\>

The following command returns the same information as the previous one but makes use
of a WQL query:

PS C:\> get-wmiobject -computerName “Jupiter” -query “Select *From Win32_Service

Where Name=’Virtual Server’”

ExitCode : 0

Name : Virtual Server

ProcessId : 656

StartMode : Auto

State : Running

Status : OK

PS C:\>

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 748

749Using Windows PowerShell

2
1

Finally, here’s an example of using Get-WmiObject to gather information about a WMI class:

PS C:\> get-wmiobject -namespace “root/cimv2” -list | where {$_.Name

-eq “Win32_Product”} | format-list *

Name : Win32_Product

__GENUS : 1

__CLASS : Win32_Product

__SUPERCLASS : CIM_Product

__DYNASTY : CIM_Product

__RELPATH : Win32_Product

__PROPERTY_COUNT : 12

__DERIVATION : {CIM_Product}

__SERVER : PLANX

__NAMESPACE : ROOT\cimv2

__PATH : \\PLANX\ROOT\cimv2:Win32_Product

...

PS C:\>

Although using Get-WmiObject is simple, using it almost always requires typing a long
command string. This drawback brings you to the third method for using WMI in
PowerShell: the WMI type accelerators.

[WMI] Type Accelerator
This type accelerator for the ManagementObject class takes a WMI object path as a string
and gets a WMI object bound to an instance of the specified WMI class, as shown in
this example:

PS C:\> $CompInfo = [WMI]”root\cimv2:Win32_ComputerSystem.Name=’PLANX’”

PS C:\> $CompInfo

Domain : companyabc.com

Manufacturer : Hewlett-Packard

Model : Pavilion dv8000 (ES184AV)

Name : PLANX

PrimaryOwnerName : Frank Miller

TotalPhysicalMemory : 2145566720

PS C:\>

NOTE

To bind to an instance of a WMI object directly, you must include the key property in the
WMI object path. For the preceding example, the key property is Name.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 749

750

[WMIClass] Type Accelerator
This type accelerator for the ManagementClass class takes a WMI object path as a string and
gets a WMI object bound to the specified WMI class, as shown in the following example:

PS C:\> $CompClass = [WMICLASS]”\\.\root\cimv2:Win32_ComputerSystem”

PS C:\> $CompClass

NameSpace: ROOT\cimv2

Name Methods Properties

---- ------- ----------

Win32_ComputerSystem {SetPowerState, R... {AdminPasswordSt...

PS C:\> $CompClass | format-list *

Name : Win32_ComputerSystem

__GENUS : 1

__CLASS : Win32_ComputerSystem

__SUPERCLASS : CIM_UnitaryComputerSystem

__DYNASTY : CIM_ManagedSystemElement

__RELPATH : Win32_ComputerSystem

__PROPERTY_COUNT : 54

__DERIVATION : {CIM_UnitaryComputerSystem, CIM_ComputerSystem, CIM_System,

CIM_LogicalElement...}

__SERVER : PLANX

__NAMESPACE : ROOT\cimv2

__PATH : \\PLANX\ROOT\cimv2:Win32_ComputerSystem

...

PS C:\>

[WMISearcher] Type Accelerator
This type accelerator for the ManagementObjectSearcher class takes a WQL string and creates
a WMI searcher object. After the searcher object is created, you use the Get() method to get
a WMI object bound to an instance of the specified WMI class, as shown here:

PS C:\> $CompInfo = [WMISearcher]”Select * From Win32_ComputerSystem”

PS C:\> $CompInfo.Get()

Domain : companyabc.com

Manufacturer : Hewlett-Packard

Model : Pavilion dv8000 (ES184AV)

Name : PLANX

PrimaryOwnerName : Miro

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 750

751Using Windows PowerShell

2
1

TotalPhysicalMemory : 2145566720

PS C:\>

AuthenticationLevel and ImpersonationLevel
When using the Get-WmiObject cmdlet in PowerShell 1.0 in conjunction with the
IIsWebService class to manage the W3SVC service on a remote machine, the following
error would be encountered:

PS > get-wmiobject -class IIsWebService -namespace “root\microsoftiisv2” -Computer

sc1-app01

Get-WmiObject : Access denied

At line:1 char:14

+ Get-WMIObject <<<< -class IIsWebService -namespace “root\microsoftiisv2” -com-

puter sc1-app01

This is normal behavior for any of the IIS WMI classes because they require the
AuthenticationLevel property defined as PacketPrivacy. The AuthenticationLevel prop-
erty is an integer, which defines the COM authentication level that is assigned to an
object and in the end determines how DCOM will protect information sent from WMI. In
this case, the IIS WMI classes require that data is encrypted, which is not the default
behavior of WMI.

