
313

Chapter 8

Web Services Security

Web services provide significant new benefits for SOA-based applications, but
they also expose significant new security risks. Creating and managing a secure
Web services environment involves dealing with various Internet, XML, and
Web services security mechanisms. Other security mechanisms may be already
in place within the execution environment, especially when existing systems
become service-enabled to join the SOA.

The general approach is relatively straightforward, taking into account:

■ Transport-level security such as firewalls, virtual private networks, basic
authentication, non-repudiation, and encryption.

■ Message-level security such as using authentication tokens to validate
requester identity and authorization assertions to control access to
provider services.

■ Data-level security such as encryption and digital signature to protect
against altering stored and/or transmitted data.

■ Environment-level security such as management, logging, and auditing to
identify problems that need to be fixed and establishing trusted relation-
ships and communication patterns.

Newcomer_08.qxd 11/22/04 8:34 AM Page 313

314 Web Services Security

Achieving the right mixture of the various technologies and levels of protection,
and figuring out what threats to protect against and how, typically takes some
time and effort. A good solution protects programs and data against unautho-
rized access, guards against the possible consequences of in-flight message
interception, and prevents a variety of malicious attacks that have become all
too familiar in the Internet world.

This chapter:

■ Describes the various threats and challenges that need to be guarded
against.

■ Summarizes the basic Web services security technologies.

■ Provides detail on some of the more important technologies and
standards.

Most of the technologies described in this chapter were designed and devel-
oped specifically for use with Web services. However, several of them are
generic security mechanisms that can be applied to Web services. As a rule, the
WS-Security framework describes how to incorporate these other security tech-
nologies into Web services by defining a place for them within SOAP headers.

Figure 8-1 illustrates the fact that WS-Security provides a framework into which
other security technologies are plugged. For example, WS-Security does not
define any authentication ticket mechanism; instead, it defines how to use plain
user name/password, Kerberos, and X.509 tickets within the context of a SOAP
header. WS-Security also defines how to use XML Signature, XML Encryption,
and SAML within SOAP headers.

Other Web services security specifications, such as WS-Trust, WS-Secure-
Conversation, and WS-Federation, define protocols that help establish agree-
ments between requesters and providers about the kinds of security they will
use. Finally, WS-SecurityPolicy is used to declare a provider’s requirements for
security support, such as strong authentication.

Newcomer_08.qxd 11/22/04 8:34 AM Page 314

Overarching Concern 315

W
S

-S
ec

u
ri

ty
 F

ra
m

ew
o

rk

Authentication Profiles:
User Name/Password

Kerberos
X.509

Message Integrity:
XML Signature

Message Confidentiality:
XML Encryption

Authorization:
SAML Profile

Figure 8-1 Relationship of WS-Security framework to other specifications.

Overarching Concern

Security is sometimes called an “overarching concern” because everything
involved in the Web services environment needs some level of protection
against the many threats and challenges that IT departments must deal with
on a regular basis.

For example, SOAP messages need to be secure, WSDL files may need to be
secured against unauthorized access, firewall ports may need additional mecha-
nisms to guard against heavy loads and to inspect Web services messages, and
so on. Because Web services are designed for interoperability, an important
goal of the security technologies is to enable execution environment technolo-
gies to continue to work while adding security mechanisms to the Web services
layers above them.

An XML appliance may also be deployed to inspect messages arriving at the
edge of the network (that is, where it meets the Internet); if so, this device must
be deployed with an understanding or assessment of its relationship to other
security mechanisms.

The starting point is ensuring network layer protection using IP Security (IPsec),
Secure Sockets Layer (SSL), and basic authentication services, which provide a
basic level of protection.

Newcomer_08.qxd 11/22/04 8:34 AM Page 315

316 Web Services Security

At the next level, WS-Security provides the framework for protecting the mes-
sage using multiple security technologies. Most of the technologies are defined
outside of the WS-Security specification; in that case, WS-Security tells you how
to use them within the Web services environment.

Core Concepts

Two basic mechanisms are used to guard against security risks: signing and
encrypting messages for data integrity and confidentiality, and checking associ-
ated ticket and token information for authentication and authorization. These
mechanisms are often used in combination because a broad variety of risks
must be taken into account.

As illustrated in Figure 8-2, WS-Security headers can be added to SOAP mes-
sages before they are sent to the service provider. The headers can include au-
thentication, authorization,1 encryption, and signature so that the provider can
validate the credentials of the requester before executing the service. Invalid
credentials typically result in the return of an error message to the requester.
The requester typically adds the authentication and authorization information in
the form of tokens. Thus, there’s a need to share and coordinate security infor-
mation, such as tokens, between requester and provider or across a chain of
requesters, providers, and possibly SOAP intermediaries.

To successfully manage encryption and authentication for end-to-end message
exchange patterns, the WS-Security specification defines several SOAP header
extensions. For example:

<wsse:Security
xmlns:wsse="http://schemas.xmlsoap.org/ws/2002/12/secext">
<wsse:UsernameToken>
<wsse:Username>Ericn</wsse:Username>
<wsse:Password>8Bcnu6</wsse:Password>

</wsse:UsernameToken>
</wsse:Security>

1 Note that as of the time of writing, WS-Authorization was not yet completed.

Newcomer_08.qxd 11/22/04 8:34 AM Page 316

Core Concepts 317

Requester Provider

SOAP

Security
Headers

Messages

Application

SOAP

Security
Headers

Messages

Application
R

eg
is

tr
y R

eg
istry

Figure 8-2 Security headers are added to SOAP messages.

The example shows the WS-Security namespace wsse and the use of the clear
text user name/password authentication feature. The inclusion of WS-Security
headers in a SOAP message ensures that the user name/password shown in
this example is available for processing by intermediaries as well as at the
ultimate destination of the message. Further information on these topics is pro-
vided later in this chapter.

If the service provider requires a Kerberos token, the WS-SecurityPolicy declara-
tion associated with the provider’s WSDL might look like this:

<SecurityToken wsp:Requirement=Kerberos
<TokenType>... </TokenType>
<TokenIssuer> ... </TokenIssuer>

</SecurityToken>

As shown in Figure 8-3, a key pair (or other encryption mechanism) can be
used to encrypt a message before transmission and decrypt it after it’s received
but before it’s processed by the application. Encryption means sending informa-
tion in code, much like the military does to protect confidential information
during wartime. To snoop on an encrypted transmission, someone would have

Newcomer_08.qxd 11/22/04 8:34 AM Page 317

318 Web Services Security

Requester Provider

Messages

Application

SOAP

Messages

Application

DecryptionEncryption

SOAP

Figure 8-3 Encryption protects messages from snooping.

to be able to break the code. Encryption is often used to protect authentication
and authorization data (such as a password), even if the data in the SOAP body
isn’t encrypted.

