

Professional WCF Programming:

 .NET Development with the Windows®
Communication Foundation

Chapter 7: Clients

ISBN-10: 0-470-08984-9
ISBN-13: 978-0-470-08984-2

Copyright of Wiley Publishing, Inc.
Posted with Permission

Clients

Up until now this book has mainly focused WCF service implementations. The last three chapters
have discussed the components necessary to build a Windows Communication Foundation serv-
ice. Chapter 4 discussed addresses, Chapter 5 discussed bindings, and Chapter 6 discussed con-
tracts. Each of these is essential in building a successful service. It is time, however, to change the
focus and take a good look at the client, the piece of the equation that utilizes everything you have
learned so far.

This chapter covers the following topics:

❑ Client architecture

❑ Client communication patterns

❑ Creating client code

❑ Defining client bindings and endpoints

Client Architecture
A Windows Communication Foundation client is an application used to invoke functionality
exposed by a service. The client application will communicate with the service via a service end-
point. In order to do that the client needs to know several pieces of information about the service,
such as the address at which the endpoint is communicating, the binding the service is using, and
the service contract. Each of these elements has been discussed in the previous chapters.

A good look under the hood of a client will reveal some important things about its makeup.
One of the things you will find is a channel built on binding settings specified in the configuration
file. Just to be clear, these bindings are the same bindings that have been discussed in the past
couple of chapters. These bindings allow the client and service to appropriately and effectively
communicate.

12_089842 ch07.qxp 3/5/07 7:05 PM Page 165

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

The second thing you will find is the implementation of the IClientChannel interface. This interface
defines the operations that allow developers to control channel functionality, such as closing the client
session and disposing of the channel. It exposes the methods and functionality of the
SystemServiceModel.ChannelFactory class.

Lastly, you will find a generated service contract, which provides the functionality that turns client
method calls into outgoing messages, and turns incoming messages into information that your client
application can readily use in the form of return values and output parameters.

Clients communicate with service endpoints through a proxy, as shown in Figure 7-1. A proxy class is
what the client manipulates to communicate to a service. This communication takes place via a channel.
Once that proxy (and channel) is created, the client can access any exposed methods (service operations)
on that endpoint.

Figure 7-1

There are two ways to create client proxies, both of which are discussed in this chapter:

❑ The first method is to create the proxy from generated code, that is, code that is automatically
generated from the metadata provided by the service. This is done by using the Service Model
Metadata Utility Tool Svcutil.exe. The Svcutil utility creates an instance of the derived class
ClientBase that is then accessible to the client.

❑ The second method is by creating the proxy dynamically through code using a ChannelFactory
object. This is provided by the System.ServiceModel.ChannelFactory class. This method allows
for greater control by the developer, such as creating new client channels from an existing chan-
nel factory.

Client Objects
A Windows Communication Foundation client must contain two base object interfaces, the
ICommunicationObject interface and the IExtensibleObject interface.

ICommunicationObject
The ICommunicationObject interface is one of the core components that define basic communication
object functionality. The responsibility of this object is to define the contract for the basic state for all
communication objects in the system; for example, is the communication object opened or closed, or in
the process of opening or closing. These objects include channels, listeners, dispatchers, factories, and
service hosts.

A state transition is the transition from one state to another; for example, the communication channel
transitioning from an “opening” state to an “open” state.

Message
Client ServiceEndpointProxy

166

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 166

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

This interface defines a set of methods for initiating state transitions. These methods are:

❑ Open: Causes a communication object to transition from the Created state to the Opened state.

❑ Close: Causes a communication object to transition from its current state to the Closed state.

❑ Abort: Causes a communication object to instantly transition from its current state into the
Closed state.

This interface also defines notification events for state transitions. These include:

❑ Opening: This event is fired when the communication object transitions from Created to
Opened, such as when the Open or BeginOpen method is invoked.

❑ Closing: This event is fired when the communication object transitions from Opened to Closed,
such as when the Close or BeginClose method is invoked.

❑ Opened: This event is fired when the communication object is finished transitioning from
Opening to Opened.

❑ Closed: This event is fired when the communication object is finished transitioning from
Closing to Closed.

❑ Faulted: This event is fired when the communication object enters the Faulted state.

This interface also includes a set of methods that define asynchronous versions of the Open and Close
methods:

❑ BeginOpen: Begins an asynchronous operation to open a communication object.

❑ BeginClose: Begins an asynchronous operation to close a communication object.

❑ EndOpen: Completes an asynchronous operation to open a communication object.

❑ EndClose: Completes an asynchronous operation to close a communication object.

This interface has a single State property, of type CommunicationState, which is used to return the cur-
rent state of the object.

When an ICommunicationObject is instantiated, its default state is Created. This is not readily intuitive
because many assume that it’s defaulted to Opened. While in the Created state, the
ICommunicationObject can be configured but it cannot send or receive communication. For example,
any of the events listed earlier can be registered. Once the object is in the Open state, it can send and
receive messages, but it no longer can be configured.

The Open method must be called for the object to enter the Opened state. The object will stay in the
Open state until its transition to the Closed state is finished. The Close method allows any unfinished
work to be completed before transitioning to the Closed state. The Abort method does not exit grace-
fully, meaning all unfinished work is ignored. The Abort method can also be used to cancel any and all
outstanding operations, and that includes outstanding calls to the Close method. Keep in mind that the
Abort method will cause any unfinished work to be cancelled. Use transactions, discussed in Chapter 9,
if you want work grouped as a single unit.

167

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 167

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

IExtensibleObject
The IExtensibleObject interface provides extensible behavior in the client, meaning that it enables the
object to be involved in custom behaviors. In WCF, the extensible object pattern is used to add new func-
tionality to existing runtime classes, thereby extending current components, as well as adding new state
features to an object.

This interface exposes a single property to provide this functionality. The Extensions property, of type
IExtenstionCollection, is used to return a collection of extension objects that can then be used to extend
the existing runtime classes.

Client Channels
Windows Communication Foundation clients contain two base channel interfaces, the IClientChannel
interface and the IContextChannel interface.

IClientChannel
The IClientChannel interface defines the extended ClientBase channel operations. It contains a number
of methods and properties that can be used to define the outbound request channel behavior and the
request/reply channel behavior of the client application.

For example, the AllowInitializationUI property can be used to tell WCF to open a channel without an
explicit call to open it. There are also a small handful of methods that you can use to return the creden-
tial information.

The IClientChannel interface inherits from the IContextChannel interface (discussed next) as well as the
ICommunicationObject and IExtensibleObject interfaces discussed earlier. This allows client applications
to have access to client-side runtime functionality directly.

IContextChannel
The IContextChannel interface defines the session state of the channel. This information includes the
SessionId, Input and Output session, as well as the local and remote endpoints that are currently com-
municating with the client in the session. This information is provided by the following properties:

❑ InputSession: Returns the input session for the channel.

❑ OutputSession: Returns the output session for the channel.

