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C H A P T E R  5
Issues with Current VoIP Technologies

This chapter examines some of the issues that are faced by VoIP systems, particularly systems that would 
be used by carriers for true end-to-end anytime-anyplace connectivity, comparable to what one enjoys today 
with traditional PSTN voice telephony. We only focus on issues and opportunities that can be addressed by 
IPv6, namely scalability and end-to-end robustness. The fl ow mechanism of IPv6 can be employed to man-
age QoS-specifi c paths which is critical to VoIP support—the value of fl ows is already highlighted in MPLS 
and the deployment/applications it is already experiencing at this time. (To be fair, it should be noted that 
not all issues faced by VoIP are addressed by IPv6—it is not a complete panacea. Examples here include: 
general security concerns; equipment interworking; carrier interworking; VoWi-Fi to cellular and/or 3G 
interworking; and, straightforward and reliable Unifi ed Messaging deployments). 

In the sections that follow we fi rst briefl y introduce the issue of security (Section 5.1); then we look at the 
NAT issue (Section 5.2). As a potential solution to some of the  NAT problems, we then look in Section 5.3 
at  Simple Traversal of User Datagram Protocol Through Network Address Translators (STUN). STUN is 
a lightweight protocol that allows applications to discover the presence and types of NATs and fi rewalls 
between them and the public Internet. It also provides the ability for applications to determine the public 
IPv4 addresses allocated to them by the NAT. STUN works with many existing NATs and does not require 
any special behavior from them. As a result, it allows a variety of applications to work through existing NAT 
infrastructure [ROS200301] (however, up to now STUN has not experienced major acceptance/deployment). In 
Section 5.4 we look at  Middlebox Communication (MIDCOM) as a possible other approach to dealing with 
the issues at hand. Finally, we look at some pragmatic short-term approaches, as embodied in the  Session 
Border Controller (SBC) technology (Section 5.5). None of these solutions are optimal in all factors, hence, 
the utility of IPv6-based solutions.

5.1 General Enterprise Security Issues
Network and host security continue to be major concerns for enterprise-, institutional-, and service-provider 
environments. Well-documented recent studies show that cyber attacks continue to remain a substantial 
threat to organizations of all types. On average, companies experience several dozen attacks per week on 
their Information Technology resources. About 20% of large companies suffer at least two severe events 
a year. The challenge to corporate planners just continues to get more onerous. It has been conservatively 
forecasted that in 2010, around 100,000 new vulnerabilities will be discovered in software applications in 
that year alone; this will force companies to assess and mitigate one new risk every few minutes of every 
hour each day. 

Considering that each vulnerability instance has the potential to disrupt or bring a company’s business to 
a complete halt, organizations must take risk assessment seriously and determine how each risk will be 
handled. The increased number of vulnerabilities being discovered also drives up the number of security in-
cidents worldwide and it will increase to a point where 8,000 incidents a week will affect organizations that 
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have not properly addressed and mitigated their risks. It is estimated that the worldwide fi nancial impact of 
malicious code is around $100 B year. Beyond the original venue of proving technical bravado, in the recent 
past attacks have been aimed at stealing customer data, obtaining proprietary information, and deliberately 
hampering a corporation’s ability to do business [POL200401].

If a company loses its information technology (computer and/or voice/data networking) resources for more 
than a day or two, the company may well fi nd itself in fi nancial trouble. Obviously brokerage fi rms, banks, 
airports, medical establishments, and homeland security concerns would be impacted faster than, say, a man-
ufacturing fi rm or a book publishing fi rm. However, the general concern is universal. If a company is unable 
to conduct business for more than a week, the company may well be permanently incapacitated. Therefore, 
there is a clear need to protect the enterprises from random, negligent, malicious, or planned attacks on its 
Information Technology resources. As more and more companies send their IT business abroad under the 
rubric of “outsourcing,” the potential IT (and, hence, corporate) risks are arguably growing at a geometric 
pace; these risks can have ultimate negative implications, particularly in view of cumulative exposures to 
risks which, in the aggregate, take on nontrivial probability. 

Many companies are (now) shifting to a highly mobile work force. To support this mobility fi rms are 
upgrading their network architectures to support remote workforces. Mobile users need access to centrally 
located applications and data over the Internet; voice is also an issue. This, once again, raises the issue of 
security.

5.1.1 Typical Enterprise Network Approaches
Firewalls are a basic mechanism to support perimeter security, even if by themselves they tend to be 
inadequate. See Figure 5.1 for a typical environment. Firewalls provide a method of guarding a private 
network by analyzing the data leaving and entering the intranet. Typically they are implemented as a 
network appliance (dedicated/standalone hardware), although it can also be a just a software program 
(for example, for a PC client). [CSO200501]. The majority of packet-inspection fi rewalls are designed 
to secure and apply policy to the transport level. Firewalls range in functionality from basic protocol/
port inspection, to stateful session-oriented packet inspection, to sophisticated application-layer proxy 
fi rewalls. A typical fi rewall may support the following functions: packet fi ltering, object grouping, 
proxy services,  URL fi ltering,  stateful inspection, and  inline authentication (with or without access to a 
 RADIUS (remote access dial-in user service) server. Firewalls can also provide network address trans-
lation, so the actual IP addresses of devices inside the fi rewall stay hidden from public view; but this is 
precisely one of the issues of concern for end-to-end connectivity.
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Figure 5.1: Typical fi rewall environment.

Most companies implement security in layers. The layering can be in terms of domains or in terms of assets 
categories. It is not effective to rely on a single point-of-protection when addressing the panoply of threats 
that can impact an IT environment; robust information security requires a multilayered approach.

Companies typically see the environment as being comprised of the following zones (also known as do-
mains). (See Figure 5.2, which depicts both a logical view and an example of a physical view):

 Externally-Controlled Zone (ECZ) (such as a particular extranet or 3rd-party environment with an 
established business relationship):  Here the physical access, the IT administration, and the security 
authority are controlled by a third party.

 Uncontrolled Zone (UZ) (such as the Internet and also carrier networks):  No established business rela-
tionship exists where the fi rm can assess the security of the environment. Here the physical access, 
the IT administration, and the security authority are basically unknown.

 Controlled Zone (CZ):  Network point (zone) where all inbound and outbound communications are 
mediated (such as the fi rewall complex). Here the physical access, the IT administration, and the 
security authority are controlled by the fi rm in question. This domain separates the ECZ and UZ 
from the Restricted Zone (typically the intranet) of the fi rm.

 Restricted Zone (RZ):  Here the physical access, the IT administration, and the security authority are con-
trolled by the fi rm in question. Access is granted only to authorized/authenticated users or systems.

 Secure(d) Zone (SZ):  Network location (zone) that provides isolation from the RZ. This zone may con-
tain more critical assets such as the fi rm’s data warehouse, the Directory, or specialized applications 
(such as fi nancials, payroll, etc.). Here the physical access, the IT administration, and the security 
authority are controlled by the fi rm in question.
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Figure 5.2:  Layered security apparatus for typical enterprise environment.

It is also useful to look at layers from an asset category perspective. One example of this is Microsoft’s 
 Defense-in-Depth Model, as shown for illustrative purposes in Figure 5.3 [MIC200501]. 

Physical 

Network 

Host 

Application 

Data 

Figure 5.3: Asset category layering per  Microsoft’s Defense-in-Depth Model.

A very basic fi rewall glossary as included in Table 5.1 (for a more extensive glossary the reader may refer to 
[MIN200601]).
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Most corporations today address security with a number of technical solutions ranging from login/pass-
word, hardware tokens, and RADIUS servers for authentication to Virtual Private Networks (VPNs) for data 
encryption; hardware (appliance) fi rewalls at corporate locations for data packet fi ltering; antivirus software 
on remote PCs; and encrypted storage (e.g., per the new IEEE standard P1619) [POL200401]. Hardware fi re-
walls (routers and/or appliances), generally protect the corporate network from external attacks but cannot 
provide protection against attacks originating from within the corporate network (as noted above, however, 
the Secure Zone (Domain) is delimited by fi rewalls that are inside of the corporate intranet itself). As noted, 
increasingly enterprises make use of a “layered” security approach. While authentication mechanisms ensure 
user/machine authorization and VPNs ensure data privacy in transit, the conventional security tools (e.g., 
hardware fi rewalls and antivirus software) cannot fully protect the environment. Malicious code, such as 
“spyware” can use peer-to-peer fi le sharing, instant messaging, and fi le downloading as a vehicle and enter 
the corporate network to create damage or hog network bandwidth. These are the reasons why XML fi re-
walls (which inspect deep into the transmitted text) can be useful [POL200401]. 

TCP/IP-based networking uses the TCP-Port apparatus to identify the protocol and/or applications with which 
a given TCP session should be associated. Firewall technology is very much dependent on this arrangement 
for proper functioning (other/supplementary techniques such as specifying an IP address or IP address range 
are also utilized).  Two general observations are useful:

Applications using TCP are easier to manage through a fi rewall than applications using UDP;
Protocols/applications that have a smaller range of allowed ports are easier to manage through a 
fi rewall than applications using a larger range—those using a single port are the easiest of all.

As it can be seen in Table 5.1, RTP and H.323 have some wire ranges making VoIP based on these protocols 
something of a challenge (the RTP issue is the same whether one uses SIP or H.323).

In the context of “layered” security, it should be mentioned that many organizations end up using the mecha-
nism of NAT as part of the “toolkit” of available techniques by providing what some call security through 
obscurity. This entails keeping outside entities “unaware” of what the address of internal devices (servers, 
etc.) is, so that these entities cannot then launch a direct attack against said devices (for example, via a TEL-
NET or a specifi cally-targeted fl ow of PDUs and-the-like). Clearly,  NAT is a means-to-an-end; hence, if every 
device has a globally-unique address as in IPv6, then other methods will have to be put in place to provide a  
layer of security comparable to that provided by the previous state of “obscurity.”

Figure 5.4 [ISL200501] depicts today’s security environment as compared to what is possible/desirable in an 
IPv6 future state. The new (NAT-free) security mechanisms facilitate end-to-end connectivity, mobility, and 
collaboration, under a VoIP and/or 3G wireless environment in the coming years. Today’s environment is 
very different, as discussed in the section that follows.

Network-based 
Security 

End-to-end 
Security 

Figure 5.4: End-to-end security environment in IPv6.

•
•
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Table 5.1: Basic security glossary.

 Demilitarized 
Zone (DMZ)

(We prefer the expansion “demarcation zone.”) An area of an intranet that is a barrier, or a buffer, 
between a company’s internal network and resources connected to the network, and the outside public 
network. That portion of the intranet-to-extranet or intranet-to-Internet interface apparatus that supports 
a highly constrained access environment. An area between the hostile Internet and protected services; may 
be implemented as a Layer 2 switch that support a number of Ethernet-attached devices “sandwiched” 
between a front-end and a back-end fi rewall. The purpose of the DMZ is to prevent external users from 
getting direct access to a server or other corporate IT resources. A DMZ is usually comprised of routers, 
packet fi lters, fi rewalls, proxies, and/or mediation devices.

A neutral zone, or buffer, that separates the internal and external networks. The DMZ usually exists 
between two fi rewalls. External users can access servers in the DMZ, but not the computers on the 
internal network. The servers in the DMZ act as an intermediary for both incoming and outgoing traffi c 
[BRA200501].

The DMZ designates the area of protection that lies between the corporate computing environment and 
the Internet or publicly-accessible network. The DMZ is typically where the fi rewalls, gateways, application 
proxies, and other protective computing devices are connected, and employs protective software such as 
fi ltering and intrusion detection applications. 

 Filter Packet matching information that identifi es a set of packets to be treated a certain way by a middlebox 
(security mediation device). A set of terms and/or criteria used for the purpose of separating or 
categorizing. This is accomplished via single- or multifi eld matching of traffi c header and/or payload data. 
5-Tuple specifi cation of packets in the case of a fi rewall and 5-tuple specifi cation of a session in the case of 
a NAT middlebox function are examples of a fi lter [SRI200201].

 Firewall A method of guarding a private network by analyzing the data leaving and entering. Typically implemented 
as a network appliance (dedicated/standalone hardware), although it can also be a just a software 
program (for example for a PC client.) [CSO200501]. The majority of packet-inspection fi rewalls are designed 
to secure and apply policy to the transport level. Firewalls range in functionality from basic protocol/port 
fi ltering devices to stateful session-level packet-inspection systems and sophisticated application-layer 
proxy fi rewalls. Firewalls can also provide network address translation, so the actual IP addresses of devices 
inside the fi rewall stay hidden from public view. 

A policy-based packet fi ltering middlebox function, typically used for restricting access to/from specifi c 
devices and applications. The policies are often termed Access Control Lists (ACLs) [SRI200201].

Includes four basic types: (1) Application-layer gateway; (2) Stateful-inspection fi rewall at the Session 
Layer; (3) Circuit-level gateway at the Network Layer; and (4) Packet-fi ltering fi rewall. Firewalls form the 
fundamental gateway that controls (at different layers of the OSI protocol stack) traffi c entering and 
leaving the network, and all security issues of this type (such as Denial of Service attacks) come under this 
heading [LIG200501].

Packet-fi ltering fi rewalls use rules based on basic information, such as a packet’s source, destination, or 
port, to determine whether or not to allow it into the network. More advanced stateful packet-fi ltering 
fi rewalls have access to more information from which to make their decisions. Stateful fi rewalls examine 
related inbound-outbound traffi c for expected/predicted patterns.)

Proxy fi rewalls that look at content and can involve authentication and encryption can be more fl exible 
and secure but also tend to be slower. Although fi rewalls require confi guration expertise they are a critical 
component of network security [INF200501], [CSO200501]. 

 Layer 2 The protocol layer below Layer 3 (that therefore offers the services used by Layer 3). Forwarding, when 
done by the swapping of short fi xed length labels, occurs at layer 2 regardless of whether the label being 
examined is an ATM VPI/VCI, a frame relay DLCI, or a Multiprotocol Label Switching (MPLS) label.

 Layer 2 VPN 
(L2VPN)

(aka L2 VPN) Three types of L2VPNs are currently defi ned [AND200501]: Virtual Private Wire Service (VPWS); 
Virtual Private LAN Service (VPLS); and IP-only LAN-like Service (IPLS).

 Layer 3 The protocol layer at which IP and its associated routing protocols operate.

 Layer 3 Security 
Mechanisms

Encryption mechanisms such as IPsec or Multilayer IPSec (ML-IPsec).
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 Layer 3 VPN 
(L3VPN)

(a.k.a L3 VPN) An L3VPN interconnects sets of hosts and routers based on Layer 3 addresses; see 
[CAL200301].

 Middlebox A middlebox is a network intermediate device (in IETF parlance) that implements one or more of the 
middlebox services. A NAT middlebox is a middlebox implementing NAT service. A fi rewall middlebox is 
a middlebox implementing fi rewall service. Traditional middleboxes embed application intelligence within 
the device to support specifi c application traversal. Proposed middleboxes supporting the Middlebox 
Communications (MIDCOM) protocol, as defi ned in RFC 3303, will be able to externalize application 
intelligence into MIDCOM agents. In reality, some of the middleboxes may continue to embed application 
intelligence for certain applications and depend on MIDCOM protocol and MIDCOM agents for the 
support of remaining applications [SRI200201].

 Proxy An intermediary program (system) that acts both as a server and as a client for the purpose of making 
requests on behalf of other clients. Requests are serviced internally or by passing them on, with possible 
translation, to other servers. A software agent that acts on behalf of a user, typical proxies accept a 
connection from a user, make a decision as to whether or not the user or client IP address is permitted to 
use the proxy, perhaps does additional authentication, and then completes a connection on behalf of the 
user to a remote destination [INF200501].

An intermediate relay agent between clients and servers of an application, relaying application messages 
between the two. Proxies use special protocol mechanisms to communicate with proxy clients and relay 
client data to servers and vice versa. A Proxy terminates sessions with both the client and the server, acting 
as server to the end-host client and as client to the end-host server. Applications such as FTP, SIP, and RTSP 
use a control session to establish data sessions. These control and data sessions can take divergent paths. 
While a proxy can intercept both the control and data sessions, it might intercept only the control session. 
This is often the case with real-time streaming applications such as SIP and RTSP [SRI200201].

May include a function that replaces the IP address of a host on the internal (protected) network with its 
own IP address for all traffi c passing through it.

 Proxy Firewall Unlike packet-fi ltering, this type of fi rewall does more than simply block port access. Instead, it acts as 
a proxy server, processing access requests on behalf of the network on which it is located. This protects 
individual computers on the network because they never interact directly with incoming client requests 
[CSO200501].

Firewalls that look at content and can involve authentication and encryption can be more fl exible and 
secure but may require more processing power [INF200501], [CSO200501].

 Proxy Servers Specialized application or server programs that run on a fi rewall host or on a dedicated appliance: 
either a dual-homed host with an interface on the internal network and one on the external network, 
or some other bastion host that has access to the Internet and is accessible from the internal devices. 
These programs take users’ requests for Internet services (such as FTP and Telnet) and forward them, as 
appropriate according to the site’s security policy, to the actual services. The proxies provide replacement 
connections and act as gateways to the services. For this reason, proxies are sometimes known as 
application-level gateways. Proxy services intervene, often transparently, between a user on the inside 
(on the internal network) and a service on the outside (on the Internet). Instead of talking to each other 
directly, each talks to a proxy. Proxies handle all the communication between users and Internet services 
behind the scenes. To the user, a proxy server gives the appearance that the user is dealing directly with 
the real server. To the real server, the proxy server presents the illusion that the real server is dealing directly 
with a user on the proxy host (as opposed to the user’s real host). Proxy servers have two main purposes: 

Improve Performance: Proxy servers can improve performance for groups of users. This is because 
it saves the results of all requests for a certain amount of time. Consider the case where both user X 
and user Y access the World Wide Web through a proxy server. First user X requests a certain Web 
page, say Page 1. Sometime later, user Y requests the same page. Instead of forwarding the request 
to the Web server where Page 1 resides, which can be a time-consuming operation, the proxy server 
simply returns the Page 1 that it already fetched for user X. Since the proxy server is often on the same 
network as the user, this is a much faster operation.

Filter Requests: Proxy servers can also be used to fi lter requests. For example, a company might use a 
proxy server to prevent its employees from accessing a specifi c set of websites. 
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 Proxy Services Proxy services intervene, often transparently, between a user on the inside (on the internal network) and a 
service on the outside (on the Internet). Proxy services are effective only when they are used in conjunction 
with a mechanism that restricts direct communications between the internal and external hosts. Dual-
homed hosts and packet fi ltering are two such mechanisms. If internal hosts are able to communicate 
directly with external hosts, there is no need for users to use proxy services, and so (in general) they will 
not; such bypass, however, is typically not in accordance with an organization’s security policy.

A proxy service requires two components: a proxy server and a proxy client. In this situation, the proxy 
server runs on the dual-homed host. A proxy client is a special version of a normal client program (i.e., 
a Telnet or FTP client) that talks to the proxy server rather than to the “real” server out on the Internet; 
in addition, if users are taught special procedures to follow, normal client programs can often be used 
as proxy clients. The proxy server evaluates requests from the proxy client and decides which to approve 
and which to deny. If a request is approved, the proxy server contacts the real server on behalf of the 
client (thus the term “proxy”), and proceeds to relay requests from the proxy client to the real server, and 
responses from the real server to the proxy client. In some proxy systems instead of installing custom client 
proxy software, one employs standard software, but set up custom user procedures for using it. A proxy 
service is not a fi rewall architecture; proxy services are used in conjunction with a fi rewall architecture. 

 Proxying Approach that involves mediating a connection at an intermediate point. In this case the TCP connection 
is not between the client and the (application) host, but from the client to the intermediate proxy-server/
gateway. In turn, the proxy will decide (based on some criteria) if/where a companion session to the 
ultimate (application) host needs to be established. Proxy servers can also be used to fi lter requests.

Companies use proxy servers to improve performance (through caching Web pages and graphics), to 
fi lter requests to certain sites, to make sure that only certain users can get to the Internet, or as a way of 
accounting for Web use (logging sites that users visit). Most proxy servers can perform all of these tasks.

