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Preface 
 
Three years ago as the first release of Visual Studio .NET and the .NET 

Framework were nearing completion; a few of us at Microsoft realized that 
Office programming was going to miss the .NET wave unless we did 
something about it. 

What had come before was Visual Basic for Applications (VBA), a 
simple development environment integrated into all the Office applications.  
Each Office application had a rich object model that was accessed via a 
technology known as COM.  Millions of developers identified themselves as 
“Office developers” and used VBA and the Office COM object models to do 
everything from automating repetitive tasks to creating complete business 
solutions that leveraged the rich features and user interface of Office.  These 
developers realized that their users were spending their days in Office.  By 
building solutions that ran inside of Office, they not only made their users 
happy, but they were able to create solutions that did more and cost less by 
reusing functionality already available in the Office applications. 

Unfortunately, because of some limitations of VBA, Office programming 
was starting to get a bad rap.  Solutions developed in VBA by small 
workgroups or individuals would gain momentum and a professional 
developer would have to take them over and start supporting them.  To a 
professional developer, the VBA environment felt simple and limited and of 
course it enforced a single language—Visual Basic.  VBA embedded code in 
every customized document, which made it hard to fix bugs and update 
solutions as a bug would get replicated in documents across the enterprise.  
Security weaknesses in the VBA model caused by a rash of worms and macro 
viruses that made enterprises turn VBA off. 

Visual Studio .NET and the .NET Framework provided a way to address 
all these problems.  There was a huge opportunity to not only combine the 
richness of the new .NET Framework and developer tools with the powerful 
platform that Office has always provided for developers but to also solve the 
problems that were plaguing VBA.  The result of this realization was Visual 
Studio Tools for Office or VSTO. 

The first version of VSTO was simple, but it accomplished the key goal 
of letting professional developers use the full power of Visual Studio .NET 
and the .NET Framework to put code behind Excel 2003 and Word 2003 
documents and templates. It let professional developers develop Office 
solutions in VB.NET and C#.  It solved the problem of embedded code by 



 

linking a document to a .NET assembly rather than embedding it in the 
document.  It also introduced a new security model that used .NET code 
access security to prevent worms and macro viruses. 

The second version of VSTO known as VSTO 2005, the version of VSTO 
covered by this book, is even more ambitious.  It brings with it functionality 
never available to the Office developer before such as data binding and 
data/view separation, design time views of Excel and Word documents inside 
Visual Studio, rich support for Windows Forms controls in the document, the 
ability to create custom Office task panes, server side programming support 
against Office—and that’s just scratching the surface. Although the primary 
target of VSTO is the professional developer, that doesn’t mean that building 
an Office solution with VSTO is rocket science.  VSTO makes it possible to 
create very rich applications with just a few lines of code.   

This book tries to put into one place all the information you will need to 
be successful using VSTO to program against Word 2003, Excel 2003, 
Outlook 2003, and InfoPath 2003.  It introduces the Office object models and 
covers most commonly used objects in those object models.  In addition, this 
book will help you avoid some pitfalls that result from the COM origins of the 
Office object models. 

This book will also give you an insider view of all the rich features of 
VSTO.  We participated in the design and implementation of many of these 
features.  We can therefore speak from the unique perspective of living and 
breathing VSTO for the past three years.  Programming Office using VSTO is 
powerful and fun.  We hope you enjoy using VSTO as much as we enjoyed 
writing about it and creating it. 

 
Eric Carter 
Eric Lippert 
May 2005 
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Chapter 2 
Introduction to Office 

Solutions 

The Three Basic Patterns of Office Solutions 
Now that we have considered the basic pattern of the Office object 

models, let us consider how developers pattern and build their Office 
solutions.  There are three patterns that most solutions built using Office 
follow. 

 
• Office automation executable 
• Office add-in 
• Code behind an Office document 
 
An automation executable is a program separate from Office that 

controls and automates an Office application.  An automation executable can 
be created with development tools such as Visual Studio .NET 2005.  A 
typical example is a stand-alone console application or Windows Forms 
application that starts up an Office application and then automates it to 
perform some task.  To start a solution built this way, the user of the solution 
starts the automation executable that will in turn start up the Office 
application.  Unlike the other two patterns, the automation code does not run 
in the Office process but runs in its own process and talks cross process to the 
Office process being automated.  

An add-in is a class in an assembly (DLL) that Office loads and creates 
when needed.  An add-in runs in process with the Office application rather 
than requiring that a separate process from the Office application is running.  
To start a solution built this way, the user of the solution starts the Office 
application associated with the add-in.  Office detects registered add-ins on 



 

startup and loads them.  An add-in can customize an Office application in the 
same ways that code behind a document can.  However, code behind a 
document unloads when the document associated with the code is closed—an 
add-in can remain loaded throughout the lifetime of the Office application. 

The code behind pattern was popularized by Visual Basic for 
Applications (VBA)—a simple development environment that is included 
with Office that allows the developer to write Visual Basic code against the 
object model of a particular Office application and associate that code with a 
particular document or template.  A document can be associated with C# or 
VB.NET code behind using Visual Studio Tools for Office 2005.  To start a 
solution built this way, the user of the solution opens a document that has 
code behind it or creates a new document from a template that has code 
behind it.  The code behind the document will customize the Office 
application in some way while the document is open.  For example, code 
behind the document might add menu items that are only present when the 
document is open or associate code with events that occur while the document 
is open.   

