|

Introduction

INDOWS PRESENTATION FOUNDATION (WPF) represents a major
W step forward in user interface technology. This chapter will lay out some
of the basic principles of WPF and walk through a quick overview of the entire
platform. You can think of this chapter as a preview of the rest of the book.

WPF as the New GUI

Before we dive into WPF proper, it is interesting to consider where we’re
coming from.

User32, a la Charles Petzold

Anyone programming to User32 has, at some point, read one of Petzold’s
“Programming Windows” books. They all start with an example some-
thing like this:

#include <windows.h>
LRESULT CALLBACK WndProc(HWND hwnd,
UINT msg,
WPARAM wparam,
LPARAM 1param);
INT WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,
LPSTR cmdline, int cmdshow) {
MSG msg;
HWND hwnd;
WNDCLASSEX wndclass = { @ };
wndclass.cbSize = sizeof(WNDCLASSEX);

Chapter 1: Introduction

wndclass.style = CS_HREDRAW | CS_VREDRAW;

wndclass. lpfnWndProc = WndProc;

wndclass.hIcon = LoadIcon(NULL, IDI_APPLICATION);
wndclass.hCursor = LoadCursor(NULL, IDC_ARROW);
wndclass.hbrBackground = (HBRUSH)GetStockObject(WHITE_BRUSH);
wndclass.lpszClassName = TEXT("Windowl");

wndclass.hInstance = hInstance;

wndclass.hIconSm = LoadIcon(NULL, IDI_APPLICATION);

RegisterClassEx(&wndclass);
hwnd = CreateWindow(TEXT("Windowl"),
TEXT("Hello World"),
WS_OVERLAPPEDWINDOW,
CW_USEDEFAULT,
e)
CW_USEDEFAULT,
9,
NULL,
NULL,
hInstance,
NULL);

if('hwnd)
return 0;
ShowWindow(hwnd, SW_SHOWNORMAL);
UpdateWindow(hwnd);
while(GetMessage(&msg, NULL, 0, 0)) {
TranslateMessage(&msg);
DispatchMessage(&nsg);
}
return msg.wParam;
¥
LRESULT CALLBACK WndProc(HWND hwnd, UINT msg,
WPARAM wparam, LPARAM lparam) {
switch(msg) {
case WM_DESTROY:
PostQuitMessage(WM_QUIT);
break;
default:
return DefWindowProc(hwnd, msg, wparam, lparam);
}
return 0;

}

This is “Hello World” when talking to User32. There are some very inter-
esting things going on here. A specialized type (Window1) is first defined by
the calling of RegisterClassEx, then instantiated (CreateWindow) and dis-
played (ShowWindow). Finally, a message loop is run to let the window receive
user input and events from the system (GetMessage, TranslateMessage,

WPF as the New GUI

and DispatchMessage). This program is largely unchanged from the original
introduction of User back in the Windows 1.0 days.

Windows Forms took this complex programming model and produced
a clean managed object model on top of the system, making it far simpler
to program. Hello World can be written in Windows Forms with ten lines
of code:

using System.Windows.Forms;
using System;

class Program {
[STAThread]
static void Main() {
Form f = new Form();
f.Text = "Hello World";
Application.Run(f);
}
}

A primary goal of WPF is to preserve as much developer knowledge as
possible. Even though WPF is a new presentation system completely dif-
ferent from Windows Forms, we can write the equivalent program in WPF
with very similar code' (changes are in boldface):

using System.Windows;
using System;

class Program {
[STAThread]
static void Main() {
Window f = new Window();
f.Title = "Hello World";
new Application().Run(f);
}
}

In both cases the call to Run on the Application object is the replace-
ment for the message loop, and the standard CLR (Common Language
Runtime) type system is used for defining instances and types. Windows

1. As programs become more complex, the differences between WPF and Windows Forms
become more apparent.

4

Chapter 1: Introduction

Forms is really a managed layer on top of User32, and it is therefore lim-
ited to only the fundamental features that User32 provides.

User32 is a great 2D widget platform. It is based on an on-demand, clip-
based painting system; that is, when a widget needs to be displayed, the
system calls back to the user code (on demand) to paint within a bounding
box that it protects (with clipping). The great thing about clip-based paint-
ing systems is that they’re fast; no memory is wasted on buffering the con-
tent of a widget, nor are any cycles wasted on painting anything but the
widget that has been changed.

The downsides of on-demand, clip-based painting systems relate mainly
to responsiveness and composition. In the first case, because the system
has to call back to user code to paint anything, often one component
may prevent other components from painting. This problem is evident in
Windows when an application hangs and goes white, or stops painting cor-
rectly. In the second case, it is extremely difficult to have a single pixel affected
by two components, yet that capability is desirable in many scenarios—for
example, partial opacity, anti-aliasing, and shadows.

With overlapping Windows Forms controls, the downsides of this sys-
tem become clear (Figure 1.1). When the controls overlap, the system
needs to clip each one. Notice the gray area around the word linkLabell in
Figure 1.1.

WPF is based on a retained-mode composition system. For each compo-
nent a list of drawing instructions is maintained, allowing for the system to
automatically render the contents of any widget without interacting with

CEEN =)

File Edit

button
Text B

| Ely L

FIGURE 1.1: Windows Forms controls overlapping. Notice that each control obscures the others.

WPF as the New GUI

user code. In addition, the system is implemented with a painter’s algo-
rithm, which ensures that overlapping widgets are painted from back to
front, allowing them to paint on top of each other. This model lets the sys-
tem manage the graphics resource, in much the same way that the CLR
manages memory, to achieve some great effects. The system can perform
high-speed animations, send drawing instructions to another machine, or
even project the display onto 3D surfaces—all without the widget being
aware of the complexity.

To see these effects, compare Figures 1.1 and 1.2. In Figure 1.2 the opac-
ity on all the WPF controls is set so that they’re partially transparent, even
to the background image.

WPF’s composition system is, at its heart, a vector-based system, mean-
ing that all painting is done through a series of lines. Figure 1.3 shows how
vector graphics compare to traditional raster graphics.

The system also supports complete transform models, with scale, rota-
tion, and skew. As Figure 1.4 shows, any transformation can be applied to
any control, producing bizarre effects even while keeping the controls live
and usable.

