
C H A P T E R 5

BUILDING THE BUSINESS
LOGIC LAYER

If you have class, you’ve got it made. If you don’t have class, no
matter what else you have, it won’t make up for it.
—Ann Landers

If you have classes in your application, you’ve got it made. If you don’t have
classes, no matter what else you have, it won’t make up for it. Classes are
central to development in .NET.

In fact, it is difficult to build a .NET application without using classes.
If you added a form to your project, you have already created a class.
A form is just a class that inherits from the .NET Framework System.
Windows.Forms.Form class, which gives the class the attributes and
behaviors of a form.

In the preceding chapter, you saw how to use classes to build the user
interface layer. This chapter shows you how to build classes for the busi-
ness logic layer.

This chapter covers the fundamentals of creating classes and defining
properties and methods. It also details more advanced topics such as using
generics and building a base business object class. The Purchase Tracker
sample application is used to demonstrate these techniques.

What Does This Chapter Cover?

This chapter demonstrates the following techniques:

 ■ Creating a class
 ■ Documenting the class with XML comments
 ■ Adding exception classes to your class file
 ■ Defining properties

251

05Kurata.indd 251 1/25/07 10:04:36 AM

252 Chapter 5 Building the Business Logic Layer

 ■ Defining property accessibility
 ■ Understanding generics
 ■ Handling Nullable types
 ■ Defining methods
 ■ Passing parameters ByVal or ByRef
 ■ Overloading methods
 ■ Marking methods as obsolete
 ■ Creating a base business object class
 ■ Overriding base class members

This chapter covers the basics of how to create a class and then builds
on those basics to detail some of the new Visual Basic 2005 features such
as XML comments and generics. If you have already been doing object-
oriented programming in Visual Basic, you already know the basics. But
if you want to “build along” as you read through this book, work through
the basics before moving on to the more advanced features later in this
chapter.

Creating a Class

A class describes the things in your application, such as customers or prod-
ucts. Each piece of data associated with the class is defined as a property
of the class. Each set of functionality associated with the class is defined as
a method of the class.

For example, the Purchase Tracker sample application works with
products. The products are described by a Product class. Each attribute
of the products, such as name, number, description, price, and so on, is
represented in the class as a property. Each process that must be per-
formed for the products, such as retrieving, saving, and so on, is defined in
the class as a method.

A single item, such as an individual product (a ring or sword, for
example), is represented by an object created from the class. Because an
object is an instance of a class, the act of creating an object from the class
is called instantiation.

A common metaphor is to think of the class as the blueprint, and the
object as the building constructed from the blueprint. Any number of
buildings can be created from the same blueprint. Another metaphor is
a cookie cutter. The class is the cookie cutter, and the objects are all the
cookies created from the cookie cutter.

05Kurata.indd 252 1/25/07 10:04:36 AM

5. BUILDING THE BUSINESS LOGIC LAYER

NOTE: The terms class and object are sometimes used interchangeably.
Technically, however, the class is the data and logic that you define at design
time. The objects are instances of the class created at runtime.

The phrase “business objects” is really a misnomer, because they are really
“business classes.” In this book, the term “business object classes” is sometimes
used to distinguish the difference.

If you are building a nontrivial application, build it as a set of layers, as
described in Chapter 2, “Designing Software.” Implement each layer as a
separate project in a solution, as described in Chapter 3, “Building Projects.”
This gives you separately compiled components, one for each layer.

You build each layer as a set of classes. The user interface layer is com-
prised of a set of form classes (as shown in Chapter 4, “Building the User
Interface Layer”) following the user interface design. The business logic
layer (as described in this chapter) includes the set of classes you build fol-
lowing the implementation design. The data layer (detailed in Chapter 8,
“Building the Data Access Layer”) contains classes that provide the inter-
action between the database and the business logic layer.

When you construct the business logic layer, it is important to define
the pertinent set of classes. For each class, you define the appropriate
properties and methods. This ensures that the correct set of information
and logic is encapsulated in each class, making it easier to work with and
maintain the class.

NOTE: Even if you don’t go through the design phase, you need to think
through the application to identify the appropriate set of classes for your busi-
ness logic layer.

You normally define one class for each key thing involved with the
application. For example, the Purchase Tracker sample application has
products, customers, and purchases. The products map to a Product class,
with properties to manage product information and methods to retrieve,
save, and perform any other required processing on product information.
The customers map to a Customer class, and so on. For more information
on defining classes for your application, see Chapter 2.

You can also define classes for other implementation logic. For exam-
ple, you could create a class to manage application logging or security.
These implementation-based classes were also discussed in Chapter 2.

Creating a Class 253

05Kurata.indd 253 1/25/07 10:04:37 AM

254 Chapter 5 Building the Business Logic Layer

This section details the process of creating a class. You can use these
techniques to create each class needed by your application.

Adding a Class to a Project
There are many ways to add a class to a project. As discussed in the preced-
ing chapter, adding a form project item actually adds two class files to the
project. It adds a class in one file with a .vb extension and a partial class in
another file with a .designer.vb extension.

When building the business logic layer, you normally add one
class project item for each business object class (such as Product and
Customer) and one for each implementation class (such as Logging and
Security).

NOTE: You may want to define standard implementation classes in a separate
utility component instead of in the business object component. That way, it
can more readily become a part of your reusable framework, as discussed in
Chapter 2.

To add a class to a project:

 1. Right-click the project in Solution Explorer and select Add | New
Item from the context menu, or select Project | Add New Item
from the main menu bar.

 Alternatively, you could select Add | Class from the context menu,
or select Project | Add Class from the main menu bar.

 2. Select the Class template, name the class, and click the Add
button.

 If you created your own class template using the steps in Chapter
3, you can use your template here.

 Use standard naming conventions for your class name. The most
common standard is to name the class using the singular name of
the business entity or implementation feature represented by the
class. For products the class name would be Product, for logging
the class name would be Logging, and so on.

 Visual Studio creates the class file with a .vb extension, adds it to
Solution Explorer, and then displays the class in the Code Editor.

05Kurata.indd 254 1/25/07 10:04:37 AM

5. BUILDING THE BUSINESS LOGIC LAYER

When Visual Studio creates the class file, it automatically generates the
class declaration as follows:

Public Class Product

End Class

You can add any number of classes to your projects as needed by your
application. Regardless of the class’s purpose or location, the basic process
of building a class is the same.

NOTE: Throughout this chapter, classes are created in the business object Class
Library project. You can use these same techniques to add classes to other
parts of your application. For example, your Windows Application project may
require classes to manage user interface features such as standard grid pro-
cessing. Or you may create a utility or general library component that requires
classes.

Building Along

For the Purchase Tracker sample application:
 ■ Visual Studio created a default class for you when you created the

business object Class Library project (PTBO). In Solution Explorer,
change the name of this default class from Class1 to Product.

 When you change the name of a class in Solution Explorer, Visual
Studio changes the class name in the Code Editor accordingly.

NOTE: When you change the class name in Solution Explorer, Visual Studio
modifies the class name in your code only if the class name matched the
name defined in Solution Explorer. For example, say you don’t modify the
class name in Solution Explorer, but you instead change the name directly in
the class file. If you later change the name in Solution Explorer, it does not
change the name you entered in the class file.

Creating a Class 255

05Kurata.indd 255 1/25/07 10:04:37 AM

256 Chapter 5 Building the Business Logic Layer

Documenting the Class
It is always a good idea to add documentation for a class immediately after
adding the class. By adding the documentation right away, you focus on
the class’s purpose, which helps you keep the class encapsulated. It is also
much easier to document each class as you go along instead of facing the
large task of going back later and documenting all the classes.

To document the class:

 1. Open the class in the Code Editor.
 2. Move the insertion point immediately before the word Public in

the Public Class statement.
 3. Type three comment markers, defined in Visual Basic as apostro-

phes ('''), and press the Enter key.
 The XML comments feature automatically creates the structure of

your class documentation as follows:

''' <summary>
'''
''' </summary>
''' <remarks></remarks>
Public Class Product

End Class

NOTE: If you type the three comment markers in the empty line above the class
definition instead of on the same line as the class definition, you don’t need to
press the Enter key to generate the documentation structure.

 4. Type a summary of the class’s purpose between the summary tags
and any remarks between the remark tags.

 Your documentation may be similar to this:

''' <summary>
''' Provides product management features such as
''' retrieving product data and saving product changes
''' </summary>
''' <remarks>Use this class to work with products
''' </remarks>

05Kurata.indd 256 1/25/07 10:04:37 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Use the summary tags to describe the class and the remarks tags to
add supplemental information. The summary is the most important tag
because it is the one used by Visual Studio.

When you provide a summary of the class using XML comments,
your class displays documentation about itself in appropriate places within
Visual Studio, such as in the List Members box, shown in Figure 5.1. Open
the List Members box by typing a part of the class name in the Code
Editor and pressing Ctrl+Spacebar or by selecting Edit | Intellisense |
List Members from the main menu bar or by clicking the Display an
Object Member List icon on the Text Editor toolbar.

Figure 5.1 The documentation provided in the List Members box is the summary defined
in the XML documentation for the class.

Using XML comments to document your classes makes it easier for
you and other developers to work with your classes.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add documentation for the Product class using XML comments.

In the Code Editor, view the comments by typing pro and then pressing
Ctrl+Spacebar to display the List Members box, as shown in Figure 5.1.

Organizing the Code Structure
Code that is organized is much easier to maintain, because you can quickly
find the code that needs to be changed. When you standardize this organi-
zational structure, any member of the team can quickly locate and modify
any class code, because the code structure of each class is the same.