We will discuss an additional pattern later in this book.  The server 
document pattern involves running code on a server to manipulate data stored 
in an Office document without starting the Office application.  VSTO makes 
this scenario possible through a feature called cached data.  We will discuss 
this pattern in Chapter 18. 

Hosted Code 
The add-in and code behind patterns are sometimes called hosted code 

which means that your code runs in the same process as the Office 
application.   

Discovery of Hosted Code 
In order for code to run in the Office application process, the Office 

application must be able to discover your code, load the code into its process 
space, and run your code.  Office add-ins are registered in the registry so 
Office can find and start them.  Using the registry seems a little non-.NET but 
this is necessary because Office 2003 talks to add-ins as if they were COM 
objects through COM interop.   

The code behind a document pattern does not require a registry entry.  
Instead, code is associated with a document by adding some special properties 
to the document file.  Office reads these properties when the document opens 
then Office loads the code associated with the document. 



 

Context Provided to Hosted Code 
It is critical that your hosted code get context—it needs to get the 

Application object or Document object for the Office application into which it 
is loading.  COM add-ins are provided with context through an interface 
implemented by the add-in class.  Outlook add-ins in VSTO are provided with 
context through a class created in the project that represents the application 
being customized.  Code behind a document in VSTO is provided with 
context through a class created in the project that represents the document 
being customized. 

Entry Point for Hosted Code 
At startup, Office calls into an entry point where your code can run for the 

first time and register for events that may occur later in the session.  For a 
COM add-in, this entry point is the OnConnection method of the 
IDTExtensibility2 interface implemented by the COM add-in.  For a VSTO 
Outlook add-in and VSTO code behind a document this entry point is the 
Startup event handler. 

How Code Gets Run After Startup 
Once hosted code starts up, code continues to run in one or more of the 

following ways. 

Code Runs In Response to Events Fired By Office 
The most common way that code runs after startup is in response to 

events that occur in the Office application.  For example, Office raises events 
when a document opens or a cell in a spreadsheet changes.  Listing 1-26 
shows a simple class that listens to the change event that Excel’s Worksheet 
object raises.  Typically, you will hook up event listeners like the one shown 
in Listing 1-26 when the initial entry point of your code is called. 

Interface Methods Called On Objects Provided To Office 
Objects such as the startup class for a COM add-in implement an interface 

called IDTExtensibility2 that has methods that Office calls during the run of 
the Office application.  For example, if the user turns off the COM add-in, 
Office calls the OnDisconnection method on the IDTExtensibility2 interface 
implemented by the COM add-in.  In this way, additional code runs after the 
initial entry point has run. 

Events Raised on Code Behind Classes 
The classes generated in VSTO projects that represent the customized 

application or document handle the Startup and Shutdown events.  After the 



 

constructor of the class executes, Office raises the Startup event.  When the 
document is about to be closed, Office raises the Shutdown event. 

How Code Gets Unloaded 
Your code gets unloaded in a number of ways, depending on the 

development pattern you are using.  If you are using the automation 
executable pattern, your code unloads when the automation executable you 
have written exits. If you are using the add-in pattern, your code unloads 
when the Office application exits or when the user turns off the add-in via an 
add-in management dialog.  If you are using the code behind pattern, your 
code unloads when the document associated with your code is closed. 

In the hosted patterns of running code there is some method that is called 
or event that is raised notifying you that you are about to be unloaded.  For 
COM add-ins, Office calls the OnDisconnection method.  For VSTO code 
behind documents and Outlook add-ins, Office raises the Shutdown event 
before your code is unloaded. 

Office Automation Executables 
We now consider each of these three patterns of Office solutions in more 

detail.  Office solutions that use the automation executable pattern start up an 
Office application in a very straightforward manner—by creating a new 
instance of the Application object associated with the Office application.  
Because the automation executable controls the Office application, the 
automation executable runs code at startup and any time thereafter when 
executing control returns to the automation executable. 

When an automation executable uses new to create an Application object, 
the automation executable controls the lifetime of the application by holding 
the created Application object in a variable.  Office determines whether it can 
shut down by determining the reference count or number of clients that are 
using its Application object. 

In Listing 2-1, as soon as new is used to create the myExcelApp variable, 
Excel starts and adds one to its count of clients that it knows are holding a 
reference to Excel’s Application object.  When the myExcelApp variable goes 
out of scope (when Main exits) .NET garbage collection releases the object 
and Excel is notified that the console application no longer needs Excel’s 
Application object.  This causes Excel’s count of clients holding a reference 



 

to Excel’s Application object to go to zero and Excel exits as no clients are 
using Excel anymore. 

When you create an Office application by creating a new instance of the 
Application object, the application starts up without showing its window.  
This is useful because you can automate the application without distracting 
the user by popping up windows.  If you need to show the application 
window, you can set the Visible property of the Application object to true.  
If you make the main window visible, the user controls the lifetime of the 
application.  In Excel, the application will not exit until the user quits the 
application and your variable holding the Excel Application object is garbage 
collected.  Word behaves differently—the application exits when the user 
quits the application even if a variable is still holding an instance of the Word 
Application object. 

