
Development
Series

“This series is a great resource
for developers using the .NET
Framework and Web services.
It covers all the bases from refer-
ence to ‘how-to.’ The books in this
series are essential reading for
developers who want to write
solid managed code.”

—John Montgomery
Director, Developer Platform and

Evangelism Division, Microsoft Corporation

“This series is supported by the
leaders and principal authorities
of the Microsoft .NET Framework
and its languages. It has an
author pool that combines some
of the most insightful authors in
the industry with the software
architects and developers
at Microsoft.”

—Don Box
Architect, Microsoft Corporation

V
isual S

tudio Tools
for O

ffice
Eric Carter
Eric Lippert

Visual Studio Tools
for Office
Using C# with Word, Excel,
Outlook, and InfoPath

C
arter

Lippert

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects and DevelopMentor instructors. The
books in this series provide a core resource of information and understanding every developer needs in order
to write effective applications and managed code. Learn from the leaders how to maximize your use of the
.NET Framework and its programming languages.

Titles in the Series

For more information go to www.awprofessional.com/msdotnetseries/

Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library
and Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET
Framework Standard Library Annotated Reference,
Volume 2: Networking Library, Reflection Library,
and XML Library, 0-321-19445-4

Keith Ballinger, .NET Web Services: Architecture
and Implementation, 0-321-11359-4

Bob Beauchemin, Niels Berglund, Dan
Sullivan, A First Look at SQL Server 2005 for
Developers, 0-321-18059-3

Don Box with Chris Sells, Essential .NET,
Volume 1: The Common Language Runtime,
0-201-73411-7

Keith Brown, The .NET Developer's Guide to
Windows Security, 0-321-22835-9

Mahesh Chand, Graphics Programming with
GDI+, 0-321-16077-0

Anders Hejlsberg, Scott Wiltamuth, Peter
Golde, The C# Programming Language,
0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell,
ADO.NET and System.Xml v. 2.0—The Beta
Version, 0-321-24712-4

Alex Homer, Dave Sussman, Rob Howard,
ASP.NET v. 2.0—The Beta Version,
0-321-25727-8

James S. Miller and Susann Ragsdale, The
Common Language Infrastructure Annotated
Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the
.NET Framework: Developing Distributed
Business Solutions with .NET Enterprise Services,
0-321-24673-X

Fritz Onion, Essential ASP.NET with Examples in
C#, 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in
Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building
Applications and Components with Visual Basic
.NET, 0-201-73495-8

Dr. Neil Roodyn, eXtreme .NET: Introducing
eXtreme Programming Techniques to .NET
Developers, 0-321-30363-6

Chris Sells, Windows Forms Programming in C#,
0-321-11620-8

Chris Sells and Justin Gehtland, Windows
Forms Programming in Visual Basic .NET,
0-321-12519-3

Paul Vick, The Visual Basic .NET Programming
Language, 0-321-16951-4

Damien Watkins, Mark Hammond, Brad
Abrams, Programming in the .NET Environment,
0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data
Access for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact
Framework Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact
Framework Programming with Visual Basic .NET,
0-321-17404-6

FR E E CH A P T E R

BO O K AVA I L A B L E SE P T E M B E R 2005

This manuscript has been provided by Pearson Education at this
early stage to create awareness for this upcoming book. It has not
been copyedited or proofread yet; we trust that you will judge this
book on technical merit, not on grammatical and punctuation errors

that will be fixed at a later stage.

No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form, or by any means, electronic,

mechanical, photocopying, recording, or otherwise, without the prior
consent of the publisher.

All Pearson Education books are available at a discount for corporate
bulk purchases. For information on bulk discounts, please call (800)

428-5531.

DRAFT MANUSCRIPT

Books Available

Draftman.qxd 4/27/05 1:44 PM Page 1

Table of Contents

Chapter 1: Introduction to Office Programming

• Why Office Programming?
o Office Programming and the Professional Developer
o Why .NET for Office?
o How .NET is it?

• Office Object Models
o Objects
o Collections
o Enumerations

• Properties, Methods, and Events
o Properties

 Parameterized Properties
 Properties Common to Most Objects

o Methods
 Optional Parameters in Word

o Events
 The “My Button Stopped Working” Issue
 When Method Names and Event Names Collide

• The Office Primary Interop Assemblies
o Installing the Primary Interop Assemblies
o Referencing the Primary Interop Assemblies
o Browsing the Primary Interop Assemblies

 Dummy Methods
• Conclusion

Chapter 2: Introduction to Office Solutions

• The Three Basic Patterns of Office Solutions
o Hosted Code

 Discovery of Hosted Code
 Context Provided to Hosted Code
 Entry Point for Hosted Code

o How Code Gets Run After Startup
 Code Runs In Response to Events Fired By

Office
 Interface Methods Called On Objects Provided

To Office
 Events Raised on Code Behind Classes

o How Code Gets Unloaded
• Office Automation Executables

o Creating a Console Application that Automates Word
• Office Add-Ins

o Creating an Outlook Add-in in VSTO
• Code behind a Document

o VSTO 2005 Code behind a Document in Excel
• Conclusion

Chapter 3: Programming in Excel

• Ways to Customize Excel
o Automation Executable
o Add-Ins
o VSTO 2005 Code Behind
o Smart Documents and XML Expansion Packs
o Smart Tags
o Server-Generated Documents
o Research Services

• User Defined Functions
o Building a Managed Automation Add-in that provides

User Defined Functions
o Using Your Managed Automation Add-in in Excel

o Some Additional User Defined Functions
o Debugging User Defined Functions in a Managed

Automation Add-ins
o Deploying Managed Automation Add-ins

• Introduction to the Excel Object Model
o The Object Hierarchy

• Conclusion

Chapter 4: Working with Excel Events

• Events in the Excel Object Model
 New Workbook and Worksheet Events
 Activation and Deactivation Events
 Double Click and Right Click Events
 Calculate Events
 Change Events
 Follow Hyperlink Events
 Selection Change Events
 Window Resize Events
 Add-In Install and Uninstall Events
 XML Import and Export Events
 Before Close Events
 Before Print Events
 Before Save Events
 Open Events
 Toolbar and Menu Events
 Additional Events

o Events in Visual Studio Tools for Office 2005
• Conclusion

Chapter 5: Working with Excel Objects

 The Application Object

• Controlling Excel’s Screen Updating Behavior
• Controlling the Dialogs and Alerts that Excel Displays
• Changing the Mouse Pointer
• Displaying a Message in Excel’s Status Bar
• Controlling User Interaction with Excel While Your Code Is

Running
• A Property You Should Never Use
• Controlling the Editing Experience in Excel

o Controlling the look of Excel
• Controlling file and printer settings
• Properties That Return Active or Selected Objects
• Properties That Return Important Collections
• Controlling the Calculation of Workbooks
• Using Built In Excel Functions in Your Code

o Selecting and Activating a Range of Cells
• Spell Checking
• Sending a Workbook in E-Mail
• Quitting Excel
• Undo in Excel
• Sending Keyboard Commands to Excel

 Workbooks Collection
• Enumerating Over the Open Workbooks
• Accessing a Workbook in the Workbooks Collection
• Creating a New Workbook
• Opening an Existing Workbook
• Closing All the Open Workbooks

 Workbook Object
• Properties that Return Active or Selected Objects
• Properties That Return Important Collections
• Accessing Document Properties
• Saving an Excel Workbook
• Naming Ranges of Cells

• When Excel Is Embedded In Another Application
• Creating and Activating Windows
• Printing a Workbook
• Protecting a Workbook

 Worksheets, Charts, and Sheets Collection
• Enumerating Over the Open Sheets
• Accessing a Sheet in the Collection
• Adding a Worksheet or Chart Sheet
• Copying a Sheet
• Moving a Sheet

 DocumentProperties Collection and DocumentProperty Object
• Enumerating Over The DocumentProperty objects
• Accessing a DocumentProperty in the DocumentProperties

Collection
• Adding a DocumentProperty

 Windows Collection
• Enumerating Over the Open Windows
• Accessing a Window in the Collection
• Arranging Windows

 Window Object
• Positioning a Window
• Display Settings Associated with a Window

 Names Collection and Name Object
• Enumerating Over the Names Collection
• Accessing a Name in the Names Collection
• The Name Object

 Worksheet Object
• Worksheet Management
• Working with Names
• Working With Worksheet Custom Properties
• Protecting a Worksheet
• Working with OLEObjects
• Working with Shapes
• Working with ChartObjects
• Working with Lists