 TCP Ports Transport layer end-to-end protocol identifi ers of traffi c being carrier in a network. Ports of interest to VoIP 
include (but are not limited to):

H.323 RAS TCP 1719

H.323 (H.225) TCP 1720 GW → CM, Call Setup

MGCP TCP 2427/2428 GW → CM, Call Setup

RTP UDP 16384–32767 Bearer Channel

SIP TCP 5060

Skinny Client TCP 2000 Call Setup and Control

Skinny GW (Digital) TCP 2002 Call Setup and Control

GW = Gateway; CM = Call Manager (server)

(long lists of well-known ports are published by the IETF)

 XML Firewall A (relatively) new type of fi rewall intended to secure XML messages and Web Services (WS). Traditional 
fi rewalls are not designed to understand/interpret the XML message-level security and they cannot defend 
against new XML message-based attacks. The majority of packet-inspection fi rewalls are designed to 
secure and apply policy to the transport level, therefore they generally do not scan for content in Simple 
Object Access Protocol (SOAP), Universal Description, Discovery and Integration (UDDI), SAML or other 
Web services protocols. The difference between an XML fi rewall and other fi rewalls is that much of 
the features in an XML fi rewall exist at the application layer and within the data payload or content, 
as opposed to the transport and session layer. Many modern XML fi rewalls act like high-performance 
proxies: they can approach wire speed performance by offl oading crytpo and XML validation functions 
to dedicated hardware (features such as message routing, encryption and forwarding are somewhat of a 
commodity). In this role, the XML fi rewall performs security services such as Authentication, Authorization, 
Auditing (AAA) and XML validation at a message level. The features are a separation of message-level 
security from transport-level security (these XML features do not act as transport-level connection security 
such as done in SSL) [WRE200401]. 
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5.1.2 Typical  Enterprise Network VoIP Security/Integration Approaches
This section briefl y describes typical Best-in-Class designs for enterprise VoIP/converged networks. It high-
lights some of the architecture/design issues. This discussion is loosely based on reference [KUI200501]. 

Security issues affecting VoIP networks include, but are not limited to, the following: Toll fraud, packet/call 
eavesdropping, viruses, worms, Denial-of-Services, TCP vulnerabilities, Layer 3 exploits, rogue device in 
the network, man-in-the-middle issues, DHCP spoofi ng, DHCP starvation, and DNS spoofi ng.

A rogue device has access to the voice stream (packets and/or session/call) between the two communicating 
endpoints. Products/programs have appeared (e.g., Voice Over Misconfi gured Internet Telephones (VOMIT)) 
that facilitate such eavesdropping by assembling tcpdumps of conversations into .WAV fi les. A rogue device 
(an unauthorized device that has been able to inject itself into the network) can undertake theft of telephone 
service; rogue voice gateways can cause even more harm.

Countermeasures include all IP-based security mechanisms such as (the relatively weak) VLAN switch/port 
management methods, Layer 3 fi rewalls, proxies, intrusion prevention systems, encryption/tunneling, H.245 
security, certifi cates, authentication/RADIUS/IEEE 802.1 services, physical hardening.

Figure 5.5 depicts a typical corporate VoIP arrangement, somewhat similar to the fi gures included in Chapter 1 
(keep in mind that a carrier arrangement would be quite different). As can be seen from this fi gure, there are 
several places (at least at the fi rewall locations) where the NAT/fi rewall issues can be problematic.
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Figure 5.5: A typical  corporate VoIP arrangement.

VoIP security is built in layers, as was the case for the more general intranet discussion earlier in the chapter. 
Note the fi rewall arrangement facing the IP WAN as well as facing the call manager/softswitch cluster (which can 
be co-located or can be at a hosted network/ASP-resident site). Again, these are impacted by NAT.
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Security related to the call manager/softswitch cluster centers on hardened Operating System (OS) (such as 
Linux and/or a high-quality maintenance process on other less reliable OSs), IPSec tunneling (for remote/
hosted arrangements), and Host-based Intrusion Prevention system. IPSec in also affected by NAT.

Security related to the fi rewall connecting to the call control manager deals with Access Control Lists, con-
trol of source addresses, and proper fi ltering (e.g., to allow only call control, directory/LDAP functions, and 
network management).  NAT impacts the overall setup.

Connection to the outside world (Internet) is handled over a Layer 3 VPN mechanism. Network Intrusion 
Detection Systems/Network Protection Systems are typically used.

Endpoints (clients) use separate voice and data VLANs (in support of the already mentioned relatively weak 
VLAN switch/port management mechanism), authentication, and encryption (especially if over a wireless 
LAN or VPN, here for a softphone.)  Endpoint encryption, particularly for VoWi-Fi, is still evolving in terms 
of broad vendor support.

The campus network typically makes use of the normal Layer 3/Application Layer fi rewalls, and IP fi lters 
between voice and data. NAT use should be minimized.

Most deployments today make use a distinct VLAN for voice and a VLAN for data traffi c, as already 
mentioned and further depicted in Figure 5.6. This is done for administrative, QoS, and pseudo-security23  
considerations (the voice VLAN is called an auxiliary VLAN). However, fi rms want to use the same access, 
core, and distribution layers for the two segments in order to be able to make the claim and gain the opera-
tional and fi nancial advantage of a converged network (see Figure 5.7.)  This is supported by mechanisms 
such as Layer 3 access control and stateful fi rewalls (fi rewalls that examine related inbound-outbound traffi c 
for expected/predicted patterns.)

User System 
with Softphone

User Systems E-Mail 
Server 

Voice-Mail 
Server 

Business-Support 
Servers 

Proxy Server 
Voice 

Gateway 
Call-Processing 

Manager 

10.100.200.10 

10.100.200.11 

10.100.200.12 

10.100.200.13 

10.100.200.14 

10.100.200.15 

Voice VLAN 100 Data VLAN 200

172.16.17.21 

172.16.17.18 172.16.17.19 

172.16.17.22 

172.16.17.20 

Figure 5.6: Use of two  VLANs—typical 2G VoIP arrangement.

23 Pseudo-security is a term we use to describe an environment or technology with a weak (and/or false sense of) protection.
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Si Si

Si

Si

Si
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Figure 5.7:  Converged intranet.

IP phones typically support access to both segments (IP phones have a “data port”/Ethernet for the local 
PC to connect—this uses a single Ethernet cable to the desk, often with in-line power.)  Planners need to 
make sure that the phone supports separation of the two segments. However, fi rms should not rely solely on 
VLANs for separation: to support more robust security one needs to make provision for Layer 3 fi ltering 
between the data and voice VLANs.)

A stateful fi rewall between the two VLAN segments is typically used to manage the data/voice VLAN 
interaction. The stateful fi rewall provides dynamic access and mitigation against TCP connection starvation, 
UDP fl ooding, and spoofi ng attacks.

As seen in Figure 5.6 in 2G VoIP one typically makes use of a private address space (RFC 1918) for the 
data and for the voice  VLAN segments. The partitioned addressing facilitates fi ltering and recognition. The 
approach in RFC 1918 does not support routability, but this can be utilized to reduce the likelihood of recon-
naissance scans even if NAT happened to be misconfi gured. Spoof-mitigation fi ltering addresses the identity 
issue (that nodes are who they claim to be) in local segments.

Related to the end-points, blocking PC access to the voice VLAN at the VLAN switch (even if the PC has 
physical access to the network or to the Layer 2 switch) greatly reduces the possibility of eavesdropping 
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attacks (such as those that may be unleashed with VOMIT-like products); techniques also exist to prevent 
man-in-the-middle attacks or traffi c interception. Access Control Lists (ACLs) can be used to prevent directed-
TCP attacks. DHCP snooping stops  DHCP spoofi ng and starvation attacks. Digitally-signed fi rmware and 
confi guration fi les on clients mitigate security liabilities. Certifi cates can be used to prevent rogue call 
managers, gateways, and phone set insertion (particularly in a  VoWi-Fi environment).  Finally, encryption 
prevents interception. Similar techniques can be used to protect the servers that support VoIP, e.g., Call Man-
agers, Gateways, Gatekeepers, etc.

5.1.3   Firewall Issues for VoIP
As noted earlier, fi rewalls are a basic mechanism to support perimeter security; packet-inspection fi rewalls 
are designed to apply policy to the transport level. As discussed, fi rewalls range in functionality from a basic 
stateful packet-inspection engine to sophisticated application-layer proxy fi rewalls; fi rewalls can also pro-
vide network address translation. TCP/IP-based networking uses the TCP/UDP-Port apparatus to identify the 
protocol and/or applications with which a given TCP session should be associated. As we already observed, 
two general observations are useful in a networking context that are also useful in a VoIP context:

Applications using TCP are easier to manage through a fi rewall than applications using UDP;
Protocols/applications that have a smaller range of allowed ports are easier to manage through a 
fi rewall than applications using a larger range—those using a single port are the easiest of all.

Figure 5.8 depicts the protocol stacks of interest to VoIP. As it can be seen in Table 5.1, RTP and H.323 have 
some wide ranges making VoIP based on these protocols something of a challenge (the RTP issue is the 
same whether one uses SIP or H.323.)

Media

RTPRAS SIP

IPv4 and/or IPv6

H.245

H.323

H.323 Version 3 and 4 supports H.245 over UDP/TCP, Q.931 over UDP/TCP, and RAS over UDP.
SIP supports TCP and UDP.

H.225

Q.931 RTCP RTSP

TCP UDP

Audio/Video

Call Control and Signaling 

Figure 5.8:   VoIP protocol stack.

We limit the rest of this discussion to SIP. Some of the  NAT-related issues are highlighted next. As we 
discussed in Chapter 3, the Via fi eld in SIP indicates the path taken by the SIP request under discussion up 
to the present point. This prevents request looping and ensures replies take the same path as the requests, 
which, in principle, assists in fi rewall traversal and other unusual routing situations [HAN199901].

•
•
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According to [HAN199901] (on which the discussion that follow is based) if a SIP proxy server24 forwards a 
SIP request, it must add itself to the beginning of the list of forwarders noted in the Via headers. The Via 
trace ensures that replies can take the same path back, ensuring correct operation through compliant fi re-
walls and avoiding request loops. On the response path, each host must remove its Via, so that routing internal 
information is hidden from the callee and outside networks. A proxy server must check that it does not gener-
ate a request to a host listed in the Via sent-by, via-received, or via-maddr parameters (the maddr parameter 
provides the server address to be contacted for this user, overriding the address supplied in the host fi eld; this 
address is typically a multicast address but could also be the address of a backup server.)

Hence, the client originating the request inserts into the request messages a Via fi eld containing its host 
name or network address and, if not the default port number, the port number at which it wishes to receive 
responses. (Note that this port number can differ from the UDP source port number of the request.) A fully-
qualifi ed domain name is typically used. Each subsequent proxy server that sends the request onwards must 
add its own additional Via fi eld before any existing Via fi elds. A proxy that receives a redirection (3xx) 
response and then searches recursively, must use the same Via headers as on the original proxied request. A 
SIP proxy should check the top-most Via header fi eld to ensure that it contains the sender’s correct network 
address, as seen from that proxy. If the sender’s address is incorrect, the proxy must add an additional “re-
ceived” attribute.

A host behind a network address translator or fi rewall may not be able to insert a network address into the 
Via header that can be reached by the next hop beyond the NAT. Use of the received attribute allows SIP 
requests to traverse NATs that only modify the source IP address. NATs that modify port numbers, called 
 Network Address Port Translators (NAPTs), will not properly pass SIP when transported on UDP, in which 
case an application layer gateway is required25. When run over TCP, SIP stands a better chance of traversing 
NATs, since its behavior, in this case, is similar to HTTP (but of course on different ports).

A proxy sending a request to a multicast address must add the “maddr” parameter to its Via header fi eld, and 
should add the “ttl” parameter. If a server receives a request that contained an “maddr” parameter in the top-
most Via fi eld, it should send the response to the multicast address listed in the “maddr” parameter. If a SIP 
proxy server receives a request which contains its own address in the Via header value, it must respond with 
a 482 (Loop Detected) status code. A proxy server must not forward a request to a multicast group which 
already appears in any of the Via headers. This prevents a malfunctioning proxy server from causing loops. 
Also, it cannot be guaranteed that a proxy server can always detect that the address returned by a location 
service refers to a host listed in the Via list, as a single host may have aliases or several network interfaces.

Normally, every host that sends or forwards a SIP message adds a Via fi eld indicating the path traversed. 
However, it is possible that NATs changes the source address and port of the request (e.g., from net-10 to a 
globally routable address), in which case the Via header fi eld cannot be relied on to route replies. To prevent 
this, a proxy should check the top-most Via header fi eld to ensure that it contains the sender’s correct net-
work address, as seen from that proxy. If the sender’s address is incorrect, the proxy must add a “received” 
parameter to the Via header fi eld inserted by the previous hop. Such a modifi ed Via header fi eld is known as 
a receiver-tagged Via header fi eld. An example is:

 Via: SIP/2.0/UDP erlang.bell-telephone.com:5060
 Via: SIP/2.0/UDP 10.0.0.1:5060;received=199.172.136.3

In this example, the message originated from 10.0.0.1 and traversed a NAT with the external address border.
ieee.org (199.172.136.3) to reach erlang.bell-telephone.com. The latter noticed the mismatch, and added a 

24 Refer to Chapter for defi nition of functionality.
25 An example is a Border Session controller. 
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parameter to the previous hop’s Via header fi eld, containing the address that the packet actually came from. 
(Note that the NAT border.ieee.org is not a SIP server.)

Via header fi elds in responses are processed by a proxy or UAC according to the following rules:

1.  The fi rst Via header fi eld should indicate the proxy or client processing this response. If it does not, 
discard the message. Otherwise, remove this Via fi eld.

2.  If there is no second Via header fi eld, this response is destined for this client. Otherwise, the pro-
cessing depends on whether the Via fi eld contains a “maddr” parameter or is a receiver-tagged fi eld:
a. If the second Via header fi eld contains a “maddr” parameter, send the response to the multicast 

address listed there, using the port indicated in “sent-by,” or port 5060 if none is present. The 
response should be sent using the TTL indicated in the “ttl” parameter, or with a TTL of 1 if 
that parameter is not present. For robustness, responses must be sent to the address indicated in 
the “maddr” parameter even if it is not a multicast address.

b. If the second Via header fi eld does not contain a “maddr” parameter and is a receiver-tagged 
fi eld, send the message to the address in the “received” parameter using the port indicated in 
the “sent-by” value, or using port 5060 if none is present.

c. If neither of the previous cases apply, send the message to the address indicated by the “sent-
by” value in the second Via header fi eld.

This discussion implicitly highlights the private address/NAT issues faced in 2G VoIP systems. Some of 
these issues can be mitigated in certain IPv6 implementations.

5.2 What is  NAT?
We mentioned NAT a number of times. In this section we provide some detailed information on it. Basic 
Network Address Translation or Basic NAT is a method by which IP addresses are mapped from one group 
to another, transparent to end users. Network Address Port Translation, or NAPT is a method by which many 
network addresses and their  TCP/UDP (Transmission Control Protocol/User Datagram Protocol) ports are 
translated into a single network address and its TCP/UDP ports. Together, these two operations, referred to 
as traditional NAT, provide a mechanism to connect a realm with private addresses to an external realm with 
globally unique registered addresses. As discussed, NAT has impact on 2G VoIP systems; hence, the reason 
for our coverage. The NAT operation described in this section is based on IETF RFC 3022 [SRI200101]. Devel-
opers should refer directly to the RFC for any normative guidance.

Note: IPv4 NAT is described in RFC 2663 and RFC 3022, but has also been is extended beyond IPv4 networks 
to include the IPv4-v6 NAT-PT described in RFC 2766. While the IPv4 NAT translates one IPv4 address into 
another IPv4 address to provide routing between private v4 and external V4 address realms, IPv4-v6 NAT-PT 
(RFC 2766) translates an IPv4 address into an IPv6 address, and vice versa, to provide routing between a 
v6 address realm and an external v4 address realm. Unless specifi ed otherwise, NAT is a proxy (middlebox) 
function referring to both IPv4 NAT, as well as IPv4-v6 NAT-PT [SRI200101], [TSI200001], [SRI200201].

5.2.1 Introduction
The need for IP address translation arises when a network’s internal IP addresses cannot be used outside 
the network either for privacy reasons or because they are invalid for use outside the network. Network 
topology outside a local domain can change in many ways. Customers may change providers, company 
backbones may be reorganized, or providers may merge or split. Whenever external topology changes with 
time, address assignment for nodes within the local domain must also change to refl ect the external changes. 
Changes of this type can be hidden from users within the domain by centralizing changes to a single address 
translation router.
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Basic address translation would (in many cases, except as noted in RFC 2663 and section 6 of RFC 3022) 
allow hosts in a private network to transparently access the external network and enable access to selective 
local hosts from the outside. Organizations with a network setup predominantly for internal use, with a need 
for occasional external access, are good candidates for this scheme.

Many Small Offi ce and Home Offi ce (SOHO) users as well as telecommuting employees have multiple 
network nodes in their offi ce running TCP/UDP applications, but have a single IP address assigned to their 
remote access router by their service provider to access remote networks. This community of remote access 
users typically employs NAPT, which permits multiple nodes in a local network to simultaneously access 
remote networks using the single IP address assigned to their router.

There are limitations to using the translation method. It is mandatory that all requests and responses pertain-
ing to a session be routed via the same NAT router. One way to ascertain this would be to have NAT based 
on a border router that is unique to a stub domain, where all IP packets are either originated from the domain 
or destined to the domain. There are other ways to ensure this with multiple NAT devices. For example, a 
private domain could have two distinct exit points to different providers and the session fl ow from the hosts 
in a private network could traverse through whichever NAT device has the best metric for an external host. 
When one of the NAT routers fails, the other could route traffi c for all the connections. There is however a 
caveat with this approach, in that rerouted fl ows could fail at the time of switchover to the new NAT router. 
A way to overcome this potential problem is to have the routers share the same NAT confi guration and ex-
change state information to ensure a fail-safe backup for each other.

Address translation is application-independent and often accompanied by Application Level Gateways 
 (ALGs) to perform payload monitoring and alterations. FTP is the most popular ALG resident on NAT 
devices. Applications requiring ALG intervention must not have their payload encoded, as doing that effec-
tively disables the ALG, unless the ALG has the key to decrypt the payload.

This solution has the disadvantage of taking away the end-to-end signifi cance of an IP address, and making 
up for it with increased state in the network. As a result, end-to-end IP network level security assured by 
IPSec cannot be assumed to end hosts, with a NAT device enroute. The advantage of this approach, however, 
is that it can be installed without changes to hosts or routers.

Defi nition of terms such as “Address Realm,” “Transparent Routing,” “TU Ports,” “ALG,” and others may be 
found in RFC 2663.

5.2.2 Overview of  Traditional NAT
The Address Translation operation presented in this RFC is referred to as “Traditional NAT.” There are other 
variations of NAT that are explored in this RFC. Traditional NAT would allow hosts within a private network, 
in most cases, to transparently access hosts in the external network. In a traditional NAT, sessions are uni-
directional, outbound from the private network. Sessions in the opposite direction may be allowed on an 
exceptional basis using static address maps for pre-selected hosts. Basic NAT and NAPT are two variations of 
traditional NAT, in that translation in Basic NAT is limited to IP addresses alone, whereas translation in NAPT 
is extended to include IP address and Transport identifi er (such as a TCP/UDP port or ICMP query ID).

Unless mentioned otherwise, Address Translation or NAT throughout this section will pertain to traditional 
NAT—namely Basic NAT—as well as NAPT. Only the stub border routers as described in Figure 5.9 may 
be confi gured to perform address translation.
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Stub Router w/NAT 

Stub Border 

Regional Router 
WAN 

LAN 

Figure 5.9: Traditional NAT confi guration.

5.2.2.1 Overview of  Basic NAT
Basic NAT operation is as follows. A stub domain with a set of private network addresses could be enabled 
to communicate with an external network by dynamically mapping the set of private addresses to a set of 
globally valid network addresses. If the number of local nodes is less than or equal to addresses in the global 
set, each local address is guaranteed a global address to map to. Otherwise, nodes allowed to have simul-
taneous access to external network are limited by the number of addresses in global set. Individual local 
addresses may be statically mapped to specifi c global addresses to ensure guaranteed access to the outside 
or to allow access to the local host from external hosts via a fi xed public address. Multiple simultaneous ses-
sions may be initiated from a local node using the same address mapping.

Addresses inside a stub domain are local to that domain and not valid outside the domain. Thus, addresses 
inside a stub domain can be reused by any other stub domain. For instance, a single Class A address could 
be used by many stub domains. At each exit point between a stub domain and backbone, NAT is installed. If 
there is more than one exit point, it is of great importance that each NAT have the same translation table.

For instance, in the example of Figure 5.10, both stubs A and B internally use class A private address block 
10.0.0.0/8 (see RFC 1918). Stub A’s NAT is assigned the class C address block 198.76.29.0/24, and Stub B’s 
NAT is assigned the class C address block 198.76.28.0/24. The class C addresses are globally unique—no 
other NAT boxes can use them.