The encryption information can be sent in a WS-Security header so that a
provider knows what encryption algorithm was used to encrypt the message.
As with authentication, several standards exist for encryption. Some of the
common ones include Secure Shell (SSH) and RSA, named for its inventors,
Ron Rivest, Adi Shamir, and Leonard Adelman. RSA developed and first imple-
mented the concepts behind public key cryptography (also called PCKS), which
allows services to communicate securely by using a private key and by the
exchange of a public key. The private key, which isn’t shared, is used in the
encryption algorithm, while the public key, which can be shared, is used to
decrypt the message. In Web services specifications, the XML Key Management
Specification (XKMS) can be used to manage the distribution of public and pri-
vate keys to enable this style of secure communication.

These basic types of security technologies are also often used in combination
with other extended technologies, such as reliable messaging and transactions,

Newcomer_08.qxd 11/22/04 8:34 AM Page 318

Core Concepts 319

to improve the security of an overall system. Transaction processing technolo-
gies require additional messages for coordinating transaction protocols, and
these often require security to prevent their disruption.

Web services management is often very concerned with security. In addition to
securing the management infrastructure itself from unauthorized use (i.e., to
prevent anyone from gaining administrative control over the Web services
deployment), it’s important to be able to monitor and manage the security
infrastructure. Web services management tools typically implement some level
of security functionality using SOAP intermediaries or SOAP interceptors.

Identity
Identity management for Web services is similar to identity management for any
IT system in that the subject (whether a person, machine, program, or abstrac-
tion such as a process flow) is given a unique or unambiguous name within the
security domain whose validity can be checked. The identity of a Web service
requester is sometimes critical for a provider to establish trust because whether
or not the requester is allowed to access the provider’s service (or any other
service, data resource, or device managed by the provider’s service) depends
upon the identity of the requester.

Identity management is complex for Web services, just like it is for the Web,
because Web services can span departments and enterprises. Typically, identity
management is performed locally, departmentally, or within an enterprise by
ensuring that each employee’s user name is unique on the network. Employees
are responsible for keeping their passwords private because passwords are used
to authenticate the user’s identity and to determine the applications, directories,
and data the user is allowed to access.

Identity management may need to be performed within a broader scope, such
as the Microsoft Active Directory or a corporate-wide LDAP solution. When an
identity has to be uniquely managed across the Internet and across enterprises,
the level of administration difficulty increases, as does the need for trust.
Various initiatives, such as those sponsored by the Liberty Alliance, are focused
on establishing mechanisms for identity management for the Internet.

Newcomer_08.qxd 11/22/04 8:34 AM Page 319

320 Web Services Security

Authentication
Authentication is the process through which an authority verifies a subject’s
identity, based on some set of proof such as a password or personal identifica-
tion number (PIN). The authentication process creates a principal, which is an
object that represents the authenticated subject, such as a credential or token
that the subject can use later. On the Web, the subject is typically a user, but for
Web services, it can be a machine, program, or other abstract entity represented
by the Web service requester. Web services typically use some form of the user
name/password mechanism for basic authentication, but stronger forms such as
signatures also may be used.

Authentication can be described as the process of confirming that you (or your
proxy service requester) are who you say you are. On the Web, this is most
often seen as a popup user name/password box, which is called forms-based
authentication, which uses a cookie returned on subsequent invocations.2 Only
you know the correct user name and password, so you are authenticating your-
self as someone who is allowed to access the Web site. The Web site will have
to set up and manage a directory of authorized user name/password combina-
tions so that it can verify the information you submit.

Web services requesters can include authentication information using user
name/password information in SOAP headers that the service provider can
check against its directory of authorized user name/password combinations.
The user ID and password can also be sent via HTTP (no SOAP header
required). The provider typically carries out a further refinement of this model to
support specific checks for authorization to access specific services or specific
data resources. Sometimes requesters are assigned certain roles that can be used
as indexes into authorization information—meaning authorization is sometimes
carried out according to specific roles such as administrator, clerk, or manager,
but again, this is typically managed by the provider and may not appear in the
SOAP header (and certainly not in the WS-Security header if it appears at all).

2 Cookies are not supported in Web services because they are not in XML format and cannot
be used across multiple service executions.

Newcomer_08.qxd 11/22/04 8:34 AM Page 320

Summary of Challenges, Threats, and Remedies 321

Authentication is needed in Web services to verify the identities of the service
provider and service requestor. In some cases, mutual authentication may be
needed (that is, the provider must authenticate the requester and vice versa).

Digital Signature
A digital signature signs a message digest using a public/private key pair. A hash
algorithm creates the message digest, and the encryption algorithm signs the
digest (with the private key). The receiver decrypts the signature using the pub-
lic key, recomputes the message digest, and compares the two. If the message
has been altered, the results won’t match, and the provider knows the message
has been tampered with. As in other encryptions, symmetric or asymmetric key
algorithms can be used to compute the signature, although for signing the user
of asymmetric keys is more typical.

Summary of Challenges, Threats, and Remedies

This section summarizes the major challenges and threats that need to be ad-
dressed using Web services and other security mechanisms and identifies (where
possible) the technologies necessary to guard against each challenge or threat.

Web services, because they represent an abstract interfacing and messaging
layer, cannot and should not include some of the security mechanisms available
within the underlying platforms on which Web services execute. It would be a
mistake to try to replicate into the Web services environment such operating
system-level protections as memory protection, file or device protection, or
even network-level protection.

In general, to guard against the broad variety of threats and challenges, security
solutions must be implemented through the transport layer, the Web services
layer, and the data layer, and also must be mapped into and out of the underly-
ing execution environment to ensure either that the defined security policy is
enforced or that when it is not, there is an audit log entry of the failure or policy
breach.

Newcomer_08.qxd 11/22/04 8:34 AM Page 321

322 Web Services Security

Understanding the Security Architecture

It’s important to view the Web services security challenges and threats
within their overall architectural context and determine solutions based not
simply on a given technology but rather on looking at the overall solution
context. That is, you can’t just say “use SSL” without understanding the
threat you’re trying to defend against and without understanding the overall
security context into which you’d like to deploy SSL. SSL may be sufficient,
but it may not. Multiple security technologies often must be used in con-
junction to provide a comprehensive solution to the big security concerns,
and it is therefore important to understand how the technologies work
together.

The following sections detail some of the specific challenges and threats that
the overall Web services security environment must address.