 Range Object

• Getting a Range Object for a Particular Cell or Range of
Cells

• Working with Addresses
• Creating New Ranges Using Operator Methods
• Working with Areas
• Working with Cells
• Working with Rows and Columns
• Working with Regions
• Selecting a Range
• Editing the Values in a Range
• Copying, Clearing, and Deleting Ranges
• Finding Text in a Range

 Special Excel Issues
• The Excel Locale Issue

o Using DateTime for Dates
o Switching the Locale to English and Back
o Old Format or Invalid Type Library Error

• Converting Excel Dates to DateTime
 Conclusion

Chapter 6: Programming in Word

• Ways to Customize Word
o Automation Executable
o Add-Ins
o VSTO 2005 Code Behind
o Smart Documents and XML Expansion Packs
o Smart Tags
o Server Generated Documents
o Research Services

 Getting Started with Research Services
 A Simple Research Service
 Registering the Research Service with Word
 Using the Research Service
 More Research Service Resources

• Introduction to the Word Object Model
o The Object Hierarchy

• Conclusion

Chapter 7: Working with Word Events

• Events in the Word Object Model
o Why are there multiple Application and Document

Event Interfaces?
o Visual Studio Generation of Event Handlers
o Startup and Shutdown Events
o New and Open Document Events
o Document Close Events
o Document Save Events
o Document Activation Events
o Document Print Events
o Mouse Events
o Selection Events
o Window Sizing Events
o XML Events
o Sync Events
o EPostage Events
o Mail Merge Events
o CommandBar Events
o Events in Visual Studio Tools for Office 2005

• Conclusion

Chapter 8: Working with Word Objects

 The Application Object

• Controlling Word’s Screen Updating Behavior
• Controlling the Dialogs and Alerts that Word Displays
• Changing the Mouse Pointer
• Displaying a Message in Word’s Status Bar or Window

Caption

• Controlling the look of Word
• Properties That Return Active or Selected Objects
• Properties That Return Important Collections
• Accessing Items in Collections
• Navigating a Document
• Working with Word’s Options
• Working with the New and Getting Started Document Task

Pane
• Working with the File Save Format Options
• Working with File Dialogs
• User Information
• Checking Grammar and Spelling
• Exiting Word

 Working with the Dialog Object
• Showing the Dialog and Letting Word Execute Actions
• Selecting the Tab on a Dialog box
• Showing the Dialog and Preventing Word from Executing

Actions
• Getting and Setting Fields in a Dialog

 Working with Windows
• Creating New Windows
• Enumerating Over the Open Windows
• Accessing a Window in the Collection
• Arranging Windows

 Working with Templates
• Types of Templates

 Working with Documents
• Enumerating Over the Open Documents
• Accessing a Document in the Documents Collection
• Creating a New Document
• Opening an Existing Document
• Closing All Open Documents
• Saving All Open Documents

 Working with a Document
• Preserving the Dirty State of a Document
• Closing and Saving a Document

• Working with Windows Associated With a Document
• Changing the Template Attached to a Document
• Important Collections associated with both Document and

Range
• Important Collections associated with Document Only
• Working with Document Properties
• Checking Spelling and Grammar in Documents and Ranges
• Printing a Document
• Working with Document Protection
• Working with Password Protection
• Undo and Redo

 Working with the Range Object
• Getting a Range
• Identifying a Range
• Changing a Range
• Moving a Range
• Ranges and Stories
• Navigating a Range
• Collapsing a Range
• Getting Text from a Range
• Setting the Text in a Range
• Inserting Non-printing Characters and Breaks
• Working with Formatting
• Find and Replace

 Working with Bookmarks
 Working with Tables
 Conclusion

Chapter 9: Programming in Outlook

• Ways to Customize Outlook

o Automation Executable
o Add-Ins
o Outlook Add-In Issues

 Getting Outlook to call OnDisconnection on your
Add-in and Shut Down

 Understanding RCWs, Application Domains, and
Why to Avoid Calling ReleaseComObject

 How Outlook Add-in Development Should Be
o Smart Tags

 Smart Tags when Word is the E-mail Editor
 Smart Tags in the Research Task Pane when Word is

the E-mail Editor
 Smart Tags Embedded in HTML Format E-Mail and

Displayed in the Reading Pane
 Persona Menu Smart Tags

o Custom Property Pages
• Introduction to the Outlook Object Model

o The Object Hierarchy of the Outlook Object Model
• Introduction to the Collaboration Data Objects
• Conclusion

Chapter 10: Working with Outlook Events

• Events in the Outlook Object Model
o Why are there multiple Event Interfaces?

• Application Level Events
o Startup and Quit Events
o Activation Events
o New Window Events
o Window Events
o Close Events
o View and Selection Change Events
o Folder Change Events

• Outlook item Events
o Item Addition, Deletion, and Change Events
o Copy, Paste, Cut, and Delete Events
o Property Change Events
o Open, Read, Write, and Close Events
o E-Mail Events

o Attachment Events
o Custom Action Events

• Other Events
• Conclusion

Chapter 11: Working with Outlook Objects

 The Application Object

• Methods and Properties That Return Active or Selected
Objects

• Properties That Return Important Collections
• Performing a Search and Creating a Search Folder
• Copying a File into an Outlook Folder
• Quitting Outlook

 Working with the Explorers and Inspectors Collections
 The Explorer Object

• Working with the Selected Folder and View, and Selected
Items

• Working With an Explorer Window
• Adding Buttons and Menus to an Explorer Window
• Associating a Web View With a Folder

 The Inspector Object
• Working with the Outlook Item Associated with the

Inspector
• Working With an Inspector Window
• Working with Different Inspector Editor Types
• Adding Buttons and Menus to an Inspector Window

 The NameSpace Object
• Working With the Root Folders of the Open Outlook Stores
• Adding and Removing Outlook Stores
• Determining the Current User
• Checking if Outlook is Offline
• Getting Standard Folders like the Inbox Folder
• Getting a Folder or Outlook Item by ID
• Accessing Address Books and Address Entries

• Displaying the Outlook Folder Picker Dialog
 The MAPIFolder Object

• Other Identifiers for a Folder
• Accessing SubFolders contained in a Folder
• Accessing Items contained in a Folder
• Working with a Folder’s View Settings
• Copying or Moving a Folder to a new location
• Displaying a Folder in an Explorer View

 The Items Collection
• Iterating over Outlook Items
• Finding an Outlook Items
• Adding an Outlook Item to an Items Collection

 Properties and Methods Common to Outlook Items
• Creating an Outlook Item
• Identifying the Specific Type of an Outlook Item
• Other Properties Associated With All Outlook Items
• Copying or Moving an Outlook Item to a New Location
• Deleting an Outlook Item
• Displaying an Outlook Item in an Inspector View
• Working with Built-In and Custom Properties Associated

With an Outlook Item
• Saving an Outlook Item
• Showing the Categories Dialog for an Outlook Item
• Mail Properties and Methods

 Outlook Issues
• Outlook Object Model Security
• Extended MAPI

 Conclusion

Chapter 12: Programming in InfoPath

Chapter 13: VSTO View Programming

• VSTO 2005 Extensions To Word and Excel View Objects
o Aggregation, Inheritance and Implementation
o Hooking Up The Aggregates
o Obtaining the Aggregated Object
o Aggregation and Windows Forms Controls
o Improving C# Interoperability
o The “Tag” Field
o Event Model Improvements

• Dynamic Controls
o The Controls Collection
o Enumerating and Searching the Collection
o Adding New Windows Forms Controls Dynamically
o Adding New Word and Excel View Controls

Dynamically
o Removing Controls
o Dynamic Controls Information Is Not Persisted

• Advanced Topic: Dynamic Views
• Advanced Topic: Inspecting the Generated Code

o The Startup and Shutdown Sequences
o The Globals Class in Excel

• VSTO 2005 Extensions to the Word and Excel Object Models
o The Word Document View Class
o The Word Bookmark View Control
o The Word XMLNode and XMLNodes View Classes
o The Excel Workbook View Class
o The Excel Worksheet View Class
o The Excel Chartsheet View Class And Chart View

