
269

Chapter 9

Solutions in this chapter:

■ The Virtual Machine VMDK File

■ The Virtual Machine Confi guration vmx File

■ Converting IDE Drives to SCSI Drives

■ Dynamic Creation of Virtual Machines

˛ Summary

Modifying VMs

270 Chapter 9 • Modifying VMs

www.syngress.com

Introduction
This chapter expands on the virtual machine’s creation that was introduced in Chapter 21.
To begin, we will discuss the two main components of a virtual machine, the .vmx and the
.vmdk fi les. Then we will look at the hardware and version level of these fi les, as well as how
we can change the fi les to be able to migrate a virtual machine’s disk fi le from one VMware
platform to another.

Virtual machines are made up of two files. The vmx file is the virtual machine’s
confi guration fi le, while the virtual machine disk format (VMDK) fi le is the virtual machine’s
disk fi le or hard drive. We will examine these fi les and the different settings that can be used.
Afterward, as an example, we will change a virtual machine’s IDE disk to a SCSI disk.

To conclude, we will dynamically create a virtual machine using a script, as well as modify
the script to build the virtual machine in a few different ways.

TIP

As a best practice, always make a backup of the fi les you are going to edit
before you edit.

The Virtual Machine VMDK File
When working with virtual machines, there are two main components or fi les that need to
be understood. The fi rst is the VMDK fi le. But what exactly is the VMDK fi le? A virtual
machine disk (VMDK) fi le is an encapsulation of an entire server or desktop environment
in a single fi le. In a way, it can be seen as the hard drive for a virtual machine.

The VMDK fi le can have four different forms. Type 0 (monolithic sparse disk), Type 1
(growable; split into 2GB fi les), Type 2 (single pre-allocated; monolithic sparse disk), and Type 3
(pre-allocated; split into 2GB fi les). Types 1, 2, and 3 use a disk descriptor fi le, while type 0
does not. To make changes to the VMDK fi le, you need to be able to open and view the
disk descriptor; otherwise, with the type 0 single disk, you would need to edit a very large
binary fi le with a hex editor—an unwise choice. A better option, if you have the VMDK fi le
on a VMFS fi le system, is to use vmkfstools to easily export the fi le in a Type 3 format.

For example:

 Vmkfstools –e /mnt/bigspace/toputfi le/thedisk.vmdk vmhba0:0:0:1:thedisk.dsk

If you mount a fi le share to ESX and use the VMware File Manager to copy the VMDK
fi le to this share, ESX uses the preceding command automatically when making the copy.

 Modifying VMs • Chapter 9 271

www.syngress.com

We should now have the VMDK fi le in a Type 1 growable split or a Type 3 preallocated
split. You should now see a 1KB VMDK fi le. This is your disk descriptor fi le (see Figure 9.1).

TIP

VMware does not support the use of VMDK fi les moved from a VMFS
volume to a non-VMFS fi le system using SCP or FTP without fi rst employing
the vmkfstools export command or the fi le manager in the VMware
Management Interface.

Figure 9.1 The Disk Descriptor File

Using a text editor, we can open the disk descriptor fi le and view its contents.
Code Listing 9.1 is one example of a disk descriptor fi le.

Code Listing 9.1 A Disk Descriptor File

Disk DescriptorFile

version=1

CID=2af6d34d

parentCID=ffffffff

createType=“twoGbMaxExtentSparse”

Extent description

RW 4192256 SPARSE “Windows-s001.vmdk”

RW 4192256 SPARSE “Windows-s002.vmdk”

RW 4096 SPARSE “Windows-s003.vmdk”

The Disk Data Base

#DDB

272 Chapter 9 • Modifying VMs

www.syngress.com

ddb.adapterType = “ide”

ddb.geometry.sectors = “63”

ddb.geometry.heads = “16”

ddb.geometry.cylinders = “8322”

ddb.virtualHWVersion = “4”

ddb.toolsVersion =

VMDK Components
In the following subsections, we’ll discuss the various parameters, settings, and commands
related to VMDKs.

Version=1
The version parameter is the version of the disk descriptor fi le and not the VMDK fi le.
Currently, in all VMware products, the disk descriptor version is 1.

Disk DescriptorFile

version=1

CID=2af6d34d
Every time a VMware product opens up the vmx fi le, it creates a random 32-bit value and
uses that value for the content identifi cation or CID value.

parentCID=ffffffff
This parameter is the parent content identifi cation which is used to specify whether the disk
descriptor fi le is part of a snapshot fi le. If no snapshot fi le is being used, the value of this
parameter is ffffffff.

fi le.createType=“twoGbMaxExtentSparse”
The createType describes which type of fi le this is. There are currently 11 different values
for this depending on the format of the data. Many values that exist in some products do not
exist in others. The three values you see most often, especially with VMware’s ESX server, are
“twoGbMaxExtentSparse”, “monolithicSparse”, and “monolithicFlat”. Performing a manual
change would make the disk unusable and has caused my VMware workstation host to crash.
If you need to change the type of fi le, use the tool vmware-vdiskmanager to change the type.

Extent description

RW 4192256 SPARSE “Windows-s001.vmdk”

RW 4192256 SPARSE “Windows-s002.vmdk”

RW 4096 SPARSE “Windows-s003.vmdk”

The preceding list shows fi les (typically VMDKs) that are used to store data blocks for
the guest operating system. The values in those lines reveal the access mode of the VMDK,

 Modifying VMs • Chapter 9 273

www.syngress.com

the size in sectors of the VMDK, the type of the extent, and the location of the VMDK
data fi le.

The Size in Sectors Value
The Size in Sectors value is required for a VMware Server to properly initialize the VMDK
fi le. This value must be calculated based on the total byte size of the VMDK fi le and the
number of bytes per sector. The Bytes per Sector is a static value of 512. The equation to
calculate this value, as shown next, is quite simple.

Size in Sectors = (VMDK Byte Size – 512) / Bytes per Sector

The Disk Data Base Command
The Disk Data Base command will tell the virtual machine’s hardware everything it needs
to know to access the VMDK fi les. This is the actual disk geometry that the VMDK represents
as a disk to the virtual machine. In Code Listing 9.2, this disk descriptor represents an IDE
virtual disk with 63 sectors on 16 heads with 8,322 cylinders. It is important that the proper
disk geometry be chosen to prevent “geometry mismatch” errors on the restored virtual
machine (see Table 9.1).