Listing 2-1 sets the status bar of Excel to say “Hello World” and opens a 
new blank workbook in Excel by calling the Add method of Excel’s 
Workbooks collection.  Chapters 3 through 5 cover the Excel object model in 
more detail. 
Listing 2-1: Automation of a Excel via a console application. 
using System; 
using Excel = Microsoft.Office.Interop.Excel; 
using System.Windows.Forms; 
 
namespace ConsoleApplication 
{ 
  class Program 
  { 
    static bool exit = false; 
     
    static void Main(string[] args) 
    { 
      Excel.Application myExcelApp = new 
Excel.Application(); 
      myExcelApp.Visible = true; 
      myExcelApp.StatusBar = "Hello World"; 
      myExcelApp.Workbooks.Add(System.Type.Missing); 
 
      myExcelApp.SheetBeforeDoubleClick += new 
Excel.AppEvents_SheetBeforeDoubleClickEventHandler(myExce
lApp_SheetBeforeDoubleClick); 
 
      while (exit == false) 
        System.Windows.Forms.Application.DoEvents(); 
    } 
 



 

    static void myExcelApp_SheetBeforeDoubleClick(object 
Sh, Microsoft.Office.Interop.Excel.Range Target, ref bool 
Cancel) 
    { 
      exit = true; 
    } 
  } 
} 

 
Listing 2-1 also illustrates how an automation executable can yield time 

back to the Office application.  A reference to the System.Windows.Forms 
assembly must be added to the project. After a event handlers are hooked up, 
System.Windows.Forms.Application.DoEvents() is called in a loop to allow 
the Excel application to run normally.  If the user double clicks on a cell, 
Office yields time back to the event handler in the automation executable.  In 
the handler for the double click event, we set the static variable exit to true 
which will cause the loop calling DoEvents to exit and the automation 
executable to exit. 

You can see the lifetime management of Excel in action by running the 
automation executable in Listing 2-1 and exiting Excel without double 
clicking on a cell.  Excel will continue to run in a hidden state, waiting for the 
console application to release its reference to Excel’s Application object. 

Creating a Console Application that Automates Word 
In this section, we are going to walk through the creation of a simple 

console application that automates Word.  A wiki is a kind of online 
encyclopedia that users can contribute to. For an example, see 
http://www.officewiki.net for a wiki that documents the Office PIAs.  Wikis 
use simple, easy-to-edit text files that any visitor to the wiki can edit without 
having to know HTML.  These text files have simple representations of even 
complex elements like tables. Our console application will read a simple text 
file that specifies a table in wiki text format.  It will then automate Word to 
create a Word table that matches the text file specification. 

  In the wiki text format, a table that looks like Table 2-1 is specified by 
the text in Listing 2-2. 
Table 2-1: A simple table showing the properties and methods of Word’s 
Add-in object. 

Property or 
Method 

Name Return Type 

Property  Application Application 



 

Property Autoload Boolean 

Property Compiled Boolean 

Property Creator Int32 

Method Delete Void 

Property Index Int32 

Property Installed Boolean 

Property Name String 

Property Parent Object 

Property Path String 

 
Listing 2-2: A Wiki text representation of Table 1-4. 
||Property or Method||Name||Return Type|| 
||Property||Application||Application|| 
||Property||Autoload||Boolean|| 
||Property||Compiled||Boolean|| 
||Property||Creator||Int32|| 
||Method||Delete||Void|| 
||Property||Index||Int32|| 
||Property||Installed||Boolean|| 
||Property||Name||String|| 
||Property||Parent||Object|| 
||Property||Path||String|| 

 
We will use Visual Studio .NET 2005 to create a console application.  

After launching Visual Studio, choose New Project… from the File menu.  
The new project dialog shows a variety of project types.  Select the Visual C# 
node from the list of project types and select the Windows node under the 
Visual C# node.  This is slightly counter intuitive as there is an Office node 
available as well, but the Office node only shows VSTO code behind 
document projects and the VSTO Outlook add-in project. 

After you select the Windows node, you will see in the window to the 
right the available templates.  Select the Console Application template.  Name 
your console application project then press the OK button to create your 
project.  In Figure 2-1 we’ve created a console application called WordWiki.  
Note that the new project dialog can have a different appearance than the one 
shown in Figure 2-1 depending on the profile you are using.  In this book, we 
assume you are using the Visual C# Development Settings profile.  You can 
change your profile by choosing Import and Export Settings… from the Tools 
menu. 



 

 

 
Figure 2-1: Creating a console application from the New Project dialog. 

 
Once you press the OK button, Visual Studio creates a console 

application project for you.  Visual Studio displays the contents of the project 
in the Solution Explorer window as shown in Figure 2-2.   
 

 



 

Figure 2-2: The Console application project “WordWiki” shown in Solution 
Explorer. 

 
By default, a newly created console application references the assemblies 

System, System.Data, and System.Xml.  We also need to add a reference to 
the Word 2003 PIA.  We do this by right clicking on the References folder 
and choosing Add Reference… from the popup menu that appears.  This 
shows the Add Reference dialog in Figure 2-3.  Click on the COM tab and 
select the Microsoft Word 11.0 Object Library to add a reference to the Word 
2003 PIA.  Then click the OK button. 

 

 
Figure 2-3: Adding a reference to the Microsoft Word 2003 PIA. 

 
Visual Studio adds the reference to the Word 2003 PIA and adds 

additional references to the stdole, VBIDE, and Microsoft.Office.Core PIAs 
as shown in Figure 2-4.  These additional PIAs are ones that the Word PIA 
depends on.  Stdole is a PIA that contains the definition of some of the types 
that COM object models need.  VBIDE is the PIA for the object model 
associated with the VBA editor integrated into Office.  Microsoft.Office.Core 
(office.dll) is the PIA for common functionality shared by all the Office 
applications such as the object model for the toolbars and menus. 