Control
o The Excel NamedRange, XmlMappedRange and

ListObject View Controls

Chapter 14: Using Windows Forms in VSTO

• Introduction to Windows Forms in Visual Studio Tools for
Office

o Moving from ActiveX to Windows Forms
• Why Use Windows Forms Controls On the Document Surface?
• Windows Form control implementation in Office 2003
• Limitations of hosting a control on a document
• Adding controls to your document

o Insertion behavior in Word
o Insertion behavior in Excel

• Working with the control in the designer
o Excel Control Extender Properties that you can use on

the control
o Word Control Properties
o Layout of controls on the document or worksheet

surface
• Writing code behind the control

o Events that never fire for a control
• Adding controls at runtime

o What exactly does the Controls collection contain?
o Dynamic versus Static

• Using the Controls collection
o Deleting controls at runtime

• Conclusion

Chapter 15: Working with the Actions Pane

 Introduction to the Actions Pane

• What About Smart Documents?
 Working with the ActionsPane Control

• ActionsPane Architecture
• Adding Windows Forms Controls to the ActionsPane
• Adding a Custom User Control to the ActionsPane
• Contextually Changing the ActionsPane

• Detecting the Orientation of the ActionsPane
• Scrolling the ActionsPane
• Showing and Hiding the ActionsPane
• Attaching and Detaching the ActionsPane
• Some Methods & Properties to Avoid

 Conclusion

Chapter 16: Working with Smart Tags in VSTO

• Introduction to Smart Tags
o Configuring Smart Tags in Word and Excel
o The Persistent Tagging Generated by Smart Tags

• Document Level Smart Tags with VSTO
o Action Events
o Using Varying Numbers of Terms
o Using Regular Expressions
o Having a Varying Number of Actions
o Creating a Custom Smart Tag Class

• Application Level Smart Tags
• Conclusion

Chapter 17: VSTO Data Programming

• Whence DataSets?
o A Disconnected Strategy
o Rolling Your Own DataSet Filling Code
o Working With Many Tables

• Typed DataSets
• Creating Data-Bound View Controls With The Designer

o Creating DataBound Excel Documents With ListObject
and XmlMappedRange

o Complex and Simple Data Binding
o Data Binding In Word Documents

• ADO.NET Data Binding: Looking Behind The Scenes
o Binding Managers Manage Currency

o Using Binding Sources as Proxies
• Binding-Related Extensions To View and View Control Classes

o Extensions to the List Object View Control in Excel
 New Data-related List Object View Control

Properties and Methods:
 New Data-related List Object Events:
 New Exception:

• Master-Detail Data Binding
• Conclusion

Chapter 18: Server Data Scenarios

• Server Data Scenarios
o Data Bound VSTO Documents
o XML File Formats
o Accessing the Data Island

• Using ServerDocument and ASP.NET
o Setting up the server
o An alternate approach: Create a custom handler

• The ServerDocument Object Can Read Application Information
• The ServerDocument Object Model

o Loading Documents With Constructors
o Saving and Closing Documents
o Static helper methods
o Application Manifest objects, methods and properties
o Cached Data objects, methods and properties
o Be Careful

• Conclusion

Chapter 19: .NET Code Security

• Code Access Security vs. Role-Based Security
• Code Access Security in .NET

o The Machine Policy Level
o Kinds of Evidence
o Combining Policy Levels
o The User Policy Level
o Full Trust and Partial Trust
o The VSTO Application Domain Policy Level
o Resolving VSTO Policy

• Location, Location, Location
• Strong Names

o Creating A Strong Name Code Group
o How Strong Names Are Implemented
o Why Create A Child Code Group?
o Implementing Strong-Named Assemblies

 Designate a Signing Authority
 Create a Key Pair
 Developers Delay-Sign the Assembly
 Really Sign the Assembly

o Public Keys and Public Key Tokens
• Publisher Certificates

o License to Code
o Obtaining Certificates

• Trusting the Document
o Trusting Just Office Documents

 Why Is MSOSec not in the GAC by default?
• Deploying Policy Throughout The Enterprise
• Conclusion

Chapter 20: Deployment and Updating of Office
Solutions

Chapter 21: Working with XML in Excel

 Introduction to Excel’s XML Features
 Introduction to XML Schema Creation in Visual Studio
 An End to End Scenario

• Creating the Schema using Visual Studio
• Adding a Schema to the Excel workbook
• Mapping the Schema to the Excel workbook

 Advanced XML Features in Excel
• Importing XML and Refresh XML Data
• The XML Map Properties Dialog
• XML Schema Validation
• Data Formating And Layout
• Appending Data to Lists

 Excel Friendly XML Schemas
• Unsupported XML Schema Constructs
• Constructs that can be Mapped but not Exported
• VSTO Friendly Schemas
• How XML Schema Data Types are Mapped To Excel Cell

Formats
 VSTO Support for Excel Schema Mapping

• XMLMappedRange Controls
• ListObject Controls
• Schema Added to the VSTO Project
• Combining XML Mapping with VSTO Databinding

 Conclusion

Chapter 26: Working with XML in Word

• Introduction to Word’s XML Features
• An End to End Scenario: Creating a Schema and Mapping it

Into a Word Document
o Creating the Schema using Visual Studio
o Adding a Schema to the Word Document
o The XML Options Dialog and Mixed Content

o Creating a Document with Mapped XML Structure
• Exporting the Mapped XML in the Document to an XML Data

File
• Importing an XML Data File into the Mapped Document

o Creating the XSLT File
o Manually Converting the Book Order XML file Using

the XSLT file
o Automatically Applying an XSLT File When XML

Conforming to the Book Order Schema is Opened
• Advanced XML Features in Word

o The XML Options Dialog
• VSTO Support for Word Schema Mapping

o XMLNode Controls
o XMLNode Control
o XMLNodes Controls
o Loading XML Programmatically with UpdateXml

• Conclusion

Chapter 23: Developing Outlook Add-ins with VSTO

• Introduction to Outlook Add-ins
• Creating an Outlook Add-in in VSTO

o Security
o Manifest Updating
o Installing
o Other VSTO Features

• Conclusion

Chapter 24: Developing COM Add-ins for Word and
Excel

• Introduction to Add-ins
 Outlook Add-ins

• Scenarios for using Add-ins

• How an Add-In Is Registered
o Registry Location of an Add-in:

HKEY_CURRENT_USER or
HKEY_LOCAL_MACHINE

o Registry Entries Required for an Add-in
• Implementing IDTExtensibility2

o Startup Order
o OnAddInsUpdate Method
o OnBeginShutdown Method
o OnConnection Method
o OnDisconnection Method
o OnStartupComplete Method
o A Simple Implementation

• Writing an Add-in Using Visual Studio
o Changing the Add-in Project to be More Office Specific
o Setting the Start Action
o My Add-in Project Doesn't Work Anymore--What

Happened?
o A Simple Word Add-in

• The Pitfalls of MsCoree.dll
o Com Interop and REGASM.EXE
o Mscoree.dll and Managed Add-ins
o Problems with Using Mscoree.dll to Load your add-in

 Problem 1: Mscoree.dll Can Be Disabled
Causing All Managed Add-ins to Stop Loading

 Problem 2: Mscoree.dll Cannot Be Signed
 Problem 3: Mscoree.dll loads all add-ins into the

same AppDomain
• Shimming: A Solution to the Problems With MsCoree.dll

 How to build a Shim DLL
• Conclusion

Preface

Three years ago as the first release of Visual Studio .NET and the .NET

Framework were nearing completion; a few of us at Microsoft realized that
Office programming was going to miss the .NET wave unless we did
something about it.

What had come before was Visual Basic for Applications (VBA), a
simple development environment integrated into all the Office applications.
Each Office application had a rich object model that was accessed via a
technology known as COM. Millions of developers identified themselves as
“Office developers” and used VBA and the Office COM object models to do
everything from automating repetitive tasks to creating complete business
solutions that leveraged the rich features and user interface of Office. These
developers realized that their users were spending their days in Office. By
building solutions that ran inside of Office, they not only made their users
happy, but they were able to create solutions that did more and cost less by
reusing functionality already available in the Office applications.

Unfortunately, because of some limitations of VBA, Office programming
was starting to get a bad rap. Solutions developed in VBA by small
workgroups or individuals would gain momentum and a professional
developer would have to take them over and start supporting them. To a
professional developer, the VBA environment felt simple and limited and of
course it enforced a single language—Visual Basic. VBA embedded code in
every customized document, which made it hard to fix bugs and update
solutions as a bug would get replicated in documents across the enterprise.
Security weaknesses in the VBA model caused by a rash of worms and macro
viruses that made enterprises turn VBA off.