Code Listing 9.2 A Disk Descriptor for an IDE Virtual Disk

The Disk Data Base

#DDB

ddb.adapterType = “ide”

ddb.geometry.sectors = “63”

ddb.geometry.heads = “16”

ddb.geometry.cylinders = “8322”

ddb.virtualHWVersion = “4”

ddb.toolsVersion = “6404”

Table 9.1 Disk Geometry

Disk Size Heads Sectors

<=1GB 64 32
>1GB and <=2GB 128 32
>2GB 255 63

Cylinders = (VMDK ByteSize – 512) / (Heads ∗ Sectors ∗ Bytes per Sector)
Three different adapter types can currently be used with virtual machines.

274 Chapter 9 • Modifying VMs

www.syngress.com

■ ide For an IDE drive

■ buslogic For a buslogic SCSI controller driver

■ lsilogic For a lsilogic SCSI controller driver

One particular thing to notice in this section is the ddb.virtualHWVersion. This version
number is the VMware platform the virtual machine is running on.

Swiss Army Knife…

Scripting the Backup of Virtual Machine’s Confi guration Files
In the next section, we will dig into the vmx confi guration fi le for the virtual machines.
Before that, however, let’s put together a script to take care of one of the most important
things we can do with these fi les: backing them up. This script is what I am using in
my VMware ESX servers. They will back up all the confi guration fi les for all the virtual
machines, compress them into a tar fi le along with the vm-list fi le, and put them on a
share on the network. The vm-list fi le is the list of registered virtual machines on an
ESX server. This script runs daily and if I were to lose one of the ESX hosts, I could grab
the backup fi le, register the virtual machines, and I am all set.

#!/bin/sh

Virtual Machine VMX Backup

Stephen Beaver

DOW=‘date +%a’ # Day of the week e.g. Mon

mount -t smbfs //server/share /mnt/smb -o

username=username/domain,password=password

SRC_DIR=/home/vmware/ #Directory will all vm confi guration fi les

DST_DIR=/mnt/smb #Destination path which in this case is the mount point

BASE_DIR=/home #Base directory to put the vmlist fi le

HOST=“ESX-Server Name”

echo “src dir =”$SRC_DIR

echo “dst dir =”$DST_DIR

cp -f /etc/vmware/vm-list /home/vmware/vm-list

tar -czvf “$DST_DIR/vm_backup_$HOST-$DOW.tar.gz” “$SRC_DIR”

umount /mnt/smb

exit

 Modifying VMs • Chapter 9 275

www.syngress.com

The Virtual Machine Confi guration vmx File
The vmx fi le is the confi guration fi le that stores all the virtual machine’s specifi c settings in
one nice neat place. Code Listing 9.3 is an example of a vmx fi le.

Code Listing 9.3 A vmx File

#!/usr/bin/vmware

confi g.version = “6”

scsi0:0.present = “TRUE”

scsi0:0.name = “ESX_SAN4:2K900.vmdk”

scsi0:0.mode = “persistent”

scsi0.present = “true”

scsi0.virtualDev = “vmxbuslogic”

memSize = “512”

displayName = “2K900”

guestOS = “win2000Serv”

ethernet0.present = “true”

ethernet0.connectionType = “monitor_dev”

ethernet0.devName = “bond0”

ethernet0.networkName = “FH_Network”

Ethernet0.addressType = “vpx”

Ethernet0.generatedAddress = “00:50:56:9d:4d:10”

Ethernet0.virtualDev = “vmxnet”

fl oppy0.present = “true”

fl oppy0.startConnected = “false”

ide1:0.present = “true”

ide1:0.fi leName = “/dev/cdrom”

ide1:0.deviceType = “atapi-cdrom”

ide1:0.startConnected = “FALSE”

draw = “gdi”

uuid.bios = “50 1d 07 5c a9 f3 2b dd-8b 3e 83 10 b2 ea 89 0b”

uuid.location = “56 4d b5 45 28 5a b0 20-29 52 da f8 22 74 60 1d”

uuid.action = “keep”

priority.grabbed = “normal”

priority.ungrabbed = “normal”

isolation.tools.dnd.disable = “TRUE”

suspend.Directory = “/vmfs/vmhba1:0:83:1”

autostart = “true”

autostop = “softpoweroff”

tools.syncTime = “FALSE”

276 Chapter 9 • Modifying VMs

www.syngress.com

This vmx fi le came from one of my virtual machines on a VMware ESX server. Let’s
take a look at the different settings in the fi le. As a rule, virtual machines will only read the
full vmx fi le when the virtual machine is powered on. Thus, you should edit the virtual
machine’s vmx fi le when the virtual machine is off only. I have come across this scenario
while playing around in the lab. There, I had a virtual machine and made a manual change
to the confi guration fi le. ESX knew I made a change and so it paused the virtual machine
to ask me a question: “The confi guration fi le for this VM has changed. Do you wish to reload
the confi guration fi le?” If the virtual machine in my production environment had instead
been paused, I would have had a few people to answer to.

confi g.version = “6”

scsi0:0.present = “TRUE”

scsi0:0.name = “ESX_SAN4:2K900.vmdk”

scsi0:0.mode = “persistent”

scsi0.present = “true”

scsi0.virtualDev = “vmxbuslogic”

vmx File Components
In this subsection, we’ll discuss the various parameters, settings, and commands related
to vmx fi les.

config.version = “”
This is the hardware version level. When we talked about downgrading the disk descriptor
fi le, this is what we must change to control the hardware version so it will work in the
different products. What we see next are the settings for the SCSI drive. Scsi0:0 is the virtual
machine’s boot drive.

Scsi0:0.present = “”
This lets the host know that the virtual machine has a SCSI drive present. This can have an
entry of True or False.

Scsi0:0.name = “”
This is the name and path of the VMDK fi le that the virtual machine will use. In the earlier
example, “ESX_SAN4:2K900.vmdk” points to a common name of a LUN on the SAN
called ESX_SAN4, and the 2K900.vmdk is the disk fi le located on the LUN.

Scsi0:0.mode = “”
This setting is the mode of the disk fi le. The following four disk modes are available.

 Modifying VMs • Chapter 9 277

www.syngress.com

■ Persistent Changes are immediately and permanently written to the virtual disk.