Note that when User32 and GDI32 were developed, there was really no
notion of container nesting. The design principle was that a flat list of chil-
dren existed under a single parent window. The concept worked well for

W EssentialWPF E=FE

File Edit

Lab ™
'lelB”*‘*‘N"| N

= TextBox

FIGURE 1.2: WPF controls overlapping, with opacity set to semitransparency. Notice that all

the controls compositing together are visible, including the background image.

5

6

m Chapter 1: Introduction

Original

Raster Zoom

Vector Zoom

FiIGUrE 1.3: Comparing vector and raster graphics. Notice that zooming in on a vector
graphic does not reduce its crispness.

FIGURE 1.4: WPF controls with a variety of transformations applied. Despite the transforma-

tions, these controls remain fully functional.

WPF as the New GUI

Load File

FIGURE 1.5: WPF controls are built out of composition and containment. The button shown

here contains both text and an image.

the simple dialogs of the 1990s, but today’s complex user interfaces require
nesting. The simplest example of this problem is the GroupBox control. In
the User32 design, GroupBox is behind controls but doesn’t contain them.
Windows Forms does support nesting, but that feature has revealed many
problems with the underlying User32 model of control.

In WPF’s composition engine, all controls are contained, grouped, and
composited. A button in WPF is actually made up of several smaller con-
trols. This move to embrace composition, coupled with a vector-based
approach, enables any level of containment (Figure 1.5).

To really see the power of this composition, examine Figure 1.6. At the
maximum zoom shown, the entire circle represents less than a pixel on the
original button. The button actually contains a vector image that contains a
complete text document that contains a button that contains another
image.

In addition to addressing the limitations of User32 and GDI32, one of
WPF’s goals was to bring many of the best features from the Web pro-
gramming model to Windows developers.

diquam a e
lectus. Fusce n1®

@u.-n.n\'mm Duis

risus. — Fusce

consequat. P

sed, commodo vy

Praesent nisl sp
alit. Eti

7.5X Zoom 30X Zoom 375X Zoom

Load File|

Original

FIGURE 1.6: The power of composition, as revealed by zooming in on the composite button

shown in Figure 1.5

7

8

m Chapter 1: Introduction

HTML, a.k.a. the Web

One of the biggest assets of Web development is a simple entry to creating
content. The most basic HTML “program” is really nothing more than a
few HTML tags in a text file:

<html>
<head>
<title>Hello World</title>
</head>
<body>
<p>Welcome to my document!</p>
</body>
</html>

In fact, all of these tags can be omitted, and we can simply create a file
with the text “Welcome to my document!”, name it <something>.html,
and view it in a browser (Figure 1.7). This amazingly low barrier to entry
has made developers out of millions of people who never thought they
could program anything.

In WPF we can accomplish the same thing using a new markup format
called XAML (Extensible Application Markup Language), pronounced
“zammel.” Because XAML is a dialect of XML, it requires a slightly stricter
syntax. Probably the most obvious requirement is that the xmlns directive
must be used to associate the namespace with each tag:

<FlowDocument
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’>

<Paragraph>Welcome to my document!</Paragraph>
</FlowDocument>

@ Hello World - Windows Intemet Explo

KT & ccomisooncmt mvcioncose <1 | nsosioe 5 -
I Wk [@Henowmd l_l v~ B v ® v [>Page GTools v~

-

Welcome to my document!

M Computer | Protected Mode: Off

FIGURE 1.7: Displaying a simple HTML document in Internet Explorer

WPF as the New GUI m 9

W [@ C:\data\Book\Chapl -Introduction\co... _l - » @@ v [Page v { Tools «

Welcome to my document!

® 11of1h EEE =—%——+

M Computer | Protected Mode: Off

FIGURE 1.8: Displaying a WPF document in Internet Explorer

You can view the file by double-clicking <something>.xaml (Figure 1.8).
Of course, we can leverage all the power of WPF in this simple markup.
We can trivially implement the button display from Figure 1.5 using
markup, and display it in the browser (Figure 1.9).
One of the big limitations of the HTML model is that it really only
works for creating applications that are hosted in the browser. With XAML
markup, either we can use it in a loose markup format and host it in the

Load File

W Computer | Protected Mode: Off

FIGURE 1.9: Displaying a WPF document in Internet Explorer using controls and layout from WPF

10

Chapter 1: Introduction

B Hello World! oo o

Hello World!

FIGURE 1.10: Running an application authored in XAML. The program can be runina

top-level window or hosted in a browser.

browser, as we have just seen, or we can compile it into an application and
create a standard Windows application using markup (Figure 1.10):

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="'Hello World!'>

<Button>Hello World!</Button>
</Window>

Programming capability in HTML comes in three flavors: declarative,
scripting, and server-side. Declarative programming is something that
many people don’t think of as programming. We can define behavior in
HTML with simple markup tags like <form /> that let us perform actions
(generally posting data back to the server). Script programming lets us use
JavaScript to program against the HTML Document Object Model (DOM).
Script programming is becoming much more fashionable because now
enough browsers have support for a common scripting model to make
scripts run everywhere. Server-side programming lets us write logic on
the server that interacts with the user (in the Microsoft platform, that
means ASP.NET programming).

ASP.NET provides a very nice way to generate HTML content. Using
repeaters, data binding, and event handlers, we can write simple server-
side code to create simple applications. One of the more trivial examples is
simple markup injection:

<%@ Page %>
<html>
<body>
<p><%=DateTime.Now().ToString()%></p>
</body>
</html>

A Brief Look at the XAML Programming Model

The real power of ASP.NET comes in the rich library of server controls
and services. Using a single control like DataGrid, we can generate reams
of HTML content; and with services like membership we can create Web
sites with authentication easily.

The big limitation of this model is the requirement to be online. Modern
applications are expected to run offline or in occasionally connected sce-
narios. WPF takes many of the features from ASP.NET—repeaters and
data binding, for example—and gives them to Windows developers with
the additional ability to run offline.

One of the primary objectives of WPF was to bring together the best fea-
tures of both Windows development and the Web model. Before we look
at the features of WPF, it is important to understand the new program-
ming model in the NET Framework 3.0: XAML.