 

 

 
Figure 2-4: When you add the Word 2003 PIA, dependent PIA references are 
automatically added to the project. 

 
Now that the proper references have been added to our console 

application, let’s start writing code.  Double click on Program.cs in the 
Solution Explorer window to edit the main source code file for the console 
application.  If you have outlining turned on, you will see the text “using …” 
at the top of the Program.cs file with a + sign next to it.  Click on the + sign to 
expand out the code where the using directives are placed.  Add the following 
three using directives so we can use objects from the Word PIA and the 
Microsoft.Office.Core PIA as well as classes in the System.IO namespace. 
 
using Office = Microsoft.Office.Core; 
using Word = Microsoft.Office.Interop.Word; 
using System.IO; 
 

We are now ready to write some real code that automates Word to create 
a table after reading a text input file in the wiki table format.  The entire 
listing of our program is shown in Listing 2-3.  Rather than explain every line 
of code in that listing, we will focus on the lines of code that automate Word.  
We assume the reader has some knowledge of how to read a text file in .NET 
and parse a string via the Split method.  We will briefly touch on some objects 
in the Word object model here, but Chapters 6 through 8 cover the Word 
object model in much more detail. 



 

The first thing we do in Listing 2-3 is declare a new instance of the Word 
application object by adding this line of code to Main method of our program 
class. 
 
Word.Application theApplication = new Word.Application(); 

 
Although Word.Application is an interface, we are allowed to create a 

new instance of this interface because the compiler knows that the 
Word.Application interface is associated with a COM object that it knows 
how to start.  When Word starts in response to an automation executable 
creating a new instance of its application object, it starts up without showing 
any windows.  You can automate Word in this invisible state when you want 
to automate Word without confusing the user by bringing up the Word 
window.  For this example, we want to make Word show its main window, 
and we do so by adding this line of code: 
 
theApplication.Visible = true; 
 

Next, we want to create a new empty Word document into which we will 
generate our table.  We do this by calling the Add method on the Documents 
collection returned by Word’s application object.  The Add method takes four 
optional parameters that we want to omit.  Optional parameters in Word 
methods are specified as omitted by passing by reference a variable 
containing the special value Type.Missing.  We declare a variable called 
missing that we set to Type.Missing and pass it by reference to each 
parameter we wish to omit as shown here: 

 
object missing = Type.Missing; 
Word.Document theDocument = theApplication.Documents.Add( 

ref missing, 
ref missing,  
ref missing,  
ref missing); 

 
With a document created, we want to read the input text file specified by 

the command line argument passed to our console application.  We want to 
parse that text file to calculate the number of columns and rows.  Once we 
know the number of columns and rows, we use the line of code below to get a 
Range object from the Document object.  By passing our missing variable to 
the optional parameters, the Range method will return a range that includes 
the entire text of the document. 

 



 

Word.Range range = theDocument.Range(ref missing, ref 
missing); 
 

We then use our Range object to add a table by calling the Add method of 
the Tables collection returned by the Range object.  We pass the Range object 
again as the first parameter to the Add method to specify that we want to 
replace the entire contents of the document with the table.  We also specify 
the number of rows and columns we want. 
 
Word.Table table = range.Tables.Add( 

range,  
rowCount,  
columnCount,  
ref missing,  
ref missing); 

 
The Table object has a Cell method that takes a row and column and 

returns a Cell object.  The Cell object has a Range property that returns a 
Range object for the cell in question that we can use to set the text and 
formatting of the cell.  The code that sets the cells of the table is shown 
below. Note that as in most of the Office object models, the indices are 1-
based meaning they start with one as the minimum value rather than being 0-
based and starting with zero as the minimum value. 
 
for (columnIndex = 1; columnIndex <= columnCount; 
columnIndex++) 
{ 
  Word.Cell cell = table.Cell(rowIndex, columnIndex); 
  cell.Range.Text = splitRow[columnIndex]; 
} 
 

Code to set the formatting of the table by setting the table to size to fit 
contents and bolding the header row is shown below.  We use the Row object 
returned by table.Rows[1] which also has a Range property that returns a 
Range object for the row in question.  Also, we encounter code that sets the 
first row of the table to be bolded.  One would expect to be able to write the 
code table.Rows[1].Range.Bold = true, but Word’s object model 
expects an int value (0 or 1) rather than a bool.  This is one of many 
examples you will come across where the Office object models don’t match 
.NET guidelines because of their origins in COM. 

 
// Format table 
table.Rows[1].Range.Bold = 1; 



 

table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitCon
tent); 

 
Finally, there is some code at the end of the program that forces Word to 

quit without saving changes: 
 

// Quit without saving changes 
object saveChanges = false; 
theApplication.Quit(ref saveChanges, ref missing, ref 
missing); 

 
If we don’t write this code, Word will stay running even after the console 

application exits.  Once you show the Word window by setting the 
Application object’s Visible property to true, Word puts the lifetime of the 
application in the hands of the end user rather than the automating program.  
So even when the automation executable exits, Word will continue running.  
To force Word to exit we must call the Quit method on Word’s Application 
object.  If this program didn’t make the Word window visible—say for 
example it created the document with the table then saved it to a file all 
without showing the Word window—it would not have to call Quit because 
Word would exit when the program exited and released all its references to 
the Word objects. 