❑ LocalAddress: Returns the local endpoint for the channel.

❑ RemoteAddress: Returns the remote address connected with the channel.

❑ SessionId: Returns the current session identifier.

❑ OperationTimeout: Returns, or sets, the time in which the operation has to complete. If the
operation does not complete in the specified time, an exception is thrown.

❑ AllowOutputBatching: Tells WCF to store messages before handing them off to the transport.

There are two AllowOutputBatching properties, one that is applied at the channel level and one that is
applied at the message level. Setting the AllowOutputBatching at the message level does not override

168

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 168

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

the channel-level AllowOutputBatching property. If the message-level AllowOutputBatching property is
set to true, the message will be sent immediately even if the AllowOutputBatching property is set to true
at the channel level.

Keep in mind that the AllowOutputBatching property can affect the performance of the system because
you are telling WCF to store outgoing messages in a buffer and send them out with other messages as a
group. Your message delivery needs will affect how this setting is configured. Setting this property to
true means that message throughput and delivery is essential to you, and setting it to false will reduce
latency.

Channel Factories
It is important that you understand the client objects and client channel objects because both of these uti-
lize the ChannelFactory object. The ChannelFactory object is responsible for creating and supporting all
the runtime client invocations.

As stated earlier, you can either create clients on demand using the ChannelFactory or by using the
Service Model Metadata Utility svcutil.exe. The svcutil utility automatically generates the handling of
the ChannelFactory, but as stated before, creating the channels on demand provides you more control
over the creation and handling of the channels. For example, you can repeatedly create a new channel
from an existing factory.

The following code illustrates using the ChannelFactory to create a channel to a service by specifying the
service contract name:

EndpointAddress ea = new EndpointAddress(“tcp.net://localhost:8000/WCFService”);
BasicHttpBinding bb = new BasicHttpBinding();
WCFClientApp.TCP.IServiceClass client =

ChannelFactory<IServiceClass>.CreateChannel(bb, ea);
client.PlaceOrder(Val1);

In this example, the address and binding were specified in code and passed as parameters to the
CreateChannel method.

The following section details the ChannelFactory class, which is used to create and manage channels
that are used by the clients to send messages and communicate with service endpoints.

ChannelFactory Class
The following sections list many of the important constructors, properties, and methods of the
ChannelFactory class.

Constructors
The ChannelFactory class has a single constructor called ChannelFactory, and it is used to instantiate a
new instance of the ChannelFactory class, as illustrated in the previous example. The following code
snippet, taken from the previous example, shows the instantiation of the ChannelFactory class:

WCFClientApp.TCP.IServiceClass client =
ChannelFactory<IServiceClass>.CreateChannel(bb, ea);

169

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 169

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Properties
The following properties are exposed by the ChannelFactory class:

❑ Credentials: Returns the credentials used by the client to communicate with the service end-
point, via the channel created by the factory.

❑ Endpoint: Returns the endpoint that the channel created by the factory connect.

❑ State: Returns the value of the current communication object state.

The use of credentials requires a reference to the System.ServiceModel.Description namespace, which
needs to be added via a using statement:

using System.ServiceModel.Description;

Once you have access to the System.ServiceModel.Description namespace, you can configure client and
service credentials as well as provide credentials for authenticating on the proxy side. The following
example illustrates how to provide credentials for proxy side authentication when creating a channel:

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);

ChannelFactory<TCP.IServiceClass> factory = new
ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

TCP.IServiceClass channel = factory.CreateChannel();

ClientCredentials cc = new ClientCredentials();
cc.UserName.UserName = “scooter”;
cc.UserName.Password = “wcfrocks”;
factory.Credentials = cc;

The following example illustrates how to use the Endpoint property to return the service endpoint on
which the channel was produced:

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);

ChannelFactory<TCP.IServiceClass> factory = new
ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

Console.WriteLine(factory.Endpoint);

Methods
The following methods are exposed by the ChannelFactory class. The BeginClose, BeginOpen, EndClose,
and EndOpen methods are used in asynchronous communication.

❑ Abort: Immediately transitions the communication object from its current state into the closing
state.

❑ BeginClose: Begins an asynchronous operation to close the current communication object.

❑ BeginOpen: Begins an asynchronous operation to open a communication object.

170

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 170

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

❑ Close: Transitions the object from its current state into the closed state.

❑ EndClose: Finishes the asynchronous close on the current communication object.

❑ EndOpen: Finishes the asynchronous open on the current communication object.

❑ Open: Transitions the object from the created state into the opened state.

The following can be used to explicitly open a channel:

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);

ChannelFactory<TCP.IServiceClass> factory = new
ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

TCP.IServiceClass channel = factory.CreateChannel();

factory.Open();

channel.DoSomething();

The following can be used to implicitly open a channel:

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);

ChannelFactory<TCP.IServiceClass> factory = new
ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

TCP.IServiceClass channel = factory.CreateChannel();

channel.DoSomething();

The difference between the two previous examples is that by explicitly opening the channel you have
more control over the creation and management of the channel.

Be sure to close the channel factory when you are done with it:

factory.close();

CreateChannel Method

The CreateChannel method creates a channel of a specific type to a specified endpoint. Typically in code
you will create a channel that is configured with a specific binding and endpoint. In most of the exam-
ples you have seen, a channel has been created to an endpoint that has been configured with a specific
binding, as shown here:

EndpointAddress ea = new EndpointAddress(“tcp.net://localhost:8000/WCFService”);
BasicHttpBinding bb = new BasicHttpBinding();
ChannelFactory<TCP.IServiceClass> cf = new

ChannelFactory<IServiceClass>(“BasicHttpBinding_IServiceClass”);
TCP.IServiceClass ch = cf.CreateChannel(bb, ea);
textbox1.Text=ch.AddNumbers;

171

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 171

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

The CreateChannel method takes a number of overloads that can be used to create the channel as
described in the following table.

Overload Description

CreateChannel() Creates a channel of an IChannel type.

CreateChannel(EndpointAddress) Creates a channel used to send messages to the
specified endpoint address.

CreateChannel(String) Creates a channel used to send messages to a
service whose endpoint is configured in a spec-
ified way.

CreateChannel(Binding, EndpointAddress) Creates a channel used to send messages to a
service endpoint at the specified endpoint and
configured with the specified binding.

CreateChannel(EndpointAddress, Uri) Creates a channel used to send messages to a
service endpoint at the specified endpoint
through the specified transport address.

CreateChannel(Binding, EndpointAddress, Uri) Creates a channel used to send messages to a
service endpoint at the specified endpoint and
configured with the specified binding and
transport address.

Asynchronous communication is discussed later on in this chapter.

Client Communication Patterns
Now that you understand how channels are created and function, this section describes the different
types of communication that can take place between the client and the service endpoint.

One-Way
One-way communication is just that, it is communication in a single direction. That direction flows from
the client to the service. No reply is sent from the service, and the client does not expect a response. In
this scenario, the client sends a message and continues execution.