Message Interception
The potential for SOAP message interception and decoding gives rise to a cate-
gory of security threats that must be guarded against when deploying Web ser-
vices, including message replay, alternation, and spoofing.

Unless specifically encrypted, Web services messages are transmitted in plain
text, which can easily be intercepted and read. An intercepted message can
be modified, potentially affecting all or part of the message body or headers.
Additional bogus information could be inserted into a message header or body
parts. Any message attachment could also be modified or replaced. Altering the
message or the attachment could cause bogus information to be sent to and
received from a Web service, possibly including a virus. Reading an intercepted
message can also give anyone access to confidential information within a mes-
sage or message attachment, such credit card information, social security num-
bers, bank account numbers, and so on.

Protecting against message interception includes the use of encryption and
digital signatures to preserve confidentiality and integrity.

Newcomer_08.qxd 11/22/04 8:34 AM Page 322

Summary of Challenges, Threats, and Remedies 323

Person in the Middle Attacks
Because SOAP messages can be routed through intermediaries, and because
intermediaries are able to inspect the messages to add or process headers, it’s
possible for a SOAP intermediary to be compromised. Messages between the
requestor and the ultimate receiver could therefore be intercepted while the
original parties still believe they are communicating with each other.

Mutual authentication techniques can protect against this type of threat, but
signed keys or derived keys provide even better protection.

Spoofing
Spoofing is a complex challenge in which an attacker assumes the identity of
one or more trusted (i.e., authenticated) parties in a communication in order to
bypass the security system. The target of the attack believes it is carrying on a
conversation with a trusted entity. Usually, spoofing is a technique to launch
other forms of attack such as forged messages that request confidential informa-
tion or place fraudulent orders.

It’s possible for spoofed Web service messages to include SQL or script tamper-
ing to attack through JSP or ASP script execution.

Mutual authentication techniques can protect against this type of threat.

Replay Attacks
A replay attack is one in which someone intercepts a message and then replays
it back to the receiver. Replays could also be used to gather confidential infor-
mation or to invoke fraudulent transactions.

Strong authentication techniques together with message time stamp and
sequence numbering can protect against this type of threat.

Denial-of-Service Attacks
When an unauthorized intermediary or other attacker intercepts a SOAP mes-
sage, the attacker can resend it repeatedly in order to overload the Web services
execution environment and effectively deny service to legitimate services that

Newcomer_08.qxd 11/22/04 8:34 AM Page 323

324 Web Services Security

are trying to get through. An attacker can also blast a ton of messages to a Web
service after the attacker gets its address. Even if the messages are rejected, the
site can get overloaded with error processing.

In general, if someone wants to launch this type of attack, there’s no real
defense. However, firewall appliances are growing in popularity because they
can help mitigate denial-of-service attacks.

Finding the Right Balance

For Web services, as with any application, it’s necessary to establish the
proper balance between business requirements, protection, performance,
and ease of administration. Security mechanisms each carry a performance
price not only in terms additional processing overhead when executing a
service but also to the IT staff who must design, develop, and administer
them. Encryption includes an obvious overhead because it takes time to
encrypt and decrypt messages. Sending a user name/password on each mes-
sage also adds to the overhead of processing a message. It’s for these rea-
sons that many of the various technologies have been developed, but this
also means that the user needs to understand not only what each technol-
ogy provides, but also what it costs, and whether or not there are other
security mechanisms that can be used and that will satisfy the business
requirements while imposing less of a burden.

Securing the Communications Layer

The first level that needs to be secured is the communications transport. In the
case of Web services, this is almost always TCP/IP, and this is certainly the case
when using HTTP.

Firewalls map a publicly known IP address to another IP address on the internal
network, thereby establishing a managed tunnel and preventing access by pro-
grams at unauthorized addresses. Web services can work through existing fire-
wall configurations, but this often means increased protection has to be added
to firewalls to monitor incoming SOAP traffic and log any problems. Another

Newcomer_08.qxd 11/22/04 8:34 AM Page 324

Securing the Communications Layer 325

popular solution involves the use of XML firewalls and gateways that are capa-
ble of recognizing Web services formats and performing initial security checks,
possibly deployed as intermediaries or within a “demilitarized zone” (i.e., be-
tween firewalls).

IP Layer Security
Security mechanisms for the Internet include the IP layer with IP security
(IPsec). IPsec provides packet-level authentication and encryption and is typi-
cally implemented at the operating system level. IPsec is a facility available to
all applications using the Internet, including Web services. However, in practice
this means that the IPsec connection is typically part of a separate security setup
between the communicating parties. In other words, for Web services to use
IPsec, the IPsec communication session has to be established in advance of
invoking a Web service, typically by the transport or the user, because nothing
in the Web services layer is used to establish an IPsec session.

IPsec is most often used in virtual private network (VPN) applications and be-
tween firewalls, which many companies use to secure the communications
between remote users and corporate systems. Other VPN technologies are also
widely used as a security foundation for Web services invocations, just as they
can be used for any other Internet-based application.

Transport-Level Security
At the next level is transport layer security. Typically, this is provided by Secure
Sockets Layer/Transport Layer Security (SSL/TLS, usually referred to simply as
SSL), which is often seen on the Web as HTTPS. This security level can be im-
plemented in the network application, rather than in the operating system, and
Web services can easily and directly use it by requiring HTTPS as a transport.
Implementations of SSL for other transports, such as IIOP and RMI/IIOP, also
provide the capability for Web services to take advantage of this important pri-
vacy mechanism when used over other transports.

SSL provides encryption and strong authentication and may be sufficient for
many applications. SSL authentication can be used to provide strong, mutual
authentication—much stronger than HTTP Basic, HTTP Digest, or WS-Security
user name token authentication. However, SSL is transport-based rather than

Newcomer_08.qxd 11/22/04 8:34 AM Page 325

326 Web Services Security

application-based, so it secures the network nodes rather than the service
requester or provider. SSL provides authentication, message confidentiality,
and message integrity, but these capabilities are limited to the transport level
and cannot be applied to the application level. SSL also does not offer any
protection for XML data in storage. It also does not directly support any of the
advanced authorization checking such as role-based authorization that many
applications may require, although it is possible to map the SSL strong authenti-
cation information to a local principal and use that in an application-defined
role-based authorization scheme to determine access privileges. But these are
application-specific scenarios, not general solutions.