■ Nonpersistent Changes are discarded when the virtual machine powers off.

■ Undoable Changes are saved, discarded or appended at your discretion.

■ Append Changes are appended to a redo log when the virtual machine powers off.

scsi0.present = “”
This setting lets the host know this virtual machine has a SCSI controller. The value can be
True for present, and False for no SCSI.

scsi0.virtualDev = “”
This setting determines what SCSI drivers the controller is using. Two different values can be
used here.

■ vmxbuslogic When using the buslogic SCSI driver

■ vmxlsilogic When using the lsilogic SCSI driver

These are also the settings we would change on the vmx fi le to switch from an IDE disk
to a SCSI.

The next part of the confi guration vmx fi le is the memory, name, and guestOS, all of
which do not need much explanation:

■ memSize = “512” How much memory the virtual machine is allocated

■ displayName = “2K900” The display name of the virtual machine

■ guestOS = “win2000Serv” Which operating system the VM is running

The next part concerns the Ethernet adapter and whether Virtual Center is used to
monitor this virtual machine (see the following example).

ethernet0.present = “true”

ethernet0.connectionType = “monitor_dev”

ethernet0.devName = “bond0”

ethernet0.networkName = “FH_Network”

Ethernet0.addressType = “vpx”

Ethernet0.generatedAddress = “00:50:56:9d:4d:10”

Ethernet0.virtualDev = “vmxnet”

ethernet0.present = “”
This value defi nes whether the network settings are read and processed. This value can be
“true” or “false.” If the value is “true,” then all other parameters are then processed. If the
value is “false,” then all other network parameters for that device are ignored.

278 Chapter 9 • Modifying VMs

www.syngress.com

ethernet0.connectionType = “”
This parameter concerns virtual networks. Your choices for this value are “bridged”, “hostonly”,
“nat”, “monitor_dev”, and “custom”. The custom settings are an expert way to use a combination
of “connectionType” and “vne.t”. A good example of this would be the following:

ethernet0.connectionType = “CUSTOM”

And the exact number of the VNET you want might look like:

ethernet0.vnet = “VMNET0”

ethernet0.devName = “”
This parameter is the actual name of the device being used. This could be one of the virtual
ethernet cards like vmnic0, or in this case a bond of two ethernet cards together called “bond0”.

ethernet0.networkName = “”
This is the name of the virtual switch that the virtual machine will be using for networking.
In this example, the virtual switch’s name is FH_Network.

Ethernet0.addressType = “vpx”
This parameter is only present when the virtual machine is on an ESX server that is
controlled by Virtual Center.

Ethernet0.generatedAddress = “”
This parameter is the MAC address of the virtual machine. In this case, the MAC address is
generated by the host application.

VMware has a special range of MAC addresses that are allocated for the virtual machines.
The following lists the different ranges of addresses.

■ 00:05:69:00:00:00 Automatically assigned by MUI when building a VM without
VirtualCenter (ESX <2.0)

■ 00:0c:29:00:00:00 Automatically assigned by MUI when building a VM without
VirtualCenter as well as the other VMware products (ESX 2.0 +, all VMware)

TIP

ethernet0.startConnected = “true”
Ethernet0.present = “true” also sets startConnected to “TRUE”, though

this may not appear in the vmx (another silent default).
So if you want the device to be present—but not at boot-time—you must use

ethernet0.startConnected = “FALSE”.

 Modifying VMs • Chapter 9 279

www.syngress.com

■ 00:50:56:00:00:00 – 00:50:56:3f:ff:ff Manually confi gured MACs

■ 00:50:56:80:00:00 – 00:50:56:bf:ff:ff VirtualCenter-generated MACs

Ethernet0.virtualDev = “vlance” or “vmxnet” or “e1000”
This parameter is to defi ne the virtual adapter itself. The choices available are

■ vlance This is based on the AMD PCNet 32 and has the most backward
compatibility. Take note that if you use vlance with your virtual machine, the
VM will only show what it is connected at 10mb. This is presented for backward
compatibility only and does not represent the actual speed with which the VM
is communicating. The VM will use all the bandwidth given to it.

■ vmxnet This is a VMware custom high-performance vmxnet virtual network
adapter which allows for faster networking performance. This is the adapter you
should use whenever possible, given it offers better performance than the vlance
driver and less overhead.

■ e1000 This is the Intel pro 1000 adapter, which is the default virtual NIC when
choosing a 64-bit guest. It can be manually edited in the confi g fi le.

Floppy Drives and CD-ROMs for Virtual Machines
The following parameter is the confi guration of the fl oppy and CD-ROM for the virtual
machine. Notice that I have startConnected set to “false” for these devices. As a rule of
thumb, I recommend leaving these disconnected until you need them.

fl oppy0.present = “true”

fl oppy0.startConnected = “false”

ide1:0.present = “true”

ide1:0.fi leName = “/dev/cdrom”

ide1:0.deviceType = “atapi-cdrom”

ide1:0.startConnected = “false”

Notice that the parameter ide1:0.fi leName is currently set to “dev/cdrom.” This is the
emulation of the CD-ROM device that shows up as a VMware CD-ROM and not the
actual physical host CD-ROM device. By changing the fi leName and deviceType values,
you can also mount ISO images to the virtual machine.

ide1:0.fi leName = “/iso/nameof.iso

ide1:0.deviceType = “cdrom-image”

Graphics Emulation, Unique Identifi ers
VMware products offer two modes for host emulation of the graphics inside the virtual
machine: GDI (Graphics Device Interface; the classic Windows graphics mode) and

280 Chapter 9 • Modifying VMs

www.syngress.com

DirectDraw (a mode designed for games and other applications that write directly to the
hardware).

draw = “gdi”

In general, Windows guest operating systems (Windows 95, Windows 98, Windows NT,
and Windows 2000) perform better in GDI mode than in DirectDraw mode, while Linux
guest operating systems (or any guest operating systems that use an X server) run much
better in DirectDraw mode.

WARNING

DirectDraw on Windows 2000 is fairly buggy, so the virtual machine displays
a cautionary message if you try to enable it. In addition, some specifi c issues
have been identifi ed on both Windows NT and Windows 2000 hosts when
the virtual machine is using DirectDraw mode.