To run the console application in listing 2-3, you must create a text file 
that contains the text in Listing 2-2.  Then pass the file name of the text file as 
a command line argument to the console application.  You can set up the 
debugger to do this by right clicking on the WordWiki project in Solution 
Explorer and choosing Properties.  Then click on the Debug tab and set the 
Command line arguments field to the name of your text file. 
Listing 2-3: The complete WordWiki implementation. 
using System; 
using System.Collections.Generic; 
using System.Text; 
using System.IO; 
using Office = Microsoft.Office.Core; 
using Word = Microsoft.Office.Interop.Word; 
  
namespace WordWiki 
{ 
  class Program 
  { 
    static void Main(string[] args) 
    { 



 

      Word.Application theApplication = new 
Word.Application(); 
      theApplication.Visible = true; 
 
      object missing = System.Type.Missing; 
      Word.Document theDocument = 
theApplication.Documents.Add(ref  missing, ref missing, 
ref missing, ref missing); 
 
      TextReader reader = new 
System.IO.StreamReader(args[0]); 
 
      string[] separators = new string[1]; 
      separators[0] = "||"; 
      int rowCount = 0; 
      int columnCount = 0; 
 
      // Read rows and calculate number of rows and 
columns 
      System.Collections.Generic.List<string> rowList = 
new System.Collections.Generic.List<string>(); 
      string row = reader.ReadLine(); 
 
      while (row != null) 
      { 
        rowCount++; 
        rowList.Add(row); 
 
        // If this is the first row, calculate the number 
of columns 
        if (rowCount == 1) 
        { 
          string[] splitHeaderRow = row.Split(separators, 
StringSplitOptions.None); 
          columnCount = splitHeaderRow.Length - 2; // 
Ignore the first & last separator 
        } 
 
        row = reader.ReadLine(); 
      } 
 
      // Create a table 
      Word.Range range = theDocument.Range(ref missing, 
ref missing); 
      Word.Table table = range.Tables.Add(range, 
rowCount, columnCount, ref missing, ref missing); 
  
      // Populate table 



 

      int columnIndex = 1; 
      int rowIndex = 1; 
 
      foreach (string r in rowList) 
      { 
        string[] splitRow = r.Split(separators, 
StringSplitOptions.None); 
 
        for (columnIndex = 1; columnIndex <= columnCount; 
columnIndex++) 
        { 
          Word.Cell cell = table.Cell(rowIndex, 
columnIndex); 
          cell.Range.Text = splitRow[columnIndex]; 
        } 
 
        rowIndex++; 
      } 
 
      // Format table 
      table.Rows[1].Range.Bold = 1; 
      
table.AutoFitBehavior(Word.WdAutoFitBehavior.wdAutoFitCon
tent); 
 
      // Wait for input from the command line before 
exiting 
      System.Console.WriteLine("The table has been 
generated."); 
      System.Console.ReadLine(); 
 
      // Quit without saving changes 
      object saveChanges = false; 
      theApplication.Quit(ref saveChanges, ref missing, 
ref missing); 
    } 
  } 
} 

Office Add-Ins 
The second pattern used in Office development is the add-in pattern.  This 

book will cover several types of Office add-ins.  These include VSTO add-ins 
for Outlook, COM add-ins for Excel and Word, and Automation add-ins for 
Excel: 



 

 
• VSTO add-ins for Outlook.  This new VSTO 2005 feature makes it 

extremely easy to create an add-in for Outlook 2003.  The model is 
the most “.NET” of all the add-in models and is very similar to the 
VSTO 2005 code behind model for documents.  Chapter 23 
describes this model in detail. 

• COM add-ins for Excel and Word.  A C# class in a class library 
project can implement the IDTExtensibility2 interface and register in 
the registry as a COM object and COM add-in.  Through COM 
interop, Office creates the C# class and talks to it.  Chapter 24 
describes the creation of COM add-ins and some issues that make 
COM add-in development problematic. 

• Automation add-ins for Excel.  These managed classes expose 
public functions that Excel can use in formulas.  The C# class must 
register in the registry as a COM object.  Through COM interop, 
Excel can create an automation add-in and use its public methods in 
formulas.  Automation add-ins and their use in Excel formulas are 
discussed in Chapter 3. 

 
There are some Office add-in technologies that this book will not discuss.  

Application level Smart Tags add-ins and Smart Documents add-ins are not 
discussed because VSTO provides a much easier way of accessing Smart Tag 
and Smart Document functionality, albeit at the document or template level 
rather than at the application level.  For more information on VSTO’s support 
for Smart Tags and Smart Documents, see Chapter 15 and Chapter 16. 

Creating an Outlook Add-in in VSTO 
To create an Outlook add-in project in VSTO, choose Project… from the 

New menu of the File menu in Visual Studio.  Select the Visual C# node from 
the list of project types and select the Office node under the Visual C# node.  
The Outlook Add-in project appears in the list of templates.  Type a name for 
your new Outlook add-in project and pick a location for the project.  Then 
press the OK button. 
 



 

 
Figure 2-5: Creating a new Outlook add-in project. 
 

VSTO creates a project with references to the Outlook 2003 PIA, the core 
Office PIA, and other needed references as shown in Figure 2-6.  VSTO also 
adds a project item to the project called ThisApplication.cs.  This project item 
contains a C# class that you will add to when implementing your Outlook 
add-in. 
 



