

Professional SQL Server™ 2005

Programming

Chapter 14: Nothing But NET!

ISBN-10: 0-7645-8434-0
ISBN-13: 978-0-7645-8434-3

Copyright of Wiley Publishing, Inc.
Posted with Permission

Nothing But NET!

In terms of where to locate a subject in my books, this subject has to be the hardest one to place
I’ve ever had to deal with. At issue is how fundamental the addition of .NET assemblies is to SQL
Server programming in the SQL Server 2005 era versus how much it is shared between the various
programming topics and how much of it happens in its own world. Oh well, obviously I made a
choice, and that choice was to hold the introduction of major .NET elements until we had all the
major SQL Server–specific programming elements covered. So, that done, here we go.

.NET and all things related to it were just on the horizon when SQL Server 2000 came out. It’s been
a long wait since early 2000 (yes, even before SQL Server 2000 was out) when I first heard that
T-SQL was finally going to accept code from non T-SQL languages. The story just got better and
better as we heard that complex user-defined data types would be supported, and T-SQL itself
would become a .NET language with associated error handling. And so it is here, and the days of
the old claustrophobic TSQL are gone, and we have a wide world of possibilities available to us.

In this chapter, we’re going to take a look at some of the major elements that .NET has brought to
SQL Server 2005. We’ll see such things utilizing .NET as:

❑ Creating basic assemblies — including non T-SQL based stored procedures, functions, and
triggers

❑ Defining aggregate functions (something T-SQL user defined functions can’t do)

❑ Complex data types

❑ External calls (and with it, some security considerations)

.NET is something of a wide-ranging topic that will delve into many different areas we’ve already
touched on in this book and take them even farther, so, with that said, let’s get going!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 393

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Assemblies 101
All the new .NET functionality is surrounded by this new (to SQL Server anyway) term assembly. So, a
reasonable question might be: “What exactly is an assembly?” An assembly is a DLL that has been cre-
ated using managed code (what .NET language does not matter). The assembly may have been built
using Visual Studio .NET or some other development environment, but the .NET Framework SDK also
provides a command-line compiler for those of you who do not have Visual Studio available.

Compiling an Assembly
Use of .NET assemblies requires that you enable the Common Language Runtime (CLR) in SQL
Server — which is disabled by default. You can enable the CLR by executing the following in the
Management Studio:

sp_configure ‘clr enabled’, 1
GO

RECONFIGURE

There really isn’t that much to this beyond compiling a normal DLL. The real key points to compiling a
DLL that is going to be utilized as a SQL Server .NET assembly are:

❑ You cannot reference any other assemblies that include functions related to windowing
(dialogs, etc.).

❑ How the assembly is marked (safe, external access, unsafe) will make a large difference to
whether or not the assembly is allowed to execute any functions.

From there, most things are not all that different from any other DLL you might create to make a set of
classes available. You can either compile the project using Visual Studio (if you have it), or you can use
the compiler that is included in the .NET SDK.

Not all custom attributes or .NET Framework APIs are legal for assemblies used in
SQL Server. You can consult Books Online for a full list, but, in general, anything
that supports windowing is not allowed, nor is anything marked UNSAFE, unless
your assembly is to be granted access at an UNSAFE level.

Note that several of the examples in this chapter utilize the existing Microsoft Sample
set. You must install the sample scripts during SQL Server installation or download
the SQL Server .NET development SDK to access these samples. In addition, there is
a significant reliance on Visual Studio .NET (2005 is used in the examples).

394

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 394

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Let’s go ahead and work through a relatively simple example for an assembly we’ll use as a stored pro-
cedure example a little later in the chapter.

Create a new SQL Server project in Visual Studio using C# (you can translate this to VB if you wish)
called ExampleProc. You’ll find the SQL Server project type under the “Database” project group.
When it comes up, cancel out of any database instance dialogs you get, and choose Class Library
project in Visual Studio.

Now add a new stored procedure by right-clicking the project and selecting Add➪Stored Procedure... as
shown in Figure 14-1:

Figure 14-1

In this new stored proc, we need set a few references — some of them Visual Studio will have already
done for you:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

The actual project type you start with does not really matter other than what refer-
ences it starts with. While this example suggests starting with a SQL Server project,
you could just as easily start with a simple class project.

395

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 395

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

And then we’re ready to get down to writing some real code. Code you want to put in a .NET assembly
is implemented through a public class. I’ve chosen to call my class StoredProcedures, but, really, I
could have called it most anything. I’m then ready to add my method declaration:

public partial class StoredProcedures
{

[Microsoft.SqlServer.Server.SqlProcedure]
public static void ExampleSP(out int outval)
{

The method has, like the class, been declared as public. I can also have private classes if I so choose
(they would, of course, need to be supporting methods, as they would not be exposed externally).
The void indicates that I do not intend to supply a return value (when we run it in SQL Server, it will
always return the default of zero). I could, however, declare it as returning type int and supply a value
as appropriate in my code (most likely zero for no error, and non-zero if there was an error).

Notice also the Microsoft.SqlServer.Server.SqlProcedure directive. This is completely optional
and is utilized by Visual Studio’s deployment tool to know that the following method is a stored proce-
dure. I left it in there primarily to show you that it is there (we’re going to manually deploy the proc
rather than use the deployment functionality of Visual Studio).

From there, we’re ready to grab a reference to a connection. Pay particular attention to this one, as it is
different from what you will see in typical .NET database connections. Everything about it is the same as
a typical connection, except for the connect string — with that, we are using a special syntax that indi-
cates that we want to utilize the same connection that called the stored procedure. The beauty of this is
that we can assume a login context and do not need to explicitly provide a server or even a username.

// This causes the connection to use the existing connection context
// that the stored procedure is operating in. We could also create a
// completely new connection to fetch data from external sources.
using (SqlConnection cn = new SqlConnection(“context connection=true”))
{

cn.Open();

So, now we have a connection. Technically, we didn’t really open a new connection (remember, we’re
utilizing the one that was already opened to call this stored procedure). Instead, we’re really creating a
new reference to the existing connection.