When stub A host 10.33.96.5 wishes to send a packet to stub B host 10.81.13.22, it uses the globally unique 
address 198.76.28.4 as destination, and sends the packet to its primary router. The stub router has a static 
route for net 198.76.0.0 so the packet is forwarded to the WAN-link. However, NAT translates the source 
address 10.33.96.5 of the IP header to the globally unique 198.76.29.7 before the packet is forwarded. Like-
wise, IP packets on the return path go through similar address translations.
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Stub Router w/NAT Stub Router w/NAT 
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{s = 198.76.29.7, 
 d = 198.76.28.4} 

{s = 10.33.96.5, 
 d = 198.76.28.4} 

{s = 198.76.29.7, 
 d = 10.81.13.22} 

10.81.13.22 

{s = 198.76.29.7, 
 d = 198.76.28.4} 

Stub B 

Regional Router 

WAN WAN 

LAN LAN 

10.33.96.5 

Figure 5.10: Basic NAT operation.

Notice that this requires no changes to hosts or routers. For instance, as far as the stub A host is concerned, 
198.76.28.4 is the address used by the host in stub B. The address translations are transparent to end hosts in 
most cases. Of course, this is just a simple example. There are numerous issues to be explored.

5.2.2.2 Overview of   NAPT
Say, an organization has a private IP network and a WAN link to a service provider. The private network’s 
stub router is assigned a globally valid address on the WAN link and the remaining nodes in the organiza-
tion have IP addresses that have only local signifi cance. In such a case, nodes on the private network could 
be allowed simultaneous access to the external network, using the single registered IP address with the aid 
of NAPT. NAPT would allow mapping of tuples of the type (local IP addresses, local TU port number) to 
tuples of the type (registered IP address, assigned TU port number).

This model fi ts the requirements of most    Small Offi ce/Home Offi ce (SOHO) groups to access external 
network using a single service provider assigned IP address. This model could be extended to allow inbound 
access by statically mapping a local node per each service TU port of the registered IP address.

In the example of Figure 5.11, stub A internally uses class A address block 10.0.0.0/8. The stub router’s 
WAN interface is assigned an IP address 138.76.28.4 by the service provider.
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Stub Router w/NAPT 

Stub A 

{s=138.76.29.7, sport = 23, 
 d=138.76.28.4, dport = 1024} 

Service Provider Router 

WAN 

LAN 

10.0.0.1 10.0.0.2 10.0.0.10

{s = 138.76.28.4, sport = 1024,
 d = 138.76.29.7, dport = 23}

{s = 138.76.29.7, sport = 23, 
 d = 10.0.0.10, dport = 3017}

{s = 10.0.0.10, sport = 3017,
 d = 138.76.29.7, dport = 23}

Figure 5.11: Network Address Port Translation (NAPT) operation.

When stub A host 10.0.0.10 sends a telnet packet to host 138.76.29.7, it uses the globally unique address 
138.76.29.7 as destination, and sends the packet to it’s primary router. The stub router has a static route for 
the subnet 138.76.0.0/16 so the packet is forwarded to the WAN-link. However, NAPT translates the tuple 
of source address 10.0.0.10 and source TCP port 3017 in the IP and TCP headers into the globally unique 
138.76.28.4 and a uniquely assigned TCP port, say 1024, before the packet is forwarded. Packets on the re-
turn path go through similar address and TCP port translations for the target IP address and target TCP port. 
Notice that this requires no changes to hosts or routers. The translation is completely transparent.

In this setup, only  TCP/UDP sessions are allowed and must originate from the local network. However, there 
are services such as DNS that demand inbound access. There may be other services for which an organi-
zation wishes to allow inbound session access. It is possible to statically confi gure a well known TU port 
service (RFC 1700) on the stub router to be directed to a specifi c node in the private network.

In addition to TCP/UDP sessions,  ICMP messages, with the exception of REDIRECT message types, may 
also be monitored by a NAPT router. ICMP query type packets are translated in a manner similar to the way 
TCP/UDP packets are translated in that the identifi er fi eld in an ICMP message header will be uniquely 
mapped to a query identifi er of the registered IP address. The identifi er fi eld in ICMP query messages is set 
by Query sender and returned unchanged in a response message from the Query responder. So, the tuple of 
(Local IP address, local ICMP query identifier) is mapped to a tuple of (registered IP 
address, assigned ICMP query Identifier) by the NAPT router to uniquely identify ICMP queries 
of all types from any of the local hosts. Modifi cations to ICMP error messages are discussed in a later sec-
tion as that involves modifi cations to the ICMP payload as well as the IP and ICMP headers.
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In NAPT setup, where the registered IP address is the same as the IP address of the stub router WAN inter-
face, the router has to be sure to make distinction between TCP, UDP, or ICMP query sessions originated 
from itself versus those originated from the nodes on a local network. All inbound sessions (including TCP, 
UDP, and ICMP query sessions) are assumed to be directed to the NAT router as the end node, unless the 
target service port is statically mapped to a different node in the local network.

Sessions other than TCP, UDP and ICMP query type are simply not permitted from local nodes serviced by 
a NAPT router.

5.2.3 Translation Phases of a Session
The translation phases with traditional NAT are the same as those described in RFC 2663. The following 
subsections identify items that are specifi c to traditional NAT.

5.2.3.1  Address Binding
With Basic NAT, a private address is bound to an external address when the fi rst outgoing session is initi-
ated from the private host. Subsequent to that, all other outgoing sessions originating from the same private 
address will use the same address binding for packet translation.

In the case of NAPT, where many private addresses are mapped to a single globally unique address, the 
binding would be from the tuple of (private address, private TU port) to the tuple of (assigned address, 
assigned TU port). As with Basic NAT, this binding is determined when the fi rst outgoing session is initi-
ated by the tuple of (private address, private TU port) on the private host. While not a common practice, it 
is possible to have an application on private host establish multiple simultaneous sessions originating from 
the same tuple of (private address, private TU port). In such a case, a single binding for the tuple of (private 
address, private TU port) may be used for translation of packets pertaining to all sessions originating from 
the same tuple on a host.

5.2.3.2  Address Lookup and Translation
After an address binding or (address, TU port) tuple binding in case of NAPT is established, a soft state may be 
maintained for each of the connections using the binding. Packets belonging to the same session will be subject 
to session lookup for translation purposes. The exact nature of translation is discussed in the follow-on section.

5.2.3.3  Address Unbinding
When the last session based on an address or (address, TU port) tuple binding is terminated, the binding 
itself may be terminated.

5.2.4  Packet Translations
Packets pertaining to NAT-managed sessions undergo translation in either direction. Individual packet trans-
lation issues are covered in detail in the following subsections.

5.2.4.1 IP, TCP, UDP, and ICMP Header Manipulations
In Basic NAT model, the IP header of every packet must be modifi ed. This modifi cation includes IP address 
(source IP address for outbound packets and destination IP address for inbound packets) and the IP checksum.

For TCP and UDP sessions, modifi cations must include update of checksum in the TCP/UDP headers. This 
is because TCP/UDP checksum also covers a pseudo header which contains the source and destination IP 
addresses. As an exception, UDP headers with 0 checksum should not be modifi ed. As for ICMP Query 
packets ([ICMP]), no further changes in ICMP header are required as the checksum in ICMP header does 
not cover IP addresses.
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In a NAPT model, modifi cations to an IP header are similar to that of Basic NAT. For TCP/UDP sessions, 
modifi cations must be extended to include translation of TU port (source TU port for outbound packets and 
destination TU port for inbound packets) in the TCP/UDP header. The ICMP header in ICMP Query packets 
must also be modifi ed to replace the query ID and ICMP header checksum. Private host query ID must be 
translated into assigned ID on the outbound and the exact reverse on the inbound. ICMP header checksum 
must be corrected to account for Query ID translation.

5.2.4.2  Checksum Adjustment
NAT modifi cations are applied on a packet-by-packet basis and can be very compute intensive, as they 
involve one or more checksum modifi cations in addition to simple fi eld translations. Luckily, we have an 
algorithm below, which makes checksum adjustment to IP, TCP, UDP and ICMP headers very simple and 
effi cient. Since all these headers use a one’s complement sum, it is suffi cient to calculate the arithmetic 
difference between the before-translation and after-translation addresses and add this to the checksum. The 
algorithm below is applicable only for even offsets (i.e., optr below must be at an even offset from start of 
header) and even lengths (i.e., olen and nlen below must be even). Sample code (in C) for this is as follows.

   void checksumadjust(unsigned char *chksum, unsigned char *optr,

   int olen, unsigned char *nptr, int nlen)

   /* assuming: unsigned char is 8 bits, long is 32 bits.

     - chksum points to the chksum in the packet

     - optr points to the old data in the packet

     - nptr points to the new data in the packet

   */

   {

     long x, old, new;

     x=chksum[0]*256+chksum[1];

     x=~x & 0xFFFF;

     while (olen)

     {

         old=optr[0]*256+optr[1]; optr+=2;

         x-=old & 0xffff;

         if (x<=0) { x--; x&=0xffff; }

         olen-=2;

     }

     while (nlen)

     {

         new=nptr[0]*256+nptr[1]; nptr+=2;

         x+=new & 0xffff;

         if (x & 0x10000) { x++; x&=0xffff; }

         nlen-=2;

     }

     x=~x & 0xFFFF;

     chksum[0]=x/256; chksum[1]=x & 0xff;

   }
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5.2.4.3  ICMP Error Packet Modifi cations
Changes to ICMP error message will include changes to IP and ICMP headers on the outer layer as well as 
changes to headers of the packet embedded within the ICMP-error message payload.

In order for NAT to be transparent to end-host, the IP address of the IP header embedded within the payload 
of ICMP-Error message must be modifi ed, the checksum fi eld of the embedded IP header must be modifi ed, 
and lastly, the ICMP header checksum must also be modifi ed to refl ect changes to payload.

In a NAPT setup, if the IP message embedded within ICMP happens to be a TCP, UDP, or ICMP Query 
packet, you will also need to modify the appropriate TU port number within the TCP/UDP header or the 
Query Identifi er fi eld in the ICMP Query header.

Lastly, the IP header of the ICMP packet must also be modifi ed.

5.2.4.4  FTP Support
One of the most popular applications, “FTP,” would require an ALG to monitor the control session payload to 
determine the ensuing data session parameters. FTP ALG is an integral part of most NAT implementations.

The FTP ALG requires a special table to correct the TCP sequence and acknowledge numbers with source 
port FTP or destination port FTP. The table entries should have source address, destination address, source 
port, destination port, delta for sequence numbers and a timestamp. New entries are created only when FTP 
PORT commands or PASV responses are seen. The sequence number delta may be increased or decreased 
for every FTP PORT command or PASV response. Sequence numbers are incremented on the outbound and 
acknowledge numbers are decremented on the inbound by this delta.

FTP payload translations are limited to private addresses and their assigned external addresses (encoded as 
individual octets in ASCII) for Basic NAT. For NAPT setup, however, the translations must be extended to 
include the TCP port octets (in ASCII) following the address octets.

5.2.4.5  DNS Support
Considering that sessions in a traditional NAT are predominantly outbound from a private domain, DNS 
ALG may be obviated from use in conjunction with traditional NAT as follows. DNS server(s) internal to 
the private domain maintain mapping of names to IP addresses for internal hosts and possibly some external 
hosts. External DNS servers maintain name mapping for external hosts alone and not for any of the internal 
hosts. If the private network does not have an internal DNS server, all DNS requests may be directed to the 
external DNS server to fi nd address mapping for the external hosts.

5.2.4.6 IP Option Handling
An IP datagram with any of the IP options Record Route, Strict Source Route, or Loose Source Route would 
involve recording or using IP addresses of intermediate routers. A NAT intermediate router may choose 
not to support these options or leave the addresses untranslated while processing the options. The result of 
leaving the addresses untranslated would be that private addresses along the source route are exposed end-
to-end. This should not jeopardize the traversal path of the packet, per se, as each router is supposed to look 
at the next hop router only.

5.2.5 Miscellaneous Issues

5.2.5.1  Partitioning of Local and Global Addresses
For NAT to operate as described in this RFC, it is necessary to partition the IP address space into two 
parts—the private addresses used internal to stub domain and the globally unique addresses. Any given ad-
dress must either be a private address or a global address. There is no overlap.
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The problem with overlap is the following. Say a host in stub A wished to send packets to a host in stub B, 
but the global addresses of stub B overlapped the private addressees of stub A. In this case, the routers in 
stub A would not be able to distinguish the global address of stub B from its own private addresses.

5.2.5.2  Private Address Space Recommendation
RFC 1918 has recommendations on address space allocation for private networks. Internet Assigned 
Numbers Authority (IANA) has three blocks of IP address space, namely 10.0.0.0/8, 172.16.0.0/12, and 
192.168.0.0/16 for private internets. In pre-CIDR notation, the fi rst block is nothing but a single class A 
network number, while the second block is a set of 16 contiguous class B networks, and the third block is a 
set of 256 contiguous class C networks.

An organization that decides to use IP addresses in the address space defi ned above can do so without any 
coordination with IANA or an Internet registry. The address space can thus be used privately by many inde-
pendent organizations at the same time, with NAT operation enabled on their border routers.

5.2.5.3  Routing Across NAT
The router running NAT should not advertise the private networks to the backbone. Only the networks with 
global addresses may be known outside the stub. However, global information that NAT receives from the 
stub border router can be advertised in the stub the usual way.

Typically, the NAT stub router will have a static route confi gured to forward all external traffi c to service 
provider router over WAN link, and the service provider router will have a static route confi gured to forward 
NAT packets (i.e., those whose destination IP address fall within the range of NAT managed global address 
list) to NAT router over WAN link.

5.2.5.4  Switch-Over from Basic NAT to NAPT
In Basic NAT setup, when private network nodes outnumber global addresses available for mapping (say, 
a class B private network mapped to a class C global address block), external network access to some of 
the local nodes is abruptly cut off after the last global address from the address list is used up. This is very 
inconvenient and constraining. Such an incident can be safely avoided by optionally allowing the Basic NAT 
router to switch over to NAPT setup for the last global address in the address list. Doing this will ensure that 
hosts on private network will have continued, uninterrupted access to the external nodes and services for 
most applications. Note, however, it could be confusing if some of the applications that used to work with 
Basic NAT suddenly break due to the switch-over to NAPT.

5.2.6  NAT Limitations
RFC 2663 covers the limitations of all fl avors of NAT, broadly speaking. The following subsections identify 
limitations specifi c to traditional NAT.

5.2.6.1  Privacy and Security
Traditional NAT can be viewed as providing a privacy mechanism since sessions are unidirectional from 
private hosts, and the actual addresses of the private hosts are not visible to external hosts. The same char-
acteristic that enhances privacy potentially makes debugging problems (including security violations) more 
diffi cult. If a host in a private network is abusing the Internet in some way (such as trying to attack another 
machine or even sending large amounts of spam) it is more diffi cult to track the actual source of trouble 
because the IP address of the host is hidden in a NAT router.
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5.2.6.2   ARP responses to NAT Mapped Global Addresses on a LAN Interface
NAT must be enabled only on border routers of a stub domain. The examples provided in the document to 
illustrate Basic NAT and NAPT have maintained a WAN link for connection to external router (i.e., service 
provider router) from NAT router. However, if the WAN link were to be replaced by a LAN connection and 
if part or all of the global address space used for NAT mapping belongs to the same IP subnet as the LAN 
segment, the NAT router would be expected to provide ARP support for the address range that belongs to the 
same subnet. Responding to ARP requests for the NAT mapped global addresses with its own MAC address 
is a must in such a situation with Basic NAT setup. If the NAT router did not respond to these requests, there 
is no other node in the network that has ownership of these addresses and hence will go unresponded.

This scenario is unlikely with NAPT setup except when the single address used in NAPT mapping is not the 
interface address of the NAT router (as in the case of a switch-over from Basic NAT to NAPT explained in 
5.2.5.4 above, for example).

Using an address range from a directly connected subnet for NAT address mapping would obviate static 
route confi guration on the service provider router.

It is the opinion of the authors that a LAN link to a service provider router is not very common. However, 
vendors may be interested to optionally support proxy ARP just in case.

5.2.6.3  Translation of Outbound TCP/UDP Fragmented Packets in NAPT Setup
Translation of outbound TCP/UDP fragments (i.e., those originating from private hosts) in NAPT setup are 
doomed to fail. This is because only the fi rst fragment contains the TCP/UDP header that would be nec-
essary to associate the packet to a session for translation purposes. Subsequent fragments do not contain 
TCP/UDP port information, but simply carry the same fragmentation identifi er specifi ed in the fi rst frag-
ment. Say, two private hosts originated fragmented TCP/UDP packets to the same destination host. And, 
they happened to use the same fragmentation identifi er. When the target host receives the two unrelated 
datagrams, carrying the same fragmentation ID, and from the same assigned host address, it is unable to 
determine which of the two sessions the datagrams belong to. Consequently, both sessions will be corrupted.

5.3 STUN—Simple Traversal of User Datagram Protocol (UDP) Through 
Network Address Translators (NATs)
 STUN is a lightweight protocol described in RFC 3489 that allows applications to discover the presence and 
types of NATs and fi rewalls between them and the public Internet. It also provides the ability for applica-
tions to determine the public IP addresses allocated to them by the NAT. STUN works with many existing 
NATs and does not require any special behavior from them. As a result, it allows a variety of applications 
to work through existing NAT infrastructure [ROS200301] (however, up to now it has not experienced ma-
jor acceptance/deployment). The STUN operation described in this section is based on IETF RFC 3489 
[ROS200301]. Developers should refer to the original RFP for any normative guidance.

5.3.1 Applicability Statement
It is recognized that STUN is not a cure-all for the problems associated with NAT. It does not enable 
incoming TCP connections through NAT. It allows incoming UDP packets through NAT, but only through 
a subset of existing NAT types. In particular, STUN does not enable incoming UDP packets through 
symmetric NATs, which are common in large enterprises. STUN’s discovery procedures are based on 
assumptions on NAT treatment of UDP; such assumptions may prove invalid down the road as new NAT 
devices are deployed. STUN does not work when it is used to obtain an address to communicate with a 
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peer that happens to be behind the same NAT. STUN does not work when the STUN server is not in a com-
mon shared address realm. 

5.3.2 Introduction
NATs, while providing many benefi ts, also come with many drawbacks. The most troublesome of those 
drawbacks is the fact that they break many existing IP applications, and make it diffi cult to deploy new ones. 
Guidelines have been developed that describe how to build “NAT friendly” protocols, but many protocols 
simply cannot be constructed according to those guidelines. Examples of such protocols include almost all 
peer-to-peer protocols, such as multimedia communications, fi le sharing, and games.

To combat this problem,  Application Layer Gateways (ALGs) have been embedded in NATs. ALGs perform 
the application layer functions required for a particular protocol to traverse a NAT. Typically, this involves 
rewriting application layer messages to contain translated addresses, rather than the ones inserted by the 
sender of the message. ALGs have serious limitations, including scalability, reliability, and speed of deploy-
ing new applications. To resolve these problems, the Middlebox Communications (MIDCOM) protocol has 
been developed (see RFC 3303). MIDCOM allows an application entity, such as an end client or network 
server of some sort (like a  SIP proxy discussed in Chapter 3 in the context of RFC 3261) to control a NAT 
(or fi rewall) in order to obtain NAT bindings and open or close pinholes. In this way, NATs and applications 
can be separated once more, eliminating the need for embedding ALGs in NATs and resolving the limita-
tions imposed by current architectures. MIDCOM is covered in Section 5.4 of this chapter.

Unfortunately,  MIDCOM requires upgrades to existing NATs and fi rewalls in addition to application compo-
nents. Complete upgrades of these NAT and fi rewall products will take a long time, potentially years. This is 
due, in part, to the fact that the deployers of NATs and fi rewalls are not the same people who are deploying 
and using applications. As a result, the incentive to upgrade these devices will be low in many cases. Consid-
er, for example, an airport Internet lounge that provides access with a NAT. A user connecting to the NATed 
network may wish to use a peer-to-peer service, but cannot, because the NAT does not support it. Since the 
administrators of the lounge are not the ones providing the service, they are not motivated to upgrade their 
NAT equipment to support it, using either an ALG or MIDCOM.