Visual Studio .NET and the .NET Framework provided a way to address
all these problems. There was a huge opportunity to not only combine the
richness of the new .NET Framework and developer tools with the powerful
platform that Office has always provided for developers but to also solve the
problems that were plaguing VBA. The result of this realization was Visual
Studio Tools for Office or VSTO.

The first version of VSTO was simple, but it accomplished the key goal
of letting professional developers use the full power of Visual Studio .NET
and the .NET Framework to put code behind Excel 2003 and Word 2003
documents and templates. It let professional developers develop Office
solutions in VB.NET and C#. It solved the problem of embedded code by

linking a document to a .NET assembly rather than embedding it in the
document. It also introduced a new security model that used .NET code
access security to prevent worms and macro viruses.

The second version of VSTO known as VSTO 2005, the version of VSTO
covered by this book, is even more ambitious. It brings with it functionality
never available to the Office developer before such as data binding and
data/view separation, design time views of Excel and Word documents inside
Visual Studio, rich support for Windows Forms controls in the document, the
ability to create custom Office task panes, server side programming support
against Office—and that’s just scratching the surface. Although the primary
target of VSTO is the professional developer, that doesn’t mean that building
an Office solution with VSTO is rocket science. VSTO makes it possible to
create very rich applications with just a few lines of code.

This book tries to put into one place all the information you will need to
be successful using VSTO to program against Word 2003, Excel 2003,
Outlook 2003, and InfoPath 2003. It introduces the Office object models and
covers most commonly used objects in those object models. In addition, this
book will help you avoid some pitfalls that result from the COM origins of the
Office object models.

This book will also give you an insider view of all the rich features of
VSTO. We participated in the design and implementation of many of these
features. We can therefore speak from the unique perspective of living and
breathing VSTO for the past three years. Programming Office using VSTO is
powerful and fun. We hope you enjoy using VSTO as much as we enjoyed
writing about it and creating it.

Eric Carter
Eric Lippert
May 2005

About the authors

Eric Carter

Eric Carter is a Lead Developer on the Visual Studio Tools for Office (VSTO)
team at Microsoft. He helped invent, design, and implement many of the
features that are in VSTO today. Previously at Microsoft he worked on
Visual Studio for Applications, the Visual Studio Macros IDE, and Visual
Basic for Applications for Office 2000 and Office 2003.

Eric Lippert

Eric Lippert's primary focus during his nine years at Microsoft has been on
improving the lives of developers by designing and implementing useful
programming languages and development tools. He's worked on the Windows
Scripting family of technologies and, most recently, Visual Studio Tools For
Office.

Chapter 2
Introduction to Office

Solutions

The Three Basic Patterns of Office Solutions
Now that we have considered the basic pattern of the Office object

models, let us consider how developers pattern and build their Office
solutions. There are three patterns that most solutions built using Office
follow.

• Office automation executable
• Office add-in
• Code behind an Office document

An automation executable is a program separate from Office that

controls and automates an Office application. An automation executable can
be created with development tools such as Visual Studio .NET 2005. A
typical example is a stand-alone console application or Windows Forms
application that starts up an Office application and then automates it to
perform some task. To start a solution built this way, the user of the solution
starts the automation executable that will in turn start up the Office
application. Unlike the other two patterns, the automation code does not run
in the Office process but runs in its own process and talks cross process to the
Office process being automated.

An add-in is a class in an assembly (DLL) that Office loads and creates
when needed. An add-in runs in process with the Office application rather
than requiring that a separate process from the Office application is running.
To start a solution built this way, the user of the solution starts the Office
application associated with the add-in. Office detects registered add-ins on

startup and loads them. An add-in can customize an Office application in the
same ways that code behind a document can. However, code behind a
document unloads when the document associated with the code is closed—an
add-in can remain loaded throughout the lifetime of the Office application.

The code behind pattern was popularized by Visual Basic for
Applications (VBA)—a simple development environment that is included
with Office that allows the developer to write Visual Basic code against the
object model of a particular Office application and associate that code with a
particular document or template. A document can be associated with C# or
VB.NET code behind using Visual Studio Tools for Office 2005. To start a
solution built this way, the user of the solution opens a document that has
code behind it or creates a new document from a template that has code
behind it. The code behind the document will customize the Office
application in some way while the document is open. For example, code
behind the document might add menu items that are only present when the
document is open or associate code with events that occur while the document
is open.

We will discuss an additional pattern later in this book. The server
document pattern involves running code on a server to manipulate data stored
in an Office document without starting the Office application. VSTO makes
this scenario possible through a feature called cached data. We will discuss
this pattern in Chapter 18.

Hosted Code
The add-in and code behind patterns are sometimes called hosted code

which means that your code runs in the same process as the Office
application.

Discovery of Hosted Code
In order for code to run in the Office application process, the Office

application must be able to discover your code, load the code into its process
space, and run your code. Office add-ins are registered in the registry so
Office can find and start them. Using the registry seems a little non-.NET but
this is necessary because Office 2003 talks to add-ins as if they were COM
objects through COM interop.

The code behind a document pattern does not require a registry entry.
Instead, code is associated with a document by adding some special properties
to the document file. Office reads these properties when the document opens
then Office loads the code associated with the document.

Context Provided to Hosted Code
It is critical that your hosted code get context—it needs to get the

Application object or Document object for the Office application into which it
is loading. COM add-ins are provided with context through an interface
implemented by the add-in class. Outlook add-ins in VSTO are provided with
context through a class created in the project that represents the application
being customized. Code behind a document in VSTO is provided with
context through a class created in the project that represents the document
being customized.

Entry Point for Hosted Code
At startup, Office calls into an entry point where your code can run for the

first time and register for events that may occur later in the session. For a
COM add-in, this entry point is the OnConnection method of the
IDTExtensibility2 interface implemented by the COM add-in. For a VSTO
Outlook add-in and VSTO code behind a document this entry point is the
Startup event handler.

How Code Gets Run After Startup
Once hosted code starts up, code continues to run in one or more of the

following ways.

Code Runs In Response to Events Fired By Office
The most common way that code runs after startup is in response to

events that occur in the Office application. For example, Office raises events
when a document opens or a cell in a spreadsheet changes. Listing 1-26
shows a simple class that listens to the change event that Excel’s Worksheet
object raises. Typically, you will hook up event listeners like the one shown
in Listing 1-26 when the initial entry point of your code is called.

Interface Methods Called On Objects Provided To Office
Objects such as the startup class for a COM add-in implement an interface

called IDTExtensibility2 that has methods that Office calls during the run of
the Office application. For example, if the user turns off the COM add-in,
Office calls the OnDisconnection method on the IDTExtensibility2 interface
implemented by the COM add-in. In this way, additional code runs after the
initial entry point has run.

Events Raised on Code Behind Classes
The classes generated in VSTO projects that represent the customized

application or document handle the Startup and Shutdown events. After the

constructor of the class executes, Office raises the Startup event. When the
document is about to be closed, Office raises the Shutdown event.

How Code Gets Unloaded
Your code gets unloaded in a number of ways, depending on the

development pattern you are using. If you are using the automation
executable pattern, your code unloads when the automation executable you
have written exits. If you are using the add-in pattern, your code unloads
when the Office application exits or when the user turns off the add-in via an
add-in management dialog. If you are using the code behind pattern, your
code unloads when the document associated with your code is closed.

In the hosted patterns of running code there is some method that is called
or event that is raised notifying you that you are about to be unloaded. For
COM add-ins, Office calls the OnDisconnection method. For VSTO code
behind documents and Outlook add-ins, Office raises the Shutdown event
before your code is unloaded.

Office Automation Executables
We now consider each of these three patterns of Office solutions in more

detail. Office solutions that use the automation executable pattern start up an
Office application in a very straightforward manner—by creating a new
instance of the Application object associated with the Office application.
Because the automation executable controls the Office application, the
automation executable runs code at startup and any time thereafter when
executing control returns to the automation executable.

When an automation executable uses new to create an Application object,
the automation executable controls the lifetime of the application by holding
the created Application object in a variable. Office determines whether it can
shut down by determining the reference count or number of clients that are
using its Application object.

In Listing 2-1, as soon as new is used to create the myExcelApp variable,
Excel starts and adds one to its count of clients that it knows are holding a
reference to Excel’s Application object. When the myExcelApp variable goes
out of scope (when Main exits) .NET garbage collection releases the object
and Excel is notified that the console application no longer needs Excel’s
Application object. This causes Excel’s count of clients holding a reference

to Excel’s Application object to go to zero and Excel exits as no clients are
using Excel anymore.