Figure 7-2 illustrates a one-way communication. The client sends a message to the service, and execution
takes place on the service. No response is sent back to the client from the service.

172

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 172

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Figure 7-2

Because there is no response from the service in one-way communication, any errors generated by the
service during the processing of the message are not communicated back to the client, therefore the
client has no idea if the request was successful or not.

For a one-way, single direction communication, the IsOneWay parameter on the [OperationContract]
is set to True. This tells the service that no response is required. The following code example illustrates
setting a one-way communication:

[ServiceContract]
public interface IServiceClass
{

[OperationContract(IsOneWay=true)]
string InitiateOrder();

[OperationContract]
BookOrder PlaceOrder(BookOrder request);

[OperationContract(IsOneWay=true)]
string FinalizeOrder();

}

In this example, the service contains three available operations, two of which are defined as one-way
operations. The InitiateOrder and FinalizeOrder operations are defined as one-way operations, whereas
the PlaceOrder operation is not. When the client calls the InitiateOrder service operation, it will immedi-
ately continue processing without waiting for a response from the service. However, when the client
calls the PlaceOrder service operation, it will wait for a response from the service before continuing.

Request-Reply
Request-reply communication means that when the client sends a message to the service, it expects a
response from the service. Request-reply communication also means that no further client execution
takes place until a response is received from the service.

Figure 7-3 illustrates a request-reply communication. The client sends a message to the service, the serv-
ice operation takes place, and a responding message is sent back to the client. Further client execution is
paused until the responding message is received by the client.

Message
Client ServiceEndpointProxy

wcd commandod(int beginner)
{

}

173

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 173

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Figure 7-3

In Windows Communication Foundation, there are two ways to specify a request-reply communication.
The first method is to set the value of the IsOneWay parameter on the [OperationContract] to False.
This tells the service that a response is required.

The default value for the IsOneWay parameter is False, so the second method is to not include the
IsOneWay parameter at all and the operation will be a request-reply communication by default.

The following code example, taken from the previous example, illustrates setting a request-reply com-
munication:

[ServiceContract]
public interface IServiceClass
{

[OperationContract(IsOneWay=false)]
string InitiateOrder();

[OperationContract]
BookOrder PlaceOrder(BookOrder request);

[OperationContract(IsOneWay=true)]
string FinalizeOrder();

}

In this example the service contains three available operations, two of which are defined as request-reply
operations. The InitiateOrder and PlaceOrder operations are defined as request-reply operations,
whereas the FinalizeOrder operation is a one-way communication. The InitiateOrder is explicitly
defined as a request-reply communication by setting the IsOneWay parameter to False, whereas the
PlaceOrder method is a request-reply communication by default because no specific communication
method is specified, thereby being a request-reply communication by default.

Therefore, the client will wait for a response from both the InitiateOrder and PlaceOrder operations, but
not on the FinalizeOrder operation.

Duplex
Duplex communication is the ability of both the client and service to initiate communication, as well as
respond to incoming messages; in other words, bi-directional communication, or duplex messaging pat-
tern. With duplex communication, the service can not only respond to incoming messages, but it can

Client ServiceEndpointProxy
BooxOrder PlaceOrder(int Quantity)
{

}

Request

Reply

Request

Reply

174

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 174

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

also initiate communication with the client by sending request messages seeking a response message
from the client.

The client communication with the service does not change, meaning that it still communicates with
the service via a proxy. However, the service communicates with the client via a callback, as shown in
Figure 7-4.

Figure 7-4

Setting up duplex communication requires changes both on the client and the service. The following sec-
tions describe the service and client requirements for building duplex communication service and client.
A full example is given at the end of the chapter.

Service
In all of the examples so far the WCF service has consisted of a single interface and a class that imple-
ments that interface. For duplex communication, the service must contain two interfaces. The purpose of
the first, or primary, interface is used for client-to-service communication, meaning that it is used to
receive messages from the client, as you have seen in all the examples so far. The second interface, or
callback interface, is used for service-to-client communication, to send messages from the service to the
client. The trick to remember is that both of these contracts must be designated as one-way contracts
because the second interface, or callback, is handling the communication from the service to the client.

The following example illustrates how to define a duplex service contract. The first step is to define the
interface that makes up the service side of the duplex contract:

[ServiceContract(SessionMode = SessionMode.Required)]
public interface IDuplexService
{
[OperationContract(IsOneWay = true)]
void Add(int bignumber);

[OperationContract(IsOneWay = true)]
void Subtract(int bignumber);

}

Client ServiceEndpointProxy

Request

Reply

Request
1

3

4

2

Reply C
al

lb
ac

k

Request

Reply

175

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 175

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

The second step is to create the callback interface. This is the interface that will send the results of the
preceding operations back to the client:

public interface IDuplexServiceCallback
{
[OperationContract(IsOneWay = true)]
void Calculate(int bignumber);

}

The third step is to apply the callback interface to the service contract, as shown in the following code.
This links the two interfaces:

[ServiceContract(SessionMode = SessionMode.Required),
CallbackContract = typeof(IDuplexServiceCallback)]

public interface IDuplexService
{
[OperationContract(IsOneWay = true)]
void Add(int bignumber);

[OperationContract(IsOneWay = true)]
void Subtract(int bignumber);

}

Now the service code looks like the following:

[ServiceContract(SessionMode = SessionMode.Required),
CallbackContract = typeof(IDuplexServiceCallback)]

public interface IDuplexService
{
[OperationContract(IsOneWay = true)]
void Add(int bignumber);

[OperationContract(IsOneWay = true)]
void Subtract(int bignumber);

}

public interface IDuplexServiceCallback
{
[OperationContract(IsOneWay = true)]
void Calculate(int bignumber);

}

Lastly, the service class needs to implement the duplex service contract. To do this correctly, a service
behavior needs to be added to the class. This is accomplished by adding the [ServiceBehavior]
attribute to the service class. Once the behavior attribute has been added, the PerSession value of the
InstanceContextMode parameter on that behavior attribute needs to be set. This creates an instance of
the service for each outbound duplex session:

[ServiceBehavior(InstanceContextMode = InstanceContextMode.PerSession)]
public class DuplexServiceClass : IDuplexService
{

176

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 176

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

int answer = 0;

IDuplexServiceCallback Callback
{
get
{
return OperationContext.Current.GetCallbackChannel<IDuplexServiceCallback>();

}
}

public void Add(int bignumber)
{
answer += bignumber;
Callback.Calculate(answer);

}
}

At this point you have the basis for a service that supports duplex communication. The service contains
two interfaces, one of which is the callback for sending messages to the client. You also have a service
class that implements the duplex service.

The second part of this equation is to modify the client to handle duplex communication.