Although defining the AuthenticationLevel property in WSH was a simple line of code,
in PowerShell 1.0’s version of the Get-WmiObject cmdlet, there was no method to define
this property. Additionally, there wasn’t a way to change either the ImpersonationLevel
property or enable all privileges, both of which are often requirements when working with
WMI. To correct this problem, the product team has updated the Get-WmiObject cmdlet
in PowerShell 2.0 to include new parameters to define the AuthenticationLevel and
ImpersonationLevel properties, as well as enable all privileges. Additionally, these parame-
ters also work with the new WMI cmdlets (Invoke-WMIMethod, Remove-WMIObject, and
Set-WMIInstance), which were also introduced in PowerShell 2.0. For example:

PS > get-wmiobject -class IIsWebService -namespace “root\microsoftiisv2” -Computer

sc1-app01 –Authentication 6

In the previous example, the Authentication parameter is used to define the
AuthenticationLevel property. In this case, the value is defined as 6 (PacketPrivacy).

Set-WMIInstance Cmdlet
The Set-WMIInstance cmdlet was developed to reduce the number of steps needed to
change a read-write WMI property (or property that allows direct modification). For
example, in PowerShell 1.0, the following set of commands might be used to change the
LoggingLevel for the WMI service:

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 751

752

PS C:\> $WMISetting = Get-WMIObject Win32_WMISetting

PS C:\> $WMISetting.LoggingLevel = 2

PS C:\> $WMISetting.Put()

By using the Set-WMIInstance cmdlet, you can complete the same task using a single
command:

PS > set-wmiinstance –class “Win32_WMISetting” –argument @{LoggingLevel=2}

In the previous example, the class parameter is defined as a Win32_WMISetting, whereas
the argument parameter is defined as a HashTable that contains the property and the
value the property will be set to. Additionally, because this parameter requires an argu-
ment that is a HashTable, then to define multiple property and value pairs, you would
separate the pairs with a semicolon, as shown here:

–argument @{LoggingLevel=1;MaxLogFileSize=1000}

However, the true power of this cmdlet is to use the computername parameter to change
read-write WMI properties on multiple machines at once. For example:

PS > set-wmiinstance –class “Win32_WMISetting” –argument @{LoggingLevel=1} –comput-

ername sc1-app01,sc1-app02

The arguments for the computername parameter can be either a NetBIOS name, fully quali-
fied domain name (FQDN), or IP address. Additionally, each argument must be separated
by a comma.

Invoke-WMIMethod Cmdlet
With WMI, there are two different types of methods: instance or static. With static
methods, you must invoke the method from the class itself, whereas instance methods are
invoked on specific instances of a class. In PowerShell 1.0, working with instance methods
were fairly straightforward and only involved creating an object of a particular instance of
a WMI class. However, to work with a static method required a fairly complex and unintu-
itive WQL statement, as shown in the following example:

PS > $ProcFac = get-wmiobject -query “SELECT * FROM Meta_Class WHERE __Class =

‘Win32_Process’” -namespace “root\cimv2”

PS > $ProcFac.Create(“notepad.exe”)

Granted, you could also use the [WMIClass] type accelerator, as shown here:

PS > $ProcFac = [wmiclass]”Win32_Process”

PS > $ProcFac.Create(“notepad.exe”)

But, if you wanted to use the Get-WMIObject cmdlet or were having problems with the
[WMIClass] type accelerator, employing the use of the noted WQL statement wasn’t very
command-line friendly. To fill this noted gap, the PowerShell product team has introduced
the Invoke-WMIMethod cmdlet in PowerShell 2.0.

