
5
ADO.NET and
SQL Server 2005

ADO.NET A N D SQL SE RV E R , in previous incarnations, generally
enjoyed separate design and development routes. But ADO.NET 2.0

and SQL Server 2005 (formerly code-named “Yukon”) share a great deal of
functionality and complementary technologies. As these two separate
products began to approach final release, it was necessary to merge their
functionality and release schedules so that they can provide an integrated
platform for the new technologies they both implement.

Chapter 1 discussed the many areas where ADO.NET 2.0 and SQL
Server have converged, and in this and subsequent chapters you’ll see these
features described in more detail. The support for hosting ADO.NET code
within SQL Server 2005 is covered in Chapter 6, and the new xml data type
and the way it can be used as a type in a table column are covered in Chap-
ter 7. In this chapter, we concentrate on three core areas of functionality:

• Multiple Active Results Sets (MARS)

• SQL Server Query Notifications

• SQL Server user-defined types (UDTs)

We start, however, with a trip to another planet—let’s pay a visit to
MARS.

171

05ADOR2.qxd 2/16/05 10:24 AM Page 171

Multiple Active Results Sets
ADO.NET 2.0 provides a great new feature called Multiple Active Results
Sets. In effect, the name alone is enough to indicate the aims of this tech-
nology: to allow you to have more than one results set active on the same
data store connection. In ADO.NET 1.x, if you open a DataReader over a
connection, you cannot use that connection for any other process until the
DataReader is closed. If you attempt to reuse the connection while the
DataReader is open, you get an exception with a message indicating that
the connection is in use.

In ADO.NET 2.0, you can open more than one DataReader, more than
one XmlReader (when using the ExecuteXmlReader method), or any mix-
ture of these concurrently over the same connection to SQL Server 2005.
Plus, while one or more readers are open, you can execute any other com-
mands over the same connection. For example, you can execute SQL state-
ments to update the database, call stored procedures (including
procedures that return values as parameters or rowsets), and execute Data
Manipulation Language (DML) statements that change the structure of the
database tables or otherwise manipulate the contents of the data store.

You can also interleave reads from the open readers. In other words,
you can read rows (or row elements in the case of the XmlReader) from any
of the open readers in any order. For example, you can read a row from
one reader, execute a command to create a new reader, read rows from it or
from the original reader, and close the readers in whatever order suits your
application requirements.

One point to bear in mind is that transactions in .NET are connection-
based. When you create a SqlTransaction for a connection, you assign
this to the SqlCommand by setting the Transaction property as follows:

myCommand.Transaction = myTransaction

This means that all the processes you execute over a single connection
share the same transaction. Of course, you can create nested transactions
for specific operations and define a transaction within a stored procedure
if you need more granular process control.

Scenarios for Using MARS
Although the theory behind the MARS technology is simple enough to
grasp, the interesting point is deciding where this approach is useful. At
first glance, you may think that it could be used almost everywhere you
perform data access and that it would make data access easier because you

CHAPTER 5: ADO.NET AND SQL SERVER 2005172

05ADOR2.qxd 2/16/05 10:24 AM Page 172

don’t have to be concerned about when and where in your code you open
a reader. However, this is not the best way to approach the technology. In-
stead, in this section we look at the main situations where MARS is of real
benefit.

Note: The ability to have multiple readers open at the same time in-
creases the possibility that one or more readers (previously opened
elsewhere in your code) may be left open. When using multiple read-
ers, be sure to close each one as soon as possible. The presence of
multiple open readers on a connection reduces scalability, and leav-
ing them open when not required affects your application response
and resource usage.

Batch Processing with MARS
One situation your application might have to handle is that of processing
a large number of rows from a table, perhaps running into hundreds of
thousands or more. Although the DataSet in version 2.0 can handle a large
number of rows, it makes sense in many cases to use a DataReader rather
than loading all the rows into a DataSet. However, your code may have to
take other actions based on the values in each row you process, for exam-
ple, reading or updating other tables in the same database. This may re-
quire loading all the data into a DataSet at once, perhaps as a set of
multiple tables, or breaking the process down into separate batches of a
specific number of rows.