Client
For duplex communication, the client must also take some responsibility for this type of communication,
and therefore must implement the callback contract. It does this by implementing the callback interface
of the duplex contract:

public class ClientCallback : IDuplexServiceCallback
{
public void Calculate(answer);
{
textbox1.text = answer.ToString();

}
}

The last step for the client is to build a mechanism to handle the message on the callback interface. This
is done by creating an instance of the InstanceContext in the client class:

InstanceContext ic = new InstanceContext(new ClientCallback());

From here, you create the client and make calls to the service operations:

DuplexServiceClient client = new DuplexServiceClient(ic);

int val = 100;
client.Add(val);

Duplex Client Using the DuplexChannelFactory
The preceding code examples didn’t specify how the client proxy was created because there are multiple
ways to create the proxy. All of the examples in the book so far have used an added service reference.

177

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 177

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

However, the same can be accomplished using the svcutil utility, or by using the ChannelFactory as dis-
cussed earlier in this chapter.

The DuplexChannelFactory class provides the ability to create and maintain duplex channels, which are
used by clients to send and receive messages between endpoints. It is through the duplex channel that
clients and services can communicate with each other independently. This is important because both
sides can initiate communication with the other party.

Creating a duplex client proxy using the DuplexChannelFactory is quite simple and not that different
from the examples given earlier in this chapter using the ChannelFactory. The CreateChannel method of
the DuplexChannelFactory class allows you to create a duplex client proxy. This method requires the serv-
ice contract name as a generic parameter. The following example illustrates how to create a duplex
channel that the client and service can use for communication:

EndpointAddress ea = new EndpointAddress(“tcp.net://localhost:8000/WCFService”);
BasicHttpBinding bb = new BasicHttpBinding();

InstanceContext callbackLocation = new InstanceContext(
DuplexChannelFactory(TCP.IServiceClass> dcf = new
DuplexChannelFactory<WCFClient.TCP.IServiceClass>
(callbackLocation);

TCP.IServiceClass ch = dcf.CreateChannel(bb, ea);
textbo1.Text = ch.AddNumbers;

((IServiceClass).client).Close();
((IServiceClass).client).Dispose();

As you can see, using the ChannelFactory to create duplex client communication is easy.

Lastly, operations of a service can be called and accessed synchronously or asynchronously. The next sec-
tion discusses calling a service asynchronously.

Asynchronous
Calling methods asynchronously allows applications to continue processing other work while the called
method is still executing.

Like the duplex communication, asynchronous operations require specific changes to the client and to
the service. So, like the duplex example, the following sections describe the service and client require-
ments for building an asynchronous communication service and client.

Service
Asynchronous operations divide the operation into two separate but related operations. The first opera-
tion is the Begin operation, which the client calls to start operation processing. In a Begin operation, two
additional parameters need to be passed to the operation and the return value is a System.IAsyncResult.
The first parameter(s) in the Begin method is the value or values you wish to pass it. The second param-
eter is a callback object, and the third parameter is the state object. The callback object is provided by the
client and runs when the called operation is complete. The state object is the state of the callback function

178

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 178

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

when the operation is finished. For example, you would normally pass the client proxy because this tells
the callback function to automatically call the End operation and return the result.

The second operation is a matching End operation that takes the System.IAsyncResult as a parameter
and returns a return value. The End operation does not need an [OperationContract] attribute.

The Begin operation must contain the AsyncPattern property with the value of that property set to True.

The following code illustrates defining an asynchronous communication service operation:

[ServiceContract]
public interface IAsyncService
{
[OperationContract(AsyncPattern = true)]
IAsyncResult BeginAdd(int val1, int val2, AsyncCallback cb, object astate);

int EndAdd(IAsyncResult result);
}

Public class AsyncServiceClass : IAsyncService
{
public IAsyncResult BeginAdd(int val1, int val2, AsyncCallback cb, object astate)
{
//do some addition

}

Public int EndAdd(IAsyncResult ar)
{

}
}

The service is now set up to communicate asynchronously, so the next step is to tell the client to commu-
nicate the same way.

Client
On the client side of an asynchronous service, the client simply needs to pass the correct parameters and
make sure that the returned results are of the IAsyncResult type. To access the asynchronous service
operation, the client first calls the Begin operation, which in the following example is the BeginAdd
operation. In that call, a callback function is specified through which the results are returned, in this case
the callbackAdd function. When the callback function executes, the client calls the End operation to
obtain the results, which in the following example is the EndAdd operation:

private void button1_Click(object sender, EventArgs e)
{
WCFClientApp.TCP.IServiceClass client =
ChannelFactory<IServiceClass>.CreateChannel(bb, ea);

IAsyncResult ar = client.BeginAdd(2, 2, callbackAdd, client);

client.Close();

179

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 179

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

}

Static void callbackAdd((IAsyncResult AR)
{
int result ((WCFClientApp.TCP.IServiceClass)ar.AsyncState).EndAdd);
textbox1.Text = result

}

Asynchronous communication enables applications to be more flexible in their communication by
way of maximizing communication throughput and a balanced interactivity.

Creating Client Code
Most, if not all, of the examples so far throughout the book have used an added service reference to con-
sume the service and build the client. However, the Service Model Metadata Utility Tool (svcutil.exe) has
been mentioned briefly as a method of generating client code. The syntax and options for this tool were
covered in detail in Chapter 3.

This section provides a few examples of using the Service Model Metadata Utility Tool to generate client
code.

Generating Client Code
The svcutil utility is a command-line tool that generates client code from service metadata. From this
tool, proxy classes, contracts (data, service, and message), and configuration files can be generated to be
added to your client application.

The svcutil utility assumes a number of defaults if left blank, such as the language and the output file
name. The default language is C# and the output filename that is generated is taken from the service
contract namespace.

Even though the two aforementioned values are defaulted, it is good practice to specify those values to
make sure you are getting what you are intending. The following example illustrates specifying the lan-
guage and output file for the examples in Chapter 6:

svcutil.exe net.tcp//localhost:8000/WCFService/tcpmex
/o:c:\wcfclientapp\wcfclientapp\client.cs /l:c#

The following example shows how to specify the language, the name for the generated code, and the
filename for the generated configuration file:

svcutil.exe net.tcp//localhost:8000/WCFService/tcpmex
/o:c:\wcfclientapp\wcfclientapp\client.cs
/config:c:\wcfclientapp\wcfclientapp\output.config /l:c#

180

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 180

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

You also have the ability to generate message contract types by using the /messageContract switch (or
the short form /mc). For example, the following generates a message contract type.

svcutil.exe net.tcp//localhost:8000/WCFService/tcpmex /o:c:\wcfclientapp\
wcfclientapp\client.cs /messageContract

The /messageContract switch tells WCF that the message being passed between the service and the
client is the parameter. Remember the message example from Chapter 6? The following code is from that
example, and in the highlighted line the message is being passed from the client to the service. The
/messageContract switch generated the client code to be able to tell the system that the message is the
parameter.