A Brief Look at the XAML Programming Model

One of the major, and often misunderstood, features of .NET 3.0 is the new
XAML programming model. XAML provides a set of semantics on top of
raw XML that enables a common interpretation. To oversimplify slightly,
XAML is an XML-based instantiation script for CLR objects. There is a
mapping from XML tags to CLR types, and from XML attributes to CLR
properties and events. The following example shows an object being cre-
ated and a property being set in both XAML and C#:

<!-- XAML version -->
<MyObject
SomeProperty="1" />

// C# version
MyObject obj = new MyObject();
obj.SomeProperty = 1;

XML tags are always defined in the context of a namespace. That
namespace determines what tags are valid. In XAML we map XML
namespaces to collections of CLR namespaces and assemblies. To make
the simple example that was just illustrated work, we need to map in the
required namespaces. In XML, we use the xmlns attribute to define new
namespaces:

11

12

Chapter 1: Introduction

<!-- XAML version -->

<MyObject
xmlns="clr-namespace:Samples
SomeProperty="1" />

// C# version
using Samples;

MyObject obj = new MyObject();
obj.SomeProperty = 1;

In C#, the list of assemblies where types are found is always determined
by the project file or the command-line arguments to csc.exe. In XAML, we
can specify the location of the source assembly for each namespace:

<!-- XAML version -->

<MyObject
xmlns="'clr-namespace:Samples;assembly=samples.dll’
SomeProperty="1" />

// C# version
csc /r:samples.dll test.cs

using Samples;

MyObject obj = new MyObject();
obj.SomeProperty = 1;

In XML the world is divided into two spaces: elements and attributes.
In terms of objects, properties, and events, the XAML model is more
closely aligned with the CLR. The encoding to attributes or child elements
for property values is flexible. We can rewrite the previous example using
a child element instead:

<MyObject
xmlns="'clr-namespace:Samples;assembly=samples.dll'>
<MyObject.SomeProperty>
1
</MyObject.SomeProperty>
</MyObject>

Every property element is qualified with the type that defines the prop-
erty, allowing properties to contain arbitrarily complex structured data.
For example, suppose we have a second property that takes a Person object
with FirstName and LastName properties. We can easily write the code in
XAML using the property element syntax:

A Brief Look at the XAML Programming Model 13

<MyObject
xmlns="clr-namespace:Samples;assembly=samples.dll'>
<MyObject.Owner>
<Person FirstName='Chris' LastName='Anderson' />
</MyObject.Owner>
</MyObject>

XAML was created to be a markup language that integrated well with
the CLR and provided for rich tool support. A secondary goal was to create
a markup format that was easy to read and write. It may seem a little rude
to design a feature of the platform that is optimized first for tools, then for
humans, but the WPF team felt strongly that WPF applications would typ-
ically be authored with the assistance of a visual design tool like Microsoft
Visual Studio or Microsoft Expression. To walk the line between tools and
humans, WPF allows the type author to define one property to be the content
property.’

In our example, if we make the Owner property of MyObject the content
property,’ then the markup can be changed to omit the property element tag:

<MyObject
xmlns="clr-namespace:Samples;assembly=samples.dll’'>

<Person FirstName='Megan' LastName='Anderson' />
</MyObject>

For further readability, XAML has a feature known as markup exten-
sions. This is a general way to extend the markup parser to produce sim-
pler markup. Markup extensions are implemented as CLR types, and they
work almost exactly like CLR attribute definitions. Markup extensions are
enclosed in curly braces, { }. For example, to set a property value to the spe-
cial value null, we can use the built-in Null markup extension:

<MyObject
xmlns="clr-namespace:Samples;assembly=samples.dll'>

<Person FirstName='Megan' LastName='{x:Null}' />
</MyObject>

Table 1.1 lists all of the built-in XAML features.

2. This is similar to the Visual Basic “default property” feature.
3. We can do this by adding System.Windows .Markup.ContentPropertyAttribute
to the type.

Chapter 1: Introduction

TABLE 1.1: Built-in XAML Features

of the type to
define (used only
in markup
compilation).

XAML Namespace
Directive Meaning Example
x:Array Creates a CLR array. <x:Array Type='{x:Type Button}'>
<Button />
<Button />
</x:Array>
x:Class Specifies the name <Window

x:Class="MyNamespace.MyClass'>...
</Window>

x:ClassModifier

Specifies the modifi-

<Window x:Class="...

accessing a static
field or property
from a type.

ers (“public,” “inter- x:ClassModifier="Public'>
nal,” etc.) of the type ...
to define (used only </Window>
in markup
compilation).
x:Code Delineates ablock of <Window x:Class='...'>
in-line code (used <x:Code>
only in markup public void DoSomething() {
compilation). .
}
</x:Code>
</Window>
x:Key Specifies the key to <Button>
use for an element <Button.Resources>
(supported only on <Style x:Key="Hi'>...</Style>
elements contained </Button.Resources>
in a dictionary). </Button>
x:Name Specifies the pro- <sys:Int32
grammatic name of xmlns:sys="'clr-namespace:
an element (typi- System;..."'
cally used when an x:Name='_myIntegerValue'>
element doesn’t 5</sys:Int32>
have a built-in name
property).
x:Null Creates anull value. <Button Content='{x:Null}' />
x:Static Creates a value by <Button

Command="{x:Static
ApplicationCommands.Close}' />

A Brief Look at the XAML Programming Model

XAML Namespace
Directive Meaning Example
x:Subclass Provides a base type
for markup compila-
tion for languages
that don’t support
partial types.
x:Type Providesa CLRtype <ControlTemplate

(equivalent to
Type.GetType).

TargetType="'{x:Type Button}'>

</ControlTemplate>

X:TypeArguments

Specifies the generic
type arguments for
instantiating a
generic type.

<gc:List

xmlns:gc="clr-

namespace:System.Collections.