Another problem is that the MIDCOM protocol requires that the agent controlling the middleboxes know the 
identity of those middleboxes, and have a relationship with them which permits control. In many confi gura-
tions, this will not be possible. For example, many cable access providers use NAT in front of their entire 
access network. This NAT could be in addition to a residential NAT purchased and operated by the end user. 
The end user will probably not have a control relationship with the NAT in the cable access network, and 
may not even know of its existence. 

Many existing proprietary protocols, such as those for online games and VoIP, have developed “tricks” that 
allow them to operate through NATs without changing those NATs. RFC 3489 is an attempt to take some 
of those ideas, and codify them into an interoperable protocol that can meet the needs of many applications. 
STUN allows entities behind a NAT to fi rst discover the presence of a NAT and the type of NAT, and then 
to learn the address bindings allocated by the NAT. STUN requires no changes to NATs and works with an 
arbitrary number of NATs in tandem between the application entity and the public Internet.

5.3.3 Applicability to VoIP
The primary usage STUN has found is in the area of VoIP, facilitating allocation of addresses for receiving RTP 
traffi c. In that application, the periodic keepalives are provided by the RTP traffi c itself. However, several 
practical problems arise for RTP. First, RTP assumes that RTCP traffi c is on a port one higher than the RTP 
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traffi c. This pairing property cannot be guaranteed through NATs that are not directly controllable. As a result, 
RTCP traffi c may not be properly received. Protocol extensions to SDP have been proposed which mitigate 
this by allowing the client to signal a different port for RTCP. However, there will be interoperability prob-
lems for some time. For VoIP, silence suppression can cause a gap in the transmission of RTP packets. This 
could result in the loss of a binding in the middle of a call, if that silence period exceeds the binding timeout. 
This can be mitigated by sending occasional silence packets to keep the binding alive. However, the result 
is additional brittleness; proper operation depends on the silence suppression algorithm in use, the usage of a 
comfort noise codec, the duration of the silence period, and the binding lifetime in the NAT.

5.3.4 Defi nitions
 STUN Client:  A STUN client (also just referred to as a client) is an entity that generates STUN requests. A 

STUN client can execute on an end system, such as a user’s PC, or can run in a network element, such 
as a conferencing server.

 STUN Server:  A STUN Server (also just referred to as a server) is an entity that receives STUN requests, 
and sends STUN responses. STUN servers are generally attached to the public Internet.

5.3.5 NAT Variations
It has been observed that NAT treatment of UDP varies among implementations. The four treatments ob-
served in implementations are:

 Full Cone: A full cone NAT is one where all requests from the same internal IP address and port are 
mapped to the same external IP address and port. Furthermore, any external host can send a packet 
to the internal host, by sending a packet to the mapped external address.

 Restricted Cone: A restricted cone NAT is one where all requests from the same internal IP address and 
port are mapped to the same external IP address and port. Unlike a full cone NAT, an external host 
(with IP address X) can send a packet to the internal host only if the internal host had previously 
sent a packet to IP address X.

 Port Restricted Cone: A port restricted cone NAT is like a restricted cone NAT, but the restriction in-
cludes port numbers. Specifi cally, an external host can send a packet, with source IP address X and 
source port P, to the internal host only if the internal host had previously sent a packet to IP address 
X and port P.

 Symmetric: A symmetric NAT is one where all requests from the same internal IP address and port, to a 
specifi c destination IP address and port, are mapped to the same external IP address and port. If the 
same host sends a packet with the same source address and port, but to a different destination, a dif-
ferent mapping is used. Furthermore, only the external host that receives a packet can send a UDP 
packet back to the internal host.

Determining the type of NAT is important in many cases. Depending on what the application wants to do, it 
may need to take the particular behavior into account.

5.3.6 Overview of Operation
This section is descriptive only (normative behavior is described in Sections 5.3.8 and 5.3.9.)  The typi-
cal STUN confi guration is shown in Figure 5.12. A STUN client is connected to private network 1. This 
network connects to private network 2 through NAT 1. Private network 2 connects to the public Internet 
through NAT 2. The STUN server resides on the public Internet.
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Figure 5.12: STUN confi guration.

STUN is a simple client-server protocol. A client sends a request to a server, and the server returns a re-
sponse. There are two types of requests—Binding Requests, sent over UDP, and Shared Secret Requests, 
sent over TLS over TCP. Shared Secret Requests ask the server to return a temporary username and pass-
word. This username and password are used in a subsequent Binding Request and Binding Response, for the 
purposes of authentication and message integrity.

Binding requests are used to determine the bindings allocated by NATs. The client sends a Binding Request 
to the server, over UDP. The server examines the source IP address and port of the request, and copies them 
into a response that is sent back to the client. There are some parameters in the request that allow the client 
to ask that the response be sent elsewhere, or that the server send the response from a different address and 
port. There are attributes for providing message integrity and authentication.

The trick is using STUN to discover the presence of NAT, and to learn and use the bindings they allocate.

The  STUN client is typically embedded in an application which needs to obtain a public IP address and port 
that can be used to receive data. For example, it might need to obtain an IP address and port to receive  Real 
Time Transport Protocol (RTP) traffi c. When the application starts, the STUN client within the application 
sends a STUN Shared Secret Request to its server, obtains a username and password, and then sends it a 
Binding Request. STUN servers can be discovered through DNS SRV records, and it is generally assumed 
that the client is confi gured with the domain it needs to use to fi nd the STUN server. Generally, this will 
be the domain of the provider of the service the application is using (such a provider is incented to deploy 
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STUN servers in order to allow its customers to use its application through NAT). Of course, a client can 
determine the address or domain name of a STUN server through other means. A STUN server can even be 
embedded within an end system.

The STUN Binding Request is used to discover the presence of a NAT, and to discover the public IP address 
and port mappings generated by the NAT. Binding Requests are sent to the STUN server using UDP. When 
a Binding Request arrives at the STUN server, it may have passed through one or more NATs between the 
STUN client and the STUN server. As a result, the source address of the request received by the server will 
be the mapped address created by the NAT closest to the server. The STUN server copies that source IP 
address and port into a STUN Binding Response, and sends it back to the source IP address and port of the 
STUN request. For all of the NAT types above, this response will arrive at the STUN client.

When the STUN client receives the STUN Binding Response, it compares the IP address and port in the 
packet with the local IP address and port it bound to when the request was sent. If these do not match, the 
STUN client is behind one or more NATs. In the case of a full-cone NAT, the IP address and port in the body 
of the STUN response are public, and can be used by any host on the public Internet to send packets to the 
application that sent the STUN request. An application need only listen in on the IP address and port from 
which the STUN request was sent. Any packets sent by a host on the public Internet to the public address 
and port learned by STUN will be received by the application.

Of course, the host may not be behind a full-cone NAT. Indeed, it does not yet know what type of NAT it 
is behind. To determine that, the client uses additional STUN Binding Requests. The exact procedure is 
fl exible, but would generally work as follows. The client would send a second STUN Binding Request, this 
time to a different IP address, but from the same source IP address and port. If the IP address and port in the 
response are different from those in the fi rst response, the client knows it is behind a symmetric NAT. To 
determine if it is behind a full-cone NAT, the client can send a STUN Binding Request with fl ags that tell 
the STUN server to send a response from a different IP address and port than the request was received on. 
In other words, if the client sent a Binding Request to IP address/port A/B using a source IP address/port of 
X/Y, the STUN server would send the Binding Response to X/Y using source IP address/port C/D. If the cli-
ent receives this response, it knows it is behind a full cone NAT.

STUN also allows the client to ask the server to send the Binding Response from the same IP address the 
request was received on, but with a different port. This can be used to detect whether the client is behind a 
port restricted cone NAT or just a restricted cone NAT.

It should be noted that the confi guration in Figure 5.12 is not the only permissible confi guration. The STUN 
server can be located anywhere, including within another client. The only requirement is that the STUN 
server is reachable by the client, and if the client is trying to obtain a publicly routable address, that the 
server reside on the public Internet.

5.3.7  Message Overview
STUN messages are TLV (type-length-value) encoded using big endian (network ordered) binary. All STUN 
messages start with a STUN header, followed by a STUN payload. The payload is a series of STUN at-
tributes, the set of which depends on the message type. The STUN header contains a STUN message type, 
transaction ID, and length. The message type can be Binding Request, Binding Response, Binding Error Re-
sponse, Shared Secret Request, Shared Secret Response, or Shared Secret Error Response. The transaction 
ID is used to correlate requests and responses. The length indicates the total length of the STUN payload, 
not including the header. This allows STUN to run over TCP. Shared Secret Requests are always sent over 
TCP (indeed, using TLS over TCP).
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Several STUN attributes are defi ned. The fi rst is a MAPPED-ADDRESS attribute, which is an IP address 
and port. It is always placed in the Binding Response, and it indicates the source IP address and port the 
server saw in the Binding Request. There is also a RESPONSE-ADDRESS attribute, which contains an IP 
address and port. The RESPONSE-ADDRESS attribute can be present in the Binding Request, and indicates 
where the Binding Response is to be sent. It’s optional, and when not present, the Binding Response is sent 
to the source IP address and port of the Binding Request.

The third attribute is the CHANGE-REQUEST attribute, and it contains two fl ags to control the IP address 
and port used to send the response. These fl ags are called change IP and change port fl ags. The CHANGE-
REQUEST attribute is allowed only in the Binding Request. The “change IP” and “change port” fl ags 
are useful for determining whether the client is behind a restricted cone NAT or restricted port cone NAT. 
They instruct the server to send the Binding Responses from a different source IP address and port. The 
CHANGE-REQUEST attribute is optional in the Binding Request.

The fourth attribute is the CHANGED-ADDRESS attribute. It is present in Binding Responses. It informs 
the client of the source IP address and port that would be used if the client requested the “change IP” and 
“change port” behavior.

The fi fth attribute is the SOURCE-ADDRESS attribute. It is only present in Binding Responses. It indicates 
the source IP address and port where the response was sent from. It is useful for detecting twice NAT con-
fi gurations.

The sixth attribute is the USERNAME attribute. It is present in a Shared Secret Response, which provides 
the client with a temporary username and password (encoded in the PASSWORD attribute). The USER-
NAME is also present in Binding Requests, serving as an index to the shared secret used for the integrity 
protection of the Binding Request. The seventh attribute, PASSWORD, is only found in Shared Secret 
Response messages. The eighth attribute is the MESSAGE-INTEGRITY attribute, which contains a message 
integrity check over the Binding Request or Binding Response.

The ninth attribute is the ERROR-CODE attribute. This is present in the Binding Error Response and Shared 
Secret Error Response. It indicates the error that has occurred. The tenth attribute is the UNKNOWN-
ATTRIBUTES attribute which is present in either the Binding Error Response or Shared Secret Error 
Response. It indicates the mandatory attributes from the request which were unknown. The eleventh 
attribute is the REFLECTED-FROM attribute which is present in Binding Responses. It indicates the IP 
address and port of the sender of a Binding Request used for traceability purposes to prevent certain denial-
of-service attacks.

5.3.8 Server Behavior
The server behavior depends on whether the request is a Binding Request or a Shared Secret Request.

5.3.8.1  Binding Requests
A STUN server must be prepared to receive Binding Requests on four address/port combinations—(A1, P1), 
(A2, P1), (A1, P2), and (A2, P2). (A1, P1) represent the primary address and port, and these are the ones 
obtained through the client discovery procedures below. Typically, P1 will be port 3478, the default STUN 
port. A2 and P2 are arbitrary. A2 and P2 are advertised by the server through the CHANGED-ADDRESS 
attribute, as described below.

It is recommended that the server check the Binding Request for a MESSAGE-INTEGRITY attribute. If not 
present, and the server requires integrity checks on the request, it generates a Binding Error Response with 
an ERROR-CODE attribute with response code 401. If the MESSAGE-INTEGRITY attribute was present, 
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the server computes the HMAC over the request as described in Section 5.3.11.2. The key to use depends on 
the shared secret mechanism. If the STUN Shared Secret Request was used, the key must be the one associ-
ated with the USERNAME attribute present in the request. If the USERNAME attribute was not present, 
the server must generate a Binding Error Response. The Binding Error Response must include an ERROR-
CODE attribute with response code 432. If the USERNAME is present, but the server does not remember 
the shared secret for that USERNAME (because it timed out, for example), the server must generate a Bind-
ing Error Response. The Binding Error Response must include an ERROR-CODE attribute with response 
code 430. If the server does know the shared secret, but the computed HMAC differs from the one in the 
request, the server must generate a Binding Error Response with an ERROR-CODE attribute with response 
code 431. The Binding Error Response is sent to the IP address and port the Binding Request came from, 
and sent from the IP address and port the Binding Request was sent to.

Assuming the message integrity check passed, processing continues. The server must check for any attri-
butes in the request with values less than or equal to 0x7fff which it does not understand. If it encounters 
any, the server must generate a Binding Error Response, and it MUST include an ERROR-CODE attribute 
with a 420 response code.

That response must contain an UNKNOWN-ATTRIBUTES attribute listing the attributes with values less 
than or equal to 0x7fff which were not understood. The Binding Error Response is sent to the IP address and 
port the Binding Request came from, and sent from the IP address and port the Binding Request was sent to.

Assuming the request was correctly formed, the server must generate a single Binding Response. The Bind-
ing Response must contain the same transaction ID contained in the Binding Request. The length in the 
message header must contain the total length of the message in bytes, excluding the header. The Binding 
Response must have a message type of “Binding Response.”

The server must add a MAPPED-ADDRESS attribute to the Binding Response. The IP address component 
of this attribute must be set to the source IP address observed in the Binding Request. The port component of 
this attribute must be set to the source port observed in the Binding Request.

If the RESPONSE-ADDRESS attribute was absent from the Binding Request, the destination address and 
port of the Binding Response must be the same as the source address and port of the Binding Request. 
Otherwise, the destination address and port of the Binding Response must be the value of the IP address and 
port in the RESPONSE-ADDRESS attribute.

The source address and port of the  Binding Response depend on the value of the CHANGE-REQUEST 
attribute and on the address and port the Binding Request was received on, and are summarized in Table 5.2.

Let Da represent the destination IP address of the Binding Request (which will be either A1 or A2), and 
Dp represent the destination port of the Binding Request (which will be either P1 or P2). Let Ca represent 
the other address, so that if Da is A1, Ca is A2. If Da is A2, Ca is A1. Similarly, let Cp represent the other 
port, so that if Dp is P1, Cp is P2. If Dp is P2, Cp is P1. If the “change port” fl ag was set in the CHANGE-
REQUEST attribute of the Binding Request, and the “change IP” fl ag was not set, the source IP address of 
the Binding Response must be Da and the source port of the Binding Response must be Cp. If the “change 
IP” fl ag was set in the Binding Request, and the “change port” fl ag was not set, the source IP address of 
the Binding Response must be Ca and the source port of the Binding Response MUST be Dp. When both 
fl ags are set, the source IP address of the Binding Response MUST be Ca and the source port of the Binding 
Response MUST be Cp. If neither fl ag is set, or if the CHANGE-REQUEST attribute is absent entirely, the 
source IP address of the Binding Response MUST be Da and the source port of the Binding Response must 
be Dp.
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Table 5.2: Impact of fl ags on packet source and CHANGED-ADDRESS.

Flags Source Address  Source Port   CHANGED-ADDRESS

none Da Dp Ca:Cp

Change IP Ca Dp Ca:Cp

Change port Da Cp Ca:Cp

Change IP and Change port Ca Cp Ca:Cp

The server must add a SOURCE-ADDRESS attribute to the Binding Response, containing the source ad-
dress and port used to send the Binding Response.

The server must add a CHANGED-ADDRESS attribute to the Binding Response. This contains the source 
IP address and port that would be used if the client had set the “change IP” and “change port” fl ags in the 
Binding Request. As summarized in Table 5.2, these are Ca and Cp, respectively, regardless of the value of 
the CHANGE-REQUEST fl ags.

If the Binding Request contained both the USERNAME and MESSAGE-INTEGRITY attributes, the server 
must add a   MESSAGE-INTEGRITY attribute to the Binding Response. The attribute contains an HMAC 
over the response, as described in Section 5.3.11.2. The key to use depends on the shared secret mechanism. 
If the STUN Shared Secret Request was used, the key must be the one associated with the USERNAME at-
tribute present in the Binding Request.

If the Binding Request contained a RESPONSE-ADDRESS attribute, the server MUST add a REFLECTED-
FROM attribute to the response. If the Binding Request was authenticated using a username obtained from 
a Shared Secret Request, the REFLECTED-FROM attribute MUST contain the source IP address and port 
where that Shared Secret Request came from. If the username present in the request was not allocated using 
a Shared Secret Request, the REFLECTED-FROM attribute must contain the source address and port of the 
entity which obtained the username, as best can be verifi ed with the mechanism used to allocate the user-
name. If the username was not present in the request, and the server was willing to process the request, the 
REFLECTED-FROM attribute should contain the source IP address and port where the request came from.

The server should not retransmit the response. Reliability is achieved by having the client periodically re-
send the request, each of which triggers a response from the server.

5.3.8.2  Shared Secret Requests
Shared Secret Requests are always received on TLS connections. When the server receives a request from 
the client to establish a TLS connection, it must proceed with TLS, and should present a site certifi cate. The 
TLS ciphersuite TLS_RSA_WITH_AES_128_CBC_SHA should be used. Client TLS authentication must 
not be done, since the server is not allocating any resources to clients, and the computational burden can be a 
source of attacks.

If the server receives a Shared Secret Request, it must verify that the request arrived on a TLS connection. If 
it did not receive the request over TLS, it must generate a Shared Secret Error Response, and it must include 
an ERROR-CODE attribute with a 433 response code. The destination for the error response depends on the 
transport on which the request was received. If the Shared Secret Request was received over TCP, the Shared 
Secret Error Response is sent over the same connection the request was received on. If the Shared Secret 
Request was receive over UDP, the Shared Secret Error Response is sent to the source IP address and port 
that the request came from.

The server must check for any attributes in the request with values less than or equal to 0x7fff which it 
does not understand. If it encounters any, the server must generate a Shared Secret Error Response, and it 
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must include an ERROR-CODE attribute with a 420 response code. That response must contain an UN-
KNOWN-ATTRIBUTES attribute listing the attributes with values less than or equal to 0x7fff which were 
not understood. The Shared Secret Error Response is sent over the TLS connection.

All Shared Secret Error Responses must contain the same transaction ID contained in the Shared Secret 
Request. The length in the message header must contain the total length of the message in bytes, excluding 
the header. The Shared Secret Error Response must have a message type of “Shared Secret Error Response” 
(0x0112).

Assuming the request was properly constructed, the server creates a Shared Secret Response. The Shared 
Secret Response must contain the same transaction ID contained in the Shared Secret Request. The length in 
the message header must contain the total length of the message in bytes, excluding the header. The Shared 
Secret Response must have a message type of “Shared Secret Response.” The Shared Secret Response must 
contain a USERNAME attribute and a  PASSWORD attribute. The USERNAME attribute serves as an index 
to the password, which is contained in the PASSWORD attribute. The server can use any mechanism it 
chooses to generate the username. However, the username must be valid for a period of at least 10 minutes. 
Validity means that the server can compute the password for that username. There MUST be a single pass-
word for each username. In other words, the server cannot, 10 minutes later, assign a different password to 
the same username. The server must hand out a different username for each distinct Shared Secret Request. 
Distinct, in this case, implies a different transaction ID. It is recommended that the server explicitly invalidate 
the username after ten minutes. It must invalidate the username after 30 minutes. The PASSWORD contains 
the password bound to that username. The password must have at least 128 bits. The likelihood that the 
server assigns the same password for two different usernames must be vanishingly small, and the passwords 
must be unguessable. In other words, they must be a cryptographically random function of the username.

These requirements can still be met using a stateless server, by intelligently computing the USERNAME and 
PASSWORD. One approach is to construct the USERNAME as:

      USERNAME = <prefix,rounded-time,clientIP,hmac>

Where prefi x is some random text string (different for each shared secret request), rounded-time is the cur-
rent time modulo 20 minutes, clientIP is the source IP address where the Shared Secret Request came from, 
and hmac is an HMAC over the prefi x, rounded-time, and client IP, using a server private key. The password 
is then computed as:

      password = <hmac(USERNAME,anotherprivatekey)>

With this structure, the username itself, which will be present in the Binding Request, contains the source IP 
address where the Shared Secret Request came from. That allows the server to meet the requirements speci-
fi ed in Section 5.3.8.1 for constructing the REFLECTED-FROM attribute. The server can verify that the 
username was not tampered with, using the hmac present in the username.

The Shared Secret Response is sent over the same TLS connection the request was received on. The server 
should keep the connection open, and let the client close it.