WCFClientApp.TCP.BookOrder Val1 = new WCFClientApp.TCP.BookOrder();
Val1.ISBN = textBox1.Text;
int.TryParse(textBox2.Text, out intval);
Val1.Quantity = intval;
Val1.FirstName = textBox3.Text;
Val1.LastName = textBox4.Text;
Val1.Address = textBox5.Text;

WCFClientApp.TCP.BookOrder result = client.PlaceOrder(Val1);
textBox2.Text = Val1.OrderNumber;

The svcutil utility can also export metadata for contracts, services, and data types contained in compiled
assemblies. The /servicename option allows you to specify the service you would like to export.
Chapter 6 also contained a data contract example, and that example could have easily used the
/dataContractOnly option to export the contract types defined in the data contract. For example, the
following command exports the data types from the data contract example in Chapter 6:

svcutil.exe net.tcp//localhost:8000/WCFService/tcpmex /dataContractOnly

Defining Client Bindings and Endpoints
You saw in the first few chapters that the examples used code to define the bindings, the addresses, and
to create the endpoints. The following code was taken from the first example in Chapter 5 where every-
thing was defined in code.

The first two lines define the addresses and transports of the service endpoints. The second line creates a
service host for the service passing in the two addresses. The third and fourth lines define the two bind-
ings that the endpoints will use.

The remaining code defines the endpoints that will be exposed on the service, associates the addresses
and bindings with those endpoints, and then finally associates those endpoints with the service and the
service host and then starts the service host:

181

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 181

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Uri bpa = new Uri(“net.pipe://localhost/NetNamedPipeBinding”);
Uri tcpa = new Uri(“net.tcp://localhost:8000/TcpBinding”);

sh = new ServiceHost(typeof(ServiceClass), bpa, tcpa);

NetNamedPipeBinding pb = new NetNamedPipeBinding();
NetTcpBinding tcpb = new NetTcpBinding();

ServiceMetadataBehavior mBehave = new ServiceMetadataBehavior();
sh.Description.Behaviors.Add(mBehave);
sh.AddServiceEndpoint(typeof(IMetadataExchange),
MetadataExchangeBindings.CreateMexTcpBinding(), “mex”);

sh.AddServiceEndpoint(typeof(IMetadataExchange),
MetadataExchangeBindings.CreateMexNamedPipeBinding(), “mex”);

sh.AddServiceEndpoint(typeof(IServiceClass), pb, bpa);
sh.AddServiceEndpoint(typeof(IServiceClass), tcpb, tcpa);

sh.Open();

Although this works, hopefully you have learned over the past few chapters that this method is not the
most efficient method. Suppose you wanted to add a binding or endpoint address? That would require
you to modify the code and rebuild the application.

The following is the configuration-based version of the preceding code. The same endpoints, addresses,
and bindings are specified. This configuration should look familiar because it is the exact same configu-
ration from the service host project that the past handful of examples from the last three chapters have
used:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<system.serviceModel>
<services>
<service name =”WCFService.ServiceClass”

behaviorConfiguration=”metadataSupport”>
<host>
<baseAddresses>
<add baseAddress=”net.pipe://localhost/WCFService”/>
<add baseAddress=”net.tcp://localhost:8000/WCFService”/>
<add baseAddress=”http://localhost:8080/WCFService”/>

</baseAddresses>
</host>
<endpoint address=”tcpmex”

binding=”mexTcpBinding”
contract=”IMetadataExchange”/>

<endpoint address=”namedpipemex”
binding=”mexNamedPipeBinding”
contract=”IMetadataExchange”/>

<endpoint address=”” binding=”wsHttpBinding”
contract=”WCFService.IServiceClass”/>

</service>
</services>

182

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 182

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

<behaviors>
<serviceBehaviors>
<behavior name=”metadataSupport”>
<serviceMetadata httpGetEnabled=”false” httpGetUrl=””/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

The great thing about this is that the only hosting code necessary is the following two lines:

sh = new ServiceHost(typeof(WCFService.ServiceClass));
sh.Open();

Now suppose you want to add an additional binding or endpoint address? Is a recompile necessary?
Not at all. The only thing you need to modify is the configuration file to add the necessary components.

The purpose of this section is to illustrate that defining endpoints (addresses and bindings) can be done
a number of ways. There are benefits to both, but the majority of the time you should steer toward using
configuration rather than inline code.

Typed versus Untyped Services
Chapter 3 spent a page or two discussing the different types of services. The two major types are typed
and untyped services. As explained in Chapter 3, typed services function a lot like a class method, in
that they take parameters and return results if needed. Untyped services let the developer have much
more control and flexibility by providing the ability to work at the message level. The following two sec-
tions take a look at the client side on how to work with the two types of services.

Invoking Operations of a Typed Services
Most of the examples so far in this book have utilized typed services. The client calls the service using a
proxy, and the service can return a result if necessary. With typed services the parameters and return val-
ues are primitive or complex data types, as shown in the following example:

textBox1.Text = client.AddNumbers(5, 5).ToString();
textBox2.Text = client.MultiplyNumbers(5, 5).ToString();

client.DeleteOrder(OrderID);

Typed services also support ref and out parameters as well:

string ordernumber;
client.PlaceOrder(string title, int quantity, out ordernumber);

Typed services can also accept and return complex data structures through the use of data contracts.
These data structures can be used as parameters and return values. Data contracts are discussed in
Chapter 6.

183

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 183

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Invoking Operations of an Untyped Service
Untyped services require a bit more work but also provide much more control and flexibility. At this
level, the developer works directly with the message itself. The key to keep in mind here is that requests
and responses are in the form of a message, meaning that the client initiates a request (in the form of a
created message) and sends that to the service. If a response from the service is required, that response is
also in the form of a message.

The following example, taken from the message service example in Chapter 6, illustrates working with a
message directly. An instance of the message is created, the header and body elements that are defined on
the service side are populated and serialized into the message, and the message is passed to the service:

WCFClientApp.TCP.BookOrder Val1 = new WCFClientApp.TCP.BookOrder();

Val1.ISBN = textBox1.Text;
int.TryParse(textBox2.Text, out intval);
Val1.Quantity = intval;
Val1.FirstName = textBox3.Text;
Val1.LastName = textBox4.Text;
Val1.Address = textBox5.Text;

WCFClientApp.TCP.BookOrder result = client.PlaceOrder(Val1);

Based on the example in Chapter 6 and the information here in this section you can agree that although
working at the message level provides a more granular level of control, it also opens up a wider oppor-
tunity for error. An intimate knowledge of the service and what it expects is necessary to ensure a well-
functioning client and service. This is certainly not to steer you away from using untyped services and
working at the message level, because the experience can be rewarding.

Useful Information
This chapter has covered a lot of information necessary to build and use Windows Communication
Foundation clients. This section discusses a few topics that should be considered when building clients,
specifically the creation and use of client and channel objects.