Generic;..."'
x:TypeArguments="'{x:Type Button}' />

X:XData

Delineates a block of
in-line XML; may be
used only for
properties of type
IXmlSerializable

<XmlDataSource>
<Xx:XData>
<Book xmlns='"' Title='...' />
</x:XData>
</XmlDataSource>

Markup extensions are resolved exactly like object tags, which means that

we must declare the “x” XML prefix for this markup to be parsed. XAML

defines a special namespace for dealing with the parser built-in types:

<MyObject

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="clr-namespace:Samples;assembly=samples.dll'>

<Person FirstName='Megan' LastName='{x:Null}' />

</MyObject>

It is also possible for any CLR assembly (or set of assemblies) to define a

URI-based name for a collection of CLR namespaces and assemblies. This
is the equivalent of the old #include 'windows.h' statement that C/C++
developers know. The WPF assemblies use this mechanism, so we can use
either format to import WPF into a XAML file:

15

16

Chapter 1: Introduction

<!-- option 1: import by CLR namespace -->

<Window
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns=

'clr-namespace:System.Windows;assembly=presentationframework.dll'>
</Window>

<!-- option 2: import by URI -->
<Window
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’>
</Window>

The nice thing about the URI-based method is that it imports several
CLR namespaces and assemblies, meaning that your markup is more com-
pact and easier to work with.

The final feature of XAML is the ability to extend types with properties
provided by other types; we call this feature attached properties. In effect,
attached properties are just type-safe versions of the JavaScript expando
properties. In the WPF version of XAML, attached properties work only if
the type defining the property and the type whose property is being set
both derive from the DependencyObject type, but the specification for
XAML doesn’t have this requirement.

In the following example the property Dock is defined by the type Dock-
Panel. Attached properties are always prefixed by the name of the type
providing the property, even when they appear as attributes:

<Window
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’>

<DockPanel>
<Button DockPanel.Dock="'Top'>Top</Button>
<Button>
<DockPanel.Dock>Left</DockPanel.Dock>
Left
</Button>
<Button>Fill</Button>
</DockPanel>
</Window>

XAML is a fairly simple language with relatively few rules. In the .NET
Framework 3.0 release of XAML, all the definitions for XAML tags are in

A Tour of WPF

CLR types—the goal being to ensure that anything we can do in markup
we can also do in code. Throughout this book I will switch back and forth
between using markup® and using code, depending on whichever one
more easily demonstrates a particular concept.

Now that we have a grounding of XAML under our belts, we can begin
looking at the main parts of WPF itself.

A Tour of WPF

When I started writing this book, I wanted to make it as short as possible,
but no shorter (my apologies to Dr. Einstein). Even with that philosophy, I
wanted to give you, the reader, a quick overview of the platform to pro-
vide a grounding in all the basic concepts you need to get started.

Getting Up and Running

There are many ways to approach WPF: from the browser, from markup,
or from code. I've been programming for so long that I can’t help but start
from a simple C# program. Every WPF application starts with the creation
of an Application object. The Application object controls the lifetime of
the application and is responsible for delivering events and messages to
the running program.

In addition to the Application object, most programs want to display
something to a human. In WPF that means creating a window.” We've
already seen the basic WPF application source code, so this should come as
no surprise to you:

using System.Windows;
using System;

4. After this chapter, I will omit the “. . ./xaml/presentation” and “. . ./xaml” namespaces
from markup samples. I will consistently map the presentation (WPF) namespace to be
the default XML namespace, and “x” as the prefix for the XAML namespace.

5. We will see later that even in navigation scenarios a window is created for page-based
applications.

17

18

Chapter 1: Introduction

class Program {
[STAThread]
static void Main() {
Application app = new Application();
Window w = new Window();
w.Title = "Hello World";
app.Run(w);
}
}

To compile this code, we need to invoke the C# compiler. We have two
options; the first is to directly invoke the C# compiler on the command
line. We must include three reference assemblies to compile against WPF.
The locations of the tools for building WPF applications depend on how
they were installed. The following example shows how to compile this
program if the NET Framework 3.0 SDK has been installed and we’re run-
ning in the build window provided:

csc /r:"%ReferenceAssemblies%"\WindowsBase.d1ll
/r:"%ReferenceAssemblies%"\PresentationCore.dll
/r:"%ReferenceAssemblies%" \PresentationFramework.dll
/t:winexe
/out:bin\debug\tour.exe
program.cs

Compiling with C# directly works great for a single file and a couple of
references. A better option, however, is to use the new build engine included
with the NET Framework 3.0 SDK and Visual Studio 2005: MSBuild. Creating
an MSBuild project file is relatively simple. Here we convert the command
line into a project file:

<Project
DefaultTargets='Build"’
xmlns="http://schemas.microsoft.com/developer/msbuild/2003"'>

<PropertyGroup>
<Configuration>Debug</Configuration>
<Platform>AnyCPU</Platform>
<RootNamespace>Tour</RootNamespace>
<AssemblyName>Tour</AssemblyName>
<OutputType>winexe</OutputType>
<OutputPath>.\bin\Debug\</OutputPath>

</PropertyGroup>

<ItemGroup>
<Reference Include='System' />
<Reference Include='WindowsBase' />

A Tour of WPF m

<Reference Include='PresentationCore' />
<Reference Include='PresentationFramework' />
</ItemGroup>

<ItemGroup>
<Compile Include='program.cs' />
</ItemGroup>

<Import Project='$(MSBuildBinPath)\Microsoft.CSharp.targets' />
<Import Project='$(MSBuildBinPath)\Microsoft.WinFX.targets' />
</Project>

To compile the application, we can now invoke MSBuild at the com-
mand line:

msbuild tour.csproj

Running the application will display the window shown in Figure 1.11.

With our program up and running, we can think about how to build
something interesting. One of the most visible changes in WPF (at least to the
developer community) is the deep integration of markup in the platform.
Using XAML to build an application is generally much simpler.

Moving to Markup

To build our program using markup, we will start by defining the
Application object. We can create a new XAML file, called App.xaml,
with the following content:

<Application
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
/>

2 | Hello World

FIGURE 1.11: Empty window created in an application

19

20 Chapter 1: Introduction

As before, it isn’t very interesting to run. We can define a window using
the MainWindow property of Application:

<Application
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’>
<Application.MainWindow>
<Window Title='Hello World' Visibility='Visible' />
</Application.MainWindow>
</Application>

To compile this code, we need to update our project file to include the

application definition:

<Project ...>

<ItemGroup>
<ApplicationDefinition Include='app.xaml' />
</ItemGroup>

</Project>

If we were to build now, we would get an error because, by including our
application definition, we have automatically defined a “Main” function that
conflicts with the existing program.cs. So we can remove program.cs from
the list of items in the project, and we are left with just the application defi-
nition. At this point, running the application produces exactly the same
result as Figure 1.11 shows.