 

 
Figure 2-6: The Outlook add-in project in Solution Explorer. 

 
If you double click on the ThisApplication.cs project item, you will see 

the code shown in Listing 2-4.  There is a simple Startup and Shutdown event 
handler where you can write code that executes on the startup and shutdown 
of the add-in.  The ThisApplication class derives from an aggregate of the 
Outlook Application object.   This allows you to access properties and 
methods of the Outlook Application object by writing code like 
this.Inspectors.Count in the ThisApplication class.   

Listing 2-4: The initial code in the ThisApplication class in an Outlook add-
in project. 
using System; 
using System.Windows.Forms; 
using Microsoft.VisualStudio.Tools.Applications.Runtime; 
using Outlook = Microsoft.Office.Interop.Outlook; 
 
namespace OutlookAddin1 
{ 
  public partial class ThisApplication 
  { 
    private void ThisApplication_Startup(object sender, 
System.EventArgs e) 
    { 
    } 



 

 
    private void ThisApplication_Shutdown(object sender, 
System.EventArgs e) 
    { 
    } 
 
    #region VSTO Designer generated code 
    private void InternalStartup() 
    { 
      this.Startup += new 
System.EventHandler(ThisApplication_Startup); 
      this.Shutdown += new 
System.EventHandler(ThisApplication_Shutdown); 
    } 
    #endregion 
  } 
} 

 
Looking at Listing 2-4 you may wonder about the use of “partial” in the 

class definition.  VSTO uses partial classes which are a new feature of .NET 
that allows you to define part of a class in one file and another part of a class 
in a second file and then compile them together as one class.  VSTO uses this 
feature to hide some additional generated code associated with the 
ThisApplication class from you to reduce the complexity of the class where 
you write your code.  The final ThisApplication class will be compiled from 
the partial class in Listing 2-4 and additional code in a partial class generated 
by VSTO that is hidden from you. 

We are going to add to the code in Listing 2-4 to create an add-in to that 
will solve an annoying problem—people replying inadvertently to an e-mail 
sent out to a mailing alias that contains a large number of people.  Unless you 
have “Vice President” in your title, you probably do not want to be sending e-
mail to more than, say, 25 people at any given time. We are going to create an 
add-in that will warn you if you do this and give you the “This is a potentially 
career limiting move. Are you sure you want to send this e-mail to 25,000 
people?” message. 

Outlook’s Application object has an ItemSend event that fires whenever 
a user sends an email.  We will add additional code to the Startup method of 
the ThisApplication class to hookup an event handler for the ItemSend event 
as shown in Listing 2-5.  Because the ThisApplication class derives from an 
aggregate of Outlook’s Application object, we can write the code 
“this.ItemSend” because ItemSend is an event raised by the ThisApplication 
base class.  The ItemSend event handler takes an object parameter called 
Item which is the Outlook item being sent.  Because Item could be any of a 



 

number of things such as a meeting request or an e-mail message, Item is 
passed as an object instead of as a specific type. The ItemSend event 
handler also has a bool parameter passed by reference called Cancel that can 
be set to true to prevent the Outlook item from being sent. 

In our ItemSend event handler we need to check to see if the Item 
parameter which is passed as an object is actually an e-mail.  The easiest 
way to achieve this is to use the as keyword to try to cast the Item parameter 
to an Outlook.MailItem.  If the cast succeeds, the resulting value will be non-
null and we will know that the item being sent is an Outlook.MailItem and 
therefore an e-mail message.  We can then iterate through the Recipients 
collection on the MailItem object and check to see if we are sending to any 
recipient lists that include more than 25 people.  Each Recipient object in the 
Recipients collection has an AddressEntry property that returns an 
AddressEntry object.  The AddressEntry object has a Members property that 
returns a collection that we can check the count of.  If we find the count to be 
more than 25, we will show a dialog and ask the user if they really want to 
send the mail.  If the user clicks the No button, we will set the Cancel 
parameter of the ItemSend event to true to cancel the sending of career 
limiting e-mail. 
Listing 2-5: A ThisApplication Class in an Outlook add-in project that 
handles the ItemSend event and checks for more than 25 recipients. 
using System; 
using System.Windows.Forms; 
using Microsoft.VisualStudio.Tools.Applications.Runtime; 
using Outlook = Microsoft.Office.Interop.Outlook; 
 
namespace OutlookAddin1 
{ 
  public partial class ThisApplication 
  { 
    private void ThisApplication_Startup(object sender, 
System.EventArgs e) 
    { 
      this.ItemSend += new 
Outlook.ApplicationEvents_11_ItemSendEventHandler(ThisApp
lication_ItemSend); 
    } 
 
    void ThisApplication_ItemSend(object Item, ref bool 
Cancel) 
    { 
      Outlook.MailItem myItem = Item as Outlook.MailItem; 
 



 

      if (myItem != null) 
      { 
        foreach (Outlook.Recipient recip in 
myItem.Recipients) 
        { 
          if (recip.AddressEntry.Members.Count > 25) 
          { 
            // Ask the user if they really want to send 
this email 
            string message = "Are you sure that you want 
to send mail to " + 
              recip.AddressEntry.Name + " " + " which 
includes " + 
              recip.AddressEntry.Members.Count + " 
people?"; 
 
            string caption = "More than 25 recipients"; 
            MessageBoxButtons buttons = 
MessageBoxButtons.YesNo; 
            DialogResult result; 
 
            result = MessageBox.Show(message, caption, 
buttons); 
 
            if (result == DialogResult.No) 
            { 
              Cancel = true; 
              break; 
            } 
          } 
        } 
      } 
    } 
 
    private void ThisApplication_Shutdown(object sender, 
System.EventArgs e) 
    { 
    } 
 