Initializing Channels Interactively
A little-known functionality in Windows Communication Foundation is the ability to dynamically
define and create a user interface that lets the user select credentials. These credentials are used to create
a channel prior to the timeout timers being fired.

This functionality is provided via the IInteractiveChannelInitializer interface and can be used by devel-
opers by calling either the System.ServiceModel.ClientBase.DisplayInitializationUI or
System.SerivceModel.IClientChannel.DisplayInitializationUI. Either of these need to be called before the
channel is opened and the first operation is called.

The explicit approach is to open the channel directly, and the implicit approach is to open it by calling
the first operation of the session.

184

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 184

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Session and Channel Duration
Windows Communication Foundation contains two groups of channels that are available for creating
client channel objects:

❑ Datagram: A channel in which all messages are unassociated. If an input or output operation
message fails, subsequent operations are not affected and can use the same channel.

❑ Sessionful: Channels in which a session on one side is always correlated and connected with
the corresponding session on the other side. Both sides of the session must agree on the connec-
tion requirements or else a fault is generated. The majority of the WCF-provided bindings sup-
port sessions by default.

Sessions are very useful in WCF. Through sessions the developer can determine whether the message
exchange between the client and service is successful. If the Close method is called on an open session
channel, and the Close method returns successfully, then the session was successful. It can be considered
successful for two reasons:

❑ All delivery guarantees specified by the binding were met.

❑ The service side did not call the Abort method on the channel before calling Close.

A calling application should open the channel, use the channel, and close the channel, and wrap these
steps inside a try block. See the section “Exception Handling” for more information on handling excep-
tions and the try block.

Blocking Issues
Windows Communication Foundation applications can communicate in one-way or request-reply mode.
In a request-reply communication, the client blocks further processing until either a return value is
received or an exception is thrown. This is also true when an application calls an operation asyn-
chronously on a WCF client object or channel. The client does not return until either the data is written
to the network by the channel layer or an exception occurs.

One-way communication can make clients more responsive, but one-way communication can also block
as well. The selected binding and previous messages can also block, having an impact on client process-
ing; for example, in a situation where too many messages are sent to the service that the service has trou-
ble processing them. In this case the client will block until the service can process the messages or until
an exception is thrown or the timeout period has been reached.

Another scenario is where the ConcurrencyMode is set to Single but the binding uses sessions. In this
scenario, the dispatcher forces ordering on incoming messages preventing further messages from being
read off of the wire until the service has had a chance to process previous messages. The client will block
in this scenario as well and may return an exception depending on whether the service could process the
message before the timeout period was reached on the client.

Inserting a buffer between the client object and the send operation can help alleviate some of these
blocking problems. You have two options at your disposal:

❑ Asynchronous calls

❑ In-memory message queue

185

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 185

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Both of these options will help the client object return much more quickly. You have the ability to use
one or the other, or both; however, you are still limited by the size of the thread pool and message queue.

One-way communication should be used in the following scenarios:

❑ The client is not affected by the result of the invoked operation.

❑ The NetMsmqBinding or MsmqIntegrationBinding bindings are used.

The type of communication depends on your requirement. If your application needs to keep processing
while an operation is completing, you should create an asynchronous method pair on the service con-
tract interface that your WCF client can take advantage of.

Exception Handling
As stated earlier, the opening, use, and closing of a session should be done within a try block, simply for
the reason that the conversation can be determined as successful if an exception was not generated. If an
exception was caught it is recommended that the session be aborted.

The following example illustrates the try/catch method of opening and closing sessions:

private void button1_Click(object sender, EventArgs e)
{
try
{

WCFClientApp.TCP.IServiceClass client =
ChannelFactory<IServiceClass>.CreateChannel(bb, ea);

// do some cool stuff

client.Close();
}
Catch (CommunicationException ce)
{
// do something with the exception

}
}

This example is simplistic but provides the basis for catching exceptions and determining if the session
was successful. Other exceptions can also be tracked such as timeout exceptions and FaultException
exceptions.

Windows Communication Foundation also recommends that the using statement not be used solely for
the fact that the end of the using statement can cause exceptions that can mask exceptions that you may
want to know about. The following URL provides more information on this subject:

http://msdn2.microsoft.com/en-us/library/aa355056.aspx

186

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 186

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Client Programming Example
The final section of this chapter contains two examples. The first example illustrates how to use the
ChannelFactory class to create a channel on the client to send messages with the service endpoint. The
second example illustrates a duplex service contract, or a message exchange pattern.

ChannelFactory
Open up your WCFService project and modify your service code as follows:

using System;
using System.ServiceModel;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.IO;

namespace WCFService
{

[ServiceContract]
public interface IServiceClass
{

[OperationContract]
int AddNumbers(int number1, int number2);

[OperationContract]
int SubtractNumbers(int number1, int number2);

[OperationContract]
int MultiplyNumbers(int number1, int number2);

[OperationContract]
string GetText();

}

public class ServiceClass : IServiceClass
{

string IServiceClass.GetText()
{

StreamReader sw = new StreamReader(@”c:\wrox\WCFServiceTest.txt”);
return sw.ReadLine();

}

int IServiceClass.AddNumbers(int firstvalue, int secondvalue)
{

return firstvalue + secondvalue;
}

int IServiceClass.SubtractNumbers(int firstvalue, int secondvalue)
{

return firstvalue - secondvalue;

187

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 187

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

}

int IServiceClass.MultiplyNumbers(int firstvalue, int secondvalue)
{

return firstvalue * secondvalue;
}

}
}

You can see that the service code is not that complicated. In fact, it looks very similar to the first example
in Chapter 5. This service contract exposes a few mathematical operations plus an operation that reads
from a text file. Compile the service to make sure everything is ok. Be sure that the WCFServiceTest
.txt file exists in the \Wrox directory and that the text file contains some text. If your text file is not
located in the C:\Wrox directory, be sure to modify the path in the StreamReader line of code.

The next step is to modify the client application. Nothing needs to be done to the service host, so the
focus now is to modify the client. Open Form1 in design mode and make sure there are four text boxes
on the form, with the names textbox1, textbox2, textbox3, and textbox4. Next, place a button to the right
of each text box, with the names button1, button2, button3, and button4. Again, you are going for func-
tionality, not form design. Once you are done, your form should look like the picture in Figure 7-5
(which appears later in the chapter).