We’re now ready to create a command object. There really isn’t anything mysterious about this at all — it
is created using a fairly typical syntax (indeed, you can create the command object in any of the typical
ways you would if you were doing this from a typical .NET client). I’ve chosen to define the
CommandText and connection properties as part of my object declaration.

// set up a simple command that is going to return two columns.
SqlCommand cmd = new SqlCommand(“SELECT @@SERVERNAME, @@SPID”, cn);

396

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 396

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

And then we’re ready to execute the command. This is one of the spots I’m utilizing something assembly
specific, as I am not only executing the command, but also I’m explicitly saying to go ahead and send it
to the client.

The object that does this is the .Pipe object within the SqlContext.

// The following actually sends the row for the select.
// It could have been multiple rows, and that would be fine too.
SqlContext.Pipe.ExecuteAndSend(cmd);

Last, but not least, I’m populating my output variable. In this procedure, I haven’t really done anything
special with it, but I’m tossing something into it just so we can see that it really does work.

// Set the output value to something. It could have been anything
// including some form of computed value, but we’re just showing
// that we can output some value for now.
outval = 12345;

}
}

};

Now simply build your project, and you have your first assembly ready to be uploaded to your SQL
Server. Later, we’ll take a look at how to define the assembly for use as a stored procedure.

Uploading Your Assembly to SQL Server
That’s right — I used the term upload. When you “create” an assembly in SQL Server, you’re both creat-
ing a copy of the DLL within SQL Server as well as something of a handle that defines the assembly and
the permissions associated with it.

CREATE ASSEMBLY <assembly name>
[AUTHORIZATION <owner name>]
FROM { <client assembly specifier> | <assembly bits> [,...n] }
[WITH PERMISSION_SET = { SAFE | EXTERNAL_ACCESS | UNSAFE }]
[;]

The CREATE portion of things adheres to the standard CREATE <object type> <object name> notion
that we’ve seen throughout SQL. From there, we have a few different things to digest:

Unlike a T-SQL based stored procedure, queries you execute are not defaulted as
going to the client. Instead, the assumption is that you want to work with the result
set locally. The result is that you need to explicitly issue a command to send anything
out to the client.

397

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 397

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

398

Chapter 14

Option Description

AUTHORIZATION The authorization is the name of the user this assembly will be considered
to belong to. If this parameter is not supplied, then the current user is
assumed to be the owner. You can use this to alias to a user with appro-
priate network access to execute any file actions defined by the assembly.

FROM The fully qualified path to the physical DLL file. This can be a local file
or a UNC path. You can, if you so choose, provide the actual byte
sequence to build the file right on the line in the place of a file (I have
to admit I’ve never tried that one).

WITH PERMISSION_SET You have three options for this.

SAFE is the default and implies that the object is not utilizing anything
that requires access outside of the SQL Server process (no file access, no
external database access).

EXTERNAL_ACCESS indicates that your assembly requires access out-
side of the SQL Server process (to files in the operating system or UNC
path, or perhaps an external ODBC/OLEDB connection).

UNSAFE implies that your assembly gives your assembly free access to
the SQL Server memory space without regard to the CLR managed
code facilities. This means your assembly has the potential to destabi-
lize your SQL Server through improper access.

So, with all this in mind, we’re ready to upload our assembly:

USE AdventureWorks

CREATE ASSEMBLY ExampleProc
FROM ‘<solution path>\ExampleProc\bin\Debug\ExampleProc.dll’

Assuming that you have the path to your compiled DLL correct, you shouldn’t see any messages except
for the typical “Command(s) completed successfully” message, and, with that, you are ready to create
the SQL Server stored procedure that will reference this assembly.

Creating Your Assembly-Based
Stored Procedure

All right then; all the tough stuff is done (if you’re looking for how to actually create the assembly that is
the code for the stored proc, take a look back two sections). We have a compiled assembly, and we have
uploaded it to SQL Server — it’s time to put it to use.

To do this, we use the same CREATE PROCEDURE command we learned back in Chapter 11. The differ-
ence is that, in the place of T-SQL code, we reference our assembly. For review, the syntax looks like this:

17_584340 ch14.qxp 10/18/06 2:17 PM Page 398

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

CREATE PROCEDURE|PROC <sproc name>
[<parameter name> [<schema>.]<data type> [VARYING] [= <default value>] [OUT

[PUT]][,
<parameter name> [<schema>.]<data type> [VARYING] [= <default value>]

[OUT[PUT]][,
...
...
]]

[WITH
RECOMPILE| ENCRYPTION | [EXECUTE AS { CALLER|SELF|OWNER|<’user name’>}]

[FOR REPLICATION]
AS

<code> | EXTERNAL NAME <assembly name>.<assembly class>

Some of this we can ignore when doing assemblies. The key things are:

❑ We use the EXTERNAL NAME option instead of the <code> section we used in our main chapter
on stored procedures. The EXTERNAL NAME is done in a format of

<assembly name>.<class name>.<method name>

❑ We still need to define all parameters (in an order that matches the order our assembly method).

Now let’s apply that to the assembly we created in the previous section:

CREATE PROC spCLRExample
(

@outval int = NULL OUTPUT
)

AS EXTERNAL NAME ExampleProc.StoredProcedures.ExampleSP

It is not until this point that we actually have a stored procedure that utilizes our assembly. Notice that
the stored procedure name is completely different from the name of the method that implements the
stored procedure.

Now go ahead and make a test call to our new stored procedure:
.

DECLARE @OutVal int
EXEC spCLRExample @OutVal OUTPUT

SELECT @OutVal

We’re declaring a holding variable to receive the results from our output variable. We then execute the
procedure and select the value for our holding variable. When you check the results, however, you’ll
find not one result set — but two:

------------------- ------
NEWTON 52

(1 row(s) affected)

399

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 399

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

12345

(1 row(s) affected)

The first of these is the result set we sent down the SqlContext.Pipe. When we executed the cmd
object, the results were directed down the pipe, and so the client received them. The second result set
represents the SELECT of our @OutVal variable.

This is, of course, a pretty simplistic example, but realize the possibilities here. The connection could
have been, assuming we were set to EXTERNAL_ACCESS, to any datasource. We could access files and
even Web services. We can add in complex libraries to perform things like regular expressions (careful
on performance considerations there).