When you create an Office application by creating a new instance of the
Application object, the application starts up without showing its window.
This is useful because you can automate the application without distracting
the user by popping up windows. If you need to show the application
window, you can set the Visible property of the Application object to true.
If you make the main window visible, the user controls the lifetime of the
application. In Excel, the application will not exit until the user quits the
application and your variable holding the Excel Application object is garbage
collected. Word behaves differently—the application exits when the user
quits the application even if a variable is still holding an instance of the Word
Application object.

Listing 2-1 sets the status bar of Excel to say “Hello World” and opens a
new blank workbook in Excel by calling the Add method of Excel’s
Workbooks collection. Chapters 3 through 5 cover the Excel object model in
more detail.
Listing 2-1: Automation of a Excel via a console application.
using System;
using Excel = Microsoft.Office.Interop.Excel;
using System.Windows.Forms;

namespace ConsoleApplication
{
 class Program
 {
 static bool exit = false;

 static void Main(string[] args)
 {
 Excel.Application myExcelApp = new
Excel.Application();
 myExcelApp.Visible = true;
 myExcelApp.StatusBar = "Hello World";
 myExcelApp.Workbooks.Add(System.Type.Missing);

 myExcelApp.SheetBeforeDoubleClick += new
Excel.AppEvents_SheetBeforeDoubleClickEventHandler(myExce
lApp_SheetBeforeDoubleClick);

 while (exit == false)
 System.Windows.Forms.Application.DoEvents();
 }

 static void myExcelApp_SheetBeforeDoubleClick(object
Sh, Microsoft.Office.Interop.Excel.Range Target, ref bool
Cancel)
 {
 exit = true;
 }
 }
}

Listing 2-1 also illustrates how an automation executable can yield time

back to the Office application. A reference to the System.Windows.Forms
assembly must be added to the project. After a event handlers are hooked up,
System.Windows.Forms.Application.DoEvents() is called in a loop to allow
the Excel application to run normally. If the user double clicks on a cell,
Office yields time back to the event handler in the automation executable. In
the handler for the double click event, we set the static variable exit to true
which will cause the loop calling DoEvents to exit and the automation
executable to exit.

You can see the lifetime management of Excel in action by running the
automation executable in Listing 2-1 and exiting Excel without double
clicking on a cell. Excel will continue to run in a hidden state, waiting for the
console application to release its reference to Excel’s Application object.

Creating a Console Application that Automates Word
In this section, we are going to walk through the creation of a simple

console application that automates Word. A wiki is a kind of online
encyclopedia that users can contribute to. For an example, see
http://www.officewiki.net for a wiki that documents the Office PIAs. Wikis
use simple, easy-to-edit text files that any visitor to the wiki can edit without
having to know HTML. These text files have simple representations of even
complex elements like tables. Our console application will read a simple text
file that specifies a table in wiki text format. It will then automate Word to
create a Word table that matches the text file specification.

 In the wiki text format, a table that looks like Table 2-1 is specified by
the text in Listing 2-2.
Table 2-1: A simple table showing the properties and methods of Word’s
Add-in object.

Property or
Method

Name Return Type

Property Application Application

Property Autoload Boolean

Property Compiled Boolean

Property Creator Int32

Method Delete Void

Property Index Int32

Property Installed Boolean

Property Name String

Property Parent Object

Property Path String

Listing 2-2: A Wiki text representation of Table 1-4.
	Property or Method		Name		Return Type	
	Property		Application		Application	
	Property		Autoload		Boolean	
	Property		Compiled		Boolean	
	Property		Creator		Int32	
	Method		Delete		Void	
	Property		Index		Int32	
	Property		Installed		Boolean	
	Property		Name		String	
	Property		Parent		Object	
	Property		Path		String	

We will use Visual Studio .NET 2005 to create a console application.

After launching Visual Studio, choose New Project… from the File menu.
The new project dialog shows a variety of project types. Select the Visual C#
node from the list of project types and select the Windows node under the
Visual C# node. This is slightly counter intuitive as there is an Office node
available as well, but the Office node only shows VSTO code behind
document projects and the VSTO Outlook add-in project.

After you select the Windows node, you will see in the window to the
right the available templates. Select the Console Application template. Name
your console application project then press the OK button to create your
project. In Figure 2-1 we’ve created a console application called WordWiki.
Note that the new project dialog can have a different appearance than the one
shown in Figure 2-1 depending on the profile you are using. In this book, we
assume you are using the Visual C# Development Settings profile. You can
change your profile by choosing Import and Export Settings… from the Tools
menu.

Figure 2-1: Creating a console application from the New Project dialog.

Once you press the OK button, Visual Studio creates a console

application project for you. Visual Studio displays the contents of the project
in the Solution Explorer window as shown in Figure 2-2.

Figure 2-2: The Console application project “WordWiki” shown in Solution
Explorer.

By default, a newly created console application references the assemblies

System, System.Data, and System.Xml. We also need to add a reference to
the Word 2003 PIA. We do this by right clicking on the References folder
and choosing Add Reference… from the popup menu that appears. This
shows the Add Reference dialog in Figure 2-3. Click on the COM tab and
select the Microsoft Word 11.0 Object Library to add a reference to the Word
2003 PIA. Then click the OK button.

Figure 2-3: Adding a reference to the Microsoft Word 2003 PIA.

Visual Studio adds the reference to the Word 2003 PIA and adds

additional references to the stdole, VBIDE, and Microsoft.Office.Core PIAs
as shown in Figure 2-4. These additional PIAs are ones that the Word PIA
depends on. Stdole is a PIA that contains the definition of some of the types
that COM object models need. VBIDE is the PIA for the object model
associated with the VBA editor integrated into Office. Microsoft.Office.Core
(office.dll) is the PIA for common functionality shared by all the Office
applications such as the object model for the toolbars and menus.

Figure 2-4: When you add the Word 2003 PIA, dependent PIA references are
automatically added to the project.

Now that the proper references have been added to our console

application, let’s start writing code. Double click on Program.cs in the
Solution Explorer window to edit the main source code file for the console
application. If you have outlining turned on, you will see the text “using …”
at the top of the Program.cs file with a + sign next to it. Click on the + sign to
expand out the code where the using directives are placed. Add the following
three using directives so we can use objects from the Word PIA and the
Microsoft.Office.Core PIA as well as classes in the System.IO namespace.

using Office = Microsoft.Office.Core;
using Word = Microsoft.Office.Interop.Word;
using System.IO;

We are now ready to write some real code that automates Word to create
a table after reading a text input file in the wiki table format. The entire
listing of our program is shown in Listing 2-3. Rather than explain every line
of code in that listing, we will focus on the lines of code that automate Word.
We assume the reader has some knowledge of how to read a text file in .NET
and parse a string via the Split method. We will briefly touch on some objects
in the Word object model here, but Chapters 6 through 8 cover the Word
object model in much more detail.

The first thing we do in Listing 2-3 is declare a new instance of the Word
application object by adding this line of code to Main method of our program
class.

Word.Application theApplication = new Word.Application();

Although Word.Application is an interface, we are allowed to create a

new instance of this interface because the compiler knows that the
Word.Application interface is associated with a COM object that it knows
how to start. When Word starts in response to an automation executable
creating a new instance of its application object, it starts up without showing
any windows. You can automate Word in this invisible state when you want
to automate Word without confusing the user by bringing up the Word
window. For this example, we want to make Word show its main window,
and we do so by adding this line of code:

theApplication.Visible = true;

Next, we want to create a new empty Word document into which we will
generate our table. We do this by calling the Add method on the Documents
collection returned by Word’s application object. The Add method takes four
optional parameters that we want to omit. Optional parameters in Word
methods are specified as omitted by passing by reference a variable
containing the special value Type.Missing. We declare a variable called
missing that we set to Type.Missing and pass it by reference to each
parameter we wish to omit as shown here:

object missing = Type.Missing;
Word.Document theDocument = theApplication.Documents.Add(

ref missing,
ref missing,
ref missing,
ref missing);

With a document created, we want to read the input text file specified by

the command line argument passed to our console application. We want to
parse that text file to calculate the number of columns and rows. Once we
know the number of columns and rows, we use the line of code below to get a
Range object from the Document object. By passing our missing variable to
the optional parameters, the Range method will return a range that includes
the entire text of the document.