Once you start a virtual machine, the VMware host will then generate another two lines
to identify the virtual machine. Whenever you change the path to the vmx-fi le, either by
renaming or moving to a different location, VMware wants to update these lines to refl ect
that change (see the following example).

uuid.location = “56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 99 15 1f”

uuid.bios = “56 4d ee 3c 52 06 a3 de-be 4a 73 9c cc 99 15 1f”

If you’ve ever moved a virtual machine from one host to another, then when you start
the machine you’ve probably seen a message similar to this:

The virtual machine’s confi guration fi le has changed its location since its
last poweron. Do you want to create a new unique identifi er (UUID) for
the virtual machine or keep the old one?

Your choices are Keep, Create, Always Keep, and Always Create. If you choose Always
Keep or Always Create, then the parameter uuid.action is added to the vmx fi le
(see the following example).

uuid.action = “Keep” or “Create”

The values you can use here are Keep or Create for Always Keep and Always Create.

Priority, VMware Tools Settings, and Suspend
The “grabbed: HIGH - ungrabbed: NORMAL” setting is useful if you have many background
processes or applications and you do not care if they run with fairly low relative priority
while a virtual machine is in the foreground. In return, you get a very noticeable
performance boost using a virtual machine while another virtual machine is running or

 Modifying VMs • Chapter 9 281

www.syngress.com

while some other processor-intensive task (a compile, for example) is running in the background
(see the following example).

priority.grabbed = “high” or “normal”

The reverse is true of the “grabbed: NORMAL - ungrabbed: LOW” setting. If your host
machine feels too sluggish when a virtual machine is running in the background, you can
direct the virtual machine to drop its priority when it does not have control of the mouse
and keyboard. As with the high setting, this is a heavy-handed change of priority, so the
virtual machine (and any background applications inside) runs much more slowly.

priority.ungrabbed = “normal” or “low”

isolation.tools.dnd.disable = “True” or “False”
This setting is to enable/disable Host/Guest drag and drop interface. The values you can use
here are “True” and “False”.

suspend.Directory = “/vmfs/vmhba1:0:83:1”
This parameter is the location the host should use to “suspend” a virtual machine. The following
example was taken from an ESX server that is attached to a SAN. Notice that the path is
made up of the true path vmhba1:0:83:1 and not the friendly name that I set for the LUN:
/vmfs/ESX_SAN4/.

Autostart, Autostop, and Time Sync Options
In this section, we’ll discuss autostart, autostop, and time sync options that you can be used
for confi guring a virtual machine. The following example shows autostart and autostop
command scripts.

autostart = “true” or “false”

autostop = “softpoweroff” or “poweroff”

autostart.order = “”

autostop.order = “”

You can confi gure a virtual machine to automatically begin when the host starts up
from a reboot and also to automatically power off or shut down the guest OS when the host
is being shut down. When you utilize this option, the autostart and autostop options are
added to the virtual machine’s vmx fi le. You can also take this a step further and defi ne the
startup and shutdown order of the virtual machines using the autostop.order and autostart.
order. By default, it would use order number x10. To give you an example, if you wanted
VM1 to be the fi rst virtual machine started and the last virtual machine to shutdown, you
would set the confi guration this way:

autostart.order = “10”

autostop.order = “10”

282 Chapter 9 • Modifying VMs

www.syngress.com

To change this to be the third virtual machine started, change the number from 10 to 30.

tools.syncTime = “FALSE” or “TRUE”

The tools.syncTime Option
The last option in my vmx fi le is the tools.syncTime. This option is used to determine if the
virtual machine is going to update its time with the host time via the VMware tools or not.

Virtual Machine Conversion
from IDE to SCSI
You may fi nd the need to be able to move virtual machines around from one platform to another.
For example, I encourage people to utilize VMware Workstation in order to work on a virtual
machine while on the go. I have had several instances where a virtual machine was created on
VMware Workstation, but unfortunately was not created in legacy mode or had an IDE drive.
As a result, when attempting to migrate to ESX, it would fail until some changes were made.

Therefore, here we will examine changing an IDE drive to a SCSI drive. Before we change
the settings, we need to get the SCSI drivers in the system fi rst. The easiest way to do this is to
add another hard disk to the virtual machine as a secondary drive. Confi gure this drive to be a
SCSI drive. Start the virtual machine with the new drive attached and, the SCSI drivers are now
in place, allowing us to continue and really edit the fi les. When we open the descriptor fi le for a
virtual machine using an IDE drive, it looks like the sample in Code Listing 9.4.

Code Listing 9.4 Descriptor File for a Virtual Machine Using an IDE Drive

Disk DescriptorFile

version=1

CID=2af6d34d

parentCID=ffffffff

createType=“twoGbMaxExtentSparse”

Extent description

RW 4192256 SPARSE “Windows-s001.vmdk”

RW 4192256 SPARSE “Windows-s002.vmdk”

RW 4096 SPARSE “Windows-s003.vmdk”

The Disk Data Base

#DDB

ddb.adapterType = “ide”

ddb.geometry.sectors = “63”

ddb.geometry.heads = “16”

ddb.geometry.cylinders = “8322”

ddb.virtualHWVersion = “4”

ddb.toolsVersion = “6404”

 Modifying VMs • Chapter 9 283

www.syngress.com

Starting with the ddb.adapterType you can see that this was indeed an IDE drive. There
are a total of three different options for this setting. We’ll discuss each in this section.

ddb.adapterType = “buslogic”
This entry converts the disk into a SCSI-disk with a BusLogic Controller. This is the
standard for Windows 2000 virtual machines.

ddb.adapterType = “lsilogic”
This entry converts the disk into a SCSI-disk with LSILogic Controller. This is the standard
for Windows 2003 virtual machines.

ddb.adapterType = “ide”

This entry converts the disk into an IDE-disk with Intel-IDE Controller.
Next, let’s open the SCSI disk that we used to get the drivers in the virtual machine and

use it to give us the section, heads, and cylinder values we need.

ddb.adapterType = “buslogic”

ddb.geometry.cylinders = “522”

ddb.geometry.heads = “255”

ddb.geometry.sectors = “63”

Put this all together and we have a new SCSI disk for our virtual machine.
There is one change left to be done, however. We will need to change the ddb.

virtualHWVersion. The ddb.virtualHWVersion is dependent upon which VMware platform
you are using. You may need to change the version number to get the virtual machine to
start in certain cases, namely moving a virtual machine in to ESX Server.