We will look at adding some of these kinds of things in as we explore more types of assembly-based SQL
programming.

Creating Scalar User-Defined
Functions from Assemblies

Scalar functions are not much different from stored procedures. Indeed, for the most part, they have the
very same differences that the T-SQL versions. Much as with stored procedures, we utilize the same core
CREATE syntax that we used in the T-SQL user-defined functions (UDFs) we created back in Chapter 11.

CREATE FUNCTION [<schema name>.]<function name>
([<@parameter name> [AS] [<schema name>.]<scalar data type> [= <default

value>]
[,...n]])

RETURNS {<scalar type>|TABLE [(<Table Definition>)]}
[WITH [ENCRYPTION]|[SCHEMABINDING]|

[RETURNS NULL ON NULL INPUT | CALLED ON NULL INPUT] | [EXECUTE AS {
CALLER|SELF|OWNER|<’user name’>}]

]
[AS] { EXTERNAL NAME <external method> |
BEGIN

[<function statements>]
{RETURN <type as defined in RETURNS clause>|RETURN (<SELECT statement>)}

END }[;]

There are one or two new things once you get inside of the .NET code. Of particular note is that there are
some properties that you can set for your function. Among those, probably the most significant is that
you must indicate if the function is deterministic (the default is nondeterministic). We’ll see an example
of this in use shortly.

For the example this time, start a new SQL Server project in Visual Studio, but instead of adding a stored
procedure as we did in our original assembly example, add a user-defined function.

SQL Server starts you out with a simple template:

400

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 400

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

public partial class UserDefinedFunctions
{

[Microsoft.SqlServer.Server.SqlFunction]
public static SqlString ExampleUDF()
{

// Put your code here
return new SqlString(“Hello”);

}
};

This is actually a workable template “as is.” You could compile it and add it to SQL Server as an assem-
bly, and it would work right out of the box (though just getting back the string “Hello” is probably not
all that useful).

We’ll replace that, but this time we’re going to write something that is still amazingly simple. In the end,
we’ll see that, while simple, it is much more powerful than our stored procedure example.

In previous books, I have often lamented the issues with trying to validate e-mail fields in tables. E-mail,
when you think about it, is a strongly typed notion, but one that SQL Server has only been able to per-
form minimal validation of. What we need are regular expressions.

We could approach this issue by writing a validation function and implementing it as a user-defined
data type. This approach would have some validity, but has a problem — the rules for validating e-mails
change on occasion (such as when new country codes or added, or when the .biz and .info top
domains were added several years ago). Instead, we’re going to implement simple regex functionality
and then utilize a call to that function in a constraint.

We can do this with relatively minimal changes to the function template that SQL Server gave us. First,
we can get rid of a few library declarations, since we won’t be really working with SQL Server data to
speak of, and add back two of our own. We wind up with just three using declarations:

using System;
using System.Text.RegularExpressions;
using Microsoft.SqlServer.Server;

We’re then ready to implement out function with very few changes:

[SqlFunction(IsDeterministic = true, IsPrecise = true)]
public static bool RegExIsMatch(string pattern, string matchString)
{

Regex reg = new Regex(pattern.TrimEnd(null));
return reg.Match(matchString.TrimEnd(null)).Success;

}

401

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 401

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Oh sure, we completely replaced the old function, but not by much. Indeed, we only have two more
lines of code — and that’s including the determinism declaration!

I’m not going to review it much here, but take a look back at Chapter 11 if you need to be reminded of
how determinism works The key thing is that, given the same inputs, the function must always yield
the same outputs.

Go ahead and compile this, and we’re ready to upload the assembly:

USE AdventureWorks

CREATE ASSEMBLY ExampleUDF
FROM ‘<solution path>\ExampleUDF\bin\Debug\ExampleUDF.dll’

And then create the function reference:

CREATE FUNCTION fCLRExample
(

@Pattern nvarchar(max),
@MatchString nvarchar(max)

)
RETURNS BIT
AS EXTERNAL NAME ExampleUDF.UserDefinedFunctions.RegExIsMatch

Notice the use of the nvarchar type instead of varchar. The string data type is a Unicode data type,
and our function data type declaration needs to match.

This done, we’re ready to test things out a bit:

SELECT ContactID, FirstName, LastName, EmailAddress, Phone
FROM Person.Contact
WHERE dbo.fCLRExample(‘[a-zA-Z0-9_\-]+@([a-zA-Z0-9_\-]+\.)+(com|org|edu|mil|net)’,

EmailAddress) = 1

If you have the default data, then this will actually return every row in the table since they all are adven-
ture-works.com addresses. So, let’s try a simple test to show what works versus what doesn’t:

DECLARE @GoodTestMail varchar(100),
@BadTestMail varchar(100)

SET @GoodTestMail = ‘robv@professionalsql.com’
SET @BadTestMail = ‘misc. text’

SELECT dbo.fCLRExample(‘[a-zA-Z0-9_\-]+@([a-zA-Z0-9_\-]+\.)+(com|org|edu|nz|au)’,
@GoodTestMail) AS ShouldBe1

SELECT dbo.fCLRExample(‘[a-zA-Z0-9_\-]+@([a-zA-Z0-9_\-]+\.)+(com|org|edu|nz|au)’,
@BadTestMail) AS ShouldBe0

For the sake of brevity, I have not built the full e-mail regex string here. It would need to include all of
the valid country code top domans such as au, ca, uk, and us. There are a couple hundred of these, so it
wouldn’t fit all that well. That said, the basic construct is just fine, you can tweak it to meet your par-
ticular needs.

402

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 402

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

This gets us back what we would expect:

ShouldBe1

1

(1 row(s) affected)

ShouldBe0

0

(1 row(s) affected)

But let’s not stop there. We have this nice function, let’s apply it a little further by actually applying it as
a constraint to the table.