Creating a Class 257

05Kurata.indd 257 1/25/07 10:04:37 AM

258 Chapter 5 Building the Business Logic Layer

A class is normally composed of a set of properties and public and pri-
vate methods. Public methods are methods that can be called from outside
of the class, and private methods are those used only within the class.

You define the organizational structure of a class using regions, as
described in Chapter 3. If you built a class template using the information
in Chapter 3 and then used that template when creating your class, these
regions are already defined in your code. If not, you can create the regions
as follows:

Public Class Product

#Region " Properties"

#End Region

#Region " Public Methods"

#End Region

#Region " Private Methods"

#End Region

End Class

Add any other regions as needed to define the standard code structure
for your classes. For example, if your class has a constructor, you can add
a Constructor region as defined later in this section.

NOTE: Once you define the standard set of regions to use in your classes,
define a custom class template, as described in Chapter 3. Provide this template
to all the members of your team. This ensures that all the classes of your applica-
tion follow your standard structure.

As you develop the code for the application, properties are added to
the Properties region, public methods are added to the Public Methods
region, and so on. To further aid in the organization, you can insert the
properties and methods within each region in alphabetical order.

05Kurata.indd 258 1/25/07 10:04:37 AM

5. BUILDING THE BUSINESS LOGIC LAYER

NOTE: If you don’t use a region, delete it. For example, if your class has no
private methods, delete the Private Methods region. This makes it clear that the
class has no private methods without opening the region to see that it has no
private methods.

You can also put regions within regions. So, you can put each method
in its own region within the Private Methods or Public Methods region.
This makes it easier to focus on the code, because you can close all meth-
ods except for the one you are working with.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add the regions as defined in this section.

In the Code Editor, open and close the regions to see how they hide and
show their contents.

Instantiating an Object
Once a class is defined, you can create objects from the class. This is called
object instantiation. You then use the object to access the properties and
methods defined in the class.

To create an object from a class:

 1. Declare an object variable.
 For example:

Dim prod as Product

 2. Create a new instance of the class, and assign the object variable to
reference that new instance.

 For example:

prod = New Product

NOTE FOR VB6 DEVELOPERS: The Set statement is no longer required
when assigning an object reference to an object variable.

Creating a Class 259

05Kurata.indd 259 1/25/07 10:04:37 AM

260 Chapter 5 Building the Business Logic Layer

 3. Access the properties and methods for the object by using the
object variable and a period (.).

 For example:

prod.ProductName

Alternatively, you can accomplish the first two steps in one code line
as follows:

Dim prod as New Product

This line declares the object variable and assigns it to reference a new
object from the Product class.

NOTE FOR VB6 DEVELOPERS: In classic versions of Visual Basic, it was
highly recommended that you not put the New keyword on the declaration
because of how instances were created. This is no longer the case, so the pre-
ceding syntax is generally recommended.

Defining the Constructor
A constructor is a built-in method in a class that the .NET runtime
executes when an object is first instantiated (created). You add code in the
constructor to perform any initialization operations for a new object.

You define a constructor by creating a New method in the class as
follows:

#Region " Constructors"
 Public Sub New()

 End Sub
#End Region

The constructor executes when you create an object from the class.
For example:

Dim prod as New Product

When the .NET runtime executes this line of code, it calls the New
method in the Product class and runs any code in your constructor.

05Kurata.indd 260 1/25/07 10:04:37 AM

5. BUILDING THE BUSINESS LOGIC LAYER

NOTE FOR VB6 DEVELOPERS: There is no longer an Initialize event
for a class. Any code you would have put into the Initialize event can go
into the constructor.

You can pass data into the constructor by defining parameters. The
constructor is then called a parameterized constructor. For example,
this constructor defines a productID as a parameter:

#Region " Constructors"
 Public Sub New(ByVal productID as Integer)

 End Sub
#End Region

You pass the parameter to the constructor when creating the instance of
the object:

Dim prod as New Product(1)

or

Dim prod as Product
prod = New Product(1)

Multiple constructors can be defined for a class. For example, you
could define a constructor with no parameters and one with a parameter.
The .NET runtime knows which constructor to call based on the param-
eters passed to the constructor. Defining one method (in this case, New)
with two different signatures is called overloading and is described in
detail later in this chapter.

In many cases, you don’t need any specialized code to be executed
when the object is instantiated, so you don’t need to create a constructor. If
you don’t create one, the runtime executes an empty constructor for you.

In other cases, you may want a more formal object creation pattern.
The most common formal pattern for object creation is called the Factory
pattern. A pattern is a reusable solution for a recurring problem. The
Factory pattern defines a standard solution for creating objects. Instead
of creating an instance of a class using the New keyword, the Factory pat-
tern defines a method that creates and returns an instance of the class.

Creating a Class 261

05Kurata.indd 261 1/25/07 10:04:37 AM

262 Chapter 5 Building the Business Logic Layer

This makes the process of creating object instances more explicit. See the
“Additional Reading” section at the end of Chapter 1, “Introduction to OO
in .NET,” for more information on patterns.

NOTE: The Factory pattern has two implementations: one using a factor class
and the other using a factory method. This example uses a factory method.

If you elect to apply the Factory method, you no longer use this style
of code to create an object:

Dim prod as Product
prod = New Product

You instead use code like this:

Dim prod as Product
prod = Product.Create()

The Create method, and the syntax used to call it, are defined in detail
later in this chapter.

NOTE: If you select to use a Factory method pattern, other code in the applica-
tion should use the Factory method and not directly instantiate an object using
the New keyword. To prevent any code from creating an instance of your object
without using the Factory method, define an empty constructor and use the
Private keyword. For example:

#Region " Constructors"
 Private Sub New()

 End Sub
#End Region

Use constructors or a Factory pattern method to define any code that
must be executed when first creating an object from the class. Don’t bother
creating a constructor if you have no initialization code.

05Kurata.indd 262 1/25/07 10:04:38 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add a region for a constructor.
 ■ Add a private constructor with no code in the constructor.
 This ensures that code outside of the class cannot create objects

from the class. Instead, a Factory pattern method is added in a later
“Building Along” activity.

 ■ Open the ProductWin form in the Code Editor.
 ■ In the Load event for the ProductWin form, add code to create an

object from the Product class:
Dim prod As Product

prod = New Product

 Visual Studio underlines part of the second code line and displays
an error: “‘PTBO.Product.Private Sub New()’ is not accessible in this
context because it is ‘Private’”.

NOTE: If Visual Studio displays an error on the first line stating “Type
‘Product’ is not defined,” either you did not set a reference from the Windows
Application project (PTWin) to the business object Class Library project
(PTBO), or you did not import the PTBO namespace. See the “Referencing
Projects in a Solution” section in Chapter 3 for details.

 ■ In the Product class, comment out the private constructor by inserting
comment markers before each of the two code lines of the constructor.

 The lines of code added in the preceding step are now syntactically
correct.

Leave the private constructor commented out for now. This allows you to
try out some of the upcoming features. The private constructor will be uncom-
mented when the Factory pattern method is added in a later “Building Along”
activity.

Creating a Class 263

05Kurata.indd 263 1/25/07 10:04:38 AM

264 Chapter 5 Building the Business Logic Layer

Defining the Destructor
A destructor is a built-in method in a class that the .NET runtime exe-
cutes when an object is destroyed. You define a destructor by creating a
Finalize method in the class. But using a destructor is not recommended,
because it does not necessarily execute when you expect it to, and it may
not execute at all.

It may seem that the destructor should execute when you specify that
you no longer need the object. For example, the following code defines
that you no longer need the specified object reference:

prod = Nothing

But this code does not destroy the object. It just releases the object, mak-
ing it available for destruction.

Your code does not define when an object is destroyed—the .NET
garbage collector does. The garbage collector is a memory manager that
manages the allocation and release of memory for all .NET applications.
The garbage collector performs garbage collection when it needs to. It then
releases the memory allocated to a managed object and destroys the object
if that object is no longer used. But because you cannot predict when the
garbage collector will perform garbage collection, you don’t know exactly
when your object will be destroyed. Therefore, you cannot know when
your destructor will be executed. (See the “Additional Reading” section for
more information on the garbage collector.)

In most cases, you don’t need to write any cleanup code that executes
when an object is destroyed, so you don’t need to care about this. You can
just allow the garbage collector to destroy your object when it gets around
to it.

But if your object works with unmanaged resources, you do need to
write some cleanup code. Unmanaged resources are system resources
that are not directly managed by the .NET runtime, such as database con-
nections, window handles, open files, network connections, and graphic
resources. You need to explicitly release unmanaged resources when your
object is released.

Because the execution of the Finalize method is unpredictable, do
not put the code to release unmanaged resources in the destructor. Create
a Dispose method instead, and explicitly call Dispose when you release
the object. Add code in the Dispose method to perform any cleanup
activities required for your object—primarily, releasing any unman-
aged resources used by your object. And since you are explicitly calling
Dispose, you control when the unmanaged resources are released.

05Kurata.indd 264 1/25/07 10:04:38 AM

5. BUILDING THE BUSINESS LOGIC LAYER

NOTE FOR VB6 DEVELOPERS: There is no longer a Terminate event for
a class. Any code you would have put into the Terminate event can go in the
Dispose method.

Define a Dispose method by implementing the .NET Framework
IDisposable interface. Using the IDisposable interface to define your
Dispose method ensures that you have a standardized programmatic
interface for disposing of your objects.