Change the ddb.virtualHWVersion = “4” and make it ddb.virtualHWVersion = “3”. You
now have a legacy virtual machine disk fi le you have converted from IDE to SCSI. You’ve
also brought the virtual machine disk fi le down to legacy mode so that it can run on ESX.

Disk DescriptorFile

version=1

CID=826d3b6e

parentCID=ffffffff

createType=“twoGbMaxExtentSparse”

Extent description

RW 4192256 SPARSE “Windows-s001.vmdk”

RW 4192256 SPARSE “Windows-s002.vmdk”

RW 4096 SPARSE “Windows-s003.vmdk”

The Disk Data Base

#DDB

284 Chapter 9 • Modifying VMs

www.syngress.com

ddb.adapterType = “buslogic”

ddb.geometry.sectors = “63”

ddb.geometry.heads = “255”

ddb.geometry.cylinders = “522”

ddb.virtualHWVersion = “3”

ddb.toolsVersion = “6309”

To complete this process we need to make an adjustment in the vmx fi le in order to
change the IDE values to SCSI. Code Listing 9.5 is an example of a disk fi le that’s been
confi gured to use an IDE.

Code Listing 9.5 Confi guring a Disk to Use an IDE

confi g.version = “8”

virtualHW.version = “4”

scsi0.present = “TRUE”

memsize = “200”

ide0:0.present = “TRUE”

ide0:0.fi leName = “Windows.vmdk”

ide1:0.present = “TRUE”

ide1:0.fi leName = “auto detect”

ide1:0.deviceType = “cdrom-raw”

fl oppy0.fi leName = “A:”

ethernet0.present = “TRUE”

usb.present = “TRUE”

sound.present = “TRUE”

sound.virtualDev = “es1371”

displayName = “Windows XP Professional 1”

guestOS = “winxppro”

nvram = “winxppro.nvram”

ide0:0.redo = “”

ethernet0.addressType = “generated”

uuid.location = “56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f7”

uuid.bios = “56 4d b7 df d7 1d 42 ca-3e 81 5d a3 5e 05 7a f7”

tools.remindInstall = “FALSE”

ethernet0.generatedAddress = “00:0c:29:05:7a:f7”

ethernet0.generatedAddressOffset = “0”

ide1:0.autodetect = “TRUE”

ide1:0.startConnected = “TRUE”

tools.syncTime = “FALSE”

To fi nish the change from IDE to SCSI we need to adjust these lines in the vmx fi le
(see Table 9.2).

 Modifying VMs • Chapter 9 285

www.syngress.com

Now we have completed downgrading the virtual hardware and also changed a virtual
machine from using an IDE drive to a SCSI drive. This virtual machine will now start and
run in VMWare ESX server. By using the example of taking a virtual machine from VMware
Workstation and getting it to run to VMware ESX Server, we have gone from one extreme
of the VMware product line (workstation) to the other extreme (ESX Server).

Scripted Disconnect of IDE Devices
As a general rule, you should always have the CD-ROM and fl oppy drive disconnect so they
don’t take away resources from the service console. This is also true if you place a CD-ROM
in the physical host’s drive, because all the virtual machines will not start to autorun the
CD-ROM. VMotion also won’t work if either the CD-ROM or the fl oppy is connected.
The script shown in Code Listing 9.6 will disconnect all these devices in virtual machines
that are registered on ESX Server. This script was originally posted on the VMware
community forum by Stuart Thompson (aka, Mr-T) and Matt Pound, and it includes a few
additions by me.

Code Listing 9.6 Disconnecting Devices in Virtual Machines Registered
on an ESX Server

#!/bin/bash

IDE / Floppy Disconnect Script

Script by: Stuart Thompson and Matt Pound

Edit by: Steve Beaver (Added fl oppy drive)

vmwarelist=‘vmware-cmd −l’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/ /∗/g’ ’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/.vmx/.vmx /g’ ’

for vm in $vmwarelist

do

 vm=‘echo $vm | sed -e ‘s/∗/ /g’ ’

 vm=‘echo $vm | sed -e ‘s/ \//∗/g’ ’

Table 9.2 VMX Old and New Settings

From the Old Settings To the New Settings

confi g.version = “8” confi g.version = “6”
virtualHW.version = “4” virtualHW.version = “3”
ide0:0.present = “TRUE” scsi0.present = “TRUE”
ide0:0.fi leName = “Windows.vmdk” scsi0:0.present = “TRUE”
 scsi0:0.fi leName = “Windows.vmdk”

286 Chapter 9 • Modifying VMs

www.syngress.com

 if [‘vmware-cmd “$vm” getstate | sed -e ‘s/getstate() = //’ ’ = “on”]

 then

 echo Looking @ $vm

 IDEBUS=‘seq 0 1’

 for i in $IDEBUS;

 do

 echo BUS : $i

 IDEDEVICE=‘seq 0 1’

 for j in $IDEDEVICE;

 do

 PRESENT=‘vmware-cmd “$vm” getconfi g ide$i:$j.present | cut -f3 -d “ “ ’

 if [$PRESENT = “true”]

 then

 TYPE=‘vmware-cmd “$vm” getconfi g ide$i:$j.deviceType | cut -f3 -d “ “ ’

 if [[$TYPE == “atapi-cdrom” || $TYPE == “cdrom-image”]]

 then

 echo Found CDROM on IDE$i:$j

 vmware-cmd “$vm” disconnectdevice ide$i:$j

 fi

 fi

 done

 done

 fi

done

Swiss Army Knife…

vmwarelist=‘vmware-cmd -l’
You can change this value to point to a specifi c path of a virtual machine and have
these scripts set up to run on only one virtual machine instead of all virtual
machines.

Vmwarelist=’/home/vmware/vmserver/vmserver.vmx

Employing this script as a base, you can choose many options using the vmware-cmd to
make a change to all of your registered virtual machines. Take a look at Code Listing 9.7,
which shows how you can start all your registered machines.