ALTER TABLE Person.Contact
ADD CONSTRAINT ExampleFunction
CHECK (dbo.fCLRExample(‘[a-zA-Z0-9_\-]+@([a-zA-Z0-9_\-]+\.)+(com|org|edu|nz|au)’,

EmailAddress) = 1)

Now we try to update a row to insert some bad data into our column, and it will be rejected:

UPDATE Person.Contact
SET EmailAddress = ‘blah blah’
WHERE ContactID = 1

And SQL Server tells you the equivalent of “no way!”:

Msg 547, Level 16, State 0, Line 1
The UPDATE statement conflicted with the CHECK constraint “ExampleFunction”. The
conflict occurred in database “AdventureWorks”, table “Person.Contact”, column
‘EmailAddress’.
The statement has been terminated.

Creating Table-Valued Functions
Functions are going to continue to be a focus of this chapter for a bit. Why? Well, functions have a few
more twists to them than some of the other assembly uses.

In this section, we’re going to focus in on table valued functions. They are among the more complex
things we need to deal with in this chapter, but, as they are in the T-SQL version, they were also among
the more powerful. The uses range far and wide. They can be as simple as special treatment of a column
in something you could have otherwise done in a typical T-SQL function or can be as complex as a
merge of data from several disparate and external datasources.

403

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 403

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Go ahead and start another Visual Studio project called ExampleTVF, using the SQL Server project
template — also add a new user-defined function. We’re going to be demonstrating accessing the file
system this time, so add the following references:

using System;
using System.IO;
using System.Collections;
using Microsoft.SqlServer.Server;

Before we get too much into the code, let’s look ahead a bit at some of the things a table-valued function —
or TVF — requires:

The entry function must implement the IEnumerable interface. This is a special, widely used, interface
in .NET that essentially allows for the iteration over some form of row (be it in an array, collection, table,
or whatever). As part of this concept, we must also define the FillRowMethodName property. The func-
tion specified in this special property will be implicitly called by SQL Server every time SQL Server has
the need to move between rows. You will find that a good many developers call whatever function they
implement this in FillRow— for me it will vary depending on the situation and whether I feel it war-
rants something more descriptive of what it’s doing or not.

So, with those items described, let’s look at the opening of our function. Our function is going to be
providing a directory listing, but one based on information that must be retrieved from individual files.
This means that we have to enumerate the directory to retrieve each file’s information. Just to add to
the flavor of things a bit, we will also support the notion of subdirectories — which means we have to
understand the notion of directories within directories.

We’ll start with our top-level function call. This accepts the search filter criteria, including the directory
we are considering the root directory for our list, the filename criteria for the search, and a Boolean indi-
cator of whether to include subdirectories or not.

public partial class UserDefinedFunctions
{

[SqlFunction(FillRowMethodName = “FillRow”)]

public static IEnumerable DirectoryList(string sRootDir, string sWildCard, bool
bIncludeSubDirs)

{
// retrieve an array of directory entries. Where this an object of our own

making,
// it would need to be one that supports IEnumerable, but since ArrayList

already
// does that, we have nothing special to do here.
ArrayList aFileArray = new ArrayList();
DirectorySearch(sRootDir, sWildCard, bIncludeSubDirs, aFileArray);

return aFileArray;
}

404

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 404

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

This has done little other than establish an array that will hold our file list and call to internal functions
to populate it. Next, we need to implement the function that is enumerating the directory list to get the
files in each directory:

private static void DirectorySearch(string directory, string sWildCard, bool
bIncludeSubDirs, ArrayList aFileArray)

{
GetFiles(directory, sWildCard, aFileArray);

if (bIncludeSubDirs)
{

foreach (string d in Directory.GetDirectories(directory))
{

DirectorySearch(d, sWildCard, bIncludeSubDirs, aFileArray);
}

}
}

For each directory we file, we make a simple call of the GetFiles method (it is implemented in
System.IO) and enumerate the results for the current directory. As we enumerate, we populate our
array with the FullName and a LastWriteTime properties from the file:

private static void GetFiles(string d, string sWildCard, ArrayList aFileArray)
{

foreach (string f in Directory.GetFiles(d, sWildCard))
{

FileInfo fi = new FileInfo(f);

object[] column = new object[2];
column[0] = fi.FullName;
column[1] = fi.LastWriteTime;

aFileArray.Add(column);
}

}

From there, we’re ready to bring it all home by actually implementing our FillRow function, which
does nothing more than serve as a conduit between our array and the outside world — managing the
feed of data to one row at a time.

private static void FillRow(Object obj, out string filename, out DateTime date)
{

object[] row = (object[])obj;

filename = (string)row[0];
date = (DateTime)row[1];

}
};

405

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 405

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

With all that done, we should be ready to compile and upload our assembly. We use the same CREATE
ASSEMBLY command we’ve used all chapter long, but there is a small change — we must declare the
assembly as having the EXTERNAL_ACCESS permission set. One of two conditions that must be met in
order to do this:

❑ The assembly is signed with a certificate (more on these in Chapter 22) that corresponds to a
user with proper EXTERNAL_ACCESS rights.

❑ The database owner has EXTERNAL_ACCESS rights and the database has been marked as being
TRUSTWORTHY in the database properties.

We’re going to take the unsigned option, so we need to set the database to be marked as trustworthy:

ALTER DATABASE AdventureWorks
SET TRUSTWORTHY ON

And we’re now ready to finish uploading our assembly with proper access:

USE AdventureWorks

CREATE ASSEMBLY fExampleTVF
FROM ‘<solution path>\ExampleTVF\bin\Debug\ExampleTVF.dll’
WITH PERMISSION_SET = EXTERNAL_ACCESS

The actual creation of the function reference that utilizes our assembly is not bad but is slightly trickier than
the one for the simple scalar function. We must define the table that is to be returned in addition to the
input parameters:

CREATE FUNCTION fTVFExample
(

@RootDir nvarchar(max),
@WildCard nvarchar(max),
@IncludeSubDirs bit

)
RETURNS TABLE

(
FileName nvarchar(max),
LastWriteTime nvarchar(max)

)
AS EXTERNAL NAME ExampleTVF.UserDefinedFunctions. DirectoryList

And, with that, we’re ready to test:

SELECT FileName, LastWriteTime
FROM dbo.fTVFExample(‘C:\’, ‘*.sys’, 0)

What you get back when you run this will vary a bit depending on what components and examples you
have installed, but, in general, it should look something like:

406

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 406

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

FileName LastWriteTime
-- -----------------------
C:\CONFIG.SYS 2006-04-01 00:21:43.470
C:\IO.SYS 2006-04-01 00:21:43.470
C:\MSDOS.SYS 2006-04-01 00:21:43.470
C:\pagefile.sys 2006-05-02 20:08:56.500

(4 row(s) affected)

We’ve now shown not only how we can do table valued functions but also how we can access external
data — powerful stuff!