Word.Range range = theDocument.Range(ref missing, ref
missing);

We then use our Range object to add a table by calling the Add method of
the Tables collection returned by the Range object. We pass the Range object
again as the first parameter to the Add method to specify that we want to
replace the entire contents of the document with the table. We also specify
the number of rows and columns we want.

Word.Table table = range.Tables.Add(

range,
rowCount,
columnCount,
ref missing,
ref missing);

The Table object has a Cell method that takes a row and column and

returns a Cell object. The Cell object has a Range property that returns a
Range object for the cell in question that we can use to set the text and
formatting of the cell. The code that sets the cells of the table is shown
below. Note that as in most of the Office object models, the indices are 1-
based meaning they start with one as the minimum value rather than being 0-
based and starting with zero as the minimum value.

for (columnIndex = 1; columnIndex <= columnCount;
columnIndex++)
{
 Word.Cell cell = table.Cell(rowIndex, columnIndex);
 cell.Range.Text = splitRow[columnIndex];
}

Code to set the formatting of the table by setting the table to size to fit
contents and bolding the header row is shown below. We use the Row object
returned by table.Rows[1] which also has a Range property that returns a
Range object for the row in question. Also, we encounter code that sets the
first row of the table to be bolded. One would expect to be able to write the
code table.Rows[1].Range.Bold = true, but Word’s object model
expects an int value (0 or 1) rather than a bool. This is one of many
examples you will come across where the Office object models don’t match
.NET guidelines because of their origins in COM.

// Format table
table.Rows[1].Range.Bold = 1;

table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitCon
tent);

Finally, there is some code at the end of the program that forces Word to

quit without saving changes:

// Quit without saving changes
object saveChanges = false;
theApplication.Quit(ref saveChanges, ref missing, ref
missing);

If we don’t write this code, Word will stay running even after the console

application exits. Once you show the Word window by setting the
Application object’s Visible property to true, Word puts the lifetime of the
application in the hands of the end user rather than the automating program.
So even when the automation executable exits, Word will continue running.
To force Word to exit we must call the Quit method on Word’s Application
object. If this program didn’t make the Word window visible—say for
example it created the document with the table then saved it to a file all
without showing the Word window—it would not have to call Quit because
Word would exit when the program exited and released all its references to
the Word objects.

To run the console application in listing 2-3, you must create a text file
that contains the text in Listing 2-2. Then pass the file name of the text file as
a command line argument to the console application. You can set up the
debugger to do this by right clicking on the WordWiki project in Solution
Explorer and choosing Properties. Then click on the Debug tab and set the
Command line arguments field to the name of your text file.
Listing 2-3: The complete WordWiki implementation.
using System;
using System.Collections.Generic;
using System.Text;
using System.IO;
using Office = Microsoft.Office.Core;
using Word = Microsoft.Office.Interop.Word;

namespace WordWiki
{
 class Program
 {
 static void Main(string[] args)
 {

 Word.Application theApplication = new
Word.Application();
 theApplication.Visible = true;

 object missing = System.Type.Missing;
 Word.Document theDocument =
theApplication.Documents.Add(ref missing, ref missing,
ref missing, ref missing);

 TextReader reader = new
System.IO.StreamReader(args[0]);

 string[] separators = new string[1];
 separators[0] = "||";
 int rowCount = 0;
 int columnCount = 0;

 // Read rows and calculate number of rows and
columns
 System.Collections.Generic.List<string> rowList =
new System.Collections.Generic.List<string>();
 string row = reader.ReadLine();

 while (row != null)
 {
 rowCount++;
 rowList.Add(row);

 // If this is the first row, calculate the number
of columns
 if (rowCount == 1)
 {
 string[] splitHeaderRow = row.Split(separators,
StringSplitOptions.None);
 columnCount = splitHeaderRow.Length - 2; //
Ignore the first & last separator
 }

 row = reader.ReadLine();
 }

 // Create a table
 Word.Range range = theDocument.Range(ref missing,
ref missing);
 Word.Table table = range.Tables.Add(range,
rowCount, columnCount, ref missing, ref missing);

 // Populate table

 int columnIndex = 1;
 int rowIndex = 1;

 foreach (string r in rowList)
 {
 string[] splitRow = r.Split(separators,
StringSplitOptions.None);

 for (columnIndex = 1; columnIndex <= columnCount;
columnIndex++)
 {
 Word.Cell cell = table.Cell(rowIndex,
columnIndex);
 cell.Range.Text = splitRow[columnIndex];
 }

 rowIndex++;
 }

 // Format table
 table.Rows[1].Range.Bold = 1;

table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitCon
tent);

 // Wait for input from the command line before
exiting
 System.Console.WriteLine("The table has been
generated.");
 System.Console.ReadLine();

 // Quit without saving changes
 object saveChanges = false;
 theApplication.Quit(ref saveChanges, ref missing,
ref missing);
 }
 }
}

Office Add-Ins
The second pattern used in Office development is the add-in pattern. This

book will cover several types of Office add-ins. These include VSTO add-ins
for Outlook, COM add-ins for Excel and Word, and Automation add-ins for
Excel:

• VSTO add-ins for Outlook. This new VSTO 2005 feature makes it

extremely easy to create an add-in for Outlook 2003. The model is
the most “.NET” of all the add-in models and is very similar to the
VSTO 2005 code behind model for documents. Chapter 23
describes this model in detail.

• COM add-ins for Excel and Word. A C# class in a class library
project can implement the IDTExtensibility2 interface and register in
the registry as a COM object and COM add-in. Through COM
interop, Office creates the C# class and talks to it. Chapter 24
describes the creation of COM add-ins and some issues that make
COM add-in development problematic.

• Automation add-ins for Excel. These managed classes expose
public functions that Excel can use in formulas. The C# class must
register in the registry as a COM object. Through COM interop,
Excel can create an automation add-in and use its public methods in
formulas. Automation add-ins and their use in Excel formulas are
discussed in Chapter 3.

There are some Office add-in technologies that this book will not discuss.

Application level Smart Tags add-ins and Smart Documents add-ins are not
discussed because VSTO provides a much easier way of accessing Smart Tag
and Smart Document functionality, albeit at the document or template level
rather than at the application level. For more information on VSTO’s support
for Smart Tags and Smart Documents, see Chapter 15 and Chapter 16.

Creating an Outlook Add-in in VSTO
To create an Outlook add-in project in VSTO, choose Project… from the

New menu of the File menu in Visual Studio. Select the Visual C# node from
the list of project types and select the Office node under the Visual C# node.
The Outlook Add-in project appears in the list of templates. Type a name for
your new Outlook add-in project and pick a location for the project. Then
press the OK button.

Figure 2-5: Creating a new Outlook add-in project.

VSTO creates a project with references to the Outlook 2003 PIA, the core
Office PIA, and other needed references as shown in Figure 2-6. VSTO also
adds a project item to the project called ThisApplication.cs. This project item
contains a C# class that you will add to when implementing your Outlook
add-in.

Figure 2-6: The Outlook add-in project in Solution Explorer.

If you double click on the ThisApplication.cs project item, you will see

the code shown in Listing 2-4. There is a simple Startup and Shutdown event
handler where you can write code that executes on the startup and shutdown
of the add-in. The ThisApplication class derives from an aggregate of the
Outlook Application object. This allows you to access properties and
methods of the Outlook Application object by writing code like
this.Inspectors.Count in the ThisApplication class.

Listing 2-4: The initial code in the ThisApplication class in an Outlook add-
in project.
using System;
using System.Windows.Forms;
using Microsoft.VisualStudio.Tools.Applications.Runtime;
using Outlook = Microsoft.Office.Interop.Outlook;

namespace OutlookAddin1
{
 public partial class ThisApplication
 {
 private void ThisApplication_Startup(object sender,
System.EventArgs e)
 {
 }

 private void ThisApplication_Shutdown(object sender,
System.EventArgs e)
 {
 }

 #region VSTO Designer generated code
 private void InternalStartup()
 {
 this.Startup += new
System.EventHandler(ThisApplication_Startup);
 this.Shutdown += new
System.EventHandler(ThisApplication_Shutdown);
 }
 #endregion
 }
}

Looking at Listing 2-4 you may wonder about the use of “partial” in the

class definition. VSTO uses partial classes which are a new feature of .NET
that allows you to define part of a class in one file and another part of a class
in a second file and then compile them together as one class. VSTO uses this
feature to hide some additional generated code associated with the
ThisApplication class from you to reduce the complexity of the class where
you write your code. The final ThisApplication class will be compiled from
the partial class in Listing 2-4 and additional code in a partial class generated
by VSTO that is hidden from you.