Next, right-click the form and select View Code, and modify the code behind the form as follows:

using System;
using System.Collections.Generic;
using System.ComponentModel;
using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.ServiceModel;
using System.ServiceModel.Channels;

namespace WCFClientApp
{

public partial class Form1 : Form
{

private int _Selection;
private int val1 = 5;
private int val2 = 5;
private int result;

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

188

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 188

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

radioButton1.Checked = true;

}

private void button1_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
//

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);
ChannelFactory<TCP.IServiceClass> factory = new

ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);
TCP.IServiceClass channel = factory.CreateChannel();

result = channel.AddNumbers(val1, val2);
textBox1.Text = result.ToString();

factory.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
//

WCFClientApp.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
ChannelFactory<NamedPipe.IServiceClass> factory1 = new

ChannelFactory<NamedPipe.IServiceClass>(“WSHttpBinding_IServiceClass1”);
NamedPipe.IServiceClass channel1 = factory1.CreateChannel();

result = channel1.AddNumbers(val1, val2);
textBox1.Text = result.ToString();

factory1.Close();

break;

case 2:
break;

}
}

private void button2_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
//

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);
ChannelFactory<TCP.IServiceClass> factory = new

ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

189

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 189

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

TCP.IServiceClass channel = factory.CreateChannel();

result = channel.SubtractNumbers(val1, val2);
textBox2.Text = result.ToString();

factory.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
//

WCFClientApp.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
ChannelFactory<NamedPipe.IServiceClass> factory1 = new

ChannelFactory<NamedPipe.IServiceClass>(“WSHttpBinding_IServiceClass1”);
NamedPipe.IServiceClass channel1 = factory1.CreateChannel();

result = channel1.SubtractNumbers(val1, val2);
textBox2.Text = result.ToString();

factory1.Close();

break;

case 2:
break;

}

}

private void button3_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
//

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);
ChannelFactory<TCP.IServiceClass> factory = new

ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);
TCP.IServiceClass channel = factory.CreateChannel();

result = channel.MultiplyNumbers(val1, val2);
textBox3.Text = result.ToString();

factory.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
//

WCFClientApp.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
ChannelFactory<NamedPipe.IServiceClass> factory1 = new

ChannelFactory<NamedPipe.IServiceClass>(“WSHttpBinding_IServiceClass1”);

190

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 190

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

NamedPipe.IServiceClass channel1 = factory1.CreateChannel();

result = channel1.MultiplyNumbers(val1, val2);
textBox3.Text = result.ToString();

factory1.Close();

break;

case 2:
break;

}

}

private void button4_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
//

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);
ChannelFactory<TCP.IServiceClass> factory = new

ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);
TCP.IServiceClass channel = factory.CreateChannel();

string strresult = channel.GetText();
textBox4.Text = strresult;

factory.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
//

WCFClientApp.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
ChannelFactory<NamedPipe.IServiceClass> factory1 = new

ChannelFactory<NamedPipe.IServiceClass>(“WSHttpBinding_IServiceClass1”);
NamedPipe.IServiceClass channel1 = factory1.CreateChannel();

string result1 = channel1.GetText();
textBox4.Text = result1;

factory1.Close();

break;

case 2:
break;

}

}

private void radioButton1_CheckedChanged(object sender, EventArgs e)

191

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 191

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

{
_Selection = 0;
textBox1.Text = “”;
textBox2.Text = “”;
textBox3.Text = “”;
textBox4.Text = “”;

}

private void radioButton2_CheckedChanged(object sender, EventArgs e)
{

_Selection = 1;
textBox1.Text = “”;
textBox2.Text = “”;
textBox3.Text = “”;
textBox4.Text = “”;

}

}
}

The first thing you should notice is that an extra “using” statement was added. In order to create and
manage channels, you need to import the System.ServiceModel.Channels namespace.

The next thing you should notice is the construction and management of the channel. This is easily
accomplished via the following two lines:

ChannelFactory<TCP.IServiceClass> factory = new
ChannelFactory<TCP.IServiceClass>(“WSHttpBinding_IServiceClass”);

TCP.IServiceClass channel = factory.CreateChannel();

The first line initializes a new instance of the ChannelFactory class. This is necessary to create the chan-
nel. In the constructor of this class, you pass the name of the endpoint in which this channel will com-
municate.

The second line creates the channel which is used to communicate with the client, and the third and
fourth lines call the exposed method and display the results:

result = channel.AddNumbers(val1, val2);
textBox1.Text = result.ToString();

This example uses a configuration file to configure the endpoints. The other non-recommended option is
to specify everything via code, as follows:

BasicHttpBinding bind = new BasicHttpBinding;
EndpointAddress ea = new EndpointAddress(“”);
ChannelFactory<IServiceClass> factory = new

ChannelFactory<IServiceClass>(bind);

factory.CreateChannel(ea);

192

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 192

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

As you have gathered by now, the configuration route is the best method in most cases, so that is the
route this example follows.

The same method, using the ChannelFactory, is used for the three mathematic expressions and to
retrieve the text, and used for both the TCP and Named Pipe binding.

Build the project to make sure no errors are found. If everything looks good, run the host project to
instantiate the service, and then run the client app. When the form displays, click the buttons to the right
of each text box (see Figure 7-5).

Figure 7-5

The numbers you are adding, subtracting, and multiplying are hard coded, but the intent is to show you
how the ChannelFactory class works.

Duplex
This last example illustrates how to define a duplex contract. As you learned earlier, duplex communica-
tion allows for both the client and service to initiate communication. When the client establishes a ses-
sion with the service, the client provides a means in which the service can send messages back to the
client. This “service-to-client” communication is provided via a channel that is established by the client.

So, with that, time to get started. Open the service project and modify the service code to look like the
following:

using System;
using System.ServiceModel;
using System.Collections.Generic;
using System.Runtime.Serialization;
using System.IO;

namespace WCFService
{

[ServiceContract(SessionMode = SessionMode.Required,
CallbackContract=typeof(IServiceDuplexCallback))]

public interface IServiceClass
{

[OperationContract(IsOneWay=true)]

193

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 193

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

void AddNumber(int number);

[OperationContract(IsOneWay=true)]
void SubtractNumber(int number);

}

public interface IServiceDuplexCallback
{

[OperationContract(IsOneWay = true)]
void Calculate(int result);

}

[ServiceBehavior(InstanceContextMode=InstanceContextMode.PerSession)]
public class ServiceClass : IServiceClass
{

int result = 0;

public void AddNumber(int number)
{

result += number;
callback.Calculate(result);

}

public void SubtractNumber(int number)
{

result -= number;
callback.Calculate(result);

}

IServiceDuplexCallback callback
{

get { return
OperationContext.Current.GetCallbackChannel<IServiceDuplexCallback>(); }

}
}

}

Again, the first thing you should notice is that there are two interfaces defined, a primary interface and a
secondary interface. The primary interface is for client-to-service communication. The secondary inter-
face is the callback interface, which provides the service-to-client communication.

The second thing you should notice is the two properties of the [ServiceContract] attribute. The first
attribute is the SessionMode attribute. The value of this property is set to Required, meaning that the
contract requires a sessionful binding and a context needs to be established to link the messages going
between the client and service. The second property is the CallbackContract, which sets the callback in
which the service will communicate with the client.

Lastly, the service class implements the primary interface. Nothing new there, but what is new is that the
class has been given a service behavior. This is accomplished by tagging it with the [ServiceBehavior]
attribute. This needed to be done because the behavior that the class needs to be given is the PerSession
instance mode. This is so that the service can maintain the result for each session.