Creating Aggregate Functions
Now this one is going to be the one thing in this chapter that’s really new. When we look at user-defined
data types a little later, we’ll see something with a bigger shift than some of the other constructs we’ve
looked at here, but aggregate functions are something that you can’t do any other way — the T-SQL ver-
sion of a UDF does not allow for aggregation.

So, what am I talking about here? Well, examples are SUM, AVG, MIN, and MAX. These all look over a set of
data and then return a value that is based on some analysis of the whole. It may be based on your entire
result set or on some criteria defined in the GROUP BY clause.

Performing the analysis required to support your aggregate gets rather tricky. Unlike other functions, where
everything can be contained in a single call to your procedure, aggregates require mixing activities your
function does (the actual aggregation part) with activities SQL Server is doing at essentially the same time
(organizing the groups for the GROUP BY for example). The result is something of staged calls to your assem-
bly class. Your class can be called at any of four times and can support methods for each of these calls:

❑ Init— This supports the initialization of your function. Since you’re aggregating, there’s a
good chance that you are setting some sort of accumulator or other holding value — this is the
method where you would initialize variables that support the accumulation or holding value.

❑ Accumulate— This is called by SQL Server once for every row that is to be aggregated. How
you choose to utilize the function is up to you, but presumably it will implement whatever
accumulation logic you need to support your aggregate.

❑ Merge— SQL Server is a multithreaded application, and it may very well utilize multiple
threads that can each be calling into your function. As such, you utilize this function to deal
with merging the results from different threads into one final result. Depending on the type of
aggregate you’re doing, this can make things rather tricky. You can, however, make use of pri-
vate members in your class to keep track of how many threads were running and reconcile the
differences. It’s worth noticing that this function receives a copy of your class as an argument
(consider it to be what amounts to recursive when you are in this method) rather than whatever
other type of value you’ve been accumulating — this is so you get the proper results that were
calculated by the other thread.

❑ Terminate— This is essentially the opposite of Init. This is the call that actually returns the
end result.

407

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 407

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Now, let’s see what this looks like in practice.

To start things off, create a new project in Visual Studio (I’m calling mine ExampleAggregate), and then
add a new aggregate to the project (right-click on the project in the solution and choose Add➪Aggregate).
SQL Server builds you a stock template that includes all four of the methods we just discussed:

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]
public struct ExampleAggregate
{

public void Init()
{

// Put your code here
}

public void Accumulate(SqlString Value)
{

// Put your code here
}

public void Merge(ExampleAggregate Group)
{

// Put your code here
}

public SqlString Terminate()
{

// Put your code here
return new SqlString(“”);

}

// This is a place-holder member field
private int var1;

}

This is the genuine foundation — complete with templates for all four method calls.

What we’re going to be doing for an example in this section is to build an implementation of a PRODUCT
function, which is essentially the same concept as SUM but multiplies instead of adding. Like the SUM
function, we will ignore NULL values (unless they are all NULL, and then we will return NULL), but we
will warn the user about the NULL being found and ignored should we encounter one.

We need to start with some simple changes. First, I’m going to change the class name to Product instead
of ExampleAggregate, which we called the project. In addition, I need to declare some member vari-
ables to hold our accumulator and some flags.

408

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 408

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

using System;
using System.Data;
using System.Data.SqlClient;
using System.Data.SqlTypes;
using Microsoft.SqlServer.Server;

[Serializable]
[Microsoft.SqlServer.Server.SqlUserDefinedAggregate(Format.Native)]
public struct Product
{

private SqlDouble dAccumulator;
private bool fContainsNull;
private bool fAllNull;

The fContainsNull variable will be used to tell us if we need to warn the user about any values being
ignored. The fAllNull is used to tell if every value received was null — in which case we want to return
null as our result.

We then need to initialize our member variables as part of the Init function:

public void Init()
{

// Initialize our flags and accumulator
dAccumulator = 1;
fContainsNull = false;
fAllNull = true;

}

We are then ready to build the main accumulator function:

public void Accumulate(SqlDouble Value)
{

// This is the meat of things. This one is where we actually apply
// whatever logic is appropriate for our accumulation. In our example,
// we simply multiply whatever value is already in the accumulator by
// the new input value. If the input value is null, then we set the
// flag that indicates that we’ve seen null values and then ignore
// the value we just received and maintain the existing accumulation.

if (Value.IsNull)
{

fContainsNull = true;
}
else
{

fAllNull = false;
dAccumulator *= Value;

}
}

409

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 409

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

The comments pretty much tell the tale here. We need to watch to make sure that none of our flag condi-
tions have changed. Other than that, we simply need to continue accumulating by multiplying the
current value (assuming it’s not null) by the existing accumulator value.

With the accumulator fully implemented, we can move on to dealing with the merge scenario.

public void Merge(Product Group)
{

// For this particular example, the logic of merging isn’t that hard.
// We simply multiply what we already have by the results of any other
// instances of our Product class.

if (Group.dAccumulator.IsNull)
{

if (Group.fContainsNull)
fContainsNull = true;

if (!Group.fAllNull)
fAllNull = false;

dAccumulator *= dAccumulator;
}

}

For this particular function, the implementation of a merge is essentially just applying the same checks
that we did in the Accumulate function.