Instead of defining our window inside of the application definition, it is
normal to define new types in separate XAML files. We can move the win-

dow definition into a separate file, MyWindow . xaml:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="'Hello World'

>

</Window>

We can then update the application definition to refer to this markup:

<Application
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
StartupUri='MyWindow.xaml'
/>

A Tour of WPF m 21

Finally, we need to add the window to the project file. For any compiled
markup (except the application definition), we use the Page build type:

<Project ...>

<ItemGroup>
<Page Include="mywindow.xaml"' />
<ApplicationDefinition Include='app.xaml' />
</ItemGroup>

</Project>

Now we have a basic program up and running, well factored, and
ready to explore WPF.

The Basics

Applications in WPF consist of many controls, composited together. The
Window object that we have already seen is the first example of one of these
controls. One of the more familiar controls is Button:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<Button>Howdy!</Button>

</Window>

Running this code will produce something like Figure 1.12. The first inter-
esting thing to notice here is that the button automatically fills the entire
area of the window. If the window is resized, the button continues to fill
the space.

i ' Hello World

FIGURE 1.12: A simple button in a window

22

m Chapter 1: Introduction

All controls in WPF have a certain type of layout. In the layout for a
window, a single child control fills the window. To put more than one con-
trol inside of a window, we need to use some type of container control. A
very common type of container control in WPF is a layout panel.

Layout panels accept multiple children and enforce some type of layout
policy. Probably the simplest layout is the stack:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title='Hello World'
>
<StackPanel>
<Button>Howdy!</Button>
<Button>A second button</Button>
</StackPanel>
</Window>

StackPanel works by stacking controls one on top of another (shown in
Figure 1.13).

A lot more controls, and a lot more layouts, are included in WPF (and,
of course, you can build new ones). To look at a few other controls, we can
add them to our markup:

A second button

FIGURE 1.13: Two buttons inside of a stack panel

A Tour of WPF m 23

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<StackPanel>
<Button>Howdy!</Button>
<Button>A second button</Button>
<TextBox>An editable text box</TextBox>
<CheckBox>A check box</CheckBox>
<Slider Width='75"' Minimum='@' Maximum='100' Value='50' />
</StackPanel>
</Window>

Running this code shows that you can interact with all the controls
(Figure 1.14).

To see different layouts, we can replace StackPanel. Here we swap in
WrapPanel:

<Window
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<WrapPanel>
<Button>Howdy!</Button>
<Button>A second button</Button>
<TextBox>An editable text box</TextBox>
<CheckBox>A check box</CheckBox>
<Slider Width='75" Minimum='@' Maximum='100' Value='50"' />
</WrapPanel>
</Window>

i | Hello World

Howdy!

A second button

An editable text box
" | A check box

FIGURE 1.14: Several more controls added to a window

24 m Chapter 1: Introduction

i ' Hello World

A second button

An editable text box L A check box

FIGURE 1.15: Several controls inside of a wrap panel

Running this code reveals a noticeable difference in the layout of the
controls (Figure 1.15).

Now that we have seen some controls, let’s write some code that inter-
acts with the controls. Associating a markup file with code requires several
steps. First we must provide a class name for the markup file:

<Window
x:Class="EssentialWPF.MyWindow'
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"'
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title='Hello World'
>
<WrapPanel>
<Button>Howdy!</Button>
<Button>A second button</Button>
<TextBox>An editable text box</TextBox>
<CheckBox>A check box </CheckBox>
<Slider Width='75" Minimum='@' Maximum='100' Value='50"' />
</WrapPanel>
</Window>

It is also very common to use the C# 2.0 feature of partial types to asso-
ciate some additional code with the markup file. To define a code-behind
file, we need to create a C# class with the same name® that we specified in

6. The naming convention for code-behind files is “<markupfile>.cs”, so for mywindow.xaml
we would create a file called mywindow.xaml.cs.

A Tour of WPF 25

the markup file. We must also call InitializeComponent from the con-
structor of our class:”

using System;
using System.Windows.Controls;
using System.Windows;

namespace EssentialWPF {
public partial class MyWindow : Window {
public MyWindow() {
InitializeComponent();
}
}
}

To finish associating our code with the markup, we need to update the
project file to include the newly defined C# file:

<Project ...>

<ItemGroup>
<Compile Include='mywindow.xaml.cs' />
<Page Include='mywindow.xaml' />
<ApplicationDefinition Include='app.xaml' />
</ItemGroup>

</Project>

Because our code doesn’t do anything interesting, there isn’t a lot to see
if we run the program. The most common link between a code-behind file
and the markup file is an event handler. Controls generally expose one or
more events, which can be handled in code. Handling an event requires
only specifying the event handler method name in the markup file:

<Window

x:Class="EssentialWPF.MyWindow"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<WrapPanel>

<Button Click='HowdyClicked'>Howdy!</Button>

<Button>A second button</Button>

7. Chapter 2 will explain why this step is required.

26 Chapter 1: Introduction

<TextBox>An editable text box</TextBox>
<CheckBox>A check box </CheckBox>
<Slider Width='75"' Minimum='@' Maximum='100' Value='50"' />
</WrapPanel>
</Window>

We can then implement the method in the code-behind file:

using System;
using System.Windows.Controls;
using System.Windows;

namespace EssentialWPF {
public partial class MyWindow : Window {
public MyWindow() {
InitializeComponent();
}
void HowdyClicked(object sender, RoutedEventArgs e) {
}
}
}

To access any control from the code-behind file, we must provide a
name for the control:

<Window
x:Class="EssentialWPF.MyWindow"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="'Hello World'
>
<WrapPanel>
<Button Click='HowdyClicked'>Howdy!</Button>
<Button>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox>A check box </CheckBox>
<Slider Width='75" Minimum='@' Maximum='100' Value='50" />
</WrapPanel>
</Window>

We can then use the specified name in the code-behind file:

using System;
using System.Windows.Controls;
using System.Windows;

namespace EssentialWPF {
public partial class MyWindow : Window {

A Tour of WPF

public MyWindow() {
InitializeComponent();

}
void HowdyClicked(object sender, RoutedEventArgs e) {
_textl.Text = "Hello from C#";

}
}
}

Running this application and clicking the Howdy! button reveals some-
thing like Figure 1.16.