To implement a Dispose method, do the following:

 1. Open the class in the Code Editor.
 2. Add the Implements statement to the class definition to imple-

ment the IDisposable interface:

Public Class Product
 Implements IDisposable

 3. Press the Enter key after the name of the interface.
 The Code Editor automatically adds the signatures for all the

properties and methods defined in the interface and related code
to the class. This generated code uses the recommended design
pattern for proper cleanup of any unmanaged resources that your
application uses.

Visual Studio adds two sets of generated code as part of the
IDisposable interface implementation, defining two Dispose methods.
The first part of the generated code provides a Dispose method that you
can customize to your requirements:

Private disposedValue As Boolean = False ' To detect redundant
➥calls

' IDisposable
Protected Overridable Sub Dispose(ByVal disposing As Boolean)
 If Not Me.disposedValue Then
 If disposing Then
 ' TODO: free unmanaged resources when explicitly called
 End If

Creating a Class 265

05Kurata.indd 265 1/25/07 10:04:38 AM

266 Chapter 5 Building the Business Logic Layer

 ' TODO: free shared unmanaged resources
 End If
 Me.disposedValue = True
End Sub

The disposedValue variable keeps track of whether the object has
already been disposed so that it won’t dispose it again.

The parameter passed to this customizable Dispose method defines
whether Dispose is called from the IDisposable interface Dispose
method (shown next). If so, the code should free any unmanaged resourc-
es, so put your cleanup code here, by the first TODO Task List comment.
If you have shared resources (those defined without a specific instance),
put that cleanup code by the second TODO Task List comment.

When all the unmanaged resources are freed, this code sets the
disposedValue property so that it won’t dispose again.

The second part of the generated code defines the implemented
interface:

#Region " IDisposable Support "
 ' This code added by Visual Basic to correctly implement the
 ' disposable pattern.
 Public Sub Dispose() Implements IDisposable.Dispose
 ' Do not change this code. Put cleanup code in
 ' Dispose(ByVal disposing As Boolean) above.
 Dispose(True)
 GC.SuppressFinalize(Me)
 End Sub
#End Region

This code is meant to be left unchanged. This interface Dispose
method first calls the customizable Dispose method to perform the clean-
up. It then calls the SuppressFinalize method on the garbage collec-
tor. SuppressFinalize tells the garbage collector that it does not need
to perform further cleanup on the object because the object was already
cleaned up by the customized Dispose method.

NOTE: Some dispose patterns suggest that you also override the Finalize
method. In the Finalize method, you call the customizable Dispose method
and pass in False. Overriding the Finalize method is not recommended

05Kurata.indd 266 1/25/07 10:04:38 AM

5. BUILDING THE BUSINESS LOGIC LAYER

due to the performance and complexity costs of using a finalizer. See the
Framework Design Guidelines book, listed in the “Additional Reading” section,
for more information.

Unlike the Finalize destructor, the Dispose method is not called
automatically. The code that created the object must manually call
Dispose explicitly when destroying the object as follows:

prod.Dispose()
prod = Nothing

If your code creates an object using the Using statement, as defined in
the preceding chapter, the .NET runtime automatically calls the Dispose
method at the end of the Using block, so you don’t need to explicitly call
Dispose. The Using statement also ensures that Dispose is called even
if an error occurs within the Using block.

In this example, the Using statement is as follows:

Using prod As Product = New Product
 ' Code to work with the object here
End Using

Or, if you are using a Create Factory pattern method:

Using prod As Product = Product.Create()
 ' Code to work with the object here
End Using

NOTE: You can use the Using statement only if the class (Product in this
case) implements the IDisposable interface.

If your class does not have or use any unmanaged resources, it can
leave it up to the garbage collector to clean things up, and no Dispose
method is needed. If your class does use unmanaged resources, implement
a Dispose method using the IDisposable interface, as described in this
section. Any code that creates an object from your class must then cor-
rectly destroy it when it is finished with it by calling the object’s Dispose
method or by using the Using statement.

Creating a Class 267

05Kurata.indd 267 1/25/07 10:04:38 AM

268 Chapter 5 Building the Business Logic Layer

Building Along

For the Purchase Tracker sample application, do not implement the
IDisposable interface in the Product class. The Product class does
not access any unmanaged resources, so it does not need to have any spe-
cial dispose processing.

Using Partial Classes
By convention, each business object class resides in a single class file.
The Product class is in the Product.vb file, the Customer class is in the
Customer.vb file, and so on. But that is not a requirement. A class can be
divided between any number of class files.

You can break a class into two or more files by defining partial classes.
Partial classes are used primarily in situations where you have a code gen-
erator that generates part of the class and custom code for the remainder
of the class. By placing the generated code in a file separate from the
custom code, you can more easily regenerate the generated code without
affecting the custom code. Every time you add a form to a project, Visual
Studio creates a partial class and generates the code defining the controls
on your user interface in that class, as described in Chapter 4.

To define a partial class for your class:

 1. Right-click the project in Solution Explorer and select Add | New
Item from the context menu, or select Project | Add New Item
from the main menu bar.

 Alternatively, you could select Add | Class from the context menu,
or select Project | Add Class from the main menu bar.

 2. Select the Class template, name the class, and click the Add
button.

 You cannot have two code files with the same filename, so name
the partial class with a unique name.

 Visual Studio creates the class file with a .vb extension, adds it to
Solution Explorer, and then displays the class in the Code Editor.

 3. In the Code Editor, add the Partial keyword to the class defini-
tion, and modify the class name to match the original class name.

For example, the class definition of a partial class for the Product
class is as follows:

05Kurata.indd 268 1/25/07 10:04:38 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Partial Public Class Product

End Class

When the application is built, the code in the file for the class and the
files for any partial classes are combined into one logical class. So the run-
time behaves as if there is only one class.

One other benefit of partial classes is the ability to separately define
Option Strict. Your primary class can have Option Strict set to On, and
your partial class can have Option Strict set to Off. This is useful if you
have code that needs to work with objects without concern for conversion
of their types, such as when calling components written in VB6 or other
Component Object Model (COM)-based technologies.

Don’t use partial classes unnecessarily. Dividing a class into multiple
class files for no particular purpose makes it more difficult to maintain the
class. It is more difficult to find where code resides and see how it interacts
with other code in the class.

Use partial classes for the defined purpose—separating generated
code from custom code. If you are not writing your own code generators,
you may never need to create a partial class. If you use third-party code
generators, you may notice the partial classes that they create.

Adding Multiple Classes to a Class File
A single class file can contain any number of classes. Although you nor-
mally define a class within its own class file, you can add support classes
for that class directly in the same class file.

For example, say you define a ProductOutOfStockException class
that is used only by the Product class. You can define this exception class
in the same code file as the Product class:

End Class ' End of the Product Class

<Serializable()> _
Public Class ProductOutOfStockException
 Inherits ApplicationException

 Public Sub New(ByVal message As String)
 MyBase.New(message)
 End Sub

Creating a Class 269

05Kurata.indd 269 1/25/07 10:04:38 AM

270 Chapter 5 Building the Business Logic Layer

 Public Sub New(ByVal message As String, _
 ByVal inner As Exception)
 MyBase.New(message, inner)
 End Sub

 Public Sub New(_
 ByVal info As _
 System.Runtime.Serialization.SerializationInfo, _
 ByVal context As _
 System.Runtime.Serialization.StreamingContext)
 MyBase.New(info, context)
 End Sub
End Class

NOTE: This class was created with the Exception snippet. See the next chapter
for details on using snippets.

NOTE: The Serializable attribute on this class defines that the exception
class can be serialized. Serialization is the process of converting an object
into a sequence of bytes for either storage or transmission to another location.
For example, you could serialize an object to a file to save the value of all the
object’s properties.

This attribute is added to the exception class to support remoting.
Remoting is the process of passing an object to another computer by serial-
izing the object. If an exception occurs on the remote computer, the exception is
serialized and remoted back to the original application.

For more information on remoting, see the Lhotka book in the “Additional
Reading” section. See the System.Runtime.Serialization .NET
Framework class documentation for more information on serialization. See the
later section “Obsolescing Methods” for more information on attributes.

This class inherits from ApplicationException to ensure that
it behaves as an exception. It contains three methods, each of which
calls the associated base class method. Using the same named methods
with different parameters is described later, in the section “Overloading
Methods.” You can create your own exceptions any time using this style of
exception class.

05Kurata.indd 270 1/25/07 10:04:38 AM

5. BUILDING THE BUSINESS LOGIC LAYER

NOTE: Although the exception snippet inherits from ApplicationException,
best practices define that you should inherit from Exception instead.
ApplicationException was originally set up for your use, as defined
in the preceding example. However, it was misused within the .NET
Framework, so the Framework developers recommend that you do not use
ApplicationException in your code. (See the “Additional Reading”
section for the reference to the Framework Design Guidelines book containing
this recommendation.)

Don’t put multiple business object classes in a single class file. Reserve
this feature for adding support classes or exception classes only. For exam-
ple, business object-unique exceptions are an excellent type of class to add
to a business object class file.

Defining Properties

The properties of a class define the data associated with the class.
For example, a Product class has ProductName, ProductID, and
InventoryDate properties. Each object created from the class can have a
different set of values for these properties.

This section details the process of creating a property. It then covers
some additional techniques for working with properties.

Creating the Property
Create a property in a class for each data attribute identified for the class
during the design phase. Following best practices, defining properties
requires two steps.