Finally, we’re ready to implement our Terminate function to close out our aggregation when it’s done:

public SqlDouble Terminate()
{

// And this is where we wrap it all up and output our results
if (fAllNull)
{

return SqlDouble.Null;
}
else
{

SqlContext.Pipe.Send(“WARNING: Aggregate values exist and were
ignored”);

return dAccumulator;
}

}
}

With all that done, we should be ready to compile our procedure and upload it:

CREATE ASSEMBLY ExampleAggregate
FROM ‘<solution path>\ExampleAggregate\bin\Debug\ExampleAggregate.dll’

And create the aggregate. Note that while an aggregate is a type of function, we use a different syntax to
create it. The basic syntax looks like this:

410

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 410

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

CREATE AGGREGATE [<schema name> .] <aggregate name>
(@param_name <input sqltype>)

RETURNS <return sqltype>
EXTERNAL NAME <assembly name> [.<class name>]

So, to create the aggregate from our assembly, we would do something like:

CREATE AGGREGATE dbo.Product(@input float)
RETURNS float
EXTERNAL NAME ExampleAggregate.Product

And, with that, we’re ready to try it out. To test it, we’ll create a small sample table that includes some
data that can be multiplied along with a grouping column, so we can test out how our aggregate works
with a GROUP BY scenario.

CREATE TABLE TestAggregate
(

PK int NOT NULL PRIMARY KEY,
GroupKey int NOT NULL,
Value float NOT NULL

)

Now we just need some test data:

INSERT INTO TestAggregate(PK, GroupKey, Value)
VALUES (1, 1, 2)

INSERT INTO TestAggregate(PK, GroupKey, Value)
VALUES (2, 1, 6)

INSERT INTO TestAggregate(PK, GroupKey, Value)
VALUES (3, 1, 1.5)

INSERT INTO TestAggregate(PK, GroupKey, Value)
VALUES (4, 2, 2)

INSERT INTO TestAggregate(PK, GroupKey, Value)
VALUES (5, 2, 6)

And we’re ready to give our aggregate a try. What we’re going to be doing is returning the PRODUCT of
all the rows within each group (our sample data has two groups, so this should work out to two rows).

SELECT GroupKey, dbo.Product(Value) AS Product
FROM TestAggregate
GROUP BY GroupKey

Run this and we get back two rows (just as we expected):

GroupKey Product
----------- ----------------------
1 18
2 12

(2 row(s) affected)

411

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 411

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

Do the match on our sample data, and you’ll see we got back just what we wanted.

If you’re thinking about it, you should be asking yourself “OK, this is great, but how often am I really
going to use this?” For most of you, the answer will be “never.” There are, however, those times where
what’s included just isn’t ever going to do the job. Aggregates are one of those places where special cases
come rarely, but when they come, they really need exactly what they need and nothing else. In short, I
wouldn’t crowd your brain cells by memorizing every little thing about this section, but do take the time
to learn what’s involved and get a concept for what it can and can’t do so you know what’s available
should you need it.

Creating Triggers from Assemblies
Much like the other assembly types we’ve worked with so far in this chapter, triggers have a lot in com-
mon with the rest, but also their own little smattering of special things.

The differences will probably come to mind quickly if you think about it for any length of time:

❑ How do we deal with the contextual nature of triggers? That is, how do we know to handle
things differently if it’s an INSERT trigger situation versus a DELETE or UPDATE trigger?

❑ How do we access the inserted and deleted tables?

You may recall from earlier examples, how we can obtain the “context” of the current connection — it is
by utilizing this context that we are able to gain access to different objects that we are interested in. For
example, the SqlContext object that we’ve obtained a connection from in prior examples also contains a
SqlTriggerContext object — we can use that to get properties such as whether we are dealing with an
insert, update, or delete scenario (the first question we had). The fact that we have access to the current
connections also implies that we are able to access the inserted and deleted tables simply by querying
them. Let’s get right to putting this to use in an example.

Start by creating a new SQL Server project in Visual Studio (I’ve called mine ExampleTrigger this
time). Once your project is up, right-click the project in the solution explorer and select Add➪Trigger....

Visual Studio is nice enough to provide you with what is, for the most part, a working template. Indeed,
it would run right as provided except for one issue:

using System;
using System.Data;
using System.Data.SqlClient;
using Microsoft.SqlServer.Server;

public partial class Triggers
{

// Enter existing table or view for the target and uncomment the attribute line
// [Microsoft.SqlServer.Server.SqlTrigger (Name=”ExampleTrigger”,

Target=”Table1”, Event=”FOR UPDATE”)]

412

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 412

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

public static void ExampleTrigger()
{

// Replace with your own code
SqlContext.Pipe.Send(“Trigger FIRED”);

}
}

I’ve highlighted the key code line for you. At issue is that we must provide more information to SQL
Server than we do in our other object types. Specifically, we must identify what table and events we’re
going to be executing our trigger against. We’re actually going to create a special demonstration table for
this before the trigger is actually put into action, so we can just use the table name TriggerTable for now.

[Microsoft.SqlServer.Server.SqlTrigger (Name=”ExampleTrigger”,
Target=”TriggerTable”, Event=”FOR INSERT, UPDATE, DELETE”)]

Notice that I’ve also altered what events will fire our trigger to include all event types.

Now we’ll update the meat of things just a bit, so we can show off different actions we might take in our
trigger and, perhaps more importantly, how we can check the context of things and make our actions
specific to what has happened to our table. We’ll start by getting our class going:

public static void ExampleTrigger()
{

// Get a handle to our current connection
SqlConnection cn = new SqlConnection(“context connection=true”);
cn.Open();

SqlTriggerContext ctxt = SqlContext.TriggerContext;
SqlCommand cmd = new SqlCommand();
cmd.Connection = cn;

So far, this isn’t much different from what we’ve used in our other .NET examples. Perhaps the only sig-
nificant difference from things we’ve seen already is the SqlTriggerContext object — we will use this
later on to determine what action caused the trigger to fire.

We’re ready to start code that is conditional on the action the trigger is firing for (based on the
TriggerAction property of the TriggerContext of the SqlContext. For this, I’m going to use a
simple switch command (though there are those that will call me a programming charlatan for using
a switch statement — to them I say “deal with it!”). I’m also going to pipe out various things to the
client to report what we’re doing.