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 752

753Using Windows PowerShell

2
1

As its name suggests, the purpose of the Invoke-WMIMethod cmdlet is to make it easier to
directly invoke WMI methods. To use this cmdlet to invoke a static method, you use the
following command:

PS > invoke-wmimethod -path “Win32_Process” -name “create” -argumentList

“notepad.exe”

In the previous command example, the path parameter requires the name of the WMI
class from which the method is to be invoked. In this case, the method being invoked is
the Create method as defined for the name parameter. If you were invoking an instance
method, the argument for the path parameter would need to be the complete path to an
existing WMI instance. For example:

PS > invoke-wmimethod -path “Win32_Process.Handle=’42144’” -name terminate

Finally, the argumentList parameter is used to define any arguments that a method
requires when it is invoked. In cases where the method requires multiple values or you
want to pass multiple values, you must assign those values into an array. Then, the array
must be defined as the argument for the argumentList parameter.

NOTE

Values for methods are not in the same order as used with the WMI’s scripting API.
Instead, values are ordered such as they appear in Wbemtest.exe.

Remove-WMIObject Cmdlet
The last new cmdlet to be introduced in PowerShell 2.0 is the Remove-WMIObject cmdlet.
This cmdlet is used to remove instances of WMI objects. For example, to terminate a
process using WMI in PowerShell 1.0, you might use the following set of commands:

PS > $Proc = get-wmiobject -class “Win32_Process” -filter “Name=’wordpad.exe’”

PS > $Proc.Terminate()

However, depending on the type of WMI object that you are trying to remove, there can
be any number of methods that would need to be used. For instance, to delete a folder
using WMI in PowerShell 1.0, you would use the following command:

PS > $Folder = get-wmiobject -query “Select * From Win32_Directory Where Name

=’C:\\Scripts’”

PS > $Folder.Delete()

Conversely, using the Remove-WMIObject cmdlet, you can remove instances of any type
of WMI object. For example, to remove an instance of the Win32_Process class, you would
use the following commands:

PS > $Proc = get-wmiobject -class “Win32_Process” -filter “Name=’wordpad.exe’”

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 753

754

PS > $Proc | remove-wmiobject

Whereas the following commands are used to remove a directory:

PS > $Folder = get-wmiobject -query “Select * From Win32_Directory Where Name

=’C:\\Scripts’”

PS > $Folder | remove-wmiobject

Using Snap-Ins

Snap-ins are used to show a list of all the registered PSSnapins outside of the default snap-
ins that come with PowerShell. Entering the command Get-PSSnapin -Registered on a
newly installed PowerShell system will return nothing, as shown in the following example:

PS C:\> get-pssnapin -registered

In most cases, a setup program will accompany a PowerShell snap-in and ensure that it
becomes correctly registered for use. However, if this is not the case, the .NET utility
InstallUtil.exe is used to complete the registration process. In the following example,
InstallUtil.exe is being used to install a third-party library file called freshtastic-
automation.dll:

PS C:\> & “$env:windir\Microsoft.NET\Framework\v2.0.50727\InstallUtil.exe” fresh-

tastic-automation.dll

Once the DLL library file has been registered with PowerShell, the next step is to register
the DLL’s snap-in with PowerShell so that the cmdlets contained in the DLL are made
available to PowerShell. In the case of the freshtastic-automation library, the snap-in is
registered by using the command Add-PSSnapin freshtastic, as follows:

PS C:\> add-pssnapin freshtastic

Now that the freshtastic snap-in has been registered, you can enter the following command
Get-Help freshtastic to review the usage information for the freshtastic cmdlets:

PS C:\> get-help freshtastic

Now that the registration of the freshtastic library DLL is complete and the associated
snap-in has been added to the console, you can enter the command Get-PSSnapin
–registered again and see that the freshtastic snap-in has been added to the console:

PS C:\> get-pssnapin -registered

Name : freshtastic

PSVersion : 2.0

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 754

755Using Windows PowerShell

2
1

Description : Used to automate freshness.