 Modifying VMs • Chapter 9 287

www.syngress.com

Code Listing 9.7 Starting All Registered Virtual Machines

#!/bin/bash

vmwarelist=‘vmware-cmd −l’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/ /∗/g’ ’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/.vmx/.vmx /g’ ’

for vm in $vmwarelist

do

 vm=‘echo $vm | sed -e ‘s/∗/ /g’ ’

 vm=‘echo $vm | sed -e ‘s/ \//∗/g’ ’

 if [‘vmware-cmd “$vm” getstate | sed -e ‘s/getstate() = //’ ’ = “off”]

 then

 echo Found $vm that is off, Starting $vm

 vmware-cmd “$vm” start

 fi

done

Now, let’s take a look at a script to stop those virtual machines that are running.

#!/bin/bash

vmwarelist=‘vmware-cmd −l’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/ /∗/g’ ’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/.vmx/.vmx /g’ ’

for vm in $vmwarelist

do

 vm=‘echo $vm | sed -e ‘s/∗/ /g’ ’

 vm=‘echo $vm | sed -e ‘s/ \//∗/g’ ’

 if [‘vmware-cmd “$vm” getstate | sed -e ‘s/getstate() = //’ ’ = “on”]

 then

 echo Found $vm that is on, Stopping $vm

 vmware-cmd “$vm” stop trysoft

 fi

done

Code Listing 9.8 is one more example of this script, which will reboot all of the running
virtual machines. This is very handy if you have installed updates or anything else and want
to delay the reboot till later.

Code Listing 9.8 Script for Rebooting All Running Virtual Machines

#!/bin/bash

vmwarelist=‘vmware-cmd -l’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/ /∗/g’ ’

vmwarelist=‘echo $vmwarelist | sed -e ‘s/.vmx/.vmx /g’ ’

288 Chapter 9 • Modifying VMs

www.syngress.com

for vm in $vmwarelist

do

 vm=‘echo $vm | sed -e ‘s/∗/ /g’ ’

 vm=‘echo $vm | sed -e ‘s/ \//∗/g’ ’

 if [‘vmware-cmd “$vm” getstate | sed -e ‘s/getstate() = //’ ’ = “on”]

 then

 echo Found $vm that is on, Rebooting $vm

 vmware-cmd “$vm” reset trysoft

 fi

done

Dynamic Creation of Virtual Machines
Now that we have looked at what makes up the vmx fi le, let’s generate some scripts to
dynamically create virtual machines. First, we’ll take a script and modify it so we can create a
virtual machine that will use a golden image as its base. We’ll then make a couple of changes
so we can take advantage of Altiris in the VM creation. We will then modify the script so that a
virtual machine will be created and then start the VM with the installation CD mounted
to begin the installation.

Code Listing 9.9 shows script that uses a golden image disk fi le. A golden image disk fi le
is a fully loaded and patched virtual machine vmx fi le that has had sysprep run on it so it
can be cloned.

WARNING

Please make sure you look through these scripts and make any changes
needed to match your environment. Pay attention to the vmhba path and
double-check these values with the values in your own environment.

Code Listing 9.9 Using a Golden Image Disk File to Dynamically Create
a Virtual Machine

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration

#Dynamic Creation of a new Virtual Machine using a Golden Image

#Stephen Beaver

#####USER MODIFICATION################

#VMNAME is the name of the new virtual machine

#VMOS specifi es which Operating System the virtual machine will have

#GLDIMAGE is the path to the “Golden Image” VMDK fi le

 Modifying VMs • Chapter 9 289

www.syngress.com

#DESTVMFS is the path to VMFS partition that the VMDK fi le

#####################################

VMOS=“winNetStandard”

VMMEMSIZE=“256”

GLDIMAGE=“/vmfs/FHVMFS1/Windows_2003_Standard.vmdk”

DESTVMFS=“vmhba0:0:0:10”

#####END MODIFICATION#####

LOG=“/var/log/$1.log”

echo “Start of Logging” > $LOG

echo “Importing Golden Image Disk File VMDK” >> $LOG

vmkfstools -i $GLDIMAGE $DESTVMFS:$1.vmdk

echo “Creating VMX Confi guration File” >> $LOG

mkdir /home/vmware/$1

exec 6>&1

exec 1>/home/vmware/$1/$1.vmx

write the confi guration fi le

echo #!/usr/bin/vmware

echo confi g.version = ‘ “ ‘6’ ” ’

echo virtualHW.version = ‘ “ ‘3’ ” ’

echo memsize = ‘ “ ‘$VMMEMSIZE’ ” ’

echo fl oppy0.present = ‘ “ ‘TRUE’ ” ’

echo usb.present = ‘ “ ‘FALSE’ ” ’

echo displayName = ‘ “ ‘$1’ ” ’

echo guestOS = ‘ “ ‘$VMOS’ ” ’

echo suspend.Directory = ‘ “ ‘/vmfs/vmhba0:0:0:10/’ ” ’

echo checkpoint.cptConfi gName = ‘ “ ‘$1’ ” ’

echo priority.grabbed = ‘ “ ‘normal’ ” ’

echo priority.ungrabbed = ‘ “ ‘normal’ ” ’

echo ide1:0.present = ‘ “ ‘TRUE’ ” ’

echo ide1:0.fi leName = ‘ “ ‘auto detect’ ” ’

echo ide1:0.deviceType = ‘ “ ‘cdrom-raw’ ” ’

echo ide1:0.startConnected = ‘ “ ‘FALSE’ ” ’

echo fl oppy0.startConnected = ‘ “ ‘FALSE’ ” ’

echo fl oppy0.fi leName = ‘ “ ‘/dev/fd0’ ” ’

echo Ethernet0.present = ‘ “ ‘TRUE’ ” ’

echo Ethernet0.connectionType = ‘ “ ‘monitor_dev’ ” ’

echo Ethernet0.networkName = ‘ “ ‘Network0’ ” ’

echo draw = ‘ “ ‘gdi’ ” ’

echo

echo scsi0.present = ‘ “ ‘TRUE’ ” ’

290 Chapter 9 • Modifying VMs

www.syngress.com

echo scsi0:1.present = ‘ “ ‘TRUE’ ” ’

echo scsi0:1.name = ‘ “ ‘$DESTVMFS:$1.vmdk’ ” ’

echo scsi0:1.writeThrough = ‘ “ ‘TRUE’ ” ’

echo scsi0.virtualDev = ‘ “ ‘vmxlsilogic’ ” ’

echo

close fi le

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6

exec 1>&6

exec 6>&-

echo “VMX Confi guration File Created Successfully” >> $LOG

#Change the fi le permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo “Registering .vmx Confi guration” >> $LOG

vmware-cmd -s register /home/vmware/$1/$1.vmx

echo “VMX Initialization Completed Successfully” >> $LOG

NOTE

Notice that the preceding script uses a golden image fi le that is local to that
machine. If your golden image is located on a network share, you can easily
mount that share and import the fi le from there. To mount a network share
you can use the following command:

mount-t smbfs //server/share /mnt/smb -o username=username/domain,
password=password

Next, we’ll take the same script and make a few changes so it will work with an ESX
Server managed with Altiris. At the end of this script, the virtual machine is started and
should boot PXE, which Altiris can then take over and use to install the operating system
(see Code Listing 9.10).