Beyond the basics of controls, layout, and events, probably the most
common thing to do is have an application interact with data.

Working with Data
WPF has a deep dependency on data and data binding. A look at one of the
most basic controls shows many types of binding:

Button b = new Button();
b.Content = "Hello World";

At least three types of binding are occurring here. First, the way a button is
displayed is determined by a type of binding. Every control has a Resources
property, which is a dictionary that can contain styles, templates, or any
other type of data. Controls then can bind to these resources.

Second, the data type of the content of a button is System.0Object. Button
can take any data and display it. Most controls in WPF leverage what is
called the content model, which, at its core, enables rich content and data
presentation. For example, instead of a string, we can create buttons with
almost any content.

Third, the basic implementation of both the button’s display and the
core content model uses data binding to wire up properties from the con-
trol to the display elements.

Howdy!|A second button

An editable text box ["] A check box T [] A check box ‘ ‘
i
]

FIGURE 1.16: Clicking a button to cause changes in another element

27

28

Chapter 1: Introduction

To get a feel for how binding works in WPF, we can look at a couple of
scenarios. First let’s consider setting the background of a button:

<Button
Background="'Red"' />

If we want to share this background between multiple buttons, the sim-
plest thing to do is to put the color definition in a common place and wire
all the buttons to point at that one place. This is what the Resources prop-
erty is designed for.

To define a resource, we declare the object in the Resources property of
a control and assign x:Key to the object:

<Window
x:Class="EssentialWPF.ResourceSample’
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title='Hello World'
>
<Window.Resources>

<SolidColorBrush x:Key='bg' Color='Red' />

</Window.Resources>
<!-- ... rest of window ... -->

</Window>

We can then refer to a named resource using the DynamicResource or
StaticResource markup extension (covered in detail in Chapter 6):

<Window
x:Class="EssentialWPF.ResourceSample’
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<Window.Resources>
<SolidColorBrush x:Key="bg' Color='Red' />
</Window.Resources>
<WrapPanel>
<Button Background='{StaticResource bg}"'
Click="HowdyClicked'>Howdy!</Button>
<Button Background='{StaticResource bg}'>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox>A check box </CheckBox>
<Slider Width='75"' Minimum='@' Maximum='100' Value='50"' />
</WrapPanel>
</Window>

A Tour of WPF 29

An editable text box L A check box

FIGURE 1.17: Binding to a resource

Running this program reveals that both buttons have the same color
(Figure 1.17).

Resource binding is a relatively simple type of binding. We can also bind
properties between controls (and data objects) using the data-binding system.
For example, we can bind the text of TextBox to the content of CheckBox:

<Window
x:Class="EssentialWPF.ResourceSample'
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml’
xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation’
Title="Hello World'
>
<Window.Resources>
<SolidColorBrush x:Key='bg' Color='Red' />
</Window.Resources>
<WrapPanel>
<Button Background='{StaticResource bg}"'
Click="HowdyClicked'>Howdy!</Button>
<Button Background='{StaticResource bg}'>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox Content='{Binding ElementName=_textl,Path=Text}"' />
<Slider Width='75"' Minimum='®@' Maximum='100' Value='50"' />
</WrapPanel>
</Window>

When we run this code, we can type in the text box and the content of the
check box will be updated automatically (Figure 1.18).

Deep data integration with controls enables powerful data visualiza-
tion. In addition to traditional controls, WPF provides seamless access to
documents, media, and graphics.

30 Chapter 1: Introduction

T R]

A second button| This is a test|
This is a test

FIGURE 1.18: Data binding between two controls

The Power of Integration
The visual system in WPF includes support for 2D vector graphics, raster
images, text, animation, video, audio, and 3D graphics. All of these fea-
tures are integrated into a single composition engine that builds on top of
DirectX, allowing many features to be accelerated by hardware on modern
video cards.

To start looking at this integration, let’s create a rectangle. Instead of
filling the rectangle with a solid color, we will create a gradient (blending
from one color to another—in this case, from red to white to blue:

<Window ... >
<Window.Resources>
<SolidColorBrush x:Key='bg' Color='Red' />
</Window.Resources>
<DockPanel>
<WrapPanel DockPanel.Dock="Top'>
<Button Background='{StaticResource bg}"'
Click="HowdyClicked'>Howdy!</Button>
<Button Background='{StaticResource bg}'>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox Content='{Binding ElementName=_textl,Path=Text}' />
<Slider Width='75"' Minimum='®' Maximum='100' Value='50"' />
</WrapPanel>
<Rectangle Margin='5'>
<Rectangle.Fill>
<LinearGradientBrush>
<GradientStop Offset='0' Color='Red' />
<GradientStop Offset='.5"' Color='White' />
<GradientStop Offset='1"' Color='Blue’' />
</LinearGradientBrush>
</Rectangle.Fill>
</Rectangle>
</DockPanel>
</Window>

A Tour of WPF m 31

[ello World

|Howdy!|A second button

An editable text box
| An editable text box D

FIGURE 1.19: Rectangle filled with a gradient

Figure 1.19 shows the result. Resizing the window shows that the rectangle
changes size and the gradient rotates such that it starts and ends at the corners
of the rectangle. Clearly, 2D graphics integrate with the layout engine.