We are going to add to the code in Listing 2-4 to create an add-in to that
will solve an annoying problem—people replying inadvertently to an e-mail
sent out to a mailing alias that contains a large number of people. Unless you
have “Vice President” in your title, you probably do not want to be sending e-
mail to more than, say, 25 people at any given time. We are going to create an
add-in that will warn you if you do this and give you the “This is a potentially
career limiting move. Are you sure you want to send this e-mail to 25,000
people?” message.

Outlook’s Application object has an ItemSend event that fires whenever
a user sends an email. We will add additional code to the Startup method of
the ThisApplication class to hookup an event handler for the ItemSend event
as shown in Listing 2-5. Because the ThisApplication class derives from an
aggregate of Outlook’s Application object, we can write the code
“this.ItemSend” because ItemSend is an event raised by the ThisApplication
base class. The ItemSend event handler takes an object parameter called
Item which is the Outlook item being sent. Because Item could be any of a

number of things such as a meeting request or an e-mail message, Item is
passed as an object instead of as a specific type. The ItemSend event
handler also has a bool parameter passed by reference called Cancel that can
be set to true to prevent the Outlook item from being sent.

In our ItemSend event handler we need to check to see if the Item
parameter which is passed as an object is actually an e-mail. The easiest
way to achieve this is to use the as keyword to try to cast the Item parameter
to an Outlook.MailItem. If the cast succeeds, the resulting value will be non-
null and we will know that the item being sent is an Outlook.MailItem and
therefore an e-mail message. We can then iterate through the Recipients
collection on the MailItem object and check to see if we are sending to any
recipient lists that include more than 25 people. Each Recipient object in the
Recipients collection has an AddressEntry property that returns an
AddressEntry object. The AddressEntry object has a Members property that
returns a collection that we can check the count of. If we find the count to be
more than 25, we will show a dialog and ask the user if they really want to
send the mail. If the user clicks the No button, we will set the Cancel
parameter of the ItemSend event to true to cancel the sending of career
limiting e-mail.
Listing 2-5: A ThisApplication Class in an Outlook add-in project that
handles the ItemSend event and checks for more than 25 recipients.
using System;
using System.Windows.Forms;
using Microsoft.VisualStudio.Tools.Applications.Runtime;
using Outlook = Microsoft.Office.Interop.Outlook;

namespace OutlookAddin1
{
 public partial class ThisApplication
 {
 private void ThisApplication_Startup(object sender,
System.EventArgs e)
 {
 this.ItemSend += new
Outlook.ApplicationEvents_11_ItemSendEventHandler(ThisApp
lication_ItemSend);
 }

 void ThisApplication_ItemSend(object Item, ref bool
Cancel)
 {
 Outlook.MailItem myItem = Item as Outlook.MailItem;

 if (myItem != null)
 {
 foreach (Outlook.Recipient recip in
myItem.Recipients)
 {
 if (recip.AddressEntry.Members.Count > 25)
 {
 // Ask the user if they really want to send
this email
 string message = "Are you sure that you want
to send mail to " +
 recip.AddressEntry.Name + " " + " which
includes " +
 recip.AddressEntry.Members.Count + "
people?";

 string caption = "More than 25 recipients";
 MessageBoxButtons buttons =
MessageBoxButtons.YesNo;
 DialogResult result;

 result = MessageBox.Show(message, caption,
buttons);

 if (result == DialogResult.No)
 {
 Cancel = true;
 break;
 }
 }
 }
 }
 }

 private void ThisApplication_Shutdown(object sender,
System.EventArgs e)
 {
 }

 #region VSTO Designer generated code
 private void InternalStartup()
 {
 this.Startup += new
System.EventHandler(ThisApplication_Startup);
 this.Shutdown += new
System.EventHandler(ThisApplication_Shutdown);
 }
 #endregion

 }
}

When you run the project with the code shown in Listing 2-4, Outlook

launches and the add-in loads. Try sending a mail to an alias that includes
more than 25 people—you might want to go offline first in case you mistyped
the code. If all works right, the add-in will display a dialog box warning you
that you are sending an e-mail to more than 25 people and you will be able to
cancel the send of the e-mail. Exit Outlook to end your debugging session.

VSTO Outlook add-ins are discussed in more detail in chapter 23. The
Outlook object model is discussed in Chapters 9 through 11.

Code behind a Document
Visual Studio Tools for Office 2005 supports code behind a document by

requiring that the developer use classes generated in a VSTO project that have
pre-hooked up context and pre-hooked up events. A VSTO project can have
multiple startup classes that handle a Startup and Shutdown event raised on
each startup class. In Word, there is only one startup class corresponding to
the document. In Excel, there are multiple startup classes—one for the
workbook and one for each worksheet or chart sheet in the workbook.

The first time your code runs in a VSTO code behind the document
project is when Office raises the Startup event handled by any of the startup
classes created for you. VSTO provides context via the base class of the class
you are writing code in. A VSTO class customizing an Excel worksheet
derives from a base class that aggregates all the methods, properties, and
events of an Excel worksheet. This enables you to write code like this in the
Startup method of a worksheet class.

MessageBox.Show(this.Name + " is the sheet name.");

By using this.Name, you are referring to the Name property of the
Excel Worksheet object aggregated by the base class. Listing 2-6 shows a
VSTO 2005 code behind class for an Excel Worksheet. In addition to the
Startup and Shutdown methods in the code behind class, there is also a
generated method called InternalStartup. You should not put any of your
code in this InternalStartup method as it is auto-generated by VSTO 2005 and
modifying it can break Visual Studio’s support for code behind classes.
Instead, your startup code should go in the Startup event handler. VSTO code

behind document classes also use partial classes to hide some additional code
generated by VSTO.
Listing 2-6: A VSTO 2005 code behind class.
using System;
using System.Data;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.VisualStudio.Tools.Applications.Runtime;
using Excel = Microsoft.Office.Interop.Excel;
using Office = Microsoft.Office.Core;

namespace ExcelWorkbook1
{
 public partial class Sheet1
 {
 private void Sheet1_Startup(object sender,
System.EventArgs e)
 {
 // Initial entry point.
 // This code gets run first when the code behind is
created
 // The context is implicit in the Sheet1 class
 MessageBox.Show("Code behind the document
running.");
 MessageBox.Show(this.Name + " is the sheet name.
");
 }

 private void Sheet1_Shutdown(object sender,
System.EventArgs e)
 {
 }

 #region VSTO Designer generated code

 /// <summary>
 /// Required method for Designer support - do not
modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InternalStartup()
 {
 this.Startup += new
System.EventHandler(Sheet1_Startup);
 this.Shutdown += new
System.EventHandler(Sheet1_Shutdown);
 }

 #endregion

 }
}

VSTO 2005 Code behind a Document in Excel
In this section, we are going to create some simple code behind a

document in Excel using VSTO 2005. First, start up VSTO 2005 and select
the File / New / Project menu item. As we’ve seen previously, navigate to the
Office node under the Visual C# root.

Figure 2-7: Using the New Project dialog to create an Excel Workbook
project.

We will create an Excel Workbook project using C#. If you already have

a workbook which you would like to add VSTO 2005 customization code
behind, the dialog box shown in Figure 2-8 pops up and asks you where it can

be found. This time we will just start from scratch, creating a new, blank
workbook.

Figure 2-8: Selecting the workbook to associate with your code behind.

Once we have created the project, the designer view appears as shown in

Figure 2-9.

Figure 2-9: The design view for VSTO 2005 Excel code behind.

There are a few interesting things to notice in Figure 2-9. First, Excel is

running inside the Visual Studio 2005 IDE as a designer, just the same as a
Windows Forms designer would when developing a Windows Forms project.

Second, look at the menu bar as shown in Figure 2-10. VSTO merges the
Visual Studio menus (Build, Debug, and so on) and the Excel menu items
(Format, Data, and so on) together. Menu items that appear in both Visual
Studio and Excel (Tools, for example) merge by adding a sub menu to the
Visual Studio menu such as Microsoft Office Excel Tools that can be selected
to see the Excel Tools menu.

Figure 2-10: The merging of Visual Studio and Excel menus.

Third, notice in Figure 2-9 that the toolbox contains a new category:

Excel Controls. When designing a document using Visual Studio you can
create named ranges and list objects using the Excel menu items familiar to
Excel users, or the toolbox idiom familiar to Visual Studio users.