    #region VSTO Designer generated code 
    private void InternalStartup() 
    { 
      this.Startup += new 
System.EventHandler(ThisApplication_Startup); 
      this.Shutdown += new 
System.EventHandler(ThisApplication_Shutdown); 
    } 
    #endregion 



 

  } 
} 

 
When you run the project with the code shown in Listing 2-4, Outlook 

launches and the add-in loads.  Try sending a mail to an alias that includes 
more than 25 people—you might want to go offline first in case you mistyped 
the code. If all works right, the add-in will display a dialog box warning you 
that you are sending an e-mail to more than 25 people and you will be able to 
cancel the send of the e-mail.  Exit Outlook to end your debugging session.   

VSTO Outlook add-ins are discussed in more detail in chapter 23.  The 
Outlook object model is discussed in Chapters 9 through 11. 

Code behind a Document 
Visual Studio Tools for Office 2005 supports code behind a document by 

requiring that the developer use classes generated in a VSTO project that have 
pre-hooked up context and pre-hooked up events.  A VSTO project can have 
multiple startup classes that handle a Startup and Shutdown event raised on 
each startup class. In Word, there is only one startup class corresponding to 
the document.  In Excel, there are multiple startup classes—one for the 
workbook and one for each worksheet or chart sheet in the workbook. 

The first time your code runs in a VSTO code behind the document 
project is when Office raises the Startup event handled by any of the startup 
classes created for you.  VSTO provides context via the base class of the class 
you are writing code in. A VSTO class customizing an Excel worksheet 
derives from a base class that aggregates all the methods, properties, and 
events of an Excel worksheet. This enables you to write code like this in the 
Startup method of a worksheet class. 
 
MessageBox.Show(this.Name + " is the sheet name."); 
 

By using this.Name, you are referring to the Name property of the 
Excel Worksheet object aggregated by the base class.  Listing 2-6 shows a 
VSTO 2005 code behind class for an Excel Worksheet. In addition to the 
Startup and Shutdown methods in the code behind class, there is also a 
generated method called InternalStartup.  You should not put any of your 
code in this InternalStartup method as it is auto-generated by VSTO 2005 and 
modifying it can break Visual Studio’s support for code behind classes.  
Instead, your startup code should go in the Startup event handler.  VSTO code 



 

behind document classes also use partial classes to hide some additional code 
generated by VSTO. 
Listing 2-6: A VSTO 2005 code behind class. 
using System; 
using System.Data; 
using System.Drawing; 
using System.Windows.Forms; 
using Microsoft.VisualStudio.Tools.Applications.Runtime; 
using Excel = Microsoft.Office.Interop.Excel; 
using Office = Microsoft.Office.Core; 
 
namespace ExcelWorkbook1 
{ 
  public partial class Sheet1 
  { 
    private void Sheet1_Startup(object sender, 
System.EventArgs e) 
    { 
      // Initial entry point. 
      // This code gets run first when the code behind is 
created 
      // The context is implicit in the Sheet1 class 
      MessageBox.Show("Code behind the document 
running."); 
      MessageBox.Show(this.Name + " is the sheet name. 
"); 
    } 
 
    private void Sheet1_Shutdown(object sender, 
System.EventArgs e) 
    { 
    } 
 
    #region VSTO Designer generated code 
 
    /// <summary> 
    /// Required method for Designer support - do not 
modify 
    /// the contents of this method with the code editor. 
    /// </summary> 
    private void InternalStartup() 
    { 
      this.Startup += new 
System.EventHandler(Sheet1_Startup); 
      this.Shutdown += new 
System.EventHandler(Sheet1_Shutdown); 
    } 



 

 
    #endregion 
 
  } 
} 

VSTO 2005 Code behind a Document in Excel 
In this section, we are going to create some simple code behind a 

document in Excel using VSTO 2005.  First, start up VSTO 2005 and select 
the File / New / Project menu item.  As we’ve seen previously, navigate to the 
Office node under the Visual C# root. 

 

 
Figure 2-7: Using the New Project dialog to create an Excel Workbook 
project. 

 
We will create an Excel Workbook project using C#.  If you already have 

a workbook which you would like to add VSTO 2005 customization code 
behind, the dialog box shown in Figure 2-8 pops up and asks you where it can 



 

be found.  This time we will just start from scratch, creating a new, blank 
workbook. 

 

 
Figure 2-8: Selecting the workbook to associate with your code behind. 

 
Once we have created the project, the designer view appears as shown in 

Figure 2-9.   
 



 

 
Figure 2-9: The design view for VSTO 2005 Excel code behind. 

 
There are a few interesting things to notice in Figure 2-9.  First, Excel is 

running inside the Visual Studio 2005 IDE as a designer, just the same as a 
Windows Forms designer would when developing a Windows Forms project.   

Second, look at the menu bar as shown in Figure 2-10.  VSTO merges the 
Visual Studio menus (Build, Debug, and so on) and the Excel menu items 
(Format, Data, and so on) together.  Menu items that appear in both Visual 
Studio and Excel (Tools, for example) merge by adding a sub menu to the 
Visual Studio menu such as Microsoft Office Excel Tools that can be selected 
to see the Excel Tools menu. 