We can take this integration one step further, using a set of controls as
the brush instead of filling the rectangle with a colored brush. In the fol-
lowing example, we will add a name to our wrap panel and use Visual-
Brush to fill the rectangle. VisualBrush takes a control and replicates the

32

m Chapter 1: Introduction

B " Hello World

Howdy!| A second button

An editable text box
" | An editable text box B

[HowdleA second button] [chdyl]A second button]

An editable text box An editable text box
[7] An editable text box u [] An editable text box U
[Howdy!IA second button] [Hawdy'.IA second button]

An editable text box An editable text box
D An editable text box |:| An editable text box |:]
[HowdleA second buttnn] [chdyl]A second button]

An editable text box An editable text box

[An editable text box [] An editable text box U

[Howdy'.IA second button]
An editable text box

[Howdy!IA second button]
An editable text box

B B

[] An editable text box [] An editable text box H
[Howdy!IA second buttcn] [Howdyl]A second button]

An editable text box An editable text box
[:] An editable text box U |:| An editable text box D

FIGURE 1.20: Using a visual brush to fill a rectangle

display of that control as the fill. Using the Viewport and TileMode proper-
ties, we can make the contents replicate multiple times:

<Window ... >
<Window.Resources>
<SolidColorBrush x:Key='bg' Color='Red' />
</Window.Resources>
<DockPanel>
<WrapPanel x:Name='panel' DockPanel.Dock='Top'>
<Button Background='{StaticResource bg}"'
Click="HowdyClicked'>Howdy!</Button>
<Button Background='{StaticResource bg}'>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox Content='{Binding ElementName=_text1,Path=Text}' />
<Slider Width='75"' Minimum='@' Maximum='100' Value='50' />

A Tour of WPF

</WrapPanel>
<Rectangle Margin='5"'>
<Rectangle.Fill>
<VisualBrush
Visual='{Binding ElementName=panel}
Viewport='0,0,.5,.2"'
TileMode='Tile' />
</Rectangle.Fill>
</Rectangle>
</DockPanel>
</Window>

Running this code shows that, if we edit the controls on the top, the dis-
play in the rectangle is updated (Figure 1.20). We can see that not only can
we use 2D drawings with controls, but we can use controls themselves as
2D drawings. In fact, the implementations of all controls are described as a
set of 2D drawings.

We can go even further with this integration. WPF provides basic 3D sup-
port as well. We can take the same visual brush and use it as a texture in a 3D
drawing. Creating a 3D scene requires five things: a model (the shape), a mate-
rial (what to cover the shape with), a camera (where to look from), a light (so
we can see), and a viewport (someplace to render the scene). In Chapter 5 we’ll
look at 3D scenes in detail, but for now the important thing to notice is that, as
the material of the model, we use the same visual brush as before:

<Window ... >
<Window.Resources>
<SolidColorBrush x:Key='bg' Color='Red' />
</Window.Resources>
<DockPanel>
<WrapPanel x:Name='panel' DockPanel.Dock="'Top">
<Button Background='{StaticResource bg}"'
Click="HowdyClicked' >Howdy!</Button>
<Button Background='{StaticResource bg}'>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox Content='{Binding ElementName=_textl,Path=Text}' />
<Slider Width='75"' Minimum='@®' Maximum='100' Value='50' />
</WrapPanel>
<Viewport3D>
<Viewport3D.Camera>
<PerspectiveCamera
LookDirection='-.7,-.8,-1"
Position='3.8,4,4"'
FieldOofview="'17"
UpDirection='0,1,0"' />

33

34

Chapter 1: Introduction

</Viewport3D.Camera>
<ModelVisual3D>
<ModelVisual3D.Content>
<Model3DGroup>
<PointLight
Position='3.8,4,4"
Color="White"
Range="7"
ConstantAttenuation='1.0"' />
<GeometryModel3D>
<GeometryModel3D.Geometry>
<MeshGeometry3D
TextureCoordinates=
'9,0 1,0 0,-1 1,-1 0,0 1,0 0,-1 0,0"'
Positions=
'9,0,0 1,0,0 0,1,0 1,1,0 0,1,-1 1,1,-1 1,1,-1 1,0,-1'
TriangleIndices='®0,1,2 3,2,1 4,2,3 5,4,3 6,3,1 7,6,1'
/>
</GeometryModel3D.Geometry>
<GeometryModel3D.Material>
<DiffuseMaterial>
<DiffuseMaterial.Brush>
<VisualBrush
Viewport='0,0,.5,.25"
TileMode="'Tile'
Visual="{Binding ElementName=panel}' />
</DiffuseMaterial.Brush>
</DiffuseMaterial>
</GeometryModel3D.Material>
</GeometryModel3D>
</Model3DGroup>
</ModelVisual3D.Content>
</ModelVisual3D>
</Viewport3D>
</DockPanel>
</Window>

Figure 1.21 shows what this looks like. Just as when the shape was a 2D
rectangle, changing the controls will be reflected on the 3D object.

As the previous example shows, creating 3D scenes requires a lot of
markup. I highly recommend using a 3D authoring tool if you intend to
play with 3D.

Our last stop in looking at integration is animation. So far everything
has been largely static. In the same way that 2D, 3D, text, and controls are
integrated, everything in WPF supports animation intrinsically.

Animation in WPF allows us to vary a property value over time. To
animate our 3D scene, we will start by adding a rotation transformation.

A Tour of WPF m 35

An editable text box
| An editable text box

FIGURE 1.21: Controls used as the material for a 3D shape

Rotation will allow us to spin our 3D model by adjusting the angle. We
will then be able to animate the display by adjusting the angle property
over time:

<!-- ...rest of scene... -->
<GeometryModel3D>
<GeometryModel3D.Transform>
<RotateTransform3D
CenterX="'.5"
CenterY='.5"
Centerz="'-.5">

36 Chapter 1: Introduction

<RotateTransform3D.Rotation>
<AxisAngleRotation3D
x:Name="rotation’
Axis='0,1,0"
Angle='0Q"' />
</RotateTransform3D.Rotation>
</RotateTransform3D>
</GeometryModel3D.Transform>
<!-- ...rest of scene... -->

Now we can define our animation. There are a lot of details here, but
the important thing is DoubleAnimation, which allows us to vary a double
value over time. (ColorAnimation would allow us to animate a color
value.) We are animating the angle of the rotation from -25 to 25. It will
automatically reverse and take 2.5 seconds to complete each rotation.

<Window ...>

<l-- ...rest of scene... -->
<Window.Triggers>
<EventTrigger RoutedEvent='FrameworkElement.Loaded'>
<EventTrigger.Actions>
<BeginStoryboard>
<BeginStoryboard.Storyboard>
<Storyboard>
<DoubleAnimation
From="-25"
To="25"
Storyboard.TargetName="rotation"
Storyboard.TargetProperty="Angle
AutoReverse="True'
Duration='9:0:2.5"
RepeatBehavior='Forever'
/>
</Storyboard>
</BeginStoryboard.Storyboard>
</BeginStoryboard>
</EventTrigger.Actions>
</EventTrigger>
</Window.Triggers>
<!-- ...rest of scene... -->

Running this code produces something like Figure 1.22, but animated.
(I'tried to get the publisher to include a laptop in every copy of the book so you
could see the animation, but they decided it wouldn’t be cost-effective.)