Code Listing 9.10 Creating a New Virtual Machine to Use with an ESX Server
Managed by Altiris

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration

#Creates a new Virtual Machine for use with Altiris

#Stephen Beaver

#####USER MODIFICATION################

 Modifying VMs • Chapter 9 291

www.syngress.com

#VMNAME is the name of the new virtual machine

#VMOS specifi es which Operating System the virtual machine will have

#DESTVMFS is the path to the VMFS partition of the VMDK fi le

#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or (10g)

#####################################

VMNAME=“vm_name”

VMOS=“winNetStandard”

VMMEMSIZE=“256”

DESTVMFS=“vmhba0:6:0:1 #Must use the vmhba path

VMDSIZE=“10g”

#####END MODIFICATION#####

LOG=“/opt/altiris/deployment/adlagent/bin/logevent”

$LOG -l:1 -ss:“Creating VMX Confi guration File”

mkdir /home/vmware/$VMNAME

exec 6>&1

exec 1>/home/vmware/$VMNAME/$VMNAME.vmx

write the confi guration fi le

echo #!/usr/bin/vmware

echo confi g.version = ‘ “ ‘6’ ” ’

echo virtualHW.version = ‘ “ ‘3’ ” ’

echo memsize = ‘ “ ‘$VMMEMSIZE’ ” ’

echo fl oppy0.present = ‘ “ ‘TRUE’ ” ’

echo usb.present = ‘ “ ‘FALSE’ ” ’

echo displayName = ‘ “ ‘$VMNAME’ ” ’

echo guestOS = ‘ “ ‘$VMOS’ ” ’

echo suspend.Directory = ‘ “ ‘/vmfs/vmhba0:0:0:5/’ ” ’

echo checkpoint.cptConfi gName = ‘ “ ‘$VMNAME’ ” ’

echo priority.grabbed = ‘ “ ‘normal’ ” ’

echo priority.ungrabbed = ‘ “ ‘normal’ ” ’

echo ide1:0.present = ‘ “ ‘TRUE’ ” ’

echo ide1:0.fi leName = ‘ “ ‘auto detect’ ” ’

echo ide1:0.deviceType = ‘ “ ‘cdrom-raw’ ” ’

echo ide1:0.startConnected = ‘ “ ‘FALSE’ ” ’

echo fl oppy0.startConnected = ‘ “ ‘FALSE’ ” ’

echo fl oppy0.fi leName = ‘ “ ‘/dev/fd0’ ” ’

echo Ethernet0.present = ‘ “ ‘TRUE’ ” ’

echo Ethernet0.connectionType = ‘ “ ‘monitor_dev’ ” ’

echo Ethernet0.networkName = ‘ “ ‘Network0’ ” ’

echo draw = ‘ “ ‘gdi’ ” ’

echo

292 Chapter 9 • Modifying VMs

www.syngress.com

echo scsi0.present = ‘ “ ‘TRUE’ ” ’

echo scsi0:1.present = ‘ “ ‘TRUE’ ” ’

echo scsi0:1.name = ‘ “ ‘vmhba0:0:0:5:$VMNAME.vmdk’ ” ’

echo scsi0:1.writeThrough = ‘ “ ‘TRUE’ ” ’

echo scsi0.virtualDev = ‘ “ ‘vmxlsilogic’ ” ’

echo

close fi le

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6

exec 1>&6

exec 6>&-

$LOG -l:1 -ss:“VMX Confi guration File Created Successfully”

#Change the fi le permissions

chmod 755 /home/vmware/$VMNAME/$VMNAME.vmx

#Create the Virtual Disk

$LOG -l:1 -ss:“Creating Virtual Disk”

vmkfstools -c $VMDSIZE vmhba0:0:0:5:$VMNAME.vmdk

$LOG -l:1 -ss:“Virtual Disk Created Successfully”

#Register the new VM

$LOG -l:1 -ss:“Registering VMX Confi guration”

#Registering .vmx Confi guration”

vmware-cmd -s register /home/vmware/$VMNAME/$VMNAME.vmx

$LOG -l:1 -ss:“VMX Initialization Completed Successfully”

#Starting the Virtual Machine

$LOG -l:1 -ss:“Starting the Virtual Machine”

vmware-cmd /home/vmware/$VMNAME/$VMNAME.vmx start

$LOG -l:1 -ss:“Virtual Machine Started”

$LOG -l:1 -ss:“Passing control to Altiris for PXE boot and install of VM”

Let’s make one more change to the script so that when the virtual machine fi rst boots
up with a brand-new disk, it will boot from the virtual CD-ROM that has an ISO fi le
mounted to it (see Code Listing 9.11).