 



 

 
Figure 2-10: The merging of Visual Studio and Excel menus. 

 
Third, notice in Figure 2-9 that the toolbox contains a new category: 

Excel Controls. When designing a document using Visual Studio you can 
create named ranges and list objects using the Excel menu items familiar to 
Excel users, or the toolbox idiom familiar to Visual Studio users. 

Fourth, notice that the properties window shows properties of the selected 
object—in this case, Sheet1.  You can use the properties window to edit 
properties of Excel’s objects the same way that you would edit properties of 
controls and forms in a Windows Forms project. 

Fifth, notice that the Solution Explorer has four classes in it already.  
Each underlying Excel Worksheet and Workbook object is represented by a 
.NET class that you can extend and customize.  As you make changes to the 
document in the designer, the code behind updates automatically.  For 
example, let’s drag a ListObject from the toolbox onto the Sheet1 designer, 
and draw it to be ten rows by four columns as shown in Figure 2-11. 

 



 

 
Figure 2-11: Creating a ListObject in the designer. 

 
As you can see from the properties window, the designer has chosen a 

default name for the new list object.  We could edit it, but in this example, we 
will keep the default name List1. 

Let’s take a look at the code behind this worksheet and make some simple 
changes to it.  Right-click on Sheet1.cs in the Solution Explorer and select 
View Code.  We are going to briefly illustrate two VSTO features—
ActionsPane and ListObject databinding.  We will declare a Windows Forms 
button as a member variable of the class and call it myButton.  In the Startup 
event, we will show that button in the Document Actions task pane of Excel 
by adding it to the ActionsPane’s Controls collection.  This will cause Excel 
to show the Document Actions task pane and display our button.  We will 
also handle the Click event of the button and when the button is clicked we 
will databind our list object to a randomly generated DataTable.  This code is 
shown in Listing 2-7. 



 

Listing 2-7: A VSTO 2005 code behind class that illustrates adding a 
control to the Document Actions task pane and databinding a ListObject 
control to a DataTable. 
using System; 
using System; 
using System.Data; 
using System.Drawing; 
using System.Windows.Forms; 
using Microsoft.VisualStudio.Tools.Applications.Runtime; 
using Excel = Microsoft.Office.Interop.Excel; 
using Office = Microsoft.Office.Core; 
 
namespace ExcelWorkbook1 
{ 
  public partial class Sheet1 
  { 
    Button myButton = new Button(); 
    DataTable table; 
 
    private void Sheet1_Startup(object sender, 
System.EventArgs e) 
    { 
      myButton.Text = "Databind!"; 
      myButton.Click += new EventHandler(myButton_Click); 
      
Globals.ThisWorkbook.ActionsPane.Controls.Add(myButton); 
    } 
 
    void myButton_Click(object sender, EventArgs e) 
    { 
      List1.DataSource = null; 
      table = new DataTable(); 
      Random r = new Random(); 
 
      for (int i = 0; i < 4; i++) 
        table.Columns.Add("Col " + i.ToString()); 
 
      for (int i = 0; i < 20; i++) 
        table.Rows.Add(r.NextDouble(), r.NextDouble(), 
r.NextDouble(), r.NextDouble()); 
 
      List1.DataSource = table; 
    } 
 
    private void Sheet1_Shutdown(object sender, 
System.EventArgs e) 
    { 



 

    } 
 
    #region VSTO Designer generated code 
    /// <summary> 
    /// Required method for Designer support - do not 
modify 
    /// the contents of this method with the code editor. 
    /// </summary> 
    private void InternalStartup() 
    { 
      this.Startup += new 
System.EventHandler(Sheet1_Startup); 
      this.Shutdown += new 
System.EventHandler(Sheet1_Shutdown); 
    } 
 
    #endregion 
  } 
} 

 
Build and run the code, and sure enough Excel starts up, the Startup event 

is raised for the sheet, and the button is added to the actions pane.  Click the 
button and a random DataTable is generated and bound to the ListObject as 
shown in Figure 2-12.  Exit Excel to end your debugging session. 



 

 
Figure 2-11: The result of running Listing 2-7 and clicking on the button we 
added to the Document Actions task pane. 

 
We have briefly illustrated VSTO’s support for the Document Actions 

task pane and the ability to databind that VSTO adds to Excel’s ListObject.  
For more information on VSTO’s support for the Document Actions task 
pane, see Chapter 15.  For more information on VSTO’s support for 
databinding, see Chapter 17. 



 

Conclusion 
In this chapter, we have introduced the three basic patterns of Office 

solutions: an automation executable, an add-in, and code behind a document.  
We have also introduced how to build solutions following these three basic 
patterns using Visual Studio 2005 and Visual Studio Tools for Office 2005. 

Now that you know how to create a basic automation executable, add-in, 
and code behind the document solution, we will use these skills in the next 
chapters as we focus on specific functionality of Excel, Word, Outlook, and 
InfoPath that you can use in your solutions. 

Although we will not have more to say about automation executables, this 
chapter has only served as an introduction to add-ins and code behind 
documents.  Chapter 23 covers VSTO add-ins for Outlook.  Chapter 24 covers 
COM add-ins for Word and Excel. Chapter 3 covers automation add-ins for 
Excel.  Chapters 13 through 17 cover the code behind document model of 
VSTO 2005 in greater detail.  
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