First you create a private variable to retain the property value. This
private variable is called a backing variable or backing field and retains
the property’s value. You make the variable private so that it cannot be
directly accessed by any code outside of the class.

Next you create a Property statement. The Property statement
defines the property and the accessors used to get and set the property.
The Set accessor, sometimes called the setter, sets the property’s value,
and the Get accessor, sometimes called the getter, returns the proper-
ty’s value.

Defining Properties 271

05Kurata.indd 271 1/25/07 10:04:39 AM

272 Chapter 5 Building the Business Logic Layer

This technique encapsulates the property by providing access to it only
through the accessors. You can write code in the accessors to validate data,
perform formatting, or any other business logic.

To define a property:

 1. Open the class in the Code Editor.
 2. Declare a private variable for the property.
 For example:

Private _ProductName As String

 By making the variable private, you ensure that code outside of this
class can not access the property directly. All code must access the
variable value through the Property statement.

 Use good naming conventions for your private variable. There are
several common conventions, such as prefixing the property name
with m or m_ to define the variable as member-level. The conven-
tion that is currently gaining popularity is to prefix the property
name with an underscore to indicate that the variable should not
be used anywhere in the code except in the Property statement.

 3. Create the Property statement for the property.
 For example:

Public Property ProductName() As String

 Use good naming conventions for your property name. The recom-
mended convention is to use the property’s human-readable name,
concatenating the words and using Pascal case, whereby each word
in the name is capitalized.

 4. Press the Enter key to automatically generate the remaining struc-
ture of the Property statement:

Public Property ProductName() As String
 Get

 End Get
 Set(ByVal value As String)

 End Set
End Property

 5. Add code within the Get and Set blocks.

05Kurata.indd 272 1/25/07 10:04:39 AM

5. BUILDING THE BUSINESS LOGIC LAYER

The minimum code in the getter returns the value of the private
variable:

Get
 Return _ProductName
End Get

NOTE FOR VB6 DEVELOPERS: Use the Return statement instead of using
the property’s name to return a value.

Add any other code to the getter, such as formatting or data conver-
sions. For example, for a product number, the getter could add hyphens or
other characters used by the human reader that are not necessarily stored
with the actual data.

The minimum code in the setter sets the value of the private variable:

Set(ByVal value As String)
 _ProductName = value
End Set

Add any other code to the setter, such as validation or data conver-
sion. For example, code could validate that the product name is not empty
before it is assigned to its private variable.

NOTE FOR VB6 DEVELOPERS: The Property statement is similar to the
VB6 property procedures. However, there is no separate Let and Set. The
Set statement is no longer needed to assign object variables. Object variables
can now be assigned with a simple equals sign, as with any other variable
(remember from Chapter 1 that everything in .NET is basically an object).

Repeat these steps to define each property of your class. Alternatively,
you can use code snippets or the Class Designer, as described in the next
chapter, to assist you in defining the properties of your class.

Use properties to define the data managed by your business object.
Use Property statements to provide access to the properties from other
parts of the application.

Defining Properties 273

05Kurata.indd 273 1/25/07 10:04:39 AM

274 Chapter 5 Building the Business Logic Layer

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add the ProductName property, as defined in this section.
 ■ Open the ProductWin form in the Code Editor.
 ■ In the Load event for the ProductWin form, add code to set and

then display the ProductName property:
Dim prod as Product

prod = New Product

prod.ProductName = "shoes"

Debug.WriteLine(prod.ProductName) ' Displays shoes

Run the application. It displays your splash screen and then shows the
MDI parent form. Select Products | Manage Products to display the
ProductWin form. The debug message appears in the Immediate window
(Debug | Windows | Immediate) or in the Output window (Debug |
Windows | Output), depending on your settings.

Property Statements Versus Public Variables
The example in the preceding section seemed like much more code than
simply adding a public variable. Why bother with Property statements?

Using a private variable and public Property statements has several
advantages over just using public variables:

 ■ You can add code that is executed before a property is assigned. This
code can perform validation, such as to ensure that no invalid values
are assigned to the property.

 ■ You can add code that is executed before a property is retrieved.
This code can format or convert the value. For example, it could add
dashes to the product number for the human reader even though
the dashes are not stored with the data.

 ■ Without a Property statement, any code that references the class
can manipulate or destroy the property value at will.

 ■ Some of the Visual Studio tools, such as object binding, recognize
only properties defined with Property statements. (See Chapter 7,
“Binding the User Interface to the Business Objects,” for more
information on object binding.)

05Kurata.indd 274 1/25/07 10:04:39 AM

5. BUILDING THE BUSINESS LOGIC LAYER

For these reasons, always use private variables and public Property
statements to define the properties for your classes.

Documenting the Property
It is always a good idea to add documentation for a property immediately
after defining the property. By adding the documentation right away, you
have it in place so that you can use the documentation as you build the
remainder of the application.

To document the property:

 1. Open the class in the Code Editor.
 2. Move the insertion point immediately before the word Public in

the Public Property statement.
 3. Type three comment markers, defined in Visual Basic as apostro-

phes ('''), and press the Enter key.
 The XML comments feature automatically creates the structure of

your property documentation as follows:

''' <summary>
'''
''' </summary>
''' <value></value>
''' <returns></returns>
''' <remarks></remarks>

NOTE: If you type the three comment markers in the empty line above the prop-
erty definition instead of on the same line as the property definition, you don’t
need to press the Enter key to generate the documentation structure.

 4. Type a summary of the property between the summary tags, the
value of the property between the value tags, and so on.

 Your documentation may be similar to this:

''' <summary>
''' Gets or sets the product name
''' </summary>
''' <value>Product Name</value>
''' <returns>Product Name</returns>
''' <remarks></remarks>

Defining Properties 275

05Kurata.indd 275 1/25/07 10:04:39 AM

276 Chapter 5 Building the Business Logic Layer

Use the summary tags to describe the purpose of the Property state-
ment. By convention, a Property statement summary begins with the text
“Gets or sets the...” for a read-and-write property, “Gets the...” for read-
only properties, and “Sets the...” for write-only properties.

In this example, the value and returns tags don’t provide very useful
information, because the product name is self-explanatory. These two tags
could be deleted in this case. However, in other cases the property may
not be as obvious, so the documentation defined in the XML tags is more
useful. For example, a Status property is not as obvious, and the XML
documentation could provide further information, such as what the status
value means and what it actually returns.

When you provide a summary of a property using XML comments, the
summary appears in appropriate places within Visual Studio. For example,
the summary appears in the Intellisense List Members box when you type
the object variable name and a period (.).

Using XML comments to document your properties makes it easier for
you and other developers to work with your properties.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add documentation for the ProductName property using XML

comments.
In the Code Editor, view the comment by typing prod. in the Load event

in the ProductWin form.
When you type the period (.), Visual Studio displays the Intellisense List

Members box, showing all the properties and methods for the class. Click the
ProductName property to see the XML comments. Be sure to remove this
code; otherwise, the project will have a syntax error.

Defining Property Accessibility
In most cases, properties are public. The primary purpose of properties is
to provide public access to the data relating to a particular object. But in
some cases, you may want the property to be read-only and, in rare cases,
write-only. You can define a property’s accessibility using additional key-
words in the Property statement.

05Kurata.indd 276 1/25/07 10:04:39 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Some fields should be changed only by code in the class, not by any
code outside the class. For example, a ProductID should not be changed
by code outside the class, because the ID is the key property used to
identify the product. It should be set only when the product is created and
then never changed. (See Chapter 8 for more information on primary key
fields.)

You can define a property to be read-only using the ReadOnly key-
word. If you need to define a property as write-only, you can use the
WriteOnly keyword.

Public ReadOnly Property ProductID() As Integer
 Get

 End Get
End Property

When you make the property read-only or write-only using the key-
word, the code in the class cannot access the property either. If the prop-
erty is read-only, the code in the class must access the private backing
variable to update the value. It would be better to define the accessibility
on the accessors so that the getter could be public but the setter could be
private. This would allow the code in the class to set the property but make
it appear read-only outside this class.

To define separate accessibility on the accessors, add an accessibility
keyword to either the getter or setter:

Public Property ProductID() As Integer
 Get

 End Get
 Private Set(ByVal value As Integer)

 End Set
End Property

Notice the Private keyword on the setter. This allows the getter to
be public but restricts the setter to be private. The code within the class
can then get or set the property, and code outside the class can only get
the property.

Defining Properties 277

05Kurata.indd 277 1/25/07 10:04:39 AM

278 Chapter 5 Building the Business Logic Layer

Some restrictions and rules apply when you use accessibility on the
accessors:

 ■ The accessibility on the Property statement must be less restric-
tive than the accessibility on the accessor.

 For example, you cannot define the Property statement to be pri-
vate and then make the getter public.

 ■ You can add accessibility to the getter or setter, but not both.
 If the getter needs to be friend and the setter needs to be private,

for example, make the Property statement friend (the least restric-
tive), and make the setter private.

 ■ If you use the ReadOnly or WriteOnly keywords, you cannot add
accessibility on the accessor.

Define accessibility appropriately to ensure that your properties are
accessed only as they should be. Most properties are public, but for some
properties, such as IDs, define private setters to allow reading but not set-
ting of the property.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add a ProductID property with a private setter, as defined in this

section.
 ■ Add code to declare a backing variable, and get and set its value in

the property.
 ■ Add documentation for the ProductID property using XML comments.

This new property is used later in this chapter.