The simplest starting point for Web services security typically is the user
name/password checking associated with HTTP that is common to many Web
sites. However, basic authentication may not be sufficient for Web services.
A password can be encoded using Base64 or another simple obfuscation algo-
rithm even without SSL, but obfuscation does not provide true encryption and
therefore is not very secure. When a potential attacker figures out the encoding
mechanism or algorithm used for the obfuscation, the message can be inter-
cepted and tampered with. Additional, stronger authentication mechanisms
include:

■ At the transport level: HTTP Basic, HTTP Digest, and SSL.

■ At the application level: User name/password, X.509, Kerberos, SPKM,
SAML, and XrML.

What makes an authentication mechanism stronger is mainly its resistance to
interception. An authentication token is harder to intercept when it’s encrypted
or encoded, or when (as with Kerberos and X.509) it’s issued by a third party,
such as an authentication authority, with whom the application can check to be
sure the token is correct.

SSL cannot handle composite applications, however, or complex MEPs.
Furthermore, SSL encryption is all or nothing, unlike XML Encryption, which
can be applied to any part of an XML document.

Newcomer_08.qxd 11/22/04 8:34 AM Page 326

Message-Level Security 327

Message-Level Security

The next level of security above the transport level is message-level security,
where the security protections are provided by the WS-Security framework and
associated specifications. The WS-Security framework defines SOAP headers
that include the necessary information to protect messages. The WS-Security
specification defines the security header for SOAP messages and what can be
included within the header. Associated specifications define the contents of the
SOAP security header and the processing rules associated with those contents.

Because Web services expose access to programs and data stores, their use
creates additional requirements for security protection. Furthermore, complex
Web services may span multiple network locations discovered dynamically or
composed into a larger interaction such as a process flow. Web services need
an end-to-end security model for the entire conversation because sensitive
information could be passed from service to service. A Web service interaction
also may potentially involve multiple parties using different security-related
technologies.

The WS-Security Framework
WS-Security (Web Services Security) is the name of a set of specifications3 that
augment SOAP message headers to incorporate solutions to many common
security threats, in particular those related to the requirements of Web services
messaging.

Because SOAP is a particular form of an XML document designed for messaging
and interoperability, WS-Security needs to define how XML Encryption and
XML Signature should be used with SOAP—this is one of the major motivations
for WS-Security.

3 See http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

Newcomer_08.qxd 11/22/04 8:34 AM Page 327

328 Web Services Security

The WS-Security specifications protect against:

■ Message alteration—By including digital signatures for all or parts of the
SOAP body and the SOAP header.

■ Message disclosure—By supporting message encryption.

The WS-Security framework can also be used to:

■ Preserve message integrity through the use of strong key algorithms.

■ Authenticate messages through the use of various token mechanisms
such as Kerberos and X.509.

The specifications are divided between the core framework and profiles of other
technologies that are defined to fit within the framework. Much of the work of
the WS-Security Technical Committee at OASIS is involved in adding profiles to
the WS-Security suite of specifications.

At the time of writing, the WS-Security framework consists of the following
specifications:

■ Web Services Security: SOAP Message Security.

■ Web Services Security: User name Token Profile.

■ Web Services Security: X.509 Token Profile.

■ Profiles for the use of other technologies with the framework are under
development, including SAML, Kerberos, and XrML (Extensible Rights
Markup Language for role-based authorization and control of access to
digital media and services content).

The WS-Security set of specifications defines the overall framework for includ-
ing these various types of security information into SOAP headers and then
defines (or profiles) other technologies so that both requesters and providers can
share a common understanding of their use.

Newcomer_08.qxd 11/22/04 8:34 AM Page 328

Message-Level Security 329

The WS-Security framework is designed to work with SOAP 1.1 and SOAP 1.24

by defining the security tokens and encryption mechanisms that go in the SOAP
headers.

WS-Security provides a general-purpose mechanism for associating security
tokens with messages. No specific type of security token is required by WS-
Security. It is designed to be extensible (e.g., to support multiple security token
formats).

For example:

<?xml version="1.0" encoding="utf-8"?>
<s11:Envelope
xmlns:s11="http://schemas.xmlsoap.org/soap/envelope/"
xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">
<s11:Header>
<wsse:Security>

•••
</wsse:Security>

</s11:Header>
<s11:Body>
•••

</s11:Body>
</s11:Envelope>

This example illustrates a SOAP 1.1 message (indicated by the S11: namespace
prefix) and shows the OASIS standard namespace for the WS-Security security
header (indicated by the wsse: namespace prefix). The namespace for SOAP 1.2
is as follows:

xmlns:S12="http://www.w3.org/2003/05/soap-envelope"

WS-Security describes a mechanism for encoding binary security tokens within
the header. The specification describes how to encode X.509 certificates and
Kerberos tickets as well as how to include opaque encrypted keys. It also

4 Note that SOAP with Attachments is supported for SOAP 1.1 only because SOAP 1.2
includes its own binary message attachment format (MTOM—message transmission
optimization mechanism).

Newcomer_08.qxd 11/22/04 8:34 AM Page 329

330 Web Services Security

includes extensibility mechanisms that can be used to further describe the
characteristics of the security tokens that are included with a message.

A security token is a credential that proves identity. When using Kerberos,
X.509, SAML, or XrML, you’ve already proven your identity at least once. The
question is whether the service will accept this credential (typically based on
the trust relationship that exists between the issuing authority and the service
and on the freshness of the credential). Sometimes the service requires addi-
tional proof (such as a signature) or multiple forms of proof. WS-Trust provides a
protocol for the service to request additional proof. Assuming that the service
accepts the credentials, it then determines whether the subject has permission
to access the requested resource.

There are many different ways of managing these tokens on a network, and
there are also different ways of proving an identity. With a user name, for
example, an accompanying password proves that this is really your identity. A
Kerberos ticket, however, is encrypted by its issuer using a key that the service
provider can verify. Additionally, a digital signature might be sent along with a
certificate to authenticate an identity.

WS-Security therefore needs to support multiple approaches for conveying and
authenticating identity. WS-Security doesn’t define how to perform authentica-
tion but rather defines how to transmit a variety of different security tokens
within the security header. The service provider typically uses the information
in the header to authenticate the identity of the requester, but authentication
tokens can also be used in other ways.

Although it allows any type of security token, the WS-Security specification
explicitly defines four options (user name, binary, XML, and token reference).
The simplest (although not always the most secure) option is to send a security
token containing a user name and password. To allow this, WS-Security defines
a <UsernameToken> element that can contain a user name and password.

Because sending unencrypted passwords across a network isn’t a very effective
authentication mechanism, the UsernameToken element is most likely to be
used to authenticate SOAP messages sent across an encrypted connection, such
as one that uses SSL.