PS C:\>

Now that you have registered the third-party library file and added its snap-in to the
console, you might find that the library does not meet your needs, and you want to
remove it. The removal process is basically a reversal of the installation steps listed previ-
ously. First, you remove the snap-in from the console using the command Remove-
PSSnapin freshtastic, as follows:

PS C:\> Remove-PSSnapin freshtastic

Once the third-party snap-in has been unregistered, you will once again use
InstallUtil.exe with a /U switch to unregister the DLL, as follows:

PS C:\> & “$env:windir\Microsoft.NET\Framework\v2.0.50727\InstallUtil.exe” /U

freshtastic-automation.dll

Once the uninstall has completed, you can verify that the library file was successfully
unregistered by entering the command Get-PSSnapin -registered and verifying that no
third-party libraries are listed.

Using Modules

In Windows Server 2008 R2, a set of base modules are loaded when the operating system
is installed. Additionally, modules can be added or removed using the Add Features
Wizard in Server Manager.

Default Module Locations
There are two default locations for modules. The first location is for the machine, as follows:

$pshome\Modules (C:\Windows\system32\WindowsPowerShell\v1.0\Modules)

The second location is for the current user:

$home\Documents\WindowsPowerShell\Modules

(UserProfile%\Documents\WindowsPowerShell\Modules)

Installing New Modules
As mentioned previously, new modules can be added using the Add Features Wizard in
Server Manager. Additionally, other modules should come with an installation program

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 755

756

that will install the module for you. However, if need be, you can also manually install a
new module. To do this, use the following steps:

1. Create a new folder for the module that is being installed. For example:

PS C:\> New-Item -type directory -path

$home\Documents\WindowsPowerShell\Modules\Spammer1000

2. Copy the contents of the module into the newly created folder.

Using Installed Modules
After a module has been installed on a machine, it can then be imported into a
PowerShell session for usage. To find out what modules are available for use, use the Get-
Module cmdlet:

PS C:\> Get-Module -listAvailable

Or, to list modules that have already been imported into the current PowerShell session,
just use the Get-Module cmdlet without the listAvailable switch parameter:

PS C:\> Get-Module

Next, to import a module into a PowerShell session, use the Import-Module cmdlet. For
example, if the ActiveDirectory module has been installed, the following command
would be used:

PS C:\> Import-Module ActiveDirectory

NOTE

A complete path to the module folder must be provided for modules that are not locat-
ed in one of the default modules locations or any additional module locations that have
been defined for the current PowerShell session. This is required when using the
Import-Module cmdlet to define the module location used by the cmdlet.

Additionally, if you want to import all modules that are available on a machine into a
PowerShell session, one of two methods can be used. The first method is to execute the
following command, which lists all modules and then pipes that to the Import-Module
cmdlet:

PS C:\> Get-Module -listAvailable | Import-Module

The second method is to right-click the Windows PowerShell icon in the taskbar, and
then select Import System Modules. Additionally, you can also use the Windows
PowerShell Modules shortcut, which is found in Control Panel, System and Security,
Administrative Tools.

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 756

757Using Windows PowerShell

2
1

NOTE

By default, modules are not loaded into any PowerShell session. To load modules by
default, the Import-Module cmdlet should be used in conjunction with a PowerShell pro-
file configuration script.

Removing a Module
The act of removing a module causes all the commands added by a module to be deleted
from the current PowerShell session. When a module is removed, the operation only
reverses the Import-Module cmdlet’s actions and does not uninstall the module from a
machine. To remove a module, use the Remove-Module cmdlet, as shown here:

PS C:\> Remove-Module ActiveDirectory

Using Remoting

When using remoting, three different modes can be used to execute commands. These
modes are as follows:

. 1 to 1—Referred to as Interactive mode. This mode enables you to remotely manage
a machine similar to using an SSH session.

. Many to 1—Referred to as the Fan-In mode. This mode allows multiple administra-
tors to manage a single host using an interactive session.

. 1 to Many—Referred to as the Fan-Out mode. This mode allows a command to exe-
cute across a large number of machines.

More information about each mode is provided in the following sections.