5.3.9 Client Behavior
The behavior of the client is very straightforward. Its task is to discover the STUN server, obtain a shared 
secret, formulate the Binding Request, handle request reliability, and process the Binding Responses.

5.3.9.1  Discovery
Generally, the client will be confi gured with a domain name of the provider of the STUN servers. This 
domain name is resolved to an IP address and port using the SRV procedures specifi ed in RFC 2782.
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Specifi cally, the service name is “stun.” The protocol is “udp” for sending Binding Requests or “tcp” for 
sending Shared Secret Requests. The procedures of RFC 2782 are followed to determine the server to con-
tact. RFC 2782 spells out the details of how a set of SRV records are sorted and then tried. However, it only 
states that the client should “try to connect to the (protocol, address, service)” without giving any details on 
what happens in the event of failure. Those details are described here for STUN.

For STUN requests, failure occurs if there is a transport failure of some sort (generally, due to fatal ICMP 
errors in UDP or connection failures in TCP). Failure also occurs if the transaction fails due to timeout. This 
occurs 9.5 seconds after the fi rst request is sent, for both Shared Secret Requests and Binding Requests. See 
Section 5.3.9.3 for details on transaction timeouts for Binding Requests. If a failure occurs, the client should 
create a new request, which is identical to the previous, but has a different transaction ID and MESSAGE 
INTEGRITY attribute (the HMAC will change because the transaction ID has changed). That request is sent 
to the next element in the list as specifi ed by RFC 2782.

The default port for STUN requests is 3478, for both TCP and UDP. Administrators should use this port in 
their SRV records, but may use others.

If no SRV records were found, the client performs an A record lookup of the domain name. The result will 
be a list of IP addresses, each of which can be contacted at the default port.

This would allow a fi rewall admin to open the STUN port, so hosts within the enterprise could access new 
applications. Whether they will or will not do this is a relevant question.

5.3.9.2  Obtaining a Shared Secret
There are several attacks possible on STUN systems. Many of these are prevented through integrity of 
requests and responses. To provide that integrity, STUN makes use of a shared secret between client and 
server, used as the keying material for an HMAC in both the Binding Request and Binding Response. STUN 
allows for the shared secret to be obtained in any way (for example, Kerberos). However, it must have at 
least 128 bits of randomness. In order to ensure interoperability, this specifi cation describes a TLS-based 
mechanism. This mechanism, described in this section, must be implemented by clients and servers.

First, the client determines the IP address and port that it will open a TCP connection to. This is done using 
the discovery procedures in Section 5.3.9.1. The client opens up the connection to that address and port, and 
immediately begins TLS negotiation. The client must verify the identity of the server. To do that, it follows 
the identifi cation procedures defi ned in Section 3.1 of RFC 2818. Those procedures assume the client is 
dereferencing a URI. For purposes of usage with this specifi cation, the client treats the domain name or IP 
address used in Section 5.3.9.1 as the host portion of the URI that has been dereferenced.

Once the connection is opened, the client sends a Shared Secret request. This request has no attributes, just 
the header. The transaction ID in the header must meet the requirements outlined for the transaction ID in a 
binding request, described in Section 5.3.9.3 below. The server generates a response, which can either be a 
Shared Secret Response or a Shared Secret Error Response.

If the response was a Shared Secret Error Response, the client checks the response code in the ERROR-
CODE attribute. Interpretation of those response codes is identical to the processing of Section 5.3.9.4 for 
the Binding Error Response.

If a client receives a Shared Secret Response with an attribute whose type is greater than 0x7fff, the attribute 
must be ignored. If the client receives a Shared Secret Response with an attribute whose type is less than or 
equal to 0x7fff, the response is ignored.
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If the response was a Shared Secret Response, it will contain a short-lived username and password encoded 
in the USERNAME and PASSWORD attributes, respectively.

The client may generate multiple Shared Secret Requests on the connection, and it may do so before receiv-
ing Shared Secret Responses to previous Shared Secret Requests. The client should close the connection as 
soon as it has fi nished obtaining usernames and passwords.

Section 5.3.9.3 describes how these passwords are used to provide integrity protection over Binding Re-
quests, and Section 5.3.8.1 describes how it is used in Binding Responses.

5.3.9.3  Formulating the Binding Request
A Binding Request formulated by the client follows the syntax rules defi ned in Section 5.3.11. Any two 
requests that are not bit-wise identical, and not sent to the same server from the same IP address and port, 
must carry different transaction IDs. The transaction ID must be uniformly and randomly distributed 
between 0 and 2**128 – 1. The large range is needed because the transaction ID serves as a form of random-
ization, helping to prevent replays of previously signed responses from the server. The message type of the 
request must be “Binding Request.”

The RESPONSE-ADDRESS attribute is optional in the Binding Request. It is used if the client wishes the 
response to be sent to a different IP address and port than the one the request was sent from. This is useful 
for determining whether the client is behind a fi rewall, and for applications that have separated control and 
data components. See Section 5.3.10.3 for more details. The CHANGE-REQUEST attribute is also optional. 
Whether it is present depends on what the application is trying to accomplish. See Section 5.3.10 for some 
example uses.

The client should add MESSAGE-INTEGRITY and USERNAME attributes to the Binding Request. This 
MESSAGE-INTEGRITY attribute contains an HMAC. The value of the username, and the key to use in the 
MESSAGE-INTEGRITY attribute depend on the shared secret mechanism. If the STUN Shared Secret Re-
quest was used, the USERNAME must be a valid username obtained from a Shared Secret Response within 
the last nine minutes. The shared secret for the HMAC is the value of the PASSWORD attribute obtained 
from the same Shared Secret Response.

Once formulated, the client sends the Binding Request. Reliability is accomplished through client retrans-
missions. Clients should retransmit the request starting with an interval of 100ms, doubling every retransmit 
until the interval reaches 1.6s. Retransmissions continue with intervals of 1.6s until a response is received, 
or a total of nine requests have been sent. If no response is received by 1.6 seconds after the last request has 
been sent, the client should consider the transaction to have failed. In other words, requests would be sent at 
times 0ms, 100ms, 300ms, 700ms, 1500ms, 3100ms, 4700ms, 6300ms, and 7900ms. At 9500ms, the client 
considers the transaction to have failed if no response has been received.

5.3.9.4  Processing Binding Responses
The response can either be a Binding Response or Binding Error Response. Binding Error Responses are 
always received on the source address and port the request was sent from. A Binding Response will be 
received on the address and port placed in the RESPONSE-ADDRESS attribute of the request. If none was 
present, the Binding Responses will be received on the source address and port the request was sent from.

If the response is a Binding Error Response, the client checks the response code from the ERROR-CODE 
attribute of the response. For a 400 response code, the client should display the reason phrase to the user. 
For a 420 response code, the client should retry the request, this time omitting any attributes listed in the 
UNKNOWN-ATTRIBUTES attribute of the response. For a 430 response code, the client should obtain a 
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new shared secret, and retry the Binding Request with a new transaction. For 401 and 432 response codes, 
if the client had omitted the USERNAME or MESSAGE-INTEGRITY attribute as indicated by the error, 
it should try again with those attributes. For a 431 response code, the client should alert the user, and may 
try the request again after obtaining a new username and password. For a 500 response code, the client may 
wait several seconds and then retry the request. For a 600 response code, the client must not retry the re-
quest, and should display the reason phrase to the user. Unknown attributes between 400 and 499 are treated 
like a 400, unknown attributes between 500 and 599 are treated like a 500, and unknown attributes between 
600 and 699 are treated like a 600. Any response between 100 and 399 must result in the cessation of request 
retransmissions, but otherwise is discarded.

If a client receives a response with an attribute whose type is greater than 0x7fff, the attribute MUST be 
ignored. If the client receives a response with an attribute whose type is less than or equal to 0x7fff, request 
retransmissions must cease, but the entire response is otherwise ignored. If the response is a Binding Re-
sponse, the client should check the response for a MESSAGE-INTEGRITY attribute. If not present, and the 
client placed a MESSAGE-INTEGRITY attribute into the request, it must discard the response. If present, 
the client computes the HMAC over the response as described in Section 5.3.11.2. The key to use depends 
on the shared secret mechanism. If the STUN Shared Secret Request was used, the key must be the same as 
that used to compute the MESSAGE-INTEGRITY attribute in the request. If the computed HMAC differs 
from the one in the response, the client must discard the response, and should alert the user about a possible 
attack. If the computed HMAC matches the one from the response, processing continues.

Reception of a response (either a Binding Error Response or Binding Response) to a Binding Request will 
terminate retransmissions of that request. However, clients must continue to listen for responses to a Bind-
ing Request for 10 seconds after the fi rst response. If it receives any responses in this interval with different 
message types (Binding Responses and Binding Error Responses, for example) or different MAPPED-AD-
DRESSes, it is an indication of a possible attack. The client must not use the MAPPED-ADDRESS from 
any of the responses it received (either the fi rst or the additional ones), and should alert the user.

Furthermore, if a client receives more than twice as many Binding Responses as the number of Binding 
Requests it sent, it must not use the MAPPED-ADDRESS from any of those responses, and should alert the 
user about a potential attack.

If the Binding Response is authenticated, and the MAPPED-ADDRESS was not discarded because of a 
potential attack, the CLIENT may use the MAPPED-ADDRESS and SOURCE-ADDRESS attributes.

5.3.10  Use Cases
The rules of Sections 8 and 9 describe exactly how a client and server interact to send requests and get 
responses. However, they do not dictate how the STUN protocol is used to accomplish useful tasks. That is 
at the discretion of the client. Here, we provide some useful scenarios for applying STUN.

5.3.10.1  Discovery Process
In this scenario, a user is running a multimedia application and needs to determine which of the following 
scenarios applies to it:

On the open Internet;
Firewall that blocks UDP;
Firewall that allows UDP out, and responses have to come back to the source of the request (like a 
symmetric NAT, but no translation; this is called a symmetric UDP fi rewall);
Full-cone NAT;

1.
2.
3.

4.
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Symmetric NAT;
Restricted cone or restricted port cone NAT.

The determination of which of the six scenarios applies can be achieved through the fl ow chart shown in 
Figure 5.13. The chart refers only to the sequence of Binding Requests; Shared Secret Requests will, of 
course, be needed to authenticate each Binding Request used in the sequence. The fl ow makes use of three 
tests. In test I, the client sends a STUN Binding Request to a server, without any fl ags set in the CHANGE-
REQUEST attribute, and without the RESPONSE-ADDRESS attribute. This causes the server to send the 
response back to the address and port that the request came from. In test II, the client sends a Binding Re-
quest with both the “change IP” and “change port” fl ags from the CHANGE-REQUEST attribute set. In test 
III, the client sends a Binding Request with only the “change port” fl ag set.

The client begins by initiating test I. If this test yields no response, the client knows right away that it is not 
capable of UDP connectivity. If the test produces a response, the client examines the MAPPED-ADDRESS 
attribute. If this address and port are the same as the local IP address and port of the socket used to send the 
request, the client knows that it is not NATed. It executes test II.

If a response is received, the client knows that it has open access to the Internet (or, at least, it’s behind a 
fi rewall that behaves like a full-cone NAT, but without the translation). If no response is received, the client 
knows it is behind a symmetric UDP fi rewall.

In the event that the IP address and port of the socket did not match the MAPPED-ADDRESS attribute in 
the response to test I, the client knows that it is behind a NAT. It performs test II. If a response is received, 
the client knows that it is behind a full-cone NAT. If no response is received, it performs test I again, but this 
time, does so to the address and port from the CHANGED-ADDRESS attribute from the response to test I. 
If the IP address and port returned in the MAPPED-ADDRESS attribute are not the same as the ones from 
the fi rst test I, the client knows it’s behind a symmetric NAT. If the address and port are the same, the client 
is either behind a restricted or port restricted NAT. To make a determination about which one it is behind, the 
client initiates test III. If a response is received, it is behind a restricted NAT, and if no response is received, 
it is behind a port-restricted NAT.

This procedure yields substantial information about the operating condition of the client application. In the 
event of multiple NATs between the client and the Internet, the type that is discovered will be the type of the 
most restrictive NAT between the client and the Internet. The types of NAT, in order of restrictiveness, from 
most to least, are: symmetric, port-restricted cone, restricted cone, and full cone.

Typically, a client will redo this discovery process periodically to detect changes, or look for inconsistent 
results. It is important to note that when the discovery process is redone, it should not generally be done 
from the same local address and port used in the previous discovery process. If the same local address 
and port are reused, bindings from the previous test may still be in existence, and these will invalidate 
the results of the test. Using a different local address and port for subsequent tests resolves this problem. 
An alternative is to wait suffi ciently long to be confi dent that the old bindings have expired (half an hour 
should more than suffi ce).

5.3.10.2  Binding Lifetime Discovery
STUN can also be used to discover the lifetimes of the bindings created by the NAT. In many cases, the cli-
ent will need to refresh the binding, either through a new STUN request, or an application packet, in order 
for the application to continue to use the binding. By discovering the binding lifetime, the client can deter-
mine how frequently it needs to refresh.

5.
6.
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Figure 5.13: Flow for type discovery process.

To determine the binding lifetime, the client fi rst sends a Binding Request to the server from a particular socket, 
X. This creates a binding in the NAT. The response from the server contains a MAPPED-ADDRESS attribute, 
providing the public address and port on the NAT. Call this Pa and Pp, respectively. The client then starts a timer 
with a value of T seconds. When this timer fi res, the client sends another Binding Request to the server, using the 
same destination address and port, but from a different socket, Y. This request contains a RESPONSE-ADDRESS 
address attribute, set to (Pa,Pp). This will create a new binding on the NAT, and cause the STUN server to send a 
Binding Response that would match the old binding, if it still exists. If the client receives the Binding Response on 
socket X, it knows that the binding has not expired. If the client receives the Binding Response on socket Y (which 
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is possible if the old binding expired, and the NAT allocated the same public address and port to the new binding), 
or receives no response at all, it knows that the binding has expired.

The client can fi nd the value of the binding lifetime by doing a binary search through T, arriving eventually 
at the value where the response is not received for any timer greater than T, but is received for any timer less 
than T.

This discovery process takes quite a bit of time, and is something that will typically be run in the back-
ground on a device once it boots.

It is possible that the client can get inconsistent results each time this process is run. For example, if the NAT 
should reboot, or be reset for some reason, the process may discover a lifetime than is shorter than the actual 
one. For this reason, implementations are encouraged to run the test numerous times, and be prepared to get 
inconsistent results.

5.3.10.3  Binding Acquisition
Consider once more the case of a VoIP phone. It used the discovery process above when it started up to 
discover its environment. Now, it wants to make a call. As part of the discovery process, it determined that it 
was behind a full-cone NAT.

Consider further that this phone consists of two logically separated components—a control component that 
handles signaling, and a media component that handles the audio, video, and RTP. Both are behind the same 
NAT. Because of this separation of control and media, we wish to minimize the communication required 
between them. In fact, they may not even run on the same host.

In order to make a voice call, the phone needs to obtain an IP address and port that it can place in the call 
setup message as the destination for receiving audio.

To obtain an address, the control component sends a Shared Secret Request to the server, obtains a shared 
secret, and then sends a Binding Request to the server. No CHANGE-REQUEST attribute is present in the 
Binding Request, and neither is the RESPONSE-ADDRESS attribute. The Binding Response contains a 
mapped address. The control component then formulates a second Binding Request. This request contains 
a RESPONSE-ADDRESS which is set to the mapped address learned from the previous Binding Response. 
This Binding Request is passed to the media component, along with the IP address and port of the STUN 
server. The media component sends the Binding Request. The request goes to the STUN server which sends 
the Binding Response back to the control component. The control component receives this, and now has 
learned an IP address and port that will be routed back to the media component that sent the request.

The client will be able to receive media from anywhere on this mapped address.

In the case of silence suppression, there may be periods where the client receives no media. In this case, the 
 UDP bindings could timeout (UDP bindings in NATs are typically short; 30 seconds is common). To deal 
with this, the application can periodically retransmit the query in order to keep the binding fresh.

It is possible that both participants in the multimedia session are behind the same NAT. In that case, both 
will repeat this procedure above, and both will obtain public address bindings. When one sends media to 
the other, the media is routed to the NAT, and then turns right back around to come back into the enter-
prise, where it is translated to the private address of the recipient. This is not particularly effi cient, and 
unfortunately, does not work in many commercial NATs. In such cases, the clients may need to retry using 
private addresses.
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5.3.11  Protocol Details
This section presents the detailed encoding of a  STUN message. As noted, STUN is a request-response 
protocol. Clients send a request, and the server sends a response. There are two requests, Binding Request, 
and Shared Secret Request. The response to a Binding Request can either be the Binding Response or Bind-
ing Error Response. The response to a Shared Secret Request can either be a Shared Secret Response or a 
Shared Secret Error Response.

STUN messages are encoded using binary fi elds. All integer fi elds are carried in network byte order, that is, 
most signifi cant byte (octet) fi rst. This byte order is commonly known as big-endian. The transmission order 
is described in detail in Appendix B of RFC 791. Unless otherwise noted, numeric constants are in decimal 
(base 10).

5.3.11.1   Message Header
All STUN messages consist of a 20 byte header:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |      STUN Message Type        |         Message Length        |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                            Transaction ID

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

                                                                   |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The Message Types can take on the following values:

      0x0001  :  Binding Request

      0x0101  :  Binding Response

      0x0111  :  Binding Error Response

      0x0002  :  Shared Secret Request

      0x0102  :  Shared Secret Response

      0x0112  :  Shared Secret Error Response

The Message Length is the count, in bytes, of the size of the message, not including the 20 byte header.

The Transaction ID is a 128 bit identifi er. It also serves as salt to randomize the request and the response. All 
responses carry the same identifi er as the request they correspond to.
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5.3.11.2   Message Attributes
After the header are 0 or more attributes. Each attribute is TLV encoded, with a 16-bit type, 16-bit length, 
and variable value:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |         Type                  |            Length             |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             Value                             ....

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The following types are defi ned:

    0x0001: MAPPED-ADDRESS

    0x0002: RESPONSE-ADDRESS

    0x0003: CHANGE-REQUEST

    0x0004: SOURCE-ADDRESS

    0x0005: CHANGED-ADDRESS

    0x0006: USERNAME

    0x0007: PASSWORD

    0x0008: MESSAGE-INTEGRITY

    0x0009: ERROR-CODE

    0x000a: UNKNOWN-ATTRIBUTES

    0x000b: REFLECTED-FROM

To allow future revisions of the specifi cation to add new attributes if needed, the attribute space is divided 
into optional and mandatory ones. Attributes with values greater than 0x7fff are optional, which means that 
the message can be processed by the client or server even though the attribute is not understood. Attributes 
with values less than or equal to 0x7fff are mandatory to understand, which means that the client or server 
cannot process the message unless it understands the attribute.

The MESSAGE-INTEGRITY attribute must be the last attribute within a message. Any attributes that are 
known, but are not supposed to be present in a message (MAPPED-ADDRESS in a request, for example) 
must be ignored.

Table 5.3 indicates which attributes are present in which messages. An M indicates that inclusion of the 
attribute in the message is mandatory, O means its optional, C means it is conditional based on some other 
aspect of the message, and N/A means that the attribute is not applicable to that message type.
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Table 5.3: Summary of Attributes

Att. Binding 
Req.

Binding 
Resp.

Binding 
Error Resp.

Shared 
Secret Req.

Shared 
Secret Resp.

Secret Shared 
Error Resp.

MAPPED-ADDRESS N/A M N/A N/A N/A N/A

RESPONSE-ADDRESS O N/A N/A N/A N/A N/A

CHANGE-REQUEST O N/A N/A N/A N/A N/A

SOURCE-ADDRESS N/A M N/A N/A N/A N/A

CHANGED-ADDRESS N/A M N/A N/A N/A N/A

USERNAME O N/A N/A N/A M N/A

PASSWORD N/A N/A N/A N/A M N/A

MESSAGE-INTEGRITY O O N/A N/A N/A N/A

ERROR-CODE N/A N/A M N/A N/A M

UNKNOWN-ATTRIBUTES N/A N/A C N/A N/A C

REFLECTED-FROM N/A C N/A N/A N/A N/A

The length refers to the length of the value element, expressed as an unsigned integral number of bytes.

MAPPED-ADDRESS
The MAPPED-ADDRESS attribute indicates the mapped IP address and port. It consists of an eight-bit 
address family, and a sixteen bit port, followed by a fi xed length value representing the IP address.