Newcomer_08.qxd 11/22/04 8:34 AM Page 330

Message-Level Security 331

A second option is to send a binary security token, such as the one containing a
Kerberos ticket. For example:

<wsse:Security
xmlns:wsse="http://www.docs.oasis-open.org/wss/2004/01/

oasis-200401-wss-wssecurity-secext-1.0.xsd">
<wsse:BinarySecurityToken

ValueType="http://www.docs.oasis-open.org/wss/2004/07/
➥oasis-
000000-wss-kerberos-token-profile-
1.0#Kerberosv5_AP_REQ"

EncodingType="http://www.docs.oasis-open.org/wss/2004/01/
➥oasis-200401-wss-wssecurity-secext-1.0.xsd#Base64Binary">
QMwcAG ...

</wsse:BinarySecurityToken>
</wsse:Security>

As this example shows, a Kerberos ticket is sent using the <BinarySecurity-
Token> element. This element’s ValueType attribute indicates that this is a
Kerberos Version 5 service ticket, which is used to authenticate a client to a
particular service. The ticket is encoded using base64. Other encoding options
have been proposed but not yet defined.

The fourth option is to send a reference to a security token rather than the token
itself. WS-Security defines the <SecurityTokenReference> element that con-
tains a URI for a security token. The service provider can dereference the URI
to obtain the token from its location on the Internet.

Message integrity is provided by leveraging XML Signature in conjunction with
security tokens (which may contain or imply key data) to ensure that messages
are transmitted without modification. The integrity mechanisms support multi-
ple signatures, including any that might be added by SOAP intermediaries, and
are extensible to support additional signature formats.

A signature provides additional proof that the token is valid. The signature veri-
fies the claim that a particular security token represents the producer of the
message by using the token to sign a message (demonstrating knowledge of the
key). The <ds:KeyInfo> element in the signature provides information to the
provider as to which key was used to create a signature. The following example

Newcomer_08.qxd 11/22/04 8:34 AM Page 331

332 Web Services Security

illustrates that the sender created the signature using the referenced token (usu-
ally a binary token):

<ds:KeyInfo>
<wsse:SecurityTokenReference>

<wsse:Reference URI="#MyID"/>
</wsse:SecurityTokenReference>

</ds:KeyInfo>

XML Encryption provides message confidentiality in conjunction with security
tokens to keep portions of SOAP messages confidential. The encryption mecha-
nisms support additional encryption technologies, processes, and operations by
multiple actors. The encryption information references a security token when
that token is used to encrypt the data.

WS-Security can handle multiple options for carrying authentication informa-
tion and ensuring message integrity and confidentiality, but the requester and
provider still need a way to agree on which option or options are being used.
That’s where WS-SecurityPolicy comes in.

WS-SecurityPolicy
Like the WS-Security framework, WS-SecurityPolicy is intended to work with
both SOAP 1.1 and 1.2. WS-SecurityPolicy is a policy assertion language
that can be used within the WS-PolicyFramework (see Chapter 7, “Metadata
Management”). WS-SecurityPolicy can be used to develop an XML-based asser-
tion associated with a Web service endpoint or WSDL file using WS-Policy-
Attachment (again, see Chapter 7). A service requester can discover the
WS-SecurityPolicy association using the WS-MetadataExchange protocol or
can otherwise dereference a URL pointing to the XML file in which the WS-
SecurityPolicy assertion is stored.

Decoding the WS-SecurityPolicy assertion tells the service requester what secu-
rity features are required by the service provider, such as the authentication
token format and whether or not the message has to be signed using an XML
signature. For example:

<wsp:Policy
xmlns:wsp="http://schemas.xmlsoap.org/ws/2002/12/policy"
xmlns:wssp="http://schemas.xmlsoap.org/ws/2002/12/secext">

Newcomer_08.qxd 11/22/04 8:34 AM Page 332

Message-Level Security 333

<wsp:All>
<wssp:Integrity wsp:Usage="wsp:Required">
<wssp:Algorithm Type="wssp:AlgSignature"

URI="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
</wssp:Integrity>

<wssp:SecurityToken>
<wssp:TokenType>wsse:X509v3</wssp:TokenType>

</wssp:SecurityToken>
</wsp:All>

</wsp:Policy>

This example shows that the provider requires message integrity using the
referenced XML Signature algorithm and requires authentication using X.509
tokens.

By specifying the token type within the Integrity element, you are saying that
the signature must be created using this type of token. Although not included in
this example, the SOAP body contains the Request Security Token (RST) and the
Request Security Token Response messages.

WS-Trust
Sometimes it’s necessary for a service provider and service requester to commu-
nicate out of band (that is, outside of the normal Web service invocation mes-
sage exchange) to exchange security credentials. For example, a requester may
need to obtain a provider’s public key for encryption before sending the mes-
sage. The WS-Trust specification defines the protocol for assessing and broker-
ing a trusted relationship such as this.

WS-Trust establishes a protocol for:

■ Issuing, renewing, and validating security tokens.

■ Assessing or brokering trust relationships.

WS-Trust defines the process of exchanging and brokering security tokens so
that the requester can obtain the necessary security information to construct
trusted messages.

Newcomer_08.qxd 11/22/04 8:34 AM Page 333

334 Web Services Security

As illustrated in Figure 8-4, WS-Trust defines a SOAP message exchange proto-
col according to which a service requester and provider can communicate with
each other to exchange authentication and authorization credentials.

R
eg

istryR
eg

is
tr

y

Provider

Messages

Requester

SOAP

Messages

Application

Authentication/
Authorization

Headers

Messages

Application

Authentication/
Authorization

Headers

Request
Security Token
Response Body

Request
Security Token

Body

Figure 8-4 WS-Trust defines SOAP messages to issue, renew, and validate security
tokens.

WS-Trust defines a namespace used to identify messages used to carry out the
trust protocol:

xmlns:wst="http://schemas.xmlsoap.org/ws/2004/04/trust"

The security model defined in WS-Trust is based on a process in which a Web
service provider can require that an incoming message from a requester estab-
lish a set of credentials (user name/password, key, permission, capability, and so
on). If a message arrives without the required credentials, the provider rejects
the message with an error. The service provider can assert the credentials it
requires using WS-SecurityPolicy. WS-Trust defines the message exchange pat-
tern and format of the credentials information that may need to be exchanged
between provider and requester in order to fulfill the policy assertions.

Newcomer_08.qxd 11/22/04 8:34 AM Page 334

Message-Level Security 335

Security tokens are requested using the <RequestSecurityToken> message
defined in the WS-Trust specification.