Handling Nulls
A data type is said to be nullable if it can be assigned a value or a null
reference. Reference types, such as strings and class types, are nullable;
they can be set to a null reference, and the result is a null value. Value
types, such as integers, Booleans, and dates, are not nullable. If you set
a value type to a null reference, the result is a default value, such as 0 or

05Kurata.indd 278 1/25/07 10:04:39 AM

5. BUILDING THE BUSINESS LOGIC LAYER

false. A value type can express only the values appropriate to its type; there
is no easy way for a value type to understand that it is null.

The .NET Framework 2.0 introduces a Nullable class and an asso-
ciated Nullable structure. The Nullable structure includes the value
type itself and a field identifying whether the value is null. A variable of a
Nullable type can represent all the values of the underlying type, plus an
additional null value. The Nullable structure supports only value types
because reference types are nullable by design.

For example, say you have a Product class with a ProductID prop-
erty defined as an integer, a ProductName property defined as a string,
and an InventoryDate property defined as a date. The following code
sets each property to Nothing to assign a null reference:

Dim prod as Product
prod = New Product
prod.ProductID = Nothing
prod.ProductName = Nothing
prod.InventoryDate = Nothing

Debug.WriteLine(prod.ProductID) ' Displays 0
Debug.WriteLine(prod.ProductName) ' Displays (Nothing)
Debug.WriteLine(prod.InventoryDate)
 ' Displays 1/1/0001 12:00:00 AM

If you view these values, they are 0, Nothing, and 1/1/0001
12:00:00 AM, respectively. The ProductID and InventoryDate prop-
erties are value types and therefore cannot store a null. Instead, they store
a default value when they are assigned a null reference.

There may be cases, however, when you need your code to really han-
dle a null as a null and not as a default value. It would be odd, for example,
to handle a null date by hard-coding a check for the 1/1/0001 date.

To make a value type property nullable, you need to declare it using
the Nullable structure. However, you still want your property to be
strongly typed as an integer, date, Boolean, or the appropriate underlying
type. The ability to use a class or structure for only a specific type of data
is the purpose of generics.

Generics allow you to tailor a class, structure, method, or interface to
a specific data type. So you can create a class, structure, method, or inter-
face with generalized code. When you use it, you define that it can work
only on a particular data type. This gives you greater code reusability and
type safety.

Defining Properties 279

05Kurata.indd 279 1/25/07 10:04:39 AM

280 Chapter 5 Building the Business Logic Layer

NOTE: A number of generic collection classes are also provided in the .NET
Framework. These are great for creating collections of objects in which only a
particular type of object can be in the collection. (See the next chapter for more
information on generic collections.) You can use the generic types defined in the
.NET Framework or create your own.

The .NET Framework built-in Nullable structure is generic. When
you use the structure, you define the particular data type to use.

As a specific example, an InventoryDate property that allows the
date to be a date or a null value uses the generic Nullable structure as
follows:

Private _InventoryDate As Nullable(Of Date)
Public Property InventoryDate() As Nullable(Of Date)
 Get
 Return _InventoryDate
 End Get
 Set(ByVal value As Nullable(Of Date))
 _InventoryDate = value
 End Set
End Property

Notice the syntax of the Nullable structure. Since it supports gener-
ics, it has the standard (Of T) syntax, where T is the specific data type you
want it to accept. In this case, the Nullable structure supports dates, so
the (Of Date) syntax is used. This ensures that the Nullable structure
contains only a date or a null value.

You can then use this property in your application as needed. For
example:

Dim prod as Product
prod = New Product
If prod.InventoryDate.HasValue Then
 If prod.InventoryDate.Value < Now.Date.AddDays(-10) Then
 MessageBox.Show("Need to do an inventory")
 End If
Else
 MessageBox.Show("Need to do an inventory - never been done")
End If

05Kurata.indd 280 1/25/07 10:04:40 AM

5. BUILDING THE BUSINESS LOGIC LAYER

The HasValue property of the Nullable class defines whether
the value type has a value—in other words, whether it is null. If it does
have a value, you can retrieve the value using the Value property of the
Nullable class.

NOTE: The Nullable type does not support the compare (=) operator. So you
cannot use code such as:

If prod.InventoryDate = Nothing Then

You must instead use the HasValue and Value properties, as shown in
the preceding code example.

The Nullable structure is exceptionally useful when you’re working
with databases, because empty fields in a database are often null. Assuming
that you have an InventoryDate field in a table, you could write code as
follows:

If dt.Rows(0).Item("InventoryDate") Is DBNull.Value Then
 prod.InventoryDate = Nothing
Else
 prod.InventoryDate = _
 CType(dt.Rows(0).Item("InventoryDate"), Date)
End If

The If statement is required here because you cannot convert a DBNull
to a date using CType. So you first need to ensure that it is not a null.

Use the Nullable structure any time you need to support nulls in a
value type, such as an integer, Boolean, or date.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add the InventoryDate property, as defined in this section.
 ■ Add code to declare a backing variable, and get and set its value in

the property, as defined in this section.
 ■ Add documentation for the InventoryDate property using XML

comments.
 ■ Open the ProductWin form in the Code Editor.

Defining Properties 281

05Kurata.indd 281 1/25/07 10:04:40 AM

282 Chapter 5 Building the Business Logic Layer

 ■ In the Load event for the ProductWin form, add code to set and
then display the InventoryDate property:
Dim prod as Product

prod = New Product

prod.InventoryDate = Now()

Debug.WriteLine(prod.InventoryDate)

 ' Displays 9/25/2006 1:45:53 PM

Run the application. It displays your splash screen and then shows the
MDI parent form. Select Products | Manage Products to display the
ProductWin form. The debug message appears in the Immediate window
(Debug | Windows | Immediate) or in the Output window (Debug |
Windows | Output), depending on your settings.

By adding properties to your classes, you provide your application with
easy access to object data. This allows the user interface, for example, to
display and update the data.

Stateful Versus Stateless Classes

For some developers, myself included, it may seem unnatural at first to have
properties defined for your business objects. Until recently, the best practice for
Web applications and large-scale systems was to keep your business objects
stateless so that they did not retain any property values between calls. The busi-
ness objects consisted of only methods. Any data needed by those methods was
passed in as parameters.

Stateful classes were deemed inappropriate for Web applications because
there was no efficient way to maintain the values of the properties between calls
to a page.

Stateful classes were deemed inefficient for large-scale systems with applica-
tion servers because each time the user interface requested a property from the
business object, a network hit was required to retrieve the data from the applica-
tion server and pass it down. These were called “chatty” calls.

With the simplicity of deployment, all application components are now often
deployed to the user’s system, reducing the need for application servers. And
many features have been added to simplify Web state management.

With many of the new features of .NET and today’s architectural practices,
it now makes sense to build stateful business objects. This opens the door for
building objects that can easily support object binding.

05Kurata.indd 282 1/25/07 10:04:40 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Defining Methods

The methods of a class define the behavior and functionality associated
with the class. Methods are implemented as subroutines and functions.
For example, a Product class has Create and Save methods.

This section details the process of creating a method. It then covers
some additional techniques for defining methods.

Creating a Method
Methods define the logic in your application. Create a method in a class for
each set of business logic identified for the class during the design phase.

Implement a method using a subroutine when the method does not
need to return a value, or a function if the method does need to return a
value.

To define a method:

 1. Open the class in the Code Editor.
 2. Create the subroutine or function for the method.
 For example:

Public Function Create

 Use good naming conventions for your method name. The recom-
mended convention is to use the method’s human-readable name,
concatenating the words and using Pascal case, whereby each word
in the name is capitalized.

 The purpose of this particular method is to create an instance of
the business object class using the Factory pattern, so it was named
Create. Some developers don’t like to use that name because
it could imply that a new item, such as a new product, is being
created when instead an instance is created for an existing item.
Alternatively, you could name this method CreateInstance or
GetProduct or simply Retrieve.

 3. Add the parameters appropriate for the method.
 For example:

Public Function Create(ByVal prodID As Integer)

 Parameters define the data that is passed into or out of the func-
tion or subroutine. The number, name, and type of the parameters
depend on the data that needs to be passed. In this example, the

Defining Methods 283

05Kurata.indd 283 1/25/07 10:04:40 AM

284 Chapter 5 Building the Business Logic Layer

product ID is passed in to create an object populated with data for
the defined ID.

 Use good naming conventions for your parameter names. The
recommended standard is to use a logical parameter name, con-
catenating the words and using camel case, whereby the first letter
is lowercase and the beginning of every other word is capitalized.

 Be sure that the parameter names do not conflict with any of your
property names.

 4. If you are defining a function, define the method’s return type.
 For example:

Public Function Create(ByVal prodID As Integer) _
 As Product

 The return type depends on the data that needs to be passed back
from the function. In this example, the return type is an instance
of the Product class.

 5. Press the Enter key to automatically generate the method’s remain-
ing structure:

Public Function Create(ByVal prodID As Integer) _
 As Product

End Function

 6. Add code within the method to perform the desired operation.
 7. If you’re implementing a Function, use the Return statement to

return the value.

NOTE FOR VB6 DEVELOPERS: Use the Return statement instead of using
the method’s name to return a value.

The purpose of this particular Create method is to create an instance
of the class. As discussed earlier in this chapter, objects are often created
from a class using the Factory pattern. The Create method is then used,
instead of the constructor, to create instances of the class.