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |x x x x x x x x|    Family     |           Port                |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |                             Address                           |

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The port is a network byte-ordered representation of the mapped port. The address family is always 0x01, 
corresponding to IPv4. The fi rst 8 bits of the MAPPED-ADDRESS are ignored, for the purposes of aligning 
parameters on natural boundaries. The IPv4 address is 32 bits.

RESPONSE-ADDRESS
The RESPONSE-ADDRESS attribute indicates where the response to a Binding Request should be sent. Its 
syntax is identical to MAPPED-ADDRESS.

CHANGED-ADDRESS
The CHANGED-ADDRESS attribute indicates the IP address and port where responses would have been 
sent from if the “change IP” and “change port” fl ags had been set in the CHANGE-REQUEST attribute of 
the Binding Request. The attribute is always present in a Binding Response, independent of the value of the 
fl ags. Its syntax is identical to MAPPED-ADDRESS.
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CHANGE-REQUEST
The CHANGE-REQUEST attribute is used by the client to request that the server use a different address and/
or port when sending the response. The attribute is 32 bits long, although only two bits (A and B) are used:

    0                   1                   2                   3

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

   |0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 A B 0|

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The meaning of the fl ags is:

A: This is the “change IP” fl ag. If true, it requests the server to send the Binding Response with a dif-
ferent IP address than the one the Binding Request was received on.

B:  This is the “change port” fl ag. If true, it requests the server to send the Binding Response with a 
different port than the one the Binding Request was received on.

SOURCE-ADDRESS
The SOURCE-ADDRESS attribute is present in Binding Responses. It indicates the source IP address and 
port that the server is sending the response from. Its syntax is identical to that of MAPPED-ADDRESS.

USERNAME
The USERNAME attribute is used for message integrity. It serves as a means to identify the shared secret 
used in the message integrity check. The USERNAME is always present in a Shared Secret Response, along 
with the PASSWORD. It is optionally present in a Binding Request when message integrity is used.

The value of USERNAME is a variable length opaque value. Its length MUST be a multiple of 4 (measured 
in bytes) in order to guarantee alignment of attributes on word boundaries.

PASSWORD
The PASSWORD attribute is used in Shared Secret Responses. It is always present in a Shared Secret Response, 
along with the USERNAME.

The value of PASSWORD is a variable length value that is to be used as a shared secret. Its length MUST be 
a multiple of 4 (measured in bytes) in order to guarantee alignment of attributes on word boundaries.

MESSAGE-INTEGRITY
The MESSAGE-INTEGRITY attribute contains an HMAC-SHA1 of the STUN message. It can be present 
in Binding Requests or Binding Responses. Since it uses the SHA1 hash, the HMAC will be 20 bytes. The 
text used as input to HMAC is the STUN message, including the header, up to and including the attribute 
preceding the MESSAGE-INTEGRITY attribute. That text is then padded with zeroes so as to be a multiple 
of 64 bytes. As a result, the MESSAGE-INTEGRITY attribute must be the last attribute in any STUN mes-
sage. The key used as input to HMAC depends on the context.
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ERROR-CODE
The ERROR-CODE attribute is present in the Binding Error Response and Shared Secret Error Response. 
It is a numeric value in the range of 100 to 699 plus a textual reason phrase encoded in UTF-8, and is 
consistent in its code assignments and semantics with SIP and HTTP. The reason phrase is meant for user 
consumption, and can be anything appropriate for the response code. The lengths of the reason phrases must 
be a multiple of 4 (measured in bytes). This can be accomplished by added spaces to the end of the text, if 
necessary. Recommended reason phrases for the defi ned response codes are presented below.

To facilitate processing, the class of the error code (the hundreds digit) is encoded separately from the rest of 
the code.

     0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |                   0                     |Class|     Number    |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Reason Phrase (variable)                                ..

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

The class represents the hundreds digit of the response code. The value must be between 1 and 6. The num-
ber represents the response code modulo 100, and its value must be between 0 and 99.

The following response codes, along with their recommended reason phrases (in brackets) are defi ned at 
this time.

400 (Bad Request): The request was malformed. The client should not retry the request without modifi -
cation from the previous attempt.

401 (Unauthorized): The Binding Request did not contain a MESSAGE-INTEGRITY attribute.
420 (Unknown Attribute): The server did not understand a mandatory attribute in the request.
430 (Stale Credentials): The Binding Request did contain a MESSAGE-INTEGRITY attribute, but it 

used a shared secret that has expired. The client should obtain a new shared secret and try again.
431 (Integrity Check Failure): The Binding Request contained a MESSAGE-INTEGRITY attribute, 

but the HMAC failed verifi cation. This could be a sign of a potential attack or client implementa-
tion error.

432 (Missing Username): The Binding Request contained a MESSAGE-INTEGRITY attribute, but not 
a USERNAME attribute. Both must be present for integrity checks.

433 (Use TLS): The Shared Secret request has to be sent over TLS, but was not received over TLS.
500 (Server Error): The server has suffered a temporary error. The client should try again.
600 (Global Failure): The server is refusing to fulfi ll the request. The client should not retry.

UNKNOWN-ATTRIBUTES
The UNKNOWN-ATTRIBUTES attribute is present only in a Binding Error Response or Shared Secret Error 
Response when the response code in the ERROR-CODE attribute is 420.

The attribute contains a list of 16 bit values, each of which represents an attribute type that was not under-
stood by the server. If the number of unknown attributes is an odd number, one of the attributes must be 
repeated in the list, so that the total length of the list is a multiple of 4 bytes.
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   0                   1                   2                   3

     0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Attribute 1 Type           |     Attribute 2 Type        |

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

    |      Attribute 3 Type           |     Attribute 4 Type    ...

    +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

REFLECTED-FROM
The REFLECTED-FROM attribute is present only in Binding Responses, when the Binding Request con-
tained a RESPONSE-ADDRESS attribute. The attribute contains the identity (in terms of IP address) of the 
source where the request came from. Its purpose is to provide traceability, so that a STUN server cannot be 
used as a refl ector for denial-of-service attacks. Its syntax is identical to the MAPPED-ADDRESS attribute.

5.4 Overview of  MIDCOM Approaches
This section looks at the newly-defi ned topic of Middlebox Communications (MIDCOM), which was 
alluded to above in the context of STUN. A principal objective of RFC 3303 is to describe the underly-
ing framework of MIDCOM to enable complex applications through the middleboxes, seamlessly using a 
trusted third party. This discussion is based on RFC 3303 [SRI200201]. Developers should refer to the original 
RFC and all supportive extensions, updates, etc., for normative development guidance.

5.4.1 Background
There are a variety of intermediate devices in the Internet today that require application intelligence for 
their operation. Datagrams pertaining to real-time streaming applications, such as SIP and H.323, and peer-
to-peer applications, such as Napster and NetMeeting, cannot be identifi ed by merely examining packet 
headers. Middleboxes implementing Firewall and Network Address Translator services typically embed 
application intelligence within the device for their operation. The document specifi es an architecture and 
framework in which trusted third parties can be delegated to assist the middleboxes to perform their opera-
tion, without resorting to embedding application intelligence. Doing this will allow a middlebox to continue 
to provide the services while keeping the middlebox application agnostic.

Intermediate devices requiring application intelligence are the subject of RFC 3303. These devices are 
referred to as middleboxes throughout the document. Many of these devices enforce application-specifi c pol-
icy-based functions such as packet fi ltering,  VPN (Virtual Private Network) tunneling, Intrusion detection, 
security, and so forth. Network Address Translator service, on the other hand, provides routing transparency 
across address realms (within IPv4 routing network or across V4 and V6 routing realms) independent of 
applications.  Application Level Gateways (ALGs) are used in conjunction with NAT to examine and option-
ally modify application payload so the end-to-end application behavior remains unchanged for many of the 
applications traversing NAT middleboxes. There may be other types of services requiring embedding appli-
cation intelligence in middleboxes for their operation. The discussion scope of this RFC is however limited 
to Firewall and NAT services. Nonetheless, the MIDCOM framework is designed to be extensible to support 
the deployment of new services.

Tight coupling of application intelligence with middleboxes makes maintenance of middleboxes hard with 
the advent of new applications. Built-in application awareness typically requires updates of operating sys-
tems with new applications or newer versions of existing applications. Operators requiring support for newer 
applications will not be able to use third party software/hardware specifi c to the application and are at the 
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mercy of their middlebox vendor to make the necessary upgrade. Further, embedding intelligence for a large 
number of application protocols within the same middlebox increases complexity of the middlebox and is 
likely to be error prone and degrade in performance.

RFC 3303 describes a framework in which application intelligence can be moved from middleboxes into 
external MIDCOM agents. The premise of the framework is to devise a MIDCOM protocol that is applica-
tion independent so the middleboxes can stay focused on services such as fi rewall and NAT. The framework 
document includes some explicit and implied requirements for the MIDCOM protocol. However, it must be 
noted that these requirements are only a subset. A separate requirements document lists the requirements in 
detail.

MIDCOM agents with application intelligence can assist the middleboxes through the MIDCOM protocol 
in permitting applications such as FTP, SIP and H.323. The communication between a MIDCOM agent and 
a middlebox will not be noticeable to the end-hosts that take part in the application, unless one of the end-
hosts assumes the role of a MIDCOM agent. Discovery of middleboxes or MIDCOM agents in the path of 
an application instance is outside the scope of this RFC. Further, any communication amongst middleboxes 
is also outside the scope of RFC 3303.

RFC 3303 describes the framework in which middlebox communication takes place and the various ele-
ments that constitute the framework. Section 5.4.2 describes the terms used in the document. Section 5.4.3 
defi nes the architectural framework of a middlebox for communication with MIDCOM agents. The re-
maining sections cover the components of the framework, illustration using sample fl ows, and operational 
considerations with the MIDCOM architecture. Section 5.4.4 describes the nature of MIDCOM protocol. 
Section 5.4.5 identifi es entities that could potentially host the MIDCOM agent function. Section 5.4.6 con-
siders the role of Policy server and its function with regard to communicating MIDCOM agent authorization 
policies. Section 5.4.7 is an illustration of SIP fl ows using a MIDCOM framework in which the MIDCOM 
agent is co-resident on a SIP proxy server. Section 5.4.8 addresses operational considerations in deploying a 
protocol adhering to the framework described here. Section 5.4.9 is an applicability statement, scoping the 
location of middleboxes. 

5.4.2  Terminology
Below are the defi nitions for the terms used in RFC 3303.

5.4.2.1 Middlebox Function/Service
A middlebox function or a middlebox service is an operation or method performed by a network intermedi-
ary that may require application-specifi c intelligence for its operation. Policy-based packet fi ltering (a.k.a. 
fi rewall), Network Address Translation (NAT), Intrusion detection, Load balancing, Policy-based tunneling, 
and IPsec security are all examples of a middlebox function (or service).

5.4.2.2    Middlebox
A middlebox is a network intermediate device that implements one or more of the middlebox services. A 
NAT middlebox is a middlebox implementing NAT service. A fi rewall middlebox is a middlebox imple-
menting fi rewall service.

Traditional middleboxes embed application intelligence within the device to support specifi c application 
traversal. Middleboxes supporting the MIDCOM protocol will be able to externalize application intelligence 
into MIDCOM agents. In reality, some of the middleboxes may continue to embed application intelligence 
for certain applications and depend on MIDCOM protocol and MIDCOM agents for the support of remain-
ing applications.
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5.4.2.3   Firewall
Firewall is a policy-based packet-fi ltering middlebox function, typically used for restricting access to/from 
specifi c devices and applications. The policies are often termed Access Control Lists (ACLs).

5.4.2.4    NAT
Network Address Translation is a method by which IP addresses are mapped from one address realm to 
another, providing transparent routing to end-hosts. Transparent routing here refers to modifying end-node 
addresses en route and maintaining state for these updates so that when a datagram leaves one realm and 
enters another, datagrams pertaining to a session are forwarded to the right end-host in either realm. Refer to 
RFC 2663 for the defi nition of Transparent routing, various NAT types, and the associated terms in use. Two 
types of NAT are most common. Basic-NAT, where only an IP address (and the related IP, TCP/UDP check-
sums) of packets is altered and NAPT (Network Address Port Translation), where both an IP address and a 
transport layer identifi er, such as a TCP/UDP port (and the related IP, TCP/UDP checksums), are altered.

The term NAT here is very similar to the IPv4 NAT described in RFC 2663, but is extended beyond IPv4 
networks to include the IPv4-v6 NAT-PT described in RFC 2766. While the IPv4 NAT translates one IPv4 
address into another IPv4 address to provide routing between private v4 and external V4 address realms, 
IPv4-v6 NAT-PT (RFC 2766) translates an IPv4 address into an IPv6 address, and vice versa, to provide 
routing between a v6 address realm and an external v4 address realm. Unless specifi ed otherwise, NAT is a 
middlebox function referring to both IPv4 NAT, as well as IPv4-v6 NAT-PT.

5.4.2.5   Proxy
A proxy is an intermediate relay agent between clients and servers of an application, relaying application 
messages between the two. Proxies use special protocol mechanisms to communicate with proxy clients and 
relay client data to servers and vice versa. A proxy terminates sessions with both the client and the server, 
acting as server to the end-host client and as client to the end-host server.

Applications such as FTP, SIP, and RTSP use a control session to establish data sessions. These control and 
data sessions can take divergent paths. While a proxy can intercept both the control and data sessions, it 
might intercept only the control session. This is often the case with real-time streaming applications such as 
SIP and RTSP.

5.4.2.6    ALG
Application Level Gateways are entities that possess the application-specifi c intelligence and knowledge of 
an associated middlebox function. They examine application traffi c in transit and assist the middlebox in 
carrying out its function.

An ALG may be a co-resident with a middlebox or reside externally, communicating through a middlebox 
communication protocol. It interacts with a middlebox to set up state, access control fi lters, use middlebox 
state information, modify application specifi c payload, or perform whatever else is necessary to enable the 
application to run through the middlebox.

ALGs are different from proxies in that they are not visible to end-hosts, unlike the proxies which are 
relay agents terminating sessions with both end-hosts. They do not terminate sessions with either end-host. 
Instead, they examine, and optionally modify, application payload content to facilitate the fl ow of applica-
tion traffi c through a middlebox. ALGs are middlebox centric, in that they assist the middleboxes in carrying 
out their function, whereas, the proxies act as a focal point for application servers, relaying traffi c between 
application clients and servers.
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ALGs are similar to Proxies, in that both ALGs and proxies facilitate application-specifi c communication 
between clients and servers.

5.4.2.7  End-Hosts
End-hosts are entities that are party to a networked application instance. End-hosts referred to in this RFC, 
are specifi cally those terminating Real-time streaming Voice-over-IP applications such as SIP and H.323, 
and peer-to-peer applications such as Napster and NetMeeting.

5.4.2.8   MIDCOM Agents
MIDCOM agents are entities performing ALG functions, logically external to a middlebox. MIDCOM 
agents possess a combination of application awareness and knowledge of the middlebox function. This com-
bination enables the agents to facilitate traversal of the middlebox by the application’s packets. A MIDCOM 
agent may interact with one or more middleboxes.

Only “In-Path MIDCOM agents” are considered in this RFC. In-Path MIDCOM agents are agents which 
are within the path of those datagrams that the agent needs to examine and/or modify in fulfi lling its role 
as a MIDCOM agent. “Within the path” here simply means that the packets in question fl ow through the 
node that hosts the agent. The packets may be addressed to the agent node at the IP layer. Alternatively, they 
may not be addressed to the agent node, but may be constrained by other factors to fl ow through it. In fact, 
it is immaterial to the MIDCOM protocol which of these is the case. Some examples of In-Path MIDCOM 
agents are application proxies, gateways, or even end-hosts that are party to the application.

Agents not resident on nodes that are within the path of their relevant application fl ows are referred to as 
“Out-of-Path (OOP) MIDCOM agents” and are out of the scope of this RFC.

5.4.2.9  MIDCOM PDP
  MIDCOM Policy Decision Point (PDP) is primarily a Policy Decision Point (PDP) as defi ned in RFC 3198; 
and also acts as a policy repository, holding MIDCOM-related policy profi les in order to make authorization 
decisions. RFC 3198 defi nes a PDP as “a logical entity that makes policy decisions for itself or for other net-
work elements that request such decisions”; and a policy repository as “a specifi c data store that holds policy 
rules, their conditions and actions, and related policy data.”

A middlebox and a MIDCOM PDP may communicate further if the MIDCOM PDP’s policy changes or if a 
middlebox needs further information. The MIDCOM PDP may, at any time, notify the middlebox to termi-
nate authorization for an agent.

The protocol facilitating the communication between a middlebox and MIDCOM PDP need not be part of 
the MIDCOM protocol. Section 5.4.6 in the document addresses the MIDCOM PDP interface and protocol 
framework independent of the MIDCOM framework.

Application-specifi c policy data and policy interface between an agent or application endpoint and a MID-
COM PDP is out of bounds for this RFC. The MIDCOM PDP issues addressed in the document are focused 
at an aggregate domain level as befi tting the middlebox. For example, a SIP MIDCOM agent may choose to 
query a MIDCOM PDP for the administrative (or corporate) domain to fi nd whether a certain user is allowed 
to make an outgoing call. This type of application-specifi c policy data, as befi tting an end user, is out of 
bounds for the MIDCOM PDP considered in this RFC. It is within bounds, however, for the MIDCOM PDP 
to specify the specifi c end-user applications (or tuples) for which an agent is permitted to be an ALG.
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5.4.2.10   Middlebox Communication (MIDCOM) protocol
The protocol between a MIDCOM agent and a middlebox allows the MIDCOM agent to invoke services of 
the middlebox and allow the middlebox to delegate application specifi c processing to the MIDCOM agent. 
The MIDCOM protocol allows the middlebox to perform its operation with the aid of MIDCOM agents, 
without resorting to embedding application intelligence. The principal motivation behind architecting this 
protocol is to enable complex applications through middleboxes, seamlessly using a trusted third party, i.e., 
a MIDCOM agent.

This is a protocol yet to be devised.

5.4.2.11  MIDCOM Agent Registration
A MIDCOM agent registration is defi ned as the process of provisioning agent profi le information with the 
middlebox or a MIDCOM PDP. MIDCOM agent registration is often a manual operation performed by an 
operator rather than the agent itself.

A MIDCOM agent profi le may include agent authorization policy (i.e., session tuples for which the agent is 
authorized to act as ALG), agent-hosting-entity (e.g., Proxy, Gateway, or end-host which hosts the agent), 
agent accessibility profi le (including any host level authentication information), and security profi le (for the 
messages exchanged between the middlebox and the agent).

5.4.2.12  MIDCOM Session
A MIDCOM session is defi ned to be a lasting association between a MIDCOM agent and a middlebox. The 
MIDCOM session is not assumed to imply any specifi c transport layer protocol. Specifi cally, this should not 
be construed as referring to a connection-oriented TCP protocol.

5.4.2.13  Filter
A fi lter is packet matching information that identifi es a set of packets to be treated a certain way by a mid-
dlebox. This defi nition is consistent with RFC 3198, which defi nes a fi lter as “A set of terms and/or criteria 
used for the purpose of separating or categorizing. This is accomplished via single- or multifi eld matching of 
traffi c header and/or payload data.”

5-Tuple specifi cation of packets in the case of a fi rewall and 5-tuple specifi cation of a session in the case of a 
NAT middlebox function are examples of a fi lter.

5.4.2.14  Policy action (or) Action
Policy action (or Action) is a description of the middlebox treatment/service to be applied to a set of packets. 
This defi nition is consistent with RFC 3198, which defi nes a policy action as “Defi nition of what is to be 
done to enforce a policy rule, when the conditions of the rule are met. Policy actions may result in the execu-
tion of one or more operations to affect and/or confi gure network traffi c and network resources.”

NAT Address-BIND (or Port-BIND in the case of NAPT) and fi rewall permit/deny action are examples of an 
Action.

5.4.2.15  Policy Rule(s)
The combination of one or more fi lters and one or more actions. Packets matching a fi lter are to be treated as 
specifi ed by the associated action(s). The Policy rules may also contain auxiliary attributes such as individual 
rule type, timeout values, creating agent, etc.

Policy rules are communicated through the MIDCOM protocol.
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5.4.3  Architectural Framework for Middleboxes
A middlebox may implement one or more of the middlebox functions selectively on multiple interfaces of 
the device. There can be a variety of MIDCOM agents interfacing with the middlebox to communicate with 
one or more of the middlebox functions on an interface. As such, the middlebox communication protocol 
must allow for selective communication between a specifi c MIDCOM agent and one or more middlebox 
functions on the interface. Figure 5.14 identifi es a possible layering of the service supported by a middlebox 
and a list of MIDCOM agents that might interact with it.