Security tokens are returned using the <RequestSecurityTokenResponse> mes-
sage defined in the WS-Trust specification.

WS-SecureConversation
WS-SecureConversation defines a shared security context across multiple
message exchanges. It defines a new security context token for the <wsse:
Security> header block, and it defines a binding for WS-Trust. Instead of hav-
ing to include the same security credentials in each SOAP message, a provider
and requester can use WS-SecureConversation to agree on sharing a common
security context. For example:

<SecurityContextToken wsu:Id="...">
<wsc:Identifier>...</wsc:Identifier>
</SecurityContextToken>

The namespace is as follows:

xmlns:wsc="http://schemas.xmlsoap.org/ws/2004/04/security/sc/sct"

The context has a unique identifier and can be used to temporarily or persis-
tently store any combination of authentication, authorization, or encryption
information that two or more Web services need to share.

As illustrated in Figure 8-5, WS-SecureConversation defines a SOAP message
protocol for propagating and establishing common copies of security context
at the requester and provider nodes so that they do not have to (for example)
exchange authentication information on each Web service invocation request.

The shaded areas indicate shared security context used across multiple message
exchanges.

Newcomer_08.qxd 11/22/04 8:34 AM Page 335

336 Web Services Security

WS-Secure
Conversation Context

ProviderRequester

Application

SOAP

Application

SOAP

WS-Secure
Conversation Context

R
eg

is
tr

y

R
eg

istry

Figure 8-5 Secure conversation establishes shared security context.

WS-Federation
WS-Federation defines how to establish trust relationships across security
domains. WS-Trust assumes a single security domain within which the service
requester authenticates with the service provider’s authentication service. WS-
Federation defines a binding of WS-Trust that allows a service provider to ac-
cept authentication credentials that come from a different security domain.
When an identity is authenticated and access is controlled within a given
domain such as an enterprise, department, or execution environment, it may
also be necessary to handle these problems for multiple domains because Web
services can provide interoperability solutions that cross multiple domains.

The WS-Federation specification defines a message exchange protocol that
service requesters and providers can use to establish federation of security do-
mains across multiple trust boundaries. The WS-Federation specification builds
on WS-Security, defining a profile of WS-Trust for obtaining and exchanging
identity information, a specialized security token service called the Identity
Provider (IP), a new policy assertion language syntax called RelatedService,

Newcomer_08.qxd 11/22/04 8:34 AM Page 336

Message-Level Security 337

and protocols for interacting with attribute and pseudonym services. An
attribute service provides the means to obtain information about a principal
(that is, an authenticated subject).

A pseudonym service is a specialized attribute service that maintains alternate
identity information about a principal. WS-Security, WS-PolicyAssertions, and
WS-Trust can be used in combination to accomplish the federation of security
trust domains. In other words, WS-Federation takes WS-Trust a step further and
establishes a mechanism for exchanging credentials across trust boundaries, not
just within a trust boundary.

Accessing services provided on multiple machines or executable software do-
mains may require additional authentication, unless the authentication opera-
tions are federated, as they can be for example in a Windows domain via the
Windows Active Directory. Like Active Directory for the Windows environment,
WS-Federation can be used to support single sign-on protocols for extended
security domains. For example, an authentication check can be forwarded to a
third party for validation.

The WS-Federation specification defines an integrated model for federating
identity, authentication, and authorization across different trust realms. This
specification defines how the federation model is applied to active requestors
such as SOAP applications. It also defines how pseudonyms can be used to
help preserve secrecy when identities need to be protected across domains.

Security tokens are requested using the <RequestSecurityToken> message
defined in the WS-Trust specification. Security tokens are returned using the
<RequestSecurityTokenResponse> message defined in the WS-Trust specifica-
tion. If the requester doesn’t already have the WS-Policy for the exchange, it
can request it using WS-MetadataExchange.

Security Assertion Markup Language (SAML)
The Security Assertion Markup Language (SAML) from OASIS is an XML appli-
cation designed to support single sign-on and propagate authorization informa-
tion. For example, SAML allows a user to log on once to a Web site and then

Newcomer_08.qxd 11/22/04 8:34 AM Page 337

338 Web Services Security

access affiliated Web sites without having to log on again. The affiliated Web
sites need to be able to recognize the original user name (or identity). The same
mechanism can be used to provide single sign-on for Web services that access
different services. The WS-Security SAML profile defines how to use SAML with
SOAP, but SAML can be used independently of SOAP and independently of
WS-Security, if necessary.

To accomplish single sign-on, SAML defines three basic components: assertions,
protocol, and binding. SAML also defines profiles (Browser/Artifact Profile and
Browser/POST Profile), which specify how to convey SAML tokens with appli-
cation requests. Assertions can be one of three types:

■ Authentication—Validates that the specified subject was authenticated
by a particular means at a particular time.

■ Attribute—A statement by a security authority that supplies qualifying
information about the subject.

■ Authorization—A statement by an authorization authority that grants
permission to a subject to perform a specified action on a specified re-
source.

The protocol defines how applications communicate with a SAML authority to
request authentication and authorization decisions. SAML bindings are defined
for SOAP and HTTP.

SAML assertions provide security information about subjects, where a subject
is an entity (either human or computer) that has an identity in some security
domain. A typical subject is a person, identified by user name. A typical asser-
tion conveys information about the authentication of a subject, including any
attributes associated with the subjects. The assertion also provides information
about authorization decisions that determine whether or not subjects are al-
lowed to access resources.

Newcomer_08.qxd 11/22/04 8:34 AM Page 338

Message-Level Security 339

A SAML assertion is represented using XML and supports nesting so that a single
assertion might contain several different internal statements about authentica-
tion, authorization, and attributes. (Note that assertions containing authentica-
tion statements can carry the results of an authentication that happened
previously.) An assertion is issued by a SAML authority, including authentication
authorities, attribute authorities, and authorization authorities.

SAML defines a protocol by which requesters can obtain an assertion from a
SAML authority, which might be implemented using a security server product
such as Netegrity Siteminder of Tivoli Access Manager. A SAML authority can
use various sources of information in creating their responses, such as external
policy stores and assertions that were received as input in requests. Thus,
requesters use the protocol to interact with SAML authorities to obtain asser-
tions, providers use the protocol to interact with SAML authorities to validate
assertions, and SAML authorities can be both producers and consumers of
assertions.

SAML is different from other security mechanisms because of how it uses asser-
tions about subjects. Other mechanisms rely on a central certificate authority,
which naturally raises the issue of trust for the certificate provider. With SAML,
any point in the network can assert that it knows the identity of a user or piece
of data. It is up to the receiving application to accept whether or not it trusts the
assertion, which sometimes will mean that additional authentication informa-
tion is needed.