Interactive Remoting
With interactive remoting, the PowerShell session you are executing commands within
looks and feels very much like an SSH session, as shown in the following example:

PS C:\> enter-pssession abc-util01

[abc-util01]: PS C:\Users\administrator.COMPANYABC\Documents>

The key to achieving this mode of remoting is a PowerShell feature called a runspace.
Runspaces by definition are instances of the System.Management.Automation class, which
defines the PowerShell session and its host program (Windows PowerShell host, cmd.exe,
and so on). In other words, a runspace is an execution environment in which
PowerShell runs.

Not widely discussed in PowerShell 1.0, runspaces in PowerShell 2.0 are the method by
which commands are executed on local and remote machines. When a runspace is
created, it resides in the global scope and it is an environment upon itself, which includes
its own properties, execution polices, and profiles. This environment persists for the life-
time of the runspace, regardless of the volatility of the host machine’s environment.

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 757

758

Being tied to the host program that created it, a runspace ceases to exist when the host
program is closed. When this happens, all aspects of the runspace are gone, and you can
no longer retrieve or use the runspace. However, when created on a remote machine, a
runspace will remain until it is stopped.

To create a runspace on a machine, you can use two cmdlets. The first cmdlet, Enter-
PSSession, is used to create an interactive PowerShell session. This is the cmdlet that was
shown in the previous example. When this cmdlet is used against a remote machine, a
new runspace (PowerShell process) is created and a connection is established from the
local machine to the runspace on the remote computer. If executed against the local
machine, a new runspace (PowerShell process) is created and connection is established
back to the local machine. To close the interactive session, you would use the Exit-
PSSession cmdlet or the exit alias.

Fan-In Remoting
Fan-In remoting is named in reference to the ability for multiple administrators to open
their own runspaces at the same time. In other words, many administrators can “Fan-In”
from many machines into a single machine. When connected, each administrator is then
limited to the scope of their own runspace. This partitioning of access can be achieved
thanks to the new PowerShell 2.0 security model, which allows for the creation of
restricted shells and cmdlets.

However, the steps needed to fully utilize the new security model require a degree of soft-
ware development using the .NET Framework. The ability of being able to provide secure
partitioned remote management access on a single host to a number of different adminis-
trators is a very powerful feature. Usage could range from a web hosting company
wanting to partition remote management access to each customer for each of their
websites to internal IT departments wanting to consolidate their management consoles on
a single server.

Fan-Out Remoting
Fan-Out remoting is named in reference to the ability to issue commands to a number of
remote machines at once. When using this method of remoting, command(s) are issued
on your machine. These commands then “Fan-Out” and are executed on each of the
remote machines that have been specified. The results from each remote machine are then
returned to your machine in the form of an object, which you can then review or further
work with—in other words, the basic definition for how remoting was defined earlier in
this chapter.

Ironically enough, PowerShell has always supported the concept of Fan-Out remoting. In
PowerShell 1.0, Fan-Out remoting was achieved using WMI. For example, you could always
import a list of machine names and then use WMI to remotely manage those machines:

PS C:\> import-csv machineList.csv | foreach {Get-WmiObject Win32_

➥NetworkAdapterConfiguration -computer $_.MachineName}

Although the ability to perform Fan-Out remoting in PowerShell 1.0 using WMI was a
powerful feature, this form of remoting suffered in usability because it was synchronous in

CHAPTER 21 Automating Tasks Using PowerShell Scripting

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 758

759Using Windows PowerShell

2
1

nature. In other words, once a command had been issued, it was executed on each remote
machine one at a time. While this happened, further command execution had to wait until
the command issued had finished being executed on all the specified remote machines.