Middlebox Function-specific Policy Rule(s) 
and Other Attributes 

Middlebox Communication 
Protocol (MIDCOM) Interface 

Firewall NAT 
VPN 

Tunneling 
Intrusion 
Detection 

Policy 
Interface 

Middlebox 
Function 

Middlebox 
Managed 

Resources 

MIDCOM Agent 
Co-resident 

on End-hosts 

MIDCOM 
Protocol 

MIDCOM 
PDP 

MIDCOM Agent 
Co-resident 
on Appl. GW 

MIDCOM Agent 
Co-resident on 
Proxy Server 

Figure 5.14: MIDCOM agents interfacing with a middlebox.

Firewall ACLs, NAT-BINDs, NAT address-maps, and Session-state are a few of the middlebox function-
specifi c policy rules. A session state may include middlebox function-specifi c attributes, such as timeout 
values, NAT translation parameters (i.e., NAT-BINDS), and so forth. As Session-state may be shared across 
middlebox functions, a Session-state may be created by a function, and terminated by a different function. 
For example, a session-state may be created by the fi rewall function, but terminated by the NAT function, 
when a session timer expires.

Application specifi c MIDCOM agents (co-resident on the middlebox or external to the middlebox) would examine 
the IP datagrams and help identify the application the datagram belongs to, and assist the middlebox in perform-
ing functions unique to the application and the middlebox service. For example, a MIDCOM agent, assisting a 
NAT middlebox, might perform payload translations, whereas a MIDCOM agent assisting a fi rewall middlebox 
might request the fi rewall to permit access to application-specifi c, dynamically-generated session traffi c.

5.4.4  MIDCOM Protocol
The MIDCOM protocol between a MIDCOM agent and a middlebox allows the MIDCOM agent to  invoke 
services of the middlebox and allow the middlebox to delegate application-specifi c processing to the 
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 MIDCOM agent. The protocol will allow MIDCOM agents to signal the middleboxes, to let complex appli-
cations using dynamic port-based sessions through them (i.e., middleboxes) seamlessly.

It is important to note that an agent and a middlebox can be on the same physical device. In such a case, they 
may communicate using a MIDCOM protocol message format (but using a non-IP based transport, such as 
IPC messaging), (or) they may communicate using well-defi ned API/DLL, (or) the application intelligence 
is fully embedded into the middlebox service (as it is done today in many stateful inspection fi rewall devices 
and NAT devices).

The MIDCOM protocol will consist of a session setup phase, run-time session phase, and a session termina-
tion phase.

Session setup must be preceded by registration of the MIDCOM agent with either the middlebox or the 
MIDCOM PDP. The MIDCOM agent access and authorization profi le may either be preconfi gured on the 
middlebox (or) listed on a MIDCOM PDP; the middlebox is confi gured to consult. MIDCOM shall be a client-
server protocol initiated by the agent.

A MIDCOM session may be terminated by either of the parties. A MIDCOM session termination may also 
be triggered by (a) the middlebox or the agent going out of service and not being available for further MID-
COM operations, or (b) the MIDCOM PDP notifying the middlebox that a particular MIDCOM agent is no 
longer authorized.

The MIDCOM protocol data exchanged during runtime is governed principally by the middlebox services 
the protocol supports. Firewall and NAT middlebox services are considered in this RFC. Nonetheless, the 
MIDCOM framework is designed to be extensible to support the deployment of other services as well.

5.4.5  MIDCOM Agents
MIDCOM agents are logical entities which may reside physically on nodes external to a middlebox, pos-
sessing a combination of application awareness and knowledge of middlebox function. A MIDCOM agent 
may communicate with one or more middleboxes. The issues of middleboxes discovering agents, or vice 
versa, are outside the scope of this RFC. The focus of the document is the framework in which a MIDCOM 
agent communicates with a middlebox using MIDCOM protocol, which is yet to be devised. Specifi cally, 
the focus is restricted to just the In-Path agents.

In-Path MIDCOM agents are MIDCOM agents that are located naturally within the message path of the 
application(s) they are associated with. Bundled session applications, such as H.323, SIP, and RTSP which have 
separate control and data sessions, may have their sessions take divergent paths. In those scenarios, In-Path 
MIDCOM agents are those that fi nd themselves in the control path. In a majority of cases, a middlebox will 
likely require the assistance of a single agent for an application in the control path alone. However, it is possible 
that a middlebox function, or a specifi c application traversing the middlebox might require the intervention of 
more than a single MIDCOM agent for the same application, one for each sub-session of the application.

Application Proxies and gateways are a good choice for In-Path MIDCOM agents as these entities, by 
defi nition, are in the path of an application between a client and server. In addition to hosting the MIDCOM 
agent function, these natively in-path application-specifi c entities may also enforce application-specifi c 
choices locally, such as dropping messages infected with known viruses or lacking user authentication. 
These entities can be interjecting both the control and data sessions. For example, FTP control and Data ses-
sions are interjected by an FTP proxy server.

However, proxies may also be interjecting just the control session and not the data sessions, as is the case 
with real-time streaming applications such as SIP and RTSP. Note, applications may not always traverse a 
proxy and some applications may not have a proxy server available.
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SIP proxies and H.323 gatekeepers may be used to host MIDCOM agent functions to control middleboxes 
implementing fi rewall and NAT functions. The advantage of using in-path entities, as opposed to creating 
an entirely new agent, is that the in-path entities already possess application intelligence. You will need to 
merely enable the use of the MIDCOM protocol to be an effective MIDCOM agent. Figure 5.15 illustrates 
a scenario where the in-path MIDCOM agents interface with the middlebox. Let us say, the MIDCOM PDP 
has preconfi gured the in-path proxies as trusted MIDCOM agents on the middlebox and the packet fi lter 
implements a ‘default-deny’ packet fi ltering policy. Proxies use their application-awareness knowledge to 
control the fi rewall function and selectively permit a certain number of voice stream sessions dynamically 
using MIDCOM protocol.

In the illustration below, the proxies and the MIDCOM PDP are shown inside a private domain. The intent 
however, is not to imply that they be inside the private boundary alone. The proxies may also reside external 
to the domain. The only requirement is that there be a trust relationship with the middlebox.

Application Data Path Datagrams 
Application Control Path Datagrams 
Middlebox Communication Protocol (MIDCOM) 
MIDCOM PDP Interface 
Private Domain Boundary 

Firewall 

SIP 

SIP 
RTSP 

RTSP 

Data Streams 

End-hosts 

Outside the 
Private Domain Within a Private Domain 

Middlebox 

Legend: 

MIDCOM 
Protocol 
Interface 

Policy 
Interface 

SIP 
Proxy 

MIDCOM 
PDP 

MIDCOM 

RTSP 
Proxy 

(RTP, RTSP Data, etc.) 

Figure 5.15: In-path MIDCOM agents for middlebox communication.

5.4.5.1  End-hosts as In-path MIDCOM Agents
End-hosts are another variation of In-Path MIDCOM agents. Unlike Proxies, End-hosts are a direct party to 
the application and possess all the end-to-end application intelligence there is to it. End-hosts presumably 
terminate both the control and data paths of an application. Unlike other entities hosting MIDCOM agents, 
end-host is able to process secure datagrams. However, the problem would be one of manageability—up-
grading all the end-hosts running a specifi c application.
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5.4.6  MIDCOM PDP Functions
The functional decomposition of the MIDCOM architecture assumes the existence of a logical entity, 
known as MIDCOM PDP, responsible for performing authorization and related provisioning services for the 
middlebox as depicted in Figure 5.14. The MIDCOM PDP is a logical entity which may reside physically on 
a middlebox or on a node external to the middlebox. The protocol employed for communication between the 
middlebox and the MIDCOM PDP is unrelated to the MIDCOM protocol.

Agents are registered with a MIDCOM PDP for authorization to invoke services of the middlebox. The 
MIDCOM PDP maintains a list of agents that are authorized to connect to each of the middleboxes the 
MIDCOM PDP supports. In the context of the MIDCOM Framework, the MIDCOM PDP does not assist a 
middlebox in the implementation of the services it provides.

The MIDCOM PDP acts in an advisory capacity to a middlebox, to authorize or terminate authorization for 
an agent attempting connectivity to the middlebox. The primary objective of a MIDCOM PDP is to com-
municate agent authorization information so as to ensure that the security and integrity of a middlebox is 
not jeopardized. Specifi cally, the MIDCOM PDP should associate a trust level with each agent attempting to 
connect to a middlebox and provide a security profi le. The MIDCOM PDP should be capable of addressing 
cases when end-hosts are agents to the middlebox.

5.4.6.1  Authentication, Integrity and  Confi dentiality
Host authenticity and individual message security are two distinct types of security considerations. Host 
authentication refers to credentials required of a MIDCOM agent to authenticate itself to the middlebox and 
vice versa. When authentication fails, the middlebox must not process signaling requests received from the 
agent that failed authentication. Two-way authentication should be supported. In some cases, the two-way 
authentication may be tightly linked to the establishment of keys to protect subsequent traffi c. Two-way 
authentication is often required to prevent various active attacks on the MIDCOM protocol and secure estab-
lishment of keying material.

Security services such as authentication, data integrity, confi dentiality and replay protection may be adapted 
to secure MIDCOM messages in an untrusted domain. Message authentication is the same as data origin 
authentication and is an affi rmation that the sender of the message is who it claims to be. Data integrity 
refers to the ability to ensure that a message has not been accidentally (maliciously or otherwise) altered 
or destroyed. Confi dentiality is the encryption of a message with a key, so that only those in possession of 
the key can decipher the message content. Lastly, replay protection is a form of sequence integrity, so when 
an intruder plays back a previously-recorded sequence of messages, the receiver of the replay messages 
will simply drop the replay messages into bit-bucket. Certain applications of the MIDCOM protocol might 
require support for nonrepudiation as an option of the data integrity service. Typically, support for nonrepu-
diation is required for billing, service level agreements, payment orders, and rec eipts for delivery of service.

  IPsec IP Authentication Header (AH) offers data-origin authentication, data integrity and protection from 
message replay.   IPsec Encapsulating Security Payload (ESP) provides data-origin authentication to a 
lesser degree (same as IPsec AH if the MIDCOM transport protocol turns out to be TCP or UDP), message 
confi dentiality, data integrity, and protection from replay. Besides the IPsec based protocols, there are other 
security options as well. TLS based transport layer security is one option. There are also many application-
layer security mechanisms available. Simple Source-address based security is a minimal form of security 
and should be relied on only in the most trusted environments, where those hosts will not be spoofed.

The MIDCOM message security shall use existing standards, whenever the existing standards satisfy the 
requirements. Security shall be specifi ed to minimize the impact on sessions that do not use the security 
option. Security should be designed to avoid introducing, and to minimize the impact of, denial of service 
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attacks. Some security mechanisms and algorithms require substantial processing or storage, in which case 
the security protocols should protect themselves as well against possible fl ooding attacks that overwhelm the 
endpoint (i.e., the middlebox or the agent) with such processing. For connection-oriented protocols (such as 
TCP) using security services, the security protocol should detect premature closure or truncation attacks.

5.4.6.2  Registration and Deregistration of MIDCOM Agents
Prior to allowing MIDCOM agents to invoke services of the middlebox, a registration process must take 
place. Registration is a different process than establishing a MIDCOM session. The former requires pro-
visioning agent profi le information with the middlebox or a MIDCOM PDP. Agent registration is often a 
manual operation performed by an operator rather than the agent itself. Setting up a MIDCOM session refers 
to establishing a MIDCOM transport session and exchanging security credentials between an agent and a 
middlebox. The transport session uses the registered information for session establishment.

Profi le of a MIDCOM agent includes agent authorization policy (i.e., session tuples for which the agent is 
authorized to act as ALG), agent-hosting-entity (e.g., Proxy, Gateway or end-host which hosts the agent), 
agent accessibility profi le (including any host level authentication information), and security profi le (i.e., 
security requirements for messages exchanged between the middlebox and the agent).

MIDCOM agent profi le may be preconfi gured on a middlebox. Subsequent to that, the agent may choose to 
initiate a MIDCOM session prior to any data traffi c. For example, MIDCOM agent authorization policy for a 
middlebox service may be preconfi gured by specifying the agent in conjunction with a fi lter. In the case of a 
fi rewall, for example, the ACL tuple may be altered to refl ect the optional Agent presence. The revised ACL 
may look something like the following.

   (<Session-Direction>, <Source-Address>, <Destination-Address>, <IP-

   Protocol>, <Source-Port>, <Destination-Port>, <Agent>)

The reader should note that this is an illustrative example and not necessarily the actual defi nition of an 
ACL tuple. The formal description of the ACL is yet to be devised. Agent accessibility information should 
also be provisioned. For a MIDCOM agent, accessibility information includes the IP address, trust level, 
host authentication parameters, and message authentication parameters. Once a session is established 
between a middlebox and a MIDCOM agent, that session should be usable with multiple instances of the 
application(s), as appropriate. Note, all of this could be captured in an agent profi le for ease of management.

The technique described above is necessary for the pre-registration of MIDCOM agents with the middle-
box. The middlebox provisioning may remain unchanged, if the middlebox learns of the registered agents 
through a MIDCOM PDP. In either case, the MIDCOM agent should initiate the session prior to the start 
of the application. If the agent session is delayed until after the application has started, the agent might be 
unable to process the control stream to permit the data sessions. When a middlebox notices an incoming 
MIDCOM session, and the middlebox has no prior profi le of the MIDCOM agent, the middlebox will con-
sult its MIDCOM PDP for authenticity, authorization, and trust guidelines for the session.

5.4.7  MIDCOM Framework Illustration Using an In-Path Agent
In Figure 5.16, one considers SIP applications to illustrate the operation of the MIDCOM protocol. Specifi -
cally, the application assumes that a caller, external to a private domain, initiates the call. The middlebox is 
assumed to be located at the edge of the private domain. A   SIP phone (SIP User Agent Client/Server) inside 
the private domain is capable of receiving calls from external SIP phones. The caller uses a SIP Proxy, node 
located external to the private domain, as its outbound proxy. No interior proxy is assumed for the callee. 
Lastly, the external SIP proxy node is designated to host the MIDCOM agent function.
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Arrows 1 and 8 in the fi gure below refer to a SIP call setup exchange between the external SIP phone and 
the SIP proxy. Arrows 4 and 5 refer to a SIP call setup exchange between the SIP proxy and the interior SIP 
phone, and are assumed to be traversing the middlebox. Arrows 2, 3, 6 and 7 below, between the SIP proxy 
and the middlebox, refer to MIDCOM communication. Na and Nb represent RTP/RTCP media traffi c path 
in the external network. Nc and Nd represent media traffi c inside the private domain.

Na 

Nb 

Nc 

Nd 

2 3 7 6 

4 

5 

1 

8 

SIP 
Proxy 

Middlebox 
External 

SIP Phone 

SIP Phone 
within Private 

Domain 

Figure 5.16: MIDCOM framework illustration with   in-path SIP proxy.

As for the SIP application, we make the assumption that the middlebox is preconfi gured to accept SIP calls 
into the private SIP phone. Specifi cally, this would imply that the middlebox implementing fi rewall service 
is preconfi gured to permit SIP calls (destination TCP or UDP port number set to 5060) into the private 
phone. Likewise, middlebox implementing NAPT service would have been preconfi gured to provide a port 
binding, to permit incoming SIP calls to be redirected to the specifi c private SIP phone. In other words, the 
INVITE from the external caller is not made to the private IP address but to the NAPT external address.

The objective of the MIDCOM agent in the following illustration is to merely permit the RTP/RTCP media 
stream through the middlebox, when using the MIDCOM protocol architecture outlined in the document. 
A SIP session typically establishes two RTP/RTCP media streams—one from the callee to the caller and 
another from the caller to the callee. These media sessions are UDP based and will use dynamic ports. The 
dynamic ports used for the media stream are specifi ed in the SDP section of the SIP payload message. The 
MIDCOM agent will parse the SDP section and use the MIDCOM protocol to (a) open pinholes (i.e., permit 
RTP/RTCP session tuples) in a middlebox implementing fi rewall service, or (b) create PORT bindings and 
appropriately modify the SDP content to permit the RTP/RTCP streams through a middlebox implementing 
NAT service. The MIDCOM protocol should be suffi ciently rich and expressive to support the operations 
described under the timelines. The examples do not show the timers maintained by the agent to keep the 
middlebox policy rule(s) from timing out.

MIDCOM agent Registration and connectivity between the MIDCOM agent and the middlebox are not shown 
in the interest of restricting the focus of the MIDCOM transactions to enabling the middlebox to let the media 
stream through. MIDCOM PDP is also not shown in the diagram below or on the timelines for the same reason.

The following subsections illustrate a typical timeline sequence of operations that transpire with the various 
elements involved in a SIP telephony application path. Each subsection is devoted to a specifi c instantiation 
of a middlebox service: NAPT, fi rewall, and a combination of both NAPT and fi rewall are considered.

5.4.7.1 Timeline Flow— Middlebox Implementing Firewall Service
Figure 5.17 assumes a middlebox implementing a fi rewall service. One further assumes that the middle-
box is preconfi gured to permit SIP calls (destination TCP or UDP port number set to 5060) into the private 
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phone. The following timeline illustrates the operations performed by the  MIDCOM agent, to permit RTP/
RTCP media stream through the middlebox.

The INVITE from the caller (external) is assumed to include the SDP payload. You will note that the MID-
COM agent requests the middlebox to permit the Private-to-external RTP/RTCP fl ows before the INVITE 
is relayed to the callee. This is because, in SIP, the calling party must be ready to receive the media when 
it sends the INVITE with a session description. If the called party (private phone) assumes this and sends 
“early media” before sending the 200 OK response, the fi rewall will have blocked these packets without this 
initial MIDCOM signaling from the agent.
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SIP Phone 
(Private) 

Middlebox 
(FIREWALL Service) 

SIP Proxy 
(MIDCOM Agent) 

180 Ringing 
180 Ringing 

Permit RTP2 and RTCP2 

Cancel permits to RTP1, 
RTCP1, RTP2, and RTCP2

RTP2 and RTCP2 OKed 

Permit RTP1 and RTCP1 

Identify end-to-end parameters (from 
Caller’s SDP) for the Pri-to-Ext RTP 
and RTCP sessions. (RTP1, RTCP1)

Identify end-to-end parameters (from
Callee’s SDP) for the Ext-to-Pri RTP 
and RTCP sessions. (RTP2, RTCP2)

RTP1 and RTCP1 OKed 

RTP1, RTCP1, RTP2, 
and RTCP2 cancelled

ACK 
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100 Trying 

200 OK 
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INVITE 
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MIDCOM Control Traffic 
SIP Control Traffic 
RTP/RTCP Media Traffic 

Legend 

RTP/RTCP

Figure 5.17: Timeline fl ow—Middlebox implementing fi rewall service.
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5.4.7.2 Timeline Tow—Middlebox Implementing  NAPT Service
Figure 5.18 assumes a middlebox implementing NAPT service. One makes the assumption that the middle-
box is preconfi gured to redirect SIP calls to the specifi c private SIP phone application. i.e., the INVITE from 
the external caller is not made to the private IP address, but to the NAPT external address. Let us say, the 
external phone’s IP address is Ea, NAPT middlebox external Address is Ma, and the internal SIP phone’s 
private address is Pa. SIP calls to the private SIP phone will arrive as TCP/UDP sessions, with the destina-
tion address and port set to Ma and 5060 respectively. The middlebox will redirect these datagrams to the 
internal SIP phone. The following timeline will illustrate the operations necessary to be performed by the 
MIDCOM agent to permit the RTP/RTCP media stream through the middlebox.

As with the previous example (Section 5.4.7.1), the INVITE from the caller (external) is assumed to 
include the SDP payload. You will note that the MIDCOM agent requests the middlebox to create NAT 
session descriptors for the private-to-external RTP/RTCP fl ows before the INVITE is relayed to the private 
SIP phone (for the same reasons as described in Section 5.4.7.1). If the called party (private phone) sends 
“early media” before sending the 200 OK response, the NAPT middlebox will have blocked these packets 
without the initial MIDCOM signaling from the agent. Also, note that after the 200 OK is received by the 
proxy from the private phone, the agent requests the middlebox to allocate NAT session descriptors for the 
external-to-private RTP2 and RTCP2 fl ows, such that the ports assigned on the Ma for RTP2 and RTCP2 
are contiguous. The RTCP stream does not happen with a noncontiguous port. Lastly, you will note that 
even though each media stream (RTP1, RTCP1, RTP2 and RTCP2) is independent, they are all tied to the 
single SIP control session, while their NAT session descriptors were being created. Finally, when the agent 
issues a terminate session bundle command for the SIP session, the middlebox is assumed to delete all 
associated media stream sessions automatically.
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Figure 5.18: Timeline fl ow—Middlebox implementing NAPT service.
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5.4.7.3 Timeline fl ow—Middlebox implementing  NAPT and fi rewall.
Figure 5.19 assumes a middlebox implementing a combination of a fi rewall and a stateful NAPT service. 
One makes the assumption that the NAPT function is confi gured to translate the IP and TCP headers of the 
initial SIP session into the private SIP phone, and the fi rewall function is confi gured to permit the initial 
SIP session.