A Create method used to create an instance of a class would look
similar to this:

Public Function Create(ByVal prodID As Integer) As Product
 Dim prod As Product

05Kurata.indd 284 1/25/07 10:04:40 AM

5. BUILDING THE BUSINESS LOGIC LAYER

 ' Create a new instance
 prod = New Product()

 ' Populate the object
 If prodID = 1 Then
 prod.ProductID = 1
 prod.ProductName = "Mithril Coat"
 prod.InventoryDate = #4/1/2006#
 End If

 Return prod
End Function

The first line of this function declares an object variable. The New
keyword is then used to create a new instance of the Product class. The
object properties are then populated. Notice that these are hard-coded in
this case. The property values will be assigned from data in a database in
Chapter 8. For now, the values are hard-coded so that the Create method
works at this point without needing the data access layer in place just
yet. The last line of the function returns the instantiated and populated
Product object.

Although these steps demonstrate a Create method, you can create
any type of method using these steps. Alternatively, you can use the Class
Designer, as described in the next chapter, to assist you in defining the
methods of your class.

Use methods to perform all of the processing required by your applica-
tion. To create good methods, ensure that each method has a single pur-
pose and that the method is no longer than about one page. If a method is
long, break it into multiple methods. This makes each method much easier
to build and maintain.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add the Create method, as defined in this section.
 ■ Open the ProductWin form in the Code Editor.
 ■ In the Load event for the ProductWin form, modify the code to call

the Create method and display the resulting values:

Defining Methods 285

05Kurata.indd 285 1/25/07 10:04:40 AM

286 Chapter 5 Building the Business Logic Layer

Dim prod as Product

prod = New Product

prod = prod.Create(1)

Debug.WriteLine(prod.ProductID) ' Displays 1

Debug.WriteLine(prod.ProductName)

 ' Displays Mithril Coat

Debug.WriteLine(prod.InventoryDate)

 ' Displays 4/1/2006 12:00:00 AM

Run the application. It displays your splash screen and then shows the
MDI parent form. Select Products | Manage Products to display the
ProductWin form. The debug messages appear in the Immediate window
(Debug | Windows | Immediate) or in the Output window (Debug |
Windows | Output), depending on your settings.

Passing Parameters
Parameters to methods are passed either ByVal or ByRef. ByVal is short
for “by value” and means that the parameter value is evaluated and then its
value is passed to the method. ByRef is short for “by reference” and means
that a reference to the parameter is passed to the method.

If you don’t specify the passing mechanism, the default is ByVal. In
most cases, you want to pass your parameters by value.

NOTE FOR VB6 DEVELOPERS: The default in the classic versions of Visual
Basic was ByRef, so watch for this when converting from VB6 to Visual Basic
2005.

The only time you need to use ByRef is when you want to modify
the parameter within the method and allow the calling code to receive
the modified value upon return from the method call. ByRef can also be
used to return parameters from the method if you need more than one
return value.

For example, a ProcessRequest method needs to return the number
of items processed and a response string to the calling code. The method
signature uses the ByRef keyword as follows:

05Kurata.indd 286 1/25/07 10:04:40 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Private Function ProcessRequest(ByVal requestType As String, _
 ByRef requestResponse As String) As Integer
 Dim itemsProcessed As Integer = 0

 ' Code that performs the request

 requestResponse = "Test Reply"
 Return itemsProcessed
End Function

This function is called as follows:

Dim requestCount As Integer
Dim response As String
requestCount = ProcessRequest("Test", response)
Debug.WriteLine(requestCount.toString & " " & response)
 ' Displays 0 Test Reply

If the requestResponse parameter was declared using the ByVal key-
word, the response variable would always return Nothing, because it
would not pass back the changed value from the function. By using the
ByRef keyword, the response variable is set to the changed value.

Documenting the Method
It is always a good idea to add documentation for a method immediately
after creating the method. You may even want to add the documentation
just after defining the method signature and before you write the code
within the method. By adding the documentation right away, you focus on
the method’s purpose, which helps you keep the method encapsulated. It is
also much easier to document each method as you go along instead of facing
the large task of going back later and documenting all the methods.

To document the method:

 1. Open the class in the Code Editor.
 2. Move the insertion point immediately before the word Public in

the Public Function or Public Sub statement.
 3. Type three comment markers, defined in Visual Basic as apostro-

phes ('''), and press the Enter key.

Defining Methods 287

05Kurata.indd 287 1/25/07 10:04:40 AM

288 Chapter 5 Building the Business Logic Layer

 The XML comments feature automatically creates the structure of
your method documentation as follows:

''' <summary>
'''
''' </summary>
''' <param name="prodID"></param>
''' <returns></returns>
''' <remarks></remarks>

 Notice how this automatically generates a param tag with the
name of each method parameter.

NOTE: If you type the three comment markers in the empty line above the
method definition instead of on the same line as the method definition, you don’t
need to press the Enter key to generate the documentation structure.

 4. Type a summary of the method between the summary tags, the
parameter descriptions between the param tags, and so on.

 Your documentation may be similar to this:

''' <summary>
''' Creates a populated instance of this class
''' </summary>
''' <param name="prodID">ID of the product to
''' create</param>
''' <returns>Instance of the Product class</returns>
''' <remarks></remarks>

Use the summary tags to describe the method’s purpose and the
param tags to define each parameter. The summary and param are the
most important tags because they are used by Visual Studio.

When you provide method documentation using XML comments,
your method displays documentation about itself in appropriate places
within Visual Studio. For example, the documentation appears in the
Intellisense List Members box when you type the object variable name
and a period (.).

Using XML comments to document your methods makes it easier for
you and other developers to work with your methods.

05Kurata.indd 288 1/25/07 10:04:40 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add documentation for the Create method using XML comments.

In the Code Editor, view the comment by typing prod. in the Load event
in the ProductWin form. When you type the period (.), Visual Studio dis-
plays the Intellisense List Members box, showing all the properties and meth-
ods for the class. Click the Create method to see the XML comments. Be
sure to remove this code; otherwise, the project will have a syntax error.

Overloading Methods
There may be times when you want to have different sets of parameters
for a method. For example, you may want your Create method to accept
an ID or string name. Or you may want a Retrieve method to work
with no parameters to retrieve all the data or an ID to retrieve data for a
particular ID.

You could define different method names to support different sig-
natures, but a better way is to use overloaded methods. An overloaded
method is a method that has the same name as another method but dif-
ferent parameters.

For example, the Create method defined in this section has a param-
eter for a product ID. If you want to allow creating objects by name as well,
you could define an overloaded Create method as follows:

Public Function Create(ByVal prodName As String) As Product
 Dim prod As Product

 ' Create a new instance
 prod = New Product()

 ' Populate the object
 '...

 Return prod
End Function

A method can have any number of overloads, each with different sets
of parameters. The parameters are evaluated based on the number and

Defining Methods 289

05Kurata.indd 289 1/25/07 10:04:41 AM

290 Chapter 5 Building the Business Logic Layer

type of parameters, not the parameter names. So if you defined a Create
method with a product name string parameter, you could not add a Create
method with a description string parameter. This is because when you call
the function and pass a string, the .NET runtime would not be able to tell
which Create method you want to execute. Each overload must have a
unique set of parameters.

Overloading is also great for enhancing your methods. For example,
suppose you originally created a Create method with one parameter.
You then need to add a withComments parameter to define whether to
populate comment information. If code in your application calls the origi-
nal Create method you don’t want to break that code by adding a new
parameter. Instead, you can create an overload for the Create method
with the new parameter without needing to modify any existing code that
calls the original method:

Public Function Create(ByVal prodName As String, _
 ByVal withComments As Boolean) As Product
 Dim prod As Product

 ' Create a new instance
 prod = New Product()

 ' Populate the object
 '...

 If withComments Then
 ' also populate the comments
 End If

 Return prod
End Function

In many cases, the code you need to execute in each of the overloaded
methods is similar. So a common technique is to have one overload call
the other. So the Create method from the prior code example could be
changed to the following:

Public Function Create(ByVal prodName As String) As Product
 Return Create(prodName, False)
End Function

05Kurata.indd 290 1/25/07 10:04:41 AM

5. BUILDING THE BUSINESS LOGIC LAYER

The overload with one parameter simply calls the other overload, pass-
ing a default value for the withComments flag. In most cases, the majority
of the code is in the overload with the most parameters.

Each overload appears in the Intellisense Parameter Info, as shown in
Figure 5.2.

Figure 5.2 The 1 of 3 advises you that this method has three overloads. Use the up and
down arrows to show the Parameter Info for each overloaded method.

Use overloading any time you want to define methods with the same
name but different method signatures. Be sure that the signatures differ in
the number or type of parameters.

Building Along

You can skip this “Building Along” without impacting any “Building Along”
activities in later chapters. However, these overloads do appear in future
screen shots to demonstrate how overloaded functions appear.

If you want to try out overloading, for the Purchase Tracker sample
application:

 ■ Open the Product class in the Code Editor.
 ■ Add the two Create method overloaded functions as described in this

section.
In the Code Editor, view the overloads in Intellisense as shown in

Figure 5.2.

Defining Shared Methods
Shared methods, sometimes called static methods, are methods that are
shared between all the instances of a class. They do not require that you
create an object before calling the method.

Defining Methods 291

05Kurata.indd 291 1/25/07 10:04:41 AM

292 Chapter 5 Building the Business Logic Layer

For example, if you want to display something to the debug window,
you don’t first create an instance of the Debug class and then use an object
variable to call the WriteLine method. Instead, you call the WriteLine
method directly for the class itself. The WriteLine method is a shared
method.