Needless to say, attempting to synchronously manage a large number of remote machines
can prove to be a challenging task. To address this challenge in PowerShell 2.0, the
product team tweaked the remoting experience such that Fan-Out remoting could be done
asynchronously. With these changes, you could still perform remote WMI management,
as shown in the previous example. However, you can also asynchronously execute remote
commands using the following methods:

. Executing the command as a background job

. Using the Invoke-Command cmdlet

. Using the Invoke-Command cmdlet with a reusable runspace

The first method, a background job, as its name might suggest, allows commands to be
executed in the background. Although not truly asynchronous, a command that is
executed as a background job enables you to continue executing additional commands
while the job is being completed. For example, to run the previously shown WMI
example as a background job, you can simply add the AsJob parameter for the Get-
WmiObject cmdlet:

PS C:\> import-csv machineList.csv | foreach {Get-WmiObject Win32_

➥NetworkAdapterConfiguration -computer $_.MachineName -asjob}

With the AsJob parameter (new in PowerShell 2.0) being used, each time the Get-
WmiObject cmdet is called in the foreach loop, a new background job is created to
complete execution of the cmdlet. Although more details about background jobs are
provided later in this chapter, this example shows how background jobs can be used to
achieve asynchronous remote command execution when using WMI.

The second method to asynchronously execute remote commands is by using the new
cmdlet called Invoke-Command. This cmdlet is new in PowerShell 2.0, and it enables you
to execute commands both locally and remotely on machines—unlike WMI, which uses
remote procedure calls (RPC) connections to remotely manage machines. The Invoke-
Command cmdlet utilizes WinRM to push the commands out to each of the specified
“targets” in an asynchronous manner.

To use the cmdlet, two primary parameters need to be defined. The first parameter,
ScriptBlock, is used to specify a scriptblock, which contains the command to be
executed. The second parameter, ComputerName (NetBIOS name or IP address), is used to
specify the machine or machines to execute the command that is defined in the script-
block. For example:

PS C:\> invoke-command -scriptblock {get-process} -computer sc1-infra01,sc1-infra02

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 759

760 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Additionally, the Invoke-Command cmdlet also supports a set of parameters that make it
an even more powerful vehicle to conduct remote automation tasks with. These parame-
ters are described in Table 21.4.

As discussed previously, the AsJob parameter is used to execute the specified command as
a background job. However, unlike the Get-WmiObject cmdlet, when the AsJob parameter
is used with the Invoke-Command cmdlet, a background job is created on the client
machine, which then spawns a number of child background job(s) on each of the speci-
fied remote machine(s). Once execution of a child background job is finished, the result(s)
are returned to the parent background job on the client machine.

Needless to say, if there are a large number of remote machines defined using the
ComputerName parameter, the client machine might become overwhelmed. To help prevent
the client machine or your network from drowning in an asynchronous connection
storm, the Invoke-Command cmdlet will, by default, limit the number of concurrent
remote connections for an issued command to 32. If you want to tweak the number of
concurrent connections allowed, you would use the ThrottleLimit parameter.

NOTE

The ThrottleLimit parameter can also be used with the New-PSSession cmdlet.

An important concept to understand when using the Invoke-Command cmdlet is how it
actually executes commands on a remote machine. By default, this cmdlet will set up
temporary runspace for each of the targeted remote machine(s). Once execution of the
specified command has finished, both the runspace and the connection resulting from
that runspace are closed. This means, irrespective of how the ThrottleLimit parameter is
used, if you are executing a number of different commands using the Invoke-Command
cmdlet at the same time, the actual number of concurrent connections to a remote
machine is the total number of times you invoked the Invoke-Command cmdlet.

Needless to say, if you want to reuse the same existing connection and runspace, you need
to use the Invoke-Command cmdlet’s Session parameter. However, to make use of the

TABLE 21.4 Important Invoke-Command Cmdlet Parameters

Parameter Details

AsJob Used to execute the command as a background job

Credential Used to specify alternate credentials that are used to execute the specified
command(s)

ThrottleLimit Used to specify the maximum number of connections that can be established
by the Invoke-Command cmdlet

Session Used to execute the command in the specified PSSessions

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 760

761Using Windows PowerShell

2
1

parameter requires an already existing runspace on the targeted remote machine(s). To
create a persistent runspace on a remote machine, you would use the New-PSSession
cmdlet, as shown in the following example:

PS C:\> new-pssession -computer “sc1-infra01”,”sc1-ad01”

After executing the previous command, two persistent runspaces on each of the specified
targets will have been created. These runspaces can then be used to complete multiple
commands and even share data between those commands. To use these runspaces, you
need to retrieve the resulting runspace object(s) using the Get-PSSession cmdlet and then
pass it into the Invoke-Command cmdlet. For example:

PS C:\> $Sessions = new-pssession -computer “sc1-infra01”,”sc1-ad01”

PS C:\> invoke-command -scriptblock {get-service “W32Time”} -session $Sessions | ft

PSComputerName, Name, Status

PSComputerName Name Status

------------ ---- ------

sc1-ad01 W32Time Running

sc1-infra01 W32Time Running

First, the $Sessions variable is used to store the two resulting runspace objects that are
created using the New-PSSession cmdlet. Next, the $Sessions variable is then defined as
the argument for the Session parameter of the Invoke-Command cmdlet. By doing this,
the command that is defined as the argument for the ScriptBlock parameter is executed
within each of the runspaces represented by the $Sessions variable. Finally, the results
from the command executed within each of the runspaces is returned and piped into the
Format-Table cmdlet to format the output. In this case, the output shows the current
status of the W32Time service on each of the specified remote machines.

After you have finished executing commands, it’s important to understand that the
runspaces that were created will remain open until you close the current PowerShell
console. To free up the resources being consumed by a runspace, you need to delete it
using the Remove-PSSession cmdlet. For example, to remove the runspaces contained in
the $Sessions variable, you would pass that variable into the Remove-PSSession cmdlet:

PS C:\> $Sessions | remove-pssession

Using the New-Object Cmdlet

The New-Object cmdlet is used to create both .NET and COM objects. To create an
instance of a .NET object, you simply provide the fully qualified name of the .NET class
you want to use, as shown here:

PS C:\> $Ping = new-object Net.NetworkInformation.Ping

By using the New-Object cmdlet, you now have an instance of the Ping class that
enables you to detect whether a remote computer can be reached via Internet Control

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 761

762 CHAPTER 21 Automating Tasks Using PowerShell Scripting

Message Protocol (ICMP). Therefore, you have an object-based version of the Ping.exe
command-line tool.

To an instance of a COM object, the comObject parameter is used. To use this parameter,
define its argument as the COM object’s programmatic identifier (ProgID), as shown here:

PS C:\> $IE = new-object -comObject InternetExplorer.Application

PS C:\> $IE.Visible=$True

PS C:\> $IE.Navigate(“www.cnn.com”)

Summary
In this chapter, you have been introduced to PowerShell, its features, concepts, and how it
can be used to manage Windows. Of all the topics and items covered in this chapter, the
most important concept that should be remembered is that PowerShell should not be
feared—rather, it should be used. The PowerShell team has produced a CLI shell that is
easy and fun to use. With practice, using PowerShell should become second nature.

After all, the writing is on the wall. With the inclusion of PowerShell in the Windows
Server 2008 R2 operating system and with the integration into its next generation of
products, Microsoft’s direction is toward embracing PowerShell. This trend toward all
things PowerShell is even clearer when looking at all the community-based projects and
third-party products being developed and released that use or enhance PowerShell. After
all, PowerShell is the answer that Microsoft has been seeking as the management interface
for Windows and its platform products. Thanks to a good feature set, which includes
being built around the .NET Framework, being object based, being developed with security
in mind, and so on, PowerShell is a powerful tool that should be part of any administra-
tor’s arsenal.

Best Practices
The following are best practices from this chapter:

. If a function needs to persist across PowerShell sessions, define that function within
your profile.ps1 file.

. To access block information about a base, use the BaseObject property with the
PSBase standard name.

. When naming a variable, don’t use special characters or spaces.

. When using aliases and variables in a script, use names that other people can
understand.

. If possible, try not to use aliases in a script.

. In a production environment, don’t configure the PowerShell execution policy as
unrestricted and always digitally sign your scripts.

. If built-in PowerShell cmdlets don’t meet your needs, always remember that you can
fall back onto existing automation interfaces (ADSI, WMI, COM, and so forth).

022_067233092X_ch21.qxp 12/10/09 11:56 AM Page 762

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /CreateJDFFile false
 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU (Use these settings to create PDF documents for RR Donnelley Book plants. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