When SAML assertions are used with WS-Security, they can be referenced using
the <wsse:SecurityTokenReference> element. SAML assertions can also be
placed directly inside the <wsse:Security> header block. When using the to-
ken reference, the <saml:Assertion> element is not embedded in the <wsse:
Security> header. SAML assertions take the format of <saml:Assertion> and
typically start with a UUID. The remainder of the information is typical SAML
information, including information about the SAML issuer. The Web service
receiving the SAML assertion can find the assertion issuer and check the
assertion.

Newcomer_08.qxd 11/22/04 8:34 AM Page 339

340 Web Services Security

An authentication assertion identifies the subject (using a NameIdentifier and/
or a SubjectConfirmation), and it contains an authentication statement that
specifies when and how the subject was authenticated. Role information may
be associated with the subject using an attribute statement. Authorization infor-
mation may be associated with the subject using an authorization statement.
All three types of assertion statements may be included in a single <saml:
Assertion> element, but they are still three different types of statements.

SAML assertions can also have version numbers and signatures. SAML asser-
tions can also specify condition elements for credential expiration dates. SAML
defines a protocol and behavior of the assertion providers. SAML requires SSL
certificates to provide digital signing and encryption of SAML assertions.

SAML can provide protection from replay attacks by requiring the use of SSL
encryption when transmitting assertions and messages. Additionally, SAML pro-
vides a digital signature mechanism that enables the assertion to have a validity
time range to prevent assertions from being replayed later.

Use SAML on Its Own or with WS-Security?

This question naturally arises when a technology is available both as a
standalone, independent technology and as an integral part of another tech-
nology. As a general rule of thumb, the answer is typically determined by
the amount of coding necessary to accomplish the task and by the degree to
which interoperability can be assured. Whenever a technology such as
SAML is profiled inside another technology such as WS-Security, conform-
ing implementations of WS-Security are required to support SAML (assum-
ing the conformance includes the SAML profile, of course). If you are using
a Web services platform or a set of Web services products that support WS-
Security, the simplest and most interoperable choice is to use SAML within
WS-Security. If all you require is SAML, on the other hand, it may make
more sense to simply use SAML directly and require services in your plat-
form (and your trading partners’ platforms, if any) to also support SAML.

Newcomer_08.qxd 11/22/04 8:34 AM Page 340

Message-Level Security 341

XACML: Communicating Policy Information
The Extensible Access Control Markup Language (XACML) is an XML applica-
tion for writing access control polices.

Access control security mechanisms have two sides: the side that performs the
check to see whether a user is authorized to access the Web service, and the
side that defines and manages the information that the access control mecha-
nism checks. In other words, the access control information needs to be defined
in order for it to be checked.

The XACML specification provides an access control language to define access
policies and a request/response protocol to request authorization decisions.
XACML can also be used to connect disparate access control policy engines.

XACML defines a set of rules for the XML encoding of what data a person is
allowed to read. For example, it could define which HR records you can access
from the HR Web site based on whether you are the employee, the authorized
parent or guardian of the person in the HR records, or the physician or other
authorized HR agent who can update the records.

XML Key Management Specification (XKMS)
XKMS is an XML-based mechanism for managing the Public Key Infrastructure
(PKI).

PKI uses public-key cryptography for encrypting, signing, authorizing, and veri-
fying the authenticity of information, including Web services messages. Public
and private keys can be used in XML Encryption and XML Signature, for exam-
ple, and to provide additional levels of authentication for an HTTP connection.

The XKMS specification defines a set of Web services to manage the task of key
registration and validation, based on the use of a third-party “trust” utility that
manages public and private key pairs and other PKI details. In other words,
XKMS defines Web service interfaces to key management systems so that Web
service applications can access and use their facilities. Otherwise, key manage-
ment requires a manual process of generating keys, placing them in their proper
directories, and publishing their location.

Newcomer_08.qxd 11/22/04 8:34 AM Page 341

342 Web Services Security

XKMS works with any PKI system, such as those provided by Verisign and
Entrust, passing the information back and forth between it and the Web service.
XKMS is a W3C specification.

Essential to the public/private key mechanism is the ability to manage and dis-
tribute key pairs. If a third party generates the associated key pairs, a manage-
ment facility such as XKMS is necessary to ensure that the right keys end up in
the right place.

Data-Level Security

XML Signature and XML Encryption are fundamental security specifications for
protecting Web services data. Because Web services specifications are all appli-
cations of XML, the specifications themselves can be protected using these core
XML technologies. For example, if you want to protect your WSDL files against
unauthorized access, you can encrypt them. If you want to protect your WSDL
files against tampering, you can sign them.

These specifications, along with SAML, XACML, and XKMS, are not specific to
Web services because they are general to XML and are not specifically adapted
to SOAP and WSDL the way the other specifications in this chapter are.

XML Signature defines how to verify that the contents of an XML document
have not been tampered with and arrived unchanged from the way they were
sent. XML Encryption describes how to encrypt all or part of any XML docu-
ment so that only the intended recipient can understand it.

It’s especially important to consider using these XML security technologies
when the XML data needs to be protected outside the context of a SOAP mes-
sage and when the Web services metadata needs to be protected from unautho-
rized access. WS-Security uses XML Signature and XML Encryption to help
ensure confidentiality and integrity of SOAP messages, but it does not describe
how to use these XML technologies outside the context of SOAP and WSDL,
which may be important for some applications, especially those storing XML in
a kind of intermediate format between transmissions. If a purchase order (PO)
has to be stored in the middle of a business process, for example, XML

Newcomer_08.qxd 11/22/04 8:34 AM Page 342

Data-Level Security 343

Encryption can be used to guard against unauthorized access to its contents,
and XML Signature can be used by the next step in the business process to en-
sure that the PO has not been tampered with.

XML Encryption
Encryption of the XML payload when carried over HTTP can be accomplished
using SSL, but sometimes that’s not enough. When carrying XML over other
transports, potentially over multiple transports, or when storing XML documents
in a file or in a database, it is helpful or even necessary to have a specific
mechanism for encrypting the XML documents.

When encrypting an XML element or element content, the EncryptedData ele-
ment defined in the XML Encryption specification replaces the element or con-
tent (respectively) in the encrypted version of the XML document. As with many
things related to XML, encryption works at any level of nesting. Either the entire
document (except the encryption headers) or any element within it can be
encrypted.

Selective encryption is useful when only part of a document needs to be kept
private. It’s possible to encrypt the tags as well as the data so that no one can
see what the data is supposed to contain, such as hiding a <creditcard> tag
within a <CipherData> tag.