You define shared methods in your classes using the Shared keyword
on the method signature. For example:

Public Shared Function Create(ByVal prodID As Integer) As Product
 ...
End Function

When a method is shared, you no longer need to create an object from
the class before using the method. So instead of using code that looks like
this:

Dim prod as Product
prod = New Product
prod = prod.Create(1)

the code instead looks like this:

Dim prod as Product
prod = Product.Create(1)

Notice that the code does not create an instance and uses the class name
(Product in this example) instead of the object variable name (prod) to
call the method. This is because a shared method cannot be accessed using
an instance.

NOTE: If you do try to call a shared method using an object variable instead
of the class name, you get a warning stating that you cannot access a shared
member through an instance.

The most common use of shared methods is for Factory pattern meth-
ods, as shown in the Create method example, and for function libraries.
The .NET Framework makes extensive use of shared methods in its func-
tion libraries, such as the WriteLine method in the Debug class.

05Kurata.indd 292 1/25/07 10:04:41 AM

5. BUILDING THE BUSINESS LOGIC LAYER

You can also use the Shared keyword on properties to share a property
across all instances. This is useful for properties such as a count that needs
to be aware of all instances.

When defining a shared property or method, keep the following in
mind:

 ■ A shared property or method cannot reference nonshared
properties.

 In the Create method example, the shared method created an
instance of the class and used that instance to reference the proper-
ties. It cannot access the properties without an instance, because
those properties are not shared. The properties are unique for each
instance.

 ■ A shared property or method cannot reference a nonshared method
of the class.

 If you need to call a nonshared property or method of the class
within the shared property or method, you can create an instance
of the class and use that instance to call the nonshared property or
method.

 ■ Me is not valid within a shared property or method.
 Me references the current running instance, and a shared property

or method does not have an instance.

Use the Shared keyword any time you want to define a property or
method that is shared across all instances of your class. Access shared prop-
erties and methods using the class name instead of an instance variable.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Add the Shared keyword to the Create method, as defined in this

section.
 ■ Uncomment the private constructor.
 The Factory pattern method is now in place, so your code should no

longer create an instance of the class using the New keyword.
 ■ Open the ProductWin form in the Code Editor.

Defining Methods 293

05Kurata.indd 293 1/25/07 10:04:41 AM

294 Chapter 5 Building the Business Logic Layer

 ■ In the Load event for the ProductWin form, modify the code to call
the Create method and display the resulting values:
Dim prod as Product

prod = Product.Create(1)

Debug.WriteLine(prod.ProductID) ' Displays 1

Debug.WriteLine(prod.ProductName)

 ' Displays Mithril Coat

Debug.WriteLine(prod.InventoryDate)

 ' Displays 4/1/2006 12:00:00 AM

Run the application. It displays your splash screen and then shows the
MDI parent form. Select Products | Manage Products to display the
ProductWin form. The debug messages appear in the Immediate window
(Debug | Windows | Immediate) or in the Output window (Debug |
Windows | Output), depending on your settings.

Obsolescing Methods
Code changes over time. Methods that you created today may no longer
be needed tomorrow. But if you delete them, every piece of code that
calls the method needs to be changed. Depending on the features you are
implementing, this may be necessary. But in many cases, you can define a
smoother obsolescence plan.

Obsolescence is the concept in which methods become obsolete over
time. Instead of changing a method for a new feature, you add a method
overload to support the new feature, essentially making the original meth-
od obsolete. That way, you need to change only the code required for the
new feature, not every piece of code that calls the original method. You
can then obsolete the original method so that you don’t forget to remove
it at a later point in time.

In looking at the Create method example from earlier in this chapter,
you defined the method with a product name parameter. Suppose you later
find that you need to sometimes manage comment information. So you
add an overloaded method with a flag defining whether to handle com-
ment information. You want every call to the method to ultimately call the
new method signature. But in the interim, by having the original method
remain in place, any unchanged code still works.

05Kurata.indd 294 1/25/07 10:04:41 AM

5. BUILDING THE BUSINESS LOGIC LAYER

To identify a method as obsolete, use the Obsolete attribute. An
attribute is metadata that you can associate with programming elements
such as classes, properties, and methods. Attributes are defined in Visual
Basic using less-than (<) and greater-than (>) signs. Attributes must be
defined on the same line as the declaration of the class, property, or meth-
od to which the attribute is assigned. Use the line-continuation character
(_) to separate the attribute from the declaration so that they are easier to
read.

For example, to define one overload of the Create method as obso-
lete, add the Obsolete attribute to the method:

<ObsoleteAttribute(_
 "Use the Create(prodName, withComments) instead", False)> _
Public Shared Function Create(ByVal prodName) As Product
 Return Create(prodID, False)
End Function

The attribute’s name can be defined with or without the “Attribute” suf-
fix; either Obsolete or ObsoleteAttribute can be used. Your coding
standards may define that the suffix is included for clarity or not included
for brevity. Either way, be consistent with all attributes.

Some attributes, such as the Obsolete attribute, have parameters.
The first parameter in this case is a message to any developer using your
obsolete method, and the second parameter is an error flag. This message
appears in the Error List window (see Figure 5.3) as a warning if the sec-
ond parameter is False, or as an error if the second parameter is True.
This gives the developer using the method a warning or error, depending
on your standard method obsolescence path.

Figure 5.3 When you define a property or method as obsolete, any developer using the
method knows that the property or method is on the obsolescence path.

Defining Methods 295

05Kurata.indd 295 1/25/07 10:04:41 AM

296 Chapter 5 Building the Business Logic Layer

Define a standard obsolescence plan for your application. This plan
defines when properties and methods are made obsolete, how long they
should be obsolete in a warning mode, and at what point they should be
marked with a compile-time error. This provides a phased approach to
modifying your application.

Building a Base Business Object Class

Business objects have standard housekeeping tasks that they must per-
form. For example, they must keep track of their state (unchanged, added,
modified, deleted). The purpose of a base business object class is to define
a standard set of operations that are applicable to all business objects. This
keeps the housekeeping code out of the business objects themselves.

Creating base classes was covered in detail in Chapter 4, which dem-
onstrated how to build a base form class. This section provides information
on building a base business object class. For all the definitions, benefits,
and techniques of building a base class, see Chapter 4.

Creating the Base Business Object Class
The primary code in a business object base class is housekeeping
code—code that manages the object state, whether it is “dirty” (meaning
changed), and whether it is valid. The base business object class performs
any task that is common for all the business objects.

To create a base business object class:

 1. Add a project item to your business object Class Library project
using the Class template.

 If you created your own class template, you can use it here.
 Use a clear name for the base business object class. This helps you

(and your project team) keep track of the base class.
 2. Add code as desired.
 Add any code that is common to the business objects to the base

business object class.

As an example, the base business object class can keep track of the
object state. The code required for this has three parts. First, the set of
valid business object states must be defined. Then one or more properties
must be created to expose the state. Finally, a method is needed to man-
age the state.

05Kurata.indd 296 1/25/07 10:04:41 AM

5. BUILDING THE BUSINESS LOGIC LAYER

The set of valid business object states can be implemented using an
enumeration, defined with the Enum keyword. An enumeration defines a
set of named constants whose underlying type is an integer. You can define
the integer assigned to each constant; otherwise, the enumeration sets
each constant to a sequential integer value starting with 0.

For example, the business object state values are defined in an enu-
merated type as follows:

Public Enum EntityStateEnum
 Unchanged
 Added
 Deleted
 Modified
End Enum

In this example, the value of Unchanged is 0, Added is 1, and so on. Any
variable declared to be of this enumeration type can be assigned to one of
these defined constants.

A business object’s state is exposed by defining a property that gets and
sets the object’s state. For example, an EntityState property could be
defined as follows:

Private _EntityState As EntityStateEnum
''' <summary>
''' Gets the business object state
''' </summary>
''' <value>Unchanged, Added, Deleted, or Modified</value>
''' <returns>Value identifying the entity's state</returns>
''' <remarks></remarks>
Protected Property EntityState() As EntityStateEnum
 Get
 Return _EntityState
 End Get
 Private Set(ByVal value As EntityStateEnum)
 _EntityState = value
 End Set
End Property

Notice that the property uses the Protected keyword to ensure that it
can be accessed only by classes that inherit from this base class. The setter
uses the Private keyword to ensure that code outside of the class cannot
modify the entity’s state.

Building a Base Business Object Class 297

05Kurata.indd 297 1/25/07 10:04:42 AM

298 Chapter 5 Building the Business Logic Layer

You may want to define other properties that expose the object state
in different ways. For example, it is common for a business object to have
a Boolean IsDirty property that identifies whether an entity has been
changed. Although the EntityStateEnum could be used to determine
this, adding an IsDirty property provides a shortcut:

''' <summary>
''' Gets whether the business object has changes
''' </summary>
''' <value>True or False</value>
''' <returns>True if there are unsaved changes;
''' False if not</returns>
''' <remarks></remarks>
Protected ReadOnly Property IsDirty() As Boolean
 Get
 Return Me.EntityState <> EntityStateEnum.Unchanged
 End Get
End Property

This property does not have its own private backing variable. Instead, it
uses the value of the EntityState property.