In practice, you generally do not want to be outputting information from a trigger —
figure that they should usually run silently as far as the client is concerned. I’ve gone
ahead and output several items in this example just to make it readily apparent what
the trigger is doing under what scenario.

413

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 413

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

switch (ctxt.TriggerAction)
{

case TriggerAction.Insert:
cmd.CommandText = “SELECT COUNT(*) AS NumRows FROM INSERTED”;
SqlContext.Pipe.Send(“Insert Trigger Fired”);
SqlContext.Pipe.ExecuteAndSend(cmd);
break;

case TriggerAction.Update:
// This time, we’ll use datareaders to show how we can
// access the data from the inserted/deleted tables

SqlContext.Pipe.Send(“Update Trigger Fired”);
SqlContext.Pipe.Send(“inserted rows...”);
cmd.CommandText = “SELECT * FROM INSERTED”;
SqlContext.Pipe.Send(cmd.ExecuteReader());
break;

case TriggerAction.Delete:
// And now we’ll go back to what we did with the inserted rows...
cmd.CommandText = “SELECT COUNT(*) AS NumRows FROM DELETED”;
SqlContext.Pipe.Send(“Delete Trigger Fired”);
SqlContext.Pipe.ExecuteAndSend(cmd);
break;

}

SqlContext.Pipe.Send(“Trigger Complete”);
}

}

And, with that, we’re ready to compile and upload it. The assembly upload works just as most of them
have so far (we’re back to not needing anything other than the default PERMISSION_SET).

CREATE ASSEMBLY ExampleTrigger
FROM ‘<solution path>\ExampleTrigger\bin\Debug\ExampleTrigger.dll’

Before we get to creating the reference to the trigger, however, we need a table. For this example, we’ll
just create something very simple:

CREATE TABLE TestTrigger
(

PK int NOT NULL PRIMARY KEY,
Value varchar(max) NOT NULL

)

With the assembly uploaded and the table created, we’re ready to create our trigger reference.

Much like stored procedures and functions, a .NET trigger creation is made from the same statement as
T-SQL-based triggers. We eliminate the T-SQL side of things and replace it with the EXTERNAL NAME
declaration.

414

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 414

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

CREATE TRIGGER trgExampleTrigger
ON TestTrigger
FOR INSERT, UPDATE, DELETE
AS EXTERNAL NAME ExampleTrigger.Triggers.ExampleTrigger

And with that, our trigger should be in place on our table and ready to be fired whenever one of its trig-
ger actions is fired (which happens to be for every trigger actions), so let’s test it.

We’ll start by getting a few rows inserted into our table. And, wouldn’t you just know it? That will allow
us to test the insert part of our trigger.

INSERT INTO TestTrigger
(PK, Value)

VALUES
(1, ‘first row’)

INSERT INTO TestTrigger
(PK, Value)

VALUES
(2, ‘second row’)

Run this, and we not only get our rows in but we also get a little bit of feedback that is coming out of our
trigger:

Insert Trigger Fired
NumRows

1

(1 row(s) affected)

Trigger Complete

(1 row(s) affected)
Insert Trigger Fired
NumRows

1

(1 row(s) affected)

Trigger Complete

(1 row(s) affected)

As you can see, we’re getting output from our trigger. Notice that we’re getting the “(1 row(s)
affected)” both from the query running inside the trigger and from the one that actually inserted the
data. We could have taken any action that could have been done a T-SQL trigger (though many are more
efficient if you stay in the T-SQL world). The key is that we could do so much more if we had the need.
We could, for example, make an external call or perform a calculation that isn’t doable in the T-SQL world.

415

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 415

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

There is an old saying: “Caution is the better part of valor.” This could have been written with triggers
in mind. I can’t possibly express enough about the “be careful” when it comes to what you’re doing in
triggers. Just because you can make an external call doesn’t make it a smart thing to do. Assess the need —
is it really that important that the call be made right then? Realize that these things can be slow, and
whatever transaction that trigger is participating in will not complete until the trigger completes — this
means you may be severely damaging performance.

Okay, so with all that done, let’s try an update:

UPDATE TestTrigger
SET Value = ‘Updated second row’
WHERE PK = 2

And let’s see what we get back:

Update Trigger Fired
inserted rows...
PK Value
----------- ---------------------------------------
2 Updated second row

(1 row(s) affected)

Trigger Complete

(1 row(s) affected)

The result set we’re getting back is the one our trigger is outputting. That’s followed by some of our
other output as well as the base “(1 row(s) affected)” that we would normally expect from our
single row update. Just as with the insert statement, we were able to see what had happened and could
have adapted accordingly.

And so, that leaves us with just the delete statement. This time, we’ll delete all the rows, and we’ll see
how the count of our deleted table does indeed reflect both of the deleted rows.

DELETE TestTrigger

And again check the results:

Delete Trigger Fired
NumRows

2

(1 row(s) affected)

Trigger Complete

(2 row(s) affected)

Now, these results may be just a little confusing, so let’s look at what we have.

416

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 416

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

We start with the notification that our trigger fired — that comes from our trigger (remember, we send
that message down the pipe ourselves). Then comes the result set from our SELECT COUNT(*). Notice
the “(1 row(s) affected)” — that’s from our result set rather than the UPDATE that started it all. We
then get to the end of execution of our trigger (again, we dropped that message in the pipe), and, finally,
the “(2 row(s) affected)” that was from the original UPDATE statement.

And there we have it. We’ve done something to address every action scenario, and we could, have
course, done a lot more within each. We could also do something to address a BEFORE trigger if we
needed to.

Custom Data Types
Sometimes you have the need to store data that you want to be strongly typed, but that SQL Server
doesn’t fit within SQL Server’s simple data type list. Indeed, you may need to invoke a complex set
of rules in order to determine whether the data properly meets the type requirement or not.

Requests for support of complex data types have been around a very long time. Indeed, I can recall being
at the Sphinx Beta 2.0 — known to most as Beta 2 for SQL Server 7.0 — event in 1998, and having that
come up as something like the second most requested item in a request session I was at. Well, it took a
lot of years, but it’s finally here.

By utilizing a .NET assembly, we can achieve a virtually limitless number of possibilities in our data
types. The type can have complex rules or even contain multiple properties.