Fourth, notice that the properties window shows properties of the selected
object—in this case, Sheet1. You can use the properties window to edit
properties of Excel’s objects the same way that you would edit properties of
controls and forms in a Windows Forms project.

Fifth, notice that the Solution Explorer has four classes in it already.
Each underlying Excel Worksheet and Workbook object is represented by a
.NET class that you can extend and customize. As you make changes to the
document in the designer, the code behind updates automatically. For
example, let’s drag a ListObject from the toolbox onto the Sheet1 designer,
and draw it to be ten rows by four columns as shown in Figure 2-11.

Figure 2-11: Creating a ListObject in the designer.

As you can see from the properties window, the designer has chosen a

default name for the new list object. We could edit it, but in this example, we
will keep the default name List1.

Let’s take a look at the code behind this worksheet and make some simple
changes to it. Right-click on Sheet1.cs in the Solution Explorer and select
View Code. We are going to briefly illustrate two VSTO features—
ActionsPane and ListObject databinding. We will declare a Windows Forms
button as a member variable of the class and call it myButton. In the Startup
event, we will show that button in the Document Actions task pane of Excel
by adding it to the ActionsPane’s Controls collection. This will cause Excel
to show the Document Actions task pane and display our button. We will
also handle the Click event of the button and when the button is clicked we
will databind our list object to a randomly generated DataTable. This code is
shown in Listing 2-7.

Listing 2-7: A VSTO 2005 code behind class that illustrates adding a
control to the Document Actions task pane and databinding a ListObject
control to a DataTable.
using System;
using System;
using System.Data;
using System.Drawing;
using System.Windows.Forms;
using Microsoft.VisualStudio.Tools.Applications.Runtime;
using Excel = Microsoft.Office.Interop.Excel;
using Office = Microsoft.Office.Core;

namespace ExcelWorkbook1
{
 public partial class Sheet1
 {
 Button myButton = new Button();
 DataTable table;

 private void Sheet1_Startup(object sender,
System.EventArgs e)
 {
 myButton.Text = "Databind!";
 myButton.Click += new EventHandler(myButton_Click);

Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton);
 }

 void myButton_Click(object sender, EventArgs e)
 {
 List1.DataSource = null;
 table = new DataTable();
 Random r = new Random();

 for (int i = 0; i < 4; i++)
 table.Columns.Add("Col " + i.ToString());

 for (int i = 0; i < 20; i++)
 table.Rows.Add(r.NextDouble(), r.NextDouble(),
r.NextDouble(), r.NextDouble());

 List1.DataSource = table;
 }

 private void Sheet1_Shutdown(object sender,
System.EventArgs e)
 {

 }

 #region VSTO Designer generated code
 /// <summary>
 /// Required method for Designer support - do not
modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InternalStartup()
 {
 this.Startup += new
System.EventHandler(Sheet1_Startup);
 this.Shutdown += new
System.EventHandler(Sheet1_Shutdown);
 }

 #endregion
 }
}

Build and run the code, and sure enough Excel starts up, the Startup event

is raised for the sheet, and the button is added to the actions pane. Click the
button and a random DataTable is generated and bound to the ListObject as
shown in Figure 2-12. Exit Excel to end your debugging session.

Figure 2-11: The result of running Listing 2-7 and clicking on the button we
added to the Document Actions task pane.

We have briefly illustrated VSTO’s support for the Document Actions

task pane and the ability to databind that VSTO adds to Excel’s ListObject.
For more information on VSTO’s support for the Document Actions task
pane, see Chapter 15. For more information on VSTO’s support for
databinding, see Chapter 17.

Conclusion
In this chapter, we have introduced the three basic patterns of Office

solutions: an automation executable, an add-in, and code behind a document.
We have also introduced how to build solutions following these three basic
patterns using Visual Studio 2005 and Visual Studio Tools for Office 2005.

Now that you know how to create a basic automation executable, add-in,
and code behind the document solution, we will use these skills in the next
chapters as we focus on specific functionality of Excel, Word, Outlook, and
InfoPath that you can use in your solutions.

Although we will not have more to say about automation executables, this
chapter has only served as an introduction to add-ins and code behind
documents. Chapter 23 covers VSTO add-ins for Outlook. Chapter 24 covers
COM add-ins for Word and Excel. Chapter 3 covers automation add-ins for
Excel. Chapters 13 through 17 cover the code behind document model of
VSTO 2005 in greater detail.

Development
Series

“This series is a great resource
for developers using the .NET
Framework and Web services.
It covers all the bases from refer-
ence to ‘how-to.’ The books in this
series are essential reading for
developers who want to write
solid managed code.”

—John Montgomery
Director, Developer Platform and

Evangelism Division, Microsoft Corporation

“This series is supported by the
leaders and principal authorities
of the Microsoft .NET Framework
and its languages. It has an
author pool that combines some
of the most insightful authors in
the industry with the software
architects and developers
at Microsoft.”

—Don Box
Architect, Microsoft Corporation

V
isual S

tudio Tools
for O

ffice

Eric Carter
Eric Lippert

Visual Studio Tools
for Office
Using C# with Word, Excel,
Outlook, and InfoPath

C
arter

Lippert

Microsoft .NET Development Series

John Montgomery, Series Advisor
Don Box, Series Advisor
Martin Heller, Series Editor

The Microsoft .NET Development Series is supported and developed by the leaders and experts of
Microsoft development technologies including Microsoft architects and DevelopMentor instructors. The
books in this series provide a core resource of information and understanding every developer needs in order
to write effective applications and managed code. Learn from the leaders how to maximize your use of the
.NET Framework and its programming languages.

Titles in the Series

For more information go to www.awprofessional.com/msdotnetseries/

Brad Abrams, .NET Framework Standard Library
Annotated Reference Volume 1: Base Class Library
and Extended Numerics Library, 0-321-15489-4

Brad Abrams and Tamara Abrams, .NET
Framework Standard Library Annotated Reference,
Volume 2: Networking Library, Reflection Library,
and XML Library, 0-321-19445-4

Keith Ballinger, .NET Web Services: Architecture
and Implementation, 0-321-11359-4

Bob Beauchemin, Niels Berglund, Dan
Sullivan, A First Look at SQL Server 2005 for
Developers, 0-321-18059-3

Don Box with Chris Sells, Essential .NET,
Volume 1: The Common Language Runtime,
0-201-73411-7

Keith Brown, The .NET Developer's Guide to
Windows Security, 0-321-22835-9

Mahesh Chand, Graphics Programming with
GDI+, 0-321-16077-0

Anders Hejlsberg, Scott Wiltamuth, Peter
Golde, The C# Programming Language,
0-321-15491-6

Alex Homer, Dave Sussman, Mark Fussell,
ADO.NET and System.Xml v. 2.0—The Beta
Version, 0-321-24712-4

Alex Homer, Dave Sussman, Rob Howard,
ASP.NET v. 2.0—The Beta Version,
0-321-25727-8

James S. Miller and Susann Ragsdale, The
Common Language Infrastructure Annotated
Standard, 0-321-15493-2

Christian Nagel, Enterprise Services with the
.NET Framework: Developing Distributed
Business Solutions with .NET Enterprise Services,
0-321-24673-X

Fritz Onion, Essential ASP.NET with Examples in
C#, 0-201-76040-1

Fritz Onion, Essential ASP.NET with Examples in
Visual Basic .NET, 0-201-76039-8

Ted Pattison and Dr. Joe Hummel, Building
Applications and Components with Visual Basic
.NET, 0-201-73495-8

Dr. Neil Roodyn, eXtreme .NET: Introducing
eXtreme Programming Techniques to .NET
Developers, 0-321-30363-6

Chris Sells, Windows Forms Programming in C#,
0-321-11620-8

Chris Sells and Justin Gehtland, Windows
Forms Programming in Visual Basic .NET,
0-321-12519-3

Paul Vick, The Visual Basic .NET Programming
Language, 0-321-16951-4

Damien Watkins, Mark Hammond, Brad
Abrams, Programming in the .NET Environment,
0-201-77018-0

Shawn Wildermuth, Pragmatic ADO.NET: Data
Access for the Internet World, 0-201-74568-2

Paul Yao and David Durant, .NET Compact
Framework Programming with C#, 0-321-17403-8

Paul Yao and David Durant, .NET Compact
Framework Programming with Visual Basic .NET,
0-321-17404-6

FR E E CH A P T E R

BO O K AVA I L A B L E SE P T E M B E R 2005

	Text4: September 2005