194

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 194

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Also defined in the class is a private property that the service will use to send messages back to the client
via the previously defined callback interface.

Build the service to make sure everything is ok.

Next, open up the service host application and run it to start the service. Did it work? It shouldn’t have.
Why didn’t it? The answer is because you are trying to start a service that supports duplex service con-
tracts with an endpoint binding that does not support duplex service contracts.

Don’t worry, the fix is simple, and this time it requires a change in the configuration file of the host
application. Open the configuration file (app.config) and modify the line that is highlighted in the fol-
lowing code. Change the binding from wsHttpBinding to wsDualHttpBinding. This is the appropriate
binding that is designed for use with duplex service contracts:

<?xml version=”1.0” encoding=”utf-8” ?>
<configuration>
<system.serviceModel>
<services>
<service name =”WCFService.ServiceClass” behaviorConfiguration=

”metadataSupport”>
<host>
<baseAddresses>
<add baseAddress=”net.pipe://localhost/WCFService”/>
<add baseAddress=”net.tcp://localhost:8000/WCFService”/>
<add baseAddress=”http://localhost:8080/WCFService”/>

</baseAddresses>
</host>
<endpoint address=”tcpmex”

binding=”mexTcpBinding”
contract=”IMetadataExchange”/>

<endpoint address=”namedpipemex”
binding=”mexNamedPipeBinding”
contract=”IMetadataExchange”/>

<endpoint address=”” binding=”wsDualHttpBinding”
contract=”WCFService.IServiceClass”/>

<!--<endpoint address=”mex” binding=”mexHttpBinding” contract=
”IMetadataExchange”/>-->

</service>
</services>
<behaviors>
<serviceBehaviors>
<behavior name=”metadataSupport”>
<serviceMetadata httpGetEnabled=”false” httpGetUrl=””/>

</behavior>
</serviceBehaviors>

</behaviors>
</system.serviceModel>

</configuration>

Next, the client:

using System;
using System.Collections.Generic;
using System.ComponentModel;

195

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 195

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

using System.Data;
using System.Drawing;
using System.Text;
using System.Windows.Forms;
using System.ServiceModel;
using System.ServiceModel.Channels;

namespace WCFClientApp
{

public partial class Form1 : Form
{

private int _Selection;
private int val1 = 5;
private int val2 = 5;

public Form1()
{

InitializeComponent();
}

private void Form1_Load(object sender, EventArgs e)
{

radioButton1.Checked = true;

}

private void button1_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
// WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_

IServiceClass”);
InstanceContext ic = new InstanceContext(new CallbackHandler());
TCP.ServiceClassClient client = new WCFClientApp.TCP

.ServiceClassClient(ic);
client.AddNumber(val1);
client.AddNumber(val2);
//client.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
//

WCFClientApp.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
InstanceContext ic1 = new InstanceContext(new

CallbackHandler1());
NamedPipe.ServiceClassClient client1 = new WCFClientApp

.NamedPipe.ServiceClassClient(ic1);
client1.AddNumber(val1);

196

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 196

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

client1.AddNumber(val2);

break;

case 2:
break;

}
}

private void button2_Click(object sender, EventArgs e)
{

switch (_Selection)
{

case 0:
//TCP.ServiceClassClient client = new
//

WCFClientApp.TCP.ServiceClassClient(“WSHttpBinding_IServiceClass”);
InstanceContext ic = new InstanceContext(new

CallbackHandler());
TCP.ServiceClassClient client = new WCFClientApp.TCP

.ServiceClassClient(ic);
client.SubtractNumber(val1);
client.SubtractNumber(val2);
//client.Close();

break;

case 1:
//NamedPipe.ServiceClassClient client1 = new
// WCFClientApp

.NamedPipe.ServiceClassClient(“WSHttpBinding_IServiceClass1”);
InstanceContext ic1 = new InstanceContext(new

CallbackHandler1());
NamedPipe.ServiceClassClient client1 = new WCFClientApp

.NamedPipe.ServiceClassClient(ic1);
client1.SubtractNumber(val1);
client1.SubtractNumber(val2);

break;

case 2:
break;

}

}

private void radioButton1_CheckedChanged(object sender, EventArgs e)
{

_Selection = 0;
textBox1.Text = “”;
textBox2.Text = “”;

}

private void radioButton2_CheckedChanged(object sender, EventArgs e)
{

197

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 197

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

_Selection = 1;
textBox1.Text = “”;
textBox2.Text = “”;

}

}

public class CallbackHandler : TCP.IServiceClassCallback
{

public void Calculate(int result)
{

Console.WriteLine(result);
}

}

public class CallbackHandler1 : NamedPipe.IServiceClassCallback
{

public void Calculate(int result)
{

Console.WriteLine(result);
}

}
}

What did you notice about this client code that is different from the other examples? If you answered
“hey, there’s an additional class,” you have answered wisely. The client needs to provide a mechanism
for receiving the messages that are coming from the service, and the CallbackHandler class accomplishes
precisely that task. This class implements the service callback interface of the duplex contract. As such its
sole purpose is to receive incoming messages from the service.

Build the project to make sure no errors are found. If everything looks good, run the host project to
instantiate the service, and then run the client app. When the form displays, click the buttons to the right
of each text box (see Figure 7-6).

Figure 7-6

Slick, huh? You can see what duplex service contracts can do.

198

Part II: Programming Windows Communication Foundation

12_089842 ch07.qxp 3/5/07 7:05 PM Page 198

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

Summary
The purpose of this chapter was to give you a much better look at the client as it pertains to Windows
Communication Foundation. The chapter began by providing an overview and discussion of the WCF
client architecture, and the different objects and interfaces that make up and define that architecture.

From there the chapter moved on to the different communication patterns and the differences between
them. Several examples were given to provide you with some know-how as to their capabilities and gen-
eral use, as well as when one pattern would be more beneficial than the others.

A detailed discussion regarding the generation of client code using the Service Model Metadata Utility
Tool followed. The purpose of this section was to shed some light as to the options you have for generat-
ing client code. In addition other options you have available were discussed, such as adding a service
reference and when one method might be better than the other, and which one offers functionality that
the other does not.

Lastly, this chapter covered the creation and defining of endpoints and their associated components,
both in code and configuration. This topic rehashed, albeit ever so lightly, the pros and cons of code ver-
sus configuration.

From here the discussion in Chapter 8 moves on to the topic of WCF services as whole units and not just
individual concepts.

199

Chapter 7: Clients

12_089842 ch07.qxp 3/5/07 7:05 PM Page 199

Excerpted from Professional WCF Programming: .NET Development with the Windows(r) Communication Foundation,
Wrox Press, www.wrox.com

	ADP90.tmp
	Professional WCF Programming:
	 .NET Development with the Windows® Communication Foundation
	Chapter 7: Clients
	ISBN-10: 0-470-08984-9
	ISBN-13: 978-0-470-08984-2