Code Listing 9.11 Creating a New Virtual Machine That Boots to an ISO

#!/bin/bash

#Scripting VMware Power Tools: Automating Virtual Infrastructure Administration

#Creates a new Virtual Machine booting to an ISO

#Stephen Beaver

#####USER MODIFICATION################

#VMNAME is the name of the new virtual machine

#VMOS specifi es which Operating System the virtual machine will have

 Modifying VMs • Chapter 9 293

www.syngress.com

#GLDIMAGE is the path to the “Golden Image” VMDK fi le

#DESTVMFS is the path to the VMFS partition of the VMDK fi le

#VMDSIZE is the size of the Virtual Disk File being created ex (500mb) or (10g)

#ISOIMAGE is the path and fi le name of the ISO fi le you are using

#####################################

VMOS=“winNetStandard”

VMMEMSIZE=“256”

GLDIMAGE=“/vmfs/FHVMFS1/Windows_2003_Standard.vmdk”

DESTVMFS=“vmhba0:0:0:10”

VMDSIZE=“10g”

ISOIMAGE“/vmfs/ESX_SAN/Windows2000.iso”

#####END MODIFICATION#####

LOG=“/var/log/$1.log”

echo “Start of Logging” > $LOG

echo “Importing Golden Image Disk File VMDK” >> $LOG

vmkfstools -i $GLDIMAGE $DESTVMFS:$1.vmdk

echo “Creating VMX Confi guration File” >> $LOG

mkdir /home/vmware/$1

exec 6>&1

exec 1>/home/vmware/$1/$1.vmx

write the confi guration fi le

echo #!/usr/bin/vmware

echo confi g.version = ‘ “ ‘6’ ” ’

echo virtualHW.version = ‘ “ ‘3’ ” ’

echo memsize = ‘ “ ‘$VMMEMSIZE’ ” ’

echo fl oppy0.present = ‘ “ ‘TRUE’ ” ’

echo usb.present = ‘ “ ‘FALSE’ ” ’

echo displayName = ‘ “ ‘$1’ ” ’

echo guestOS = ‘ “ ‘$VMOS’ ” ’

echo suspend.Directory = ‘ “ ‘/vmfs/vmhba0:0:0:10/’ ” ’

echo checkpoint.cptConfi gName = ‘ “ ‘$1’ ” ’

echo priority.grabbed = ‘ “ ‘normal’ ” ’

echo priority.ungrabbed = ‘ “ ‘normal’ ” ’

echo ide1:0.present = ‘ “ ‘TRUE’ ” ’

echo ide0:0.present = ‘ “ ‘TRUE’ ” ’

echo ide0:0.fi leName = ‘ “ ‘$ISOIMAGE’ ” ’

echo ide0:0.deviceType = ‘ “ ‘cdrom-image’ ” ’

echo fl oppy0.startConnected = ‘ “ ‘FALSE’ ” ’

echo fl oppy0.fi leName = ‘ “ ‘/dev/fd0’ ” ’

echo Ethernet0.present = ‘ “ ‘TRUE’ ” ’

294 Chapter 9 • Modifying VMs

www.syngress.com

echo Ethernet0.connectionType = ‘ “ ‘monitor_dev’ ” ’

echo Ethernet0.networkName = ‘ “ ‘Network0’ ” ’

echo draw = ‘ “ ‘gdi’ ” ’

echo

echo scsi0.present = ‘ “ ‘TRUE’ ” ’

echo scsi0:1.present = ‘ “ ‘TRUE’ ” ’

echo scsi0:1.name = ‘ “ ‘$DESTVMFS:$1.vmdk’ ” ’

echo scsi0:1.writeThrough = ‘ “ ‘TRUE’ ” ’

echo scsi0.virtualDev = ‘ “ ‘vmxlsilogic’ ” ’

echo

close fi le

exec 1>&-

make stdout a copy of FD 6 (reset stdout), and close FD6

exec 1>&6

exec 6>&-

#Create the Virtual Disk

echo “Creating Virtual Disk” >> $LOG

vmkfstools -c $VMDSIZE vmhba0:0:0:5:$VMNAME.vmdk

echo “Virtual Disk Created Successfully” >> $LOG

echo “VMX Confi guration File Created Successfully” >> $LOG

#Change the fi le permissions

chmod 755 /home/vmware/$1/$1.vmx

#Register the new VM

echo “Registering .vmx Confi guration” >> $LOG

vmware-cmd -s register /home/vmware/$1/$1.vmx

echo “VMX Initialization Completed Successfully” >> $LOG

#Starting the Virtual Machine

echo “Starting the Virtual Machine” >> $LOG

vmware-cmd /home/vmware/$VMNAME/$VMNAME.vmx start

echo “Virtual Machine Started” >> $LOG

 Modifying VMs • Chapter 9 295

www.syngress.com

Summary
Let’s review what we’ve covered. First, we took a solid look at the virtual disk fi les (∗.vmdk).
We opened up the disk descriptor fi le, reviewed its contents, and converted an IDE virtual
disk fi le to a SCSI virtual disk fi le. We then took an in-depth look at the settings inside the
virtual machine confi guration fi les (∗.vmx) and fi nished the IDE-to-SCSI conversion.

I presented a few scripts that covered backing up the confi guration fi les of the virtual
machines, and how to build virtual machines. I also discussed a few options for making
changes to all (or one) virtual machines at the same time. You can use bits and parts of these
different scripts to open the door to various types of automation. Using the native “sed”
program, for example, you have the ability to script the edits to any of the fi les you need.
This gives you a wide range of options that can be scripted and automated. The vmware-cmd
tool also opens a lot of doors thanks to the different choices available. Run vmware-cmd
from the service console to view all the options and syntax.

	Part II: Scripting VMware
	Chapter 9: Modifying VMs
	Introduction
	The Virtual Machine VMDK File
	VMDK Components
	Version=1
	CID=2af6d34d
	parentCID=ffffffff
	file.createType="twoGbMaxExtentSparse"
	The Size in Sectors Value
	The Disk Data Base Command

	The Virtual Machine Configuration vmx File
	vmx File Components
	config.version = ""
	Scsi0:0.present = ""
	Scsi0:0.name = ""
	Scsi0:0.mode = ""
	scsi0.present = ""
	scsi0.virtualDev = ""
	ethernet0.present = ""
	ethernet0.connectionType = ""
	ethernet0.devName = ""
	ethernet0.networkName = ""
	Ethernet0.addressType = "vpx"
	Ethernet0.generatedAddress = ""
	Ethernet0.virtualDev = "vlance" or "vmxnet" or "e1000"

	Floppy Drives and CD-ROMs for Virtual Machines
	Graphics Emulation, Unique Identifiers
	Priority, VMware Tools Settings, and Suspend
	isolation.tools.dnd.disable = "True" or "False"
	suspend.Directory = "/vmfs/vmhba1:0:83:1"

	Autostart, Autostop, and Time Sync Options
	The tools.syncTime Option

	Virtual Machine Conversion from IDE to SCSI
	ddb.adapterType = "buslogic"
	ddb.adapterType = "lsilogic"
	Scripted Disconnect of IDE Devices

	Dynamic Creation of Virtual Machines
	Summary