In a batch processing scenario where there are very large numbers of
rows, MARS is useful because you can open another DataReader over the
connection without closing the first one. Without MARS, when you
wanted to perform actions on other tables in the database, you would have
to do one of the following:

• Open a new connection, with the subsequent processing overhead,
resource usage, and connection delay this involves

• Close the existing reader, storing a marker for the current position
within the rowset, and then reexecute the query, open a new reader,
and move from the start of the rowset to the next row that requires
processing

MULTIPLE ACTIVE RESULTS SETS 173

05ADOR2.qxd 2/16/05 10:24 AM Page 173

With MARS, you can leave the main rowset open at the current row, ex-
ecute other commands and open other readers as required, and then con-
tinue with the next row in the original rowset simply by calling the Read
method of that reader.

MARS also has another useful advantage: All the operations over a sin-
gle connection can be accomplished within a single lightweight local trans-
action. If, on the other hand, you are using separate connections to perform
multiple updates that require overall transactional support, you must take
advantage of a distributed transaction coordinator and associated service,
such as Windows Component Services.

Complex Data Processing with MARS
In another situation, you might want to perform complex processing that
requires access to multiple tables while you process another table, but you
want to do this only on some occasional basis. Although this seems to be
similar to the batch processing scenario just described, here we’re dis-
cussing even quite small original rowsets. For example, consider the task
of calculating the cost of several types of discounts that you offer to your
customers. There might be only 50 different types of sales promotions, but
to calculate the cost of each one probably involves access to all the product
and order details in the database.

Again, you could load all the relevant data from all the tables into a
DataSet and then process it there. Or you could load just the discounts
rowset into a DataSet or DataTable and then iterate through the rows, ac-
cessing the other data in the database as and when required. But MARS of-
fers you the alternative to perform all the processing by using readers.
Listing 5.1 shows an example of how the process might work. This exam-
ple involves extracting values as rowsets and as singleton values (using
ExecuteScalar), as well as executing an INSERT statement or stored pro-
cedure to insert a new row into another table—all while the original
DataReader is open.

Listing 5.1. A Scenario for Calculating Customer and Product Discount Costs

Open a connection to the Discounts table

Execute a Command to get a rowset of Discounts rows

For Each row in the Discounts rowset

Read the discount identifier key from the row

Read the start and end dates for this discount

Execute a Command to get a rowset of order lines for this ...

... discount and time period

CHAPTER 5: ADO.NET AND SQL SERVER 2005174

05ADOR2.qxd 2/16/05 10:24 AM Page 174

Calculate the discount given for each item and total discount ...

... for the quantity ordered

Look up the row in the Orders table for this order line row

Look up the row in the Customers table that matches this Orders row

Calculate the cost of any other customer-specific extra discount

Add a new row containing the results of these calculations ...

... to an audit table

Process the next Discounts row

Using Asynchronous Commands with MARS
In Chapter 2, you saw how ADO.NET 2.0 supports asynchronous execu-
tion of commands to SQL Server through the Command class in the
SqlClient namespace. It may seem like a useful approach to combine this
with MARS so that you can open multiple readers asynchronously over a
single connection. However, this is generally not recommended, and you
should avoid mixing the technologies on the same connection.

The reason for this is that both asynchronous commands and MARS re-
duce the “parallelism” of the processes using the connection. Multiple op-
erations may be completing simultaneously on multiple threads, and
correct synchronization of these operations is very difficult to achieve. This
is particularly the case when you use the asynchronous callback model
(described in Chapter 2), where the multiple callbacks from a connection
are most likely to be on different threads.

So, unless you have some specific requirement that demands asyn-
chronous execution but can use only a limited number of connections, you
should avoid the combination. And if you do use it, the best plan is to use
the Beginxxx and Endxxx methods that run on a single thread and to
avoid the callback model.

Displaying Customer and Order Details with MARS
Now that you know how useful MARS can be, you’ll see an example of it
in action in this section. This example shows how you can interleave reads
from multiple readers over a single connection.