Before we get to the syntax for adding assemblies, let’s get an assembly constructed.

We need to start by creating the signature keys for this project. To do this, I recommend starting with
your solution directory being current and then calling sn.exe using a fully qualified path (or, if your
.NET framework directory is already in your PATH, then it’s that much easier!). For me, it looks like this:

C:\Program Files\Microsoft.NET\SDK\v2.0 64bit\LateBreaking\SQLCLR\UserDefinedDat
aType>”C:\Program Files (x86)\Microsoft Visual Studio 8\SDK\v2.0\Bin\sn” -k temp
.snk

And with that, you’re ready to build your DLL.

Let’s go ahead and upload the actual assembly (alter this to match the paths on your particular system):

CREATE ASSEMBLY ComplexNumber
FROM <solution path>\ComplexNumber\bin\debug\ComplexNumber.dll’

WITH PERMISSION_SET = SAFE;

The sample used here will be the ComplexNumber.sln solution included in the SQL
Server samples. You will need to locate the base directory for the solution — the
location of which will vary depending on your particular installation.

417

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 417

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

And with the assembly loaded, we’re ready to begin.

Creating Your Data Type from Your Assembly
So, you have an assembly that implements your complex data type and have uploaded it to SQL Server
using the CREATE ASSEMBLY command. You’re ready to instruct SQL Server to use it. This works pretty
much as other assemblies have. The syntax looks like this:

CREATE TYPE [<schema name>.] <type name>
{

FROM <base type>
[(<precision> [, <scale>])]
[NULL | NOT NULL]

| EXTERNAL NAME <assembly name> [.<class name>]
} [;]

I’ve put the full type definition there, but really it’s just the highlighted line that is different from the
older style user-defined data type definition. You’ll notice immediately that it looks like our previous
assembly-related constructs, and, indeed, the use is the same.

So, utilizing our complex type created in the last section, it would look like this:

CREATE TYPE ComplexNumber
EXTERNAL NAME [ComplexNumber].[Microsoft.Samples.SqlServer.ComplexNumber];

Accessing Your Complex Data Type
Microsoft has provided a filed called test.sql for testing the assembly we just defined as our complex
data type, but I find it falls just slightly short of where we want to be in our learning here. What I want
to emphasize is how the various functions of the supporting class for our data type are still available.
In addition, each individual property of the variable is fully addressable. So, let’s run a modified version
of the provided script:

USE AdventureWorks
GO

-- create a variable of the type, create a value of the type and invoke
-- a behavior over it

DECLARE @c ComplexNumber;

SET @c = CONVERT(ComplexNumber, ‘(1, 2i)’);

SELECT @c.ToString() AS FullValueAsString;

SELECT @c.Real AS JustRealProperty
GO

Now run it, and check out the results:

418

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 418

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

FullValueAsString

(1,2i)

(1 row(s) affected)

JustRealProperty

1

(1 row(s) affected)

In the first result that was returned, the ToString function was called as defined as a method of our
class. The string is formatted just as our method desires. If we had wanted to reverse the order of the
numbers or some silly thing like that, we would only have needed to change the ToString function in
the class, recompile it, and re-import it our database.

In our second result, we address just one property of our complex data type. The simple dot “.” delim-
iter told SQL Server that we were looking for a property — just as it would in C# or VB.NET.

Dropping Data Types
As you might expect, the syntax for dropping a user defined data type works just like other drop statements:

DROP TYPE [<schema name>.] <type name> [;]

And it’s gone — maybe.

Okay, so why a “maybe” this time? Well, if there is most any object out there that references this data
type, then the DROP will be disallowed and will fail. So, if you have a table that has a column of this type,
then an attempt to drop it would fail. Likewise, if you have a schema bound view, stored procedure, trig-
ger, or function defined that utilizes this type, then a drop would also fail.

Note that this form of restriction appears in other places in SQL Server — such as dropping a table
when it is the target of a foreign key reference — but those restrictions tend to be less all encompassing
than this one is (virtually any use of it in your database at all will block the drop), so I haven’t felt as
much need to point it out (they were more self-explanatory).

Summary
Well, if you aren’t thinking to yourself something along the lines of “Wow, that’s powerful,” then I can
only guess you somehow skipped straight to the summary without reading the rest of the chapter.
That’s what this chapter is all about — giving you the power to do very complex things (or, in a few
cases, simple things that still weren’t possible before). What this chapter was also about, in a very subtle
way, was a mechanism that can break your system very quickly. Yeah, yeah, yeah — I know I’m resorting
to scare tactics, but I make no apologies for it. When using assemblies, you need to be careful. Think about
what you’re doing, and analyze each of the steps that your assembly is going to be taking even more

419

Nothing But Net!

17_584340 ch14.qxp 10/18/06 2:17 PM Page 419

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

thoroughly than you already do. Consider latency you’re going to be adding if you create long-running
processes. Consider external dependencies you are creating if you make external calls — how reliable are
those external processes? You need to know, as your system is now only as reliable as the external systems
you’re calling.

Now, having hopefully scared you into caution about assemblies, let me ease up a bit and say don’t
avoid them solely out of fear. Assemblies were added for a reason, and they give us a power we both
need and can use (not to mention that they are just plain cool). As always, think about what you need,
and don’t make your solution any more complex than it needs to be. Keep in mind, however, that what
seems at first to be the more complex solution may actually be simpler in the end. I’ve seen stored proce-
dures that solved the seemingly unsolvable T-SQL problem. Keeping your system away from assemblies
would seem to make it simpler, but what’s better: a 300-line, complex T-SQL stored proc or an assembly
that is concise and takes only 25 lines including declarations?

Choose wisely.

420

Chapter 14

17_584340 ch14.qxp 10/18/06 2:17 PM Page 420

Excerpted from Professional SQL Server(TM) 2005 Programming, Wrox Press, www.wrox.com

	ADP1AA.tmp
	Professional SQL Server™ 2005 Programming
	Chapter 14: Nothing But NET!
	ISBN-10: 0-7645-8434-0
	ISBN-13: 978-0-7645-8434-3