In the following timeline, it may be noted that the fi rewall description is based on packet fi elds on the wire 
(for example, as seen on the external interface of the middlebox). In order to ensure correct behavior of the 
individual services, you will notice that NAT specifi c MIDCOM operations precede fi rewall specifi c opera-
tions on the MIDCOM agent. This is noticeable in the timeline below when the MIDCOM agent processes 
the “200 OK” from the private SIP phone. The MIDCOM agent initially requests the NAT service on the 
middlebox to set up port-BIND and session-descriptors for the media stream in both directions. Subsequent 
to that, the MIDCOM agent determines the session parameters (i.e., the dynamic UDP ports) for the media 
stream, as viewed by the external interface, and requests the fi rewall service on the middlebox to permit 
those sessions through.
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Figure 5.19: Timeline fl ow—Middlebox implementing NAPT and fi rewall.
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5.4.8 Operational Considerations

5.4.8.1  Multiple MIDCOM sessions between agents and middlebox
A middlebox cannot be assumed to be a simple device implementing just one middlebox function and no 
more than a couple of interfaces. Middleboxes often combine multiple intermediate functions into the same 
device and have the ability to provision individual interfaces of the same device with different sets of func-
tions and varied provisioning for the same function across the interfaces.

As such, a MIDCOM agent ought to be able to have a single MIDCOM session with a middlebox and use 
the MIDCOM interface on the middlebox to interface with different services on the same middlebox.

5.4.8.2 Asynchronous Notifi cation to MIDCOM Agents
Asynchronous notifi cation by the middlebox to a MIDCOM agent can be useful for events such as Session 
creation, Session termination, MIDCOM protocol failure, middlebox function failure or any other signifi cant 
event. Independently, ICMP error codes can also be useful to notify transport layer failures to the agents.

In addition, periodic notifi cation of various forms of data, such as statistics update, would also be a useful 
function that would be benefi cial to certain types of agents.

5.4.8.3  Timers on Middlebox Considered Useful
When supporting the MIDCOM protocol, the middlebox is required to allocate dynamic resources, as 
specifi ed in policy rule(s), upon request from agents. Explicit release of dynamically allocated resources 
happens when the application session is ended or when a MIDCOM agent requests the middlebox to 
release the resource.

However, the middlebox should be able to recover the dynamically allocated resources, even as the agent 
that was responsible for the allocation is not alive. Associating a lifetime for these dynamic resources and 
using a timer to track the lifetime can be a good way to accomplish this.

5.4.8.4 Middleboxes Supporting Multiple Services
A middlebox could be implementing a variety of services (e.g. NAT and fi rewall) in the same box. Some 
of these services might have interdependency on shared resources and sequence of operation. Others may 
be independent of each other. Generally speaking, the sequence in which these function operations may be 
performed on datagrams is not within the scope of this RFC.

In the case of a middlebox implementing NAT and fi rewall services, it is safe to state that the NAT operation 
on an interface will precede a fi rewall on the egress and will follow a fi rewall on the ingress. Further, fi rewall 
access control lists used by a fi rewall are assumed to be based on session parameters, as seen on the interface 
supporting fi rewall service.

5.4.8.5  Signaling and Data Traffi c
The class of applications the MIDCOM architecture addresses focus around applications that have a com-
bination of one or more signaling and data traffi c sessions. The signaling may be done out-of-band, using a 
dedicated stand-alone session or may be done in-band, within a data session. Alternately, signaling may also 
be done as a combination of both stand-alone and in-band sessions.

SIP is an example of an application based on distinct signaling and data sessions. A SIP signaling session is 
used for call setup between a caller and a callee. A MIDCOM agent may be required to examine/modify SIP 
payload content to administer the middlebox so as to let the media streams (RTP/RTCP based) through. A 
MIDCOM agent is not required to intervene in the data traffi c.

Minoli_Book.indb   251Minoli_Book.indb   251 3/9/2006   6:30:45 PM3/9/2006   6:30:45 PM



Chapter 5

252

Signaling and context-specifi c Header information is sent in-band, within the same data stream for ap-
plications such as HTTP embedded applications, Sun-RPC (embedding a variety of NFS apps), Oracle 
transactions (embedding Oracle SQL+, MS ODBC, Peoplesoft) etc.

H.323 is an example of an application that sends signaling in both dedicated stand-alone sessions, as well as 
in conjunction with data. H.225.0 call signaling traffi c traverses middleboxes by virtue of static policy, no 
MIDCOM control needed. H.225.0 call signaling also negotiates ports for an H.245 TCP stream. A MID-
COM agent is required to examine/modify the contents of the H.245 so that H.245 can traverse it.

H.245 traverses the middlebox and also carries Open Logical Channel information for media data. So, the 
MIDCOM agent is once again required to examine/modify the payload content needs to let the media 
traffi c fl ow.

The MIDCOM architecture takes into consideration, supporting applications with independent signaling and 
data sessions as well as applications that have signaling and data communicated over the same session.

In the cases where signaling is done on a single stand-alone session, it is desirable to have a MIDCOM agent 
interpret the signaling stream and program the middlebox (that transits the data stream) so as to let the data 
traffi c through uninterrupted.

5.4.9 Applicability Statement
Middleboxes may be stationed in a number of topologies. However, the signaling framework outlined in this 
RFC may be limited to only those middleboxes that are located in a DMZ (Demilitarized Zone) at the edge 
of a private domain, connecting to the Internet. Specifi cally, the assumption is that you have a single middle-
box (running  NAT or fi rewall) along the application route. Discovery of a middlebox along an application 
route is outside the scope of this RFC. It is conceivable to have middleboxes located between departments 
within the same domain or inside the service provider’s domain and so forth. However, care must be taken to 
review each individual scenario and determine the applicability on a case-by-case basis.

The applicability may also be illustrated as follows. Real-time and streaming applications, such as Voice-
Over-IP, and peer-to-peer applications, such as Napster and Netmeeting, require administering fi rewalls 
and NAT middleboxes to let their media streams reach hosts inside a private domain. The requirements are 
in the form of establishing a “pin-hole” to permit a TCP/UDP session (the port parameters of which are 
dynamically determined) through a fi rewall or retain an address/port bind in the NAT device to permit ses-
sions to a port. These requirements are met by current generation middleboxes using adhoc methods, such 
as embedding application intelligence within a middlebox to identify the dynamic session parameters and 
administering the middlebox internally as appropriate. The objective of the MIDCOM architecture is to cre-
ate a unifi ed, standard way to exercise this functionality, currently existing in an ad-hoc fashion, in some of 
the middleboxes.

By adopting MIDCOM architecture, middleboxes will be able to support newer applications they have not 
been able to support thus far. MIDCOM architecture does not, and must not in anyway, change the funda-
mental characteristic of the services supported on the middlebox.

Typically, organizations shield a majority of their corporate resources (such as end-hosts) from visibility to 
the external network by the use of a  DMZ at the domain edge. Only a portion of these hosts are allowed to 
be accessed by the external world. The remaining hosts and their names are unique to the private domain. 
Hosts visible to the external world and the authoritative name server that maps their names to network ad-
dresses are often confi gured within a DMZ in front of a fi rewall. Hosts and middleboxes within DMZ are 
referred to as DMZ nodes.
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Figure 5.20 illustrates the confi guration of a private domain with a DMZ at its edge. Actual confi gurations 
may vary. Internal hosts are accessed only by users inside the domain. Middleboxes, located in the DMZ 
may be accessed by agents inside or outside the domain.

NAT Middlebox 

Firewall 
Middlebox 

Stub A 

Service Provider Router 

WAN 

DMZ - Network 

DMZ-Host1 DMZ-Host2 DMZ-Name 
Server 

DMZ-Web 
Server, etc. 

Internal Hosts (inside the private domain) 

Int-Host1 Int-Host2 Int-Hostn Int-Name Server 

Figure 5.20: DMZ network confi guration of a private domain.

5.5 Pragmatic Approaches using  SIP Border Gateways
The previous sections of this chapter discussed some of the issues involved in supporting VoIP on a large 
scale due to addressing problems, and some current approaches (e.g., STUN, MIDCOM) to address these 
concerns. As an outgrowth of these limitations, Session Border Controllers (SBC) have emerged of late to 
assist service providers support VoIP and real-time interactive IP-based video/multimedia sessions in fi ve 
areas: security, service reach maximization (end-to-end feasibility), SLA assurance, revenue and profi t pro-
tection, and regulatory and law enforcement [OUE200501]. The interest in this context is on the fi rst two items 
in this list. 

A session border controller is a piece of network equipment or a collection of functions that control real-
time session traffi c at the signaling, call-control, and packet layers as they cross a notional packet-to-packet 
network border between networks or between network segments. SBCs are critical to the deployment of 
VoIP networks, because they address the inability of real-time session traffi c to cross NAT device or fi rewall 
boundaries. Signaling protocols such as H.323, MGCP, and SIP transfer information including media session 
endpoint IP addresses and UDP port numbers in different layers above OSI Layer 4 (IETF TCP/UDP). This 
information cannot be seen by a normal fi rewall or NAT device, so the subsequent sessions set up are not 
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recognized, do not pass through fi rewalls, and have incompatible IP addresses across NAT boundaries. SBCs 
allow NAT and fi rewall traversal, normally by incorporating those elements with signaling controllers for the 
required signaling protocols [LIG200502].

SBCs are devices used in VoIP to deal with a number of interworking issues. The controller refreshes NAT 
bindings for SIP registrations. The SBC compresses SIP packets to less than 1492 bytes (UDP fragmenta-
tion). It hides routing information to the outside world. The SBC ensures that an end-to-end media path is 
established. Also it helps the teardown process after the call is completed.

SBCs address the requirements at the boundary where different service provider networks interconnect or 
“peer.” In general, session border controllers integrate signaling and media control, encompassing the fol-
lowing three functional subelements: (a) Interconnect Border Control Function, (b) Interworking Function, 
and (c) Interconnect Border Gateway Function. 

One example of SBC usage is in the IP Multimedia Subsystem (IMS). IMS is an architecture defi ned by 
the Third Generation Partnership Project (3GPP) for the delivery of real-time voice, video and multimedia 
services using SIP over packet-switched networks with a focus on mobile wireless access networks. This 
architecture has been extended by ETSI to more completely satisfy the service delivery requirements in 
fi xed-wireline access networks. Some of these additional requirements include [OUE200501]:

Premise-based NAT traversal;
Overlapping private address space and enterprise MPLS VPN bridging;
IPv4 to IPv6 interworking for signaling and media;
SIP interworking for H.323 IP PBXs and gatekeeper trunking/termination networks;
Media-based DTMF (RFC 2833) to signaling-based DTMF translations.

Within the extended IMS architecture, two different types of session border controllers that integrate signal-
ing and media control play very important roles: the Access SBC and the Interconnect SBC. The integration 
of signaling and media control provides several architectural benefi ts:

 Security:  SBC prevents DoS attacks on core (IMS) elements by dynamically discovering and blocking 
malicious signaling and media attacks or nonmalicious overloads (e.g., endpoint re-registering very 
frequently). Advanced SBCs using hardware-based features, can protect themselves against attack 
without loss of service.

 Scalability:  SBC provides distributed edge processing function for signaling and media offl oading core 
(IMS) elements for connection and encryption management (e.g., TCP, TLS, IPSec), NAT traversal 
processing and other processor-intensive tasks.

 Manageability:  SBC incorporates multiple (IMS) functions resulting in fewer network elements, fewer 
networking protocols, and more robust fault and performance management (e.g., media QoS moni-
toring incorporated with session layer accounting).

The Interconnect Session Border Controller addresses the requirements at the boundary where different ser-
vice provider networks interconnect or “peer.” The controller integrates three functional elements from the 
ETSI TISPAN architecture [OUE200501].

 Interconnect Border Control Function (IBCF):  Provides overall control of the boundary between 
different service provider networks. It provides security for the IMS core in terms of signaling 
information by implementing a Topology Hiding Internetwork Gateway (THIG) subfunction. This 
subfunction performs signaling-based topology hiding, IPv4-IPv6 interworking, and session screen-
ing based upon source and destination signaling addresses. The IBCF also invokes the interworking 
function (described below) when connecting non-SIP or non-IPv6 networks, and performs admission 
control and bandwidth allocation using local policies or via interface to ETSI TISPAN Resource and 

•
•
•
•
•

1.
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Admission Control Subsystem (RACS). Lastly, the IBCF interacts with I-BGF (described below) 
for control of the boundary at the transport layers including pinhole fi rewall, NAPT, and numerous 
other features. 
 Interworking Function (IWF):  Provides signaling protocol interworking between the SIP-based 
IMS network and other service provider networks using H.323 or different SIP profi les.
 Interconnect Border Gateway Function (I-BGF):  Controls the transport boundary at layers 3 and 4 
between service provider networks. This function acts as a pinhole fi rewall and NAT device protect-
ing the service provider’s IMS core. It controls access by packet fi ltering on IP address/port and 
opening/closing gates (pinholes) into the network. It uses NAPT to hide the IP addresses/ports of the 
service elements in the IMS core. QoS packet marking, bandwidth and signaling rate policing, usage 
metering and QoS measurements for the media fl ows are additional features supported by the I-BGF.

The Access Session Border Controller satisfi es the requirements at the border where subscribers access the 
IMS core. It integrates two functional elements from the IMS and ETSI TISPAN architectures [OUE200501].

 Proxy-Call Session Control Function (P-CSCF): Is the SIP signaling contact point, the outbound/
inbound “proxy,” for subscribers within IMS as defi ned by 3GPP. However, the term “proxy” is 
deceiving since to fulfi ll its complete set of responsibilities it must be able to proactively initiate 
SIP requests. This requires implementation as a SIP Back-to-Back User Agent (SIP B2BUA), not 
a simple SIP proxy. The P-CSCF is responsible for forwarding SIP registration messages from 
the subscriber’s endpoint, the User Element (UE), in a visited network to the Interrogating-CSCF 
(I-CSCF) and subsequent call set-up requests and responses to the Serving-CSCF (S-CSCF). The 
P-CSCF maintains the mapping between logical subscriber SIP URI address and physical UE IP 
address and a security association, for both authentication and confi dentiality, with the UE us-
ing TLS for example. It supports emergency call (E911) local routing within the visited network, 
accounting, session timers, and admission control. Admission control requires an interface to an 
external IMS Policy Decision Function (PDF)/ESTI TISPAN RACS. The P-CSCF interacts with 
an Access Border Gateway Function (A-BGF) for control of the boundary at the transport layers 
including pinhole fi rewall, NAPT and numerous other features. In addition, for wireline networks, 
ETSI’s RACS is responsible for network-based NAT traversal.
 Access Border Gateway Function (A-BGF): Controls the transport boundary at layers 3 and 4 be-
tween subscribers and the service provider’s network. It performs all of the functions and features 
of the I-BGF. In addition, in wireline networks, it provides network-based NAT traversal for the 
media fl ows.

Session border controller product typically integrate signaling and media control in a single platform. Alter-
natively, session border control may be implemented using a distributed architecture using separate physical 
signaling and media control products for the three functional elements described above.

Figure 5.21 depicts, for illustrative purposes, an example of a commercial Session Border Controller; in 
this case the functionality runs parallel to the Gatekeeper [SYS200501]. In this example the Gateway/ Session 
Border Controller can operate in three ways:

Direct/static Mode to allow call resolution without Registration, Admission, or Status (RAS) mes-
sage control (RAS is a protocol used in the H.323 protocol suite for discovering and interacting 
with a Gatekeeper). This mode will allow number translation and dynamic call control given that 
the participating gateways support the canMapAlias attribute. 
Routed Mode to allow direct control of RAS messages with very low level of bandwidth utilization. 
This mode allows number translation and dynamic call control for gateways that do not support the 
canMapAlias attribute. 

2.

3.

1.

2.

1.

2.
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Proxy Mode to allow full RAS and RTP data transfer for gateways behind NAT or gateways that 
want to keep their identity. This bandwidth-intensive mode fully controls the RAS and Q.932 data 
streams and supports number translation and dynamic call control. 

Figure 5.22 depicts, for illustrative purposes, a more complete enterprise SIP VoIP application to illustrate 
how the various elements interplay (ETH Zurich’s PolyPhone environment) [LOR200501].
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Internet Intranet 

Border Session 
Controller 

Border Session 
Controller 

Phone 

Phone 

Phone 

PC 

PC 
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Phone 

Gateway Gateway 
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Remote  
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Figure 5.21:  Gateway/session border controller example.

3.
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_sip_udp.id.ethz.ch

INVITE PRI/CAS
LDAPDNS

PermissionDB
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Accounting
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SIP Sessions

From the SDP specifi cation (RFC 2327): “A multimedia session is a set of multimedia senders and receivers and 
the data streams fl owing from senders to receivers. A multimedia conference is an example of a multimedia 
session.” (A session as defi ned for SDP can comprise one or more RTP sessions.) As defi ned, a callee can 
be invited several times, by different calls, to the same session. If SDP is used, a session is defi ned by the 
concatenation of the SDP user name, session id, network type, address type, and address elements in the origin 
fi eld. SIP supports stateless and stateful connections. A stateless proxy establishes the connection and then “gets 
out of the way.” A stateful proxy stores all signaling events for the duration of the call (some SIP proxy servers 
deposit cookies in the IP phone/terminal as a method of providing state information).

SIP Proxy

An intermediate device that receives SIP requests from a client and then initiates requests on the client’s behalf. 
The SIP proxy server provides similar functionality to a gatekeeper in an H.323 environment or a softswitch in an 
MGCP/MEGACO environment.

SIP Registrar

The default SER registrar where all active SIP clients are registered.

PeerPoint

A third party Border Gateway Controller is integrated to support NAT/Firewalled user agents and hide internal 
topology of SIP environment (Proxies, Gateways, Servers).

(Figure 5.22 continued on next page)
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LDAP nethz

Stores usernames, passwords, E-Mail (primary and aliases) and internal phone numbers. 

Lightweight Directory Access Protocol

An emerging software protocol for enabling anyone to locate organizations, individuals, and other resources such 
as fi les and devices in a network, whether on the Internet or on a corporate intranet. LDAP is a “lightweight” 
(smaller amount of code) version of DAP (Directory Access Protocol), which is part of X.500, a standard for 
directory services in a network.

PermissionDB

Stores phonenumbers, settings and permissions for users. In the near future, the PermissionDB will be integrated 
into the LDAP infrastructure.

Web-Interface

Instead of serweb, this implementation uses a custom website with interface to the SER proxy. In the future, the 
web interface may be integrated in the web interface of the existing LDAP services (n.ethz.ch). The web interface 
also gives useful information about this project and monitors the status of the environment components.

Radius

The following operations are authorized using the existing RADIUS server infrastructure:
Registration of SIP users (REGISTER)
Establishing calls using an n.ethz.ch digest header (INVITE)

Location DB, Accounting

The default SER Location DB. Accounting is only used for statistical purposes.

DNS

Domain Name Server of ethz.ch (any former e-mail could be resolved to a SIP account or an internal PSTN phone 
number.)

Gateways

Existing PSTN infrastructure has been integrated in the environment. Authorized SIP users can reach every 
internal and external phone.

Voice Mail

A voice mail-box system is available to the user.

TCP/IP (Wired)

The wired TCP/IP network of organization. Directly addressable IP numbers are used (no fi rewalls or number 
translation).

HOME (FW, NAT)

Infrastructure used by employees when at home or en route.

WLAN

The Wireless LAN infrastructure of the organization. For public users the WLAN allows only access to selected IP 
addresses inside the organization (e.g., the home page www.ethz.ch). Other addresses can only be reached after 
VPN validation. Since this is not currently possible with WLAN SIP phones, exceptional access to the SIP Server/
MEDIA Proxy has been granted. Phone registered on the SIP server will be able to establish connections to any 
other SIP phone on the Internet.

Figure 5.22: Example of an institutional SIP environment.
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