For example:

<?xml version='1.0'?>
<PaymentInfo xmlns='http://www.iona.com/artix/paymentService'>

<Name>Eric Newcomer</Name>
<CreditCard Limit='50,000' Currency='USD'>

<Number>5555 5555 5555 5555</Number>
<Issuer>Example Bank</Issuer>
<Expiration>04/02</Expiration>

</CreditCard>
</PaymentInfo>

<?xml version='1.0'?>
<PaymentInfo xmlns='http://www.iona.com/artix//paymentService'>

<Name>Eric Newcomer</Name>
<EncryptedData Type='http://www.w3.org/2001/04/xmlenc#Element'
xmlns='http://www.w3.org/2001/04/xmlenc#'>
<CipherData>

Newcomer_08.qxd 11/22/04 8:34 AM Page 343

344 Web Services Security

<CipherValue>A23B45C56...</CipherValue>
</CipherData>

</EncryptedData>
</PaymentInfo>

This example illustrates both plain and encrypted versions of the same data.
Encrypted data is contained with the CipherData element. If an application
requires all information to be encrypted, the whole document can be encrypted
as an octet sequence. This applies to arbitrary data including XML documents.
For example:

<?xml version='1.0'?>
<EncryptedData xmlns='http://www.w3.org/2001/04/xmlenc#'
MimeType='text/xml'>
<CipherData>

<CipherValue>A23B45C56</CipherValue>
</CipherData>

</EncryptedData>

The <EncryptedData> element can’t be nested, but an <EncryptedData> tag
can be used at the same level as another <EncryptedData> tag, causing already
encrypted data to be encrypted again. This is convenient for developers who
don’t want to worry about the presence of another <EncryptedData> tag in the
documents they’re encrypting.

The EncryptionMethod is typically a secret key mechanism such as triple DES
or RC4, or sometimes an RSA public key or similar algorithm, depending on the
level of protection required.

A reference list contains all encrypted items within the document. A URI can be
used to point to the encrypted data.

XML Signature
XML Signature5 ensures that the provider knows that the part(s) of the document
that have been signed haven’t been changed between the time it was sent and
received. The receiving application (such as a Web service provider) has no
obligation to understand what’s been signed, but if it can understand the signed

5 XML Signature was developed jointly by the W3C and the IETF (RFC 2807, RFC 3275).

Newcomer_08.qxd 11/22/04 8:34 AM Page 344

Data-Level Security 345

part of the document, it can use the signature to determine whether that part’s
contents are unaltered and to authenticate the document’s author. Applications
can sign multiple data objects, some of which may not be XML.

An XML Signature may be applied to the content of one or more parts within an
XML document. Because XML documents can contain or reference binary ob-
jects and multimedia types, XML Signature has been designed to support those
types of objects in addition to XML elements and attribtues.

A signed object is guaranteed by the presence of the signature either to be unal-
tered or to provide a mechanism for the receiver to determine whether or not
the signed object has been tampered with.

The XML Signature associates a key with referenced data objects but does not
specify how keys are associated with persons or institutions,6 nor the meaning
of the data being referenced and signed. Key management for XML Signature,
as for other aspects of key-based security, is assumed to be handled by another
technology, such as a key registry, XKMS application, or other directory service.

The data objects are canonicalized and digested before being sent. Digesting
runs a hash algorithm over the data object, and canonicalization removes all
white space and formats the document according to the canonicalization
algorithm. You must canonicalize the data before signing it to ensure that you
get the same results each time. Then you digest it and sign the digest:

<Signature ID?>
<SignedInfo>

<CanonicalizationMethod/>
<SignatureMethod/>
(<Reference URI? >

(<Transforms>)?
<DigestMethod>
<DigestValue>

</Reference>)+
</SignedInfo>
<SignatureValue>

(<KeyInfo>)?
(<Object ID?>)*

</Signature>

6 Which is why WS-Security may be needed.

Newcomer_08.qxd 11/22/04 8:34 AM Page 345

346 Web Services Security

This example from the XML Signature specification illustrates the XML Signature
syntax structure. The <CanonicalizationMethod> tag identifies the mechanism
used for distilling the information.

Signatures are associated with data objects using URIs. Within an XML docu-
ment, signatures are related to local data objects via fragment identifiers. Such
local data can be included within a signature or can enclose a signature.

The specification defines a schema for capturing the result of a digital signature
operation applied to arbitrary data. XML signatures add authentication, data
integrity, and support for non-repudiation to the signed data.

XML Signature can be used to sign only specific portions of the XML tree rather
than the complete document. This is important when a single XML document
needs to be signed multiple times by a single or multiple parties. This flexibility
can ensure the integrity of certain portions of an XML document, while leaving
open the possibility for other portions of the document to change. Signature
validation mandates that the data object that was signed be accessible to the
party interested in the transaction. The XML signature must indicate the location
of the original signed object.

Summary

Security is a complex field awash in technologies and protocols to meet an
ever-growing series of threats to data and programs. Protecting data against un-
wanted access typically involves encrypting Web services messages, and a vari-
ety of options exist for doing so. It’s important when selecting an option to
determine compatibility with the services you’re interacting with, and to ensure
that the overall SOA supports a consistent technology, or set of technologies.
Often, more than one encryption technology is needed to handle the variety of
services arriving from a variety of sources in an SOA, and mechanisms are
available for this purpose.

Protecting against unwanted access to programs and IT resources involves
using potentially strong authentication techniques combined with authorization
checks to restrict access to only those who need it. Again, a variety of technolo-

Newcomer_08.qxd 11/22/04 8:34 AM Page 346

Summary 347

gies exist for authentication, and picking the right one or set is important for the
smooth and efficient functioning of an SOA. When exposing services externally,
it may be necessary to support a choice of authentication mechanisms for dif-
ferent consumers.

Whenever decisions are made concerning the selection of the most appropriate
security technology, it’s important to codify and formalize them in policies. A
good security solution starts with a well-reasoned and thoroughly researched
statement of policy. Web services provide mechanisms for expressing those
policies in machine-readable form, but it’s important to thoroughly document
the overall security policy and the threats it’s designed to guard against.

With security, it’s easy to think that you never have enough, but striking the
right balance is important because each security technology comes with a
built-in performance penalty. The stronger the encryption, the more processing
power it takes to encrypt and decrypt, for example. Use only as much security
as you really need.

Newcomer_08.qxd 11/22/04 8:34 AM Page 347

Newcomer_08.qxd 11/22/04 8:34 AM Page 348