The integration of Ul, documents, and media runs deep in WPF. We can
give buttons texture with 3D, we can use a video as the fill for text—almost

A Tour of WPF m

| Hello World

Howdy!|A second button

An editable text box
=

FIGURE 1.22: Adding rotation animation to our 3D scene

anything is possible. This flexibility is very powerful, but it can also lead to
very unusable experiences. One of the tools that we can use to get a rich,
but consistent, display is the WPF styling system.

Getting Some Style
Styles provide a mechanism for applying a set of properties to one or more
controls. Because properties are used for almost all customization in WPF,
we can customize almost every aspect of an application. Using styles, we
can create consistent themes across applications.

To see how styles work, let’s modify those two red buttons. First,
instead of having each button refer to the resource, we can move the set-
ting of the background to a style definition. By setting the key of the style

37

38 Chapter 1: Introduction

to be the type Button, we ensure that that type will automatically be
applied to all the buttons inside of this window:

<Window ... >
<Window.Resources>
<SolidColorBrush x:Key="bg' Color='Red' />

<Style x:Key='{x:Type Button}' TargetType='{x:Type Button}'>
<Setter Property='Background' Value='{StaticResource bg}' />
</Style>
</Window.Resources>

<!-- ... rest of window ... -->

<WrapPanel x:Name='panel' DockPanel.Dock="Top"'>
<Button Click='HowdyClicked'>Howdy!</Button>
<Button>A second button</Button>
<TextBox x:Name='_textl'>An editable text box</TextBox>
<CheckBox Content='{Binding ElementName=_textl,Path=Text}' />
<Slider Width='75"' Minimum='0' Maximum='100' Value='50"' />
</WrapPanel>

<!-- ... rest of window ... -->

</Window>

Running this code will produce a result that looks indistinguishable from
Figure 1.22. To make this more interesting, let’s try customizing the Template
property for the button. Most controls in WPF support templating, which
means that the rendering of the control can be changed declaratively. Here
we will replace the button’s default appearance with a stylized ellipse.

ContentPresenter tells the template where to put the content of the
button. Here we are using layout, controls, and 2D graphics to implement
the display of a single button:

<Style x:Key='{x:Type Button}' TargetType='{x:Type Button}'>
<Setter Property='Background' Value='{StaticResource bg}' />
<Setter Property='Template'>
<Setter.vValue>
<ControlTemplate TargetType='{x:Type Button}'>
<Grid>
<Ellipse StrokeThickness='4"'>
<Ellipse.Stroke>
<LinearGradientBrush>
<GradientStop Offset='0"' Color='White' />
<GradientStop Offset="1"' Color='Black' />
</LinearGradientBrush>
</Ellipse.Stroke>

Tools for Building Applications

<Ellipse.Fill>
<LinearGradientBrush>
<GradientStop Offset='@' Color='Silver' />
<GradientStop Offset='1' Color='White' />
</LinearGradientBrush>
</Ellipse.Fill>
</Ellipse>
<ContentPresenter
Margin='10"
HorizontalAlignment='Center’
VerticalAlignment='Center' />
</Grid>
</ControlTemplate>
</Setter.Value>
</Setter>
</Style>

Figure 1.23 (on page 40) shows what we get when we run this code. The
buttons are still active; in fact, clicking the Howdy! button will still update
the text box (remember, we wrote that code earlier in the tour).

We have now traveled through most of the areas of WPF, but we’ve only
begun to scratch the surface of the concepts and features in this platform.
Before we finish the introduction, we should talk about how to configure your
computer to build and run all these wonderful programs that we’re creating.

Tools for Building Applications

To compile and run any of the code in this book, you will need a basic set of
tools and some understanding of how they work. You can build a complete
development environment with little more than an Internet connection
because the new Visual Studio Express products give you a great develop-
ment environment at no cost!

¢ NET Framework 3.0°
» Windows Software Development Kit’

« Code editor of your choice (Visual C# Express'’ is what I'm using
right now)

8. The .NET Framework 3.0 redistributable is available at http://msdn.microsoft.com/
windowsvista/downloads/products/default.aspx.
9. The Windows SDK is available at http://msdn.microsoft.com/windowsvista.
10. Visual C# Express is available at http:/ /msdn.microsoft.com/vstudio/express/
visualCsharp /default.aspx.

40

Chapter 1: Introduction
|

N

ided by a style
23: Buttons with a custom template, provi
FIGURE 1.23:

&:l r.‘dit;bTr?e_xt

e

= st facsi S ey
S e

g
1 Editabile 1oy, Lazx

AN editab. 1:311; b |
i an =tlitabie LREt gy

A e
= T e [

An oo Al

i = N Lot by,

.»\':1 el it:!;e_be_m Box
An +dital|n Vet by
v]
A i
]

n edil'a_hl-r_lrv;:t_hux
|

»

== —".____.

| A
[ULl gy e

T

Ay Edital) Text b,

Tools for Building Applications

Optionally, you can get the NET Framework 3.0 Extensions for Visual
Studio (currently code-named Orcas), which right now is packaged as a
community technology preview (CTP) of the next release of Visual Studio.
Over time, though, this package will be replaced by a new release of Visual
Studio that has native support for NET Framework 3.0 development.

In our earlier tour of WPF, we walked through the basics of creating a
project file for compiling WPF applications. With Visual Studio extensions
installed, all the project file maintenance can be handled by Visual Studio.
Alternatively, Microsoft’s Expression Blend (code-named Sparkle) can be
used to build projects.

The two most useful sources for API documentation are the Windows
SDK documentation and an assembly browser tool like Reflector."

WHERE ARE WE?

In this chapter we’ve seen why Microsoft built WPF, and we’ve taken a
brief tour through the major areas of the platform. We’ve learned how to
use the tools needed to build WPF applications, and we’ve received some
pointers on where to find the needed software to get started.

11. Reflector is available at http:/ /www.aisto.com/roeder/dotnet.