You also need code that manages the state. This is normally imple-
mented as a method:

''' <summary>
''' Changes the state of the entity
''' </summary>
''' <param name="dataState">New entity state</param>
''' <remarks></remarks>
Protected Sub DataStateChanged(ByVal dataState As EntityStateEnum)
 ' If the state is deleted, mark it as deleted
 If dataState = EntityStateEnum.Deleted Then
 Me.EntityState = dataState
 End If

 ' Only set data states if the existing state is unchanged
 If Me.EntityState = EntityStateEnum.Unchanged _
 OrElse dataState = EntityStateEnum.Unchanged Then
 Me.EntityState = dataState
 End If
End Sub

05Kurata.indd 298 1/25/07 10:04:42 AM

5. BUILDING THE BUSINESS LOGIC LAYER

This code sets the state appropriately. This is not as simple as just
assigning the state to the value passed in to the method, because some
states cannot be changed. For example, if the state is already defined to
be Added, further changes to the object leave the state as Added. And if
the state is Deleted, it does not matter which other state it was; it needs
to be deleted.

In your code, call DataStateChanged with a state of Added when the
user creates a new item. Call DataStateChanged with a state of Deleted
when the user deletes an item. Call DataStateChanged with a state of
Modified whenever the user changes any of the data associated with an
object. Because you defined all your object data with properties, you can
add the call to DataStateChanged to the setter for each property, as
described in the next section.

Building a base business object class keeps the majority of the house-
keeping code out of the business object class itself and lets you focus on
the unique business rules and business processing code required for the
specific business object.

Building Along

For the Purchase Tracker sample application:
 ■ Add a class project item to the business object Class Library project

(PTBO) using the Class template.
 If you created your own class template using steps from Chapter 3,

you can use your class template here.
 Name the class PTBOBase.
 If not already added by the selected template, add the standard set of

regions to the class as described earlier in this chapter.
 ■ Add documentation to the class using XML comments.
 ■ Add the code defined in this section.

You now have an operational base business object class that ensures the
business objects from all derived classes consistently handle their state. But at
this point, the base class does not actually do anything. To make use of the
base class, you need to inherit from it, as described in the next section.

Building a Base Business Object Class 299

05Kurata.indd 299 1/25/07 10:04:42 AM

300 Chapter 5 Building the Business Logic Layer

Inheriting from the Base Business Object Class
After you create a base business object class, you use it by inheriting from
it. Each business object class that needs to manage its state can inherit
from the base business object class. The business object then has access to
the properties and methods from the base business object class.

The Inherits keyword specifies that a class inherits from another
class. Add the Inherits keyword to any business object class as follows:

Public Class Product
 Inherits PTBOBase

The class, in this case Product, then has all the properties and meth-
ods from the base business object class. You can easily see this by typing
Me. somewhere within a property or method of the Product class. The
Intellisense List Members box displays properties and methods of both the
base class (PTBOBase) and the derived class (Product in this case).

To take advantage of the code in the base business object class, the
derived classes can use the properties and methods of the base class. For
example, when a property in the business object is changed, the code calls
the DataStateChanged method in the base business object class to cor-
rectly set the business object state.

The code in the ProductName property provides an example:

Public Property ProductName() As String
 Get
 Return _ProductName
 End Get
 Set(ByVal value As String)
 If _ProductName <> value Then
 Dim propertyName As String = "ProductName"
 Me.DataStateChanged(EntityStateEnum.Modified)
 _ProductName = value
 End If
 End Set
End Property

NOTE: This code does not currently use the propertyName variable. It is
used later when validation code is added in Chapter 7.

05Kurata.indd 300 1/25/07 10:04:42 AM

5. BUILDING THE BUSINESS LOGIC LAYER

The Dim statement declaring the propertyName variable could be a
Const statement instead since the property name does not change within the
property.

The setter code first determines whether the value is the same as it
was. If so, it does not reset it. If the value is indeed changed, the setter sets
a variable for the property’s name. The DataStateChanged method in the
base business object class is then called and passed a state of Modified.
Finally, the property value is changed to the passed-in value.

In every derived class, modify each updatable property to include
similar code. When any property value changes, the object is marked as
modified. This ensures that each object is aware of its state so that it can
react accordingly.

Building Along

For the Purchase Tracker sample application:
 ■ Open the Product class in the Code Editor.
 ■ Modify the Product class to inherit from the base business object class

(PTBOBase), as demonstrated in this section.
 ■ Modify the setter for each updatable property defined in the Product

class, to include a call to DataStateChanged as shown in this
section.

NOTE: ProductID is not updatable because its setter is private. So it
should not call the DataStateChanged method.

NOTE: Recall that the InventoryDate is a Nullable type. Nullable
types do not support the not-equal (<>) operator. So to check the value of
the InventoryDate property against the value passed in, you need to use
some additional code:

If (_InventoryDate.HasValue<>value.HasValue) OrElse _
 (_InventoryDate.HasValue AndAlso _
 value.HasValue AndAlso _
 InventoryDate.Value <> value.Value) Then
 Dim propertyName As String = "InventoryDate"

Building a Base Business Object Class 301

05Kurata.indd 301 1/25/07 10:04:42 AM

302 Chapter 5 Building the Business Logic Layer

 Me.DataStateChanged(EntityStateEnum.Modified)
 _InventoryDate = value
End If

This code first determines if the property has a value. The code changes
the value only if the HasValue changes or if it has a current value and that
value has changed.

 ■ Modify the Create method to reset the object’s entity state to
Unchanged after it sets the property values. This ensures that the entity
state tracks the user’s changes, not changes made to the properties
when they are first populated.

 Add the following code as the last line of the Create method:
prod.DataStateChanged(EntityStateEnum.Unchanged)

Overriding Base Class Members
Sometimes the derived class needs to modify the functionality of one of
the base class members. When this is required, you can override the base
class member by implementing the property or method in the derived
class. When the property or method is called, the implementation in the
derived class overrides the implementation from the base class.

For example, say that one business object requires some additional
processing in the base class DataStateChanged method. To override
this method, implement the method in the business object using the exact
same method signature:

''' <summary>
''' Changes the state of the entity
''' </summary>
''' <param name="dataState">New entity state</param>
''' <remarks></remarks>
Protected Sub DataStateChanged(ByVal dataState As EntityStateEnum)
 MyBase.DataStateChange(dataState) ' Performs base processing

 ' Do unique code
 ...
End Sub

05Kurata.indd 302 1/25/07 10:04:42 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Notice that this code calls the base business object class to perform
its processing and then performs its unique processing. It could instead
perform its processing first and then call the base business object class. Or
it can do all of its own processing.

Use overriding whenever the derived class needs its own implementa-
tion of a property or method in the base class.

Conclusion

What Did This Chapter Cover?
This chapter described how to build code in the business logic layer for
your application. It provided information on defining properties, coding
methods, using generics, and building a base business object class.

This chapter covered several real productivity enhancers:

 ■ Writing class documentation using the XML documentation feature
makes it easy to create the class’s documentation. That documenta-
tion is then available in many places within Visual Studio, making it
easier for you or your team to work with the class’s properties and
methods.

 ■ Defining regions helps you focus on the code you are working on.
 ■ Using partial classes for generated code makes it easier to regener-

ate the generated code without impacting the custom code.
 ■ Handling nulls using the generic Nullable structure simplifies

working with value types and null values.
 ■ Defining a Factory pattern method or class library method with

the Shared keyword makes it easy to call the method, because you
don’t need to create an instance of the class.

 ■ Building a base business object class provides standardized pro-
cessing for all your application’s business objects and significantly
reduces the amount of housekeeping code required in each business
object class.

The next chapter provides additional tools and techniques for working
with classes.

Conclusion 303

05Kurata.indd 303 1/25/07 10:04:42 AM

304 Chapter 5 Building the Business Logic Layer

Building Along
If you are “building along” with the Purchase Tracker sample applica-
tion, this chapter added the basic code you need for your business object
component.

Since the user interface from the preceding chapter does not yet refer-
ence any information in the business object component, running the appli-
cation provides the same results as at the end of the preceding chapter.

The next chapter adds functionality and unit testing to the business
object component of the Purchase Tracker sample application using some
of the new Visual Studio 2005 tools and techniques.

Additional Reading
Cwalina, Krzysztof, and Brad Abrams. Framework Design Guidelines.
Upper Saddle River, NJ: Addison Wesley, 2006.

This is an excellent book for any .NET developer. It provides general
guidelines and many specific recommendations for handling everything
from naming conventions to base classes to exceptions.

Lhotka, Rockford. Expert VB 2005 Business Objects, Second Edition.
APress, 2006.

This book demonstrates how to build a framework for business objects
that handles all the complex issues of .NET. It then shows you how to build
Windows Forms, Web Forms, and Web Services interfaces on top of the
objects, using all the data binding and other productivity features built into
.NET 2.0 and Visual Studio 2005.

Richter, Jeffrey. “Garbage Collection: Automatic Memory Management in
the Microsoft .NET Framework.” MSDN magazine, November 2000.

This article provides details on the .NET garbage collector.

05Kurata.indd 304 1/25/07 10:04:42 AM

5. BUILDING THE BUSINESS LOGIC LAYER

Try It!
Here are a few suggestions for trying some of the techniques presented in
this chapter:

 1. Add a SalesRep business object class to the business object Class
Library project.

 Ensure that the class inherits from the base business object class.
Add properties for name, employee number, and so on. Add a
Create method using the same Factory pattern defined in this
chapter. Add other methods as appropriate.

 2. Add an exception handler class, such as SalesRepNotFound-
Exception, to the SalesRep class code file using an exception
class.

 Throw the exception in the Create method if the ID passed into
the method is not the ID you hard-coded data for.

 3. Add several overloads for the Create method in the SalesRep
class.

 4. Make one of the overloads obsolete using the techniques pre-
sented in this chapter.

Conclusion 305

05Kurata.indd 305 1/25/07 10:04:42 AM

05Kurata.indd 306 1/25/07 10:04:42 AM