The sample AdventureWorks database we’re using in this example con-
tains a series of tables that expose data about the orders placed by stores
that sell equipment supplied by the fictional AdventureWorks Company.
To get rowsets that can be used to display information about customers
(their names and addresses) and their orders, we have to join and query
several tables. Listing 5.2 shows the SQL statements that retrieve the fol-
lowing rowsets used in this example:

MULTIPLE ACTIVE RESULTS SETS 175

05ADOR2.qxd 2/16/05 10:24 AM Page 175

• The name and address details of two customers

• The set of orders for a specific customer, including the order num-
ber, order date, and total value

• The set of order lines for a specific order, including the quantity,
price, discount, and line value

Listing 5.2. The SQL Statements Used to Retrieve the Three Rowsets for This Example

' declare SQL statements to extract rows

Const queryCust As String = "SELECT Sales.Store.CustomerID, " _

& "Sales.Store.Name, AddressLine1, City, PostalCode, " _

& "Person.StateProvince.Name " _

& "FROM Sales.Store JOIN Sales.CustomerAddress ON " _

& "Sales.Store.CustomerID = Sales.CustomerAddress.CustomerID " _

& "JOIN Person.Address ON " _

& "Sales.CustomerAddress.AddressID = Person.Address.AddressID " _

& "JOIN Person.StateProvince ON " _

& "Person.Address.StateProvinceID = " _

& "Person.StateProvince.StateProvinceID " _

& "WHERE Sales.Store.CustomerID = 501 " _

& "OR Sales.Store.CustomerID = 503"

Const queryOrders As String = "SELECT SalesOrderID, " _

& "PurchaseOrderNumber, OrderDate, TotalDue " _

& "FROM Sales.SalesOrderHeader WHERE CustomerID = @CustID"

Const queryLines As String = "SELECT Production.Product.Name, " _

& "OrderQty, UnitPrice, UnitPriceDiscount, LineTotal " _

& "FROM Sales.SalesOrderDetail JOIN Production.Product " _

& "ON Sales.SalesOrderDetail.ProductID = " _

& "Production.Product.ProductID " _

& "WHERE SalesOrderID = @OrderID"

The example fetches the rows for the two specified customers and dis-
plays their name and address details. Then—while this rowset is open over
the connection—it executes another command that returns a rowset of the
related rows from the SalesOrderHeader table for the current customer.
As it iterates over the list of orders, the code displays the purchase order
number, the order date, and the total order value. Next—while this second
reader is also open—it executes a third command to fetch all the rows that
contain details of the individual items or order lines for the current order.
Figure 5.1 shows the result.

CHAPTER 5: ADO.NET AND SQL SERVER 2005176

05ADOR2.qxd 2/16/05 10:24 AM Page 176

Figure 5.1. The output of the example page that uses MARS to open three DataReaders
over the same connection

This example is among the samples you can download from our Web
site at http://www.daveandal.net/books/7124/. You’ll find it in the
chapter-05 folder as a console application named mars-saleslist.
The examples are available in both Visual Basic .NET and C#.

Creating the Connection and Commands
The code starts in the usual way by creating a single Connection and then
three Command instances (you can’t reuse a Command instance while the
DataReader it generated is still open, as is the case in this example). Each
Command instance uses one of the three SQL statements declared earlier in
the page.

MULTIPLE ACTIVE RESULTS SETS 177

05ADOR2.qxd 2/16/05 10:24 AM Page 177

The second and third SQL statements contain a parameter placeholder
used to select the appropriate orders and order lines for the current customer
and order. The two parameters are added to the second and third Command
instances as they are created. Both are used to specify the primary key of the
rows that should be selected, and both are of type SqlDbType.Int to match
the int column types in the database (see Listing 5.3).

Listing 5.3. Creating the Connection and Command for the MARS Example

' create the connection

Dim conn As New SqlConnection(connect)

' create a Command to retrieve customer rows

Dim cmdCustomers As New SqlCommand(queryCust, conn)

' create a Command to retrieve order rows

' cannot use the existing command while the rowset is open

Dim cmdOrders As New SqlCommand(queryOrders, conn)

' add a parameter to the command for selecting orders

cmdOrders.Parameters.Add("@CustID", SqlDbType.Int)

' create a Command to retrieve order rows and add

' a parameter for selecting order lines

Dim cmdLines As New SqlCommand(queryLines, conn)

cmdLines.Parameters.Add("@OrderID", SqlDbType.Int)

...

Iterating through the Rows
Listing 5.4 shows the remaining code (we’ve omitted the Try..Catch con-
struct to simplify the listing). The code starts to iterate through the cus-
tomer rows, displaying the details and then using the value of the
CustomerID column to populate the @CustID parameter of the second
Command instance. This Command is then executed to get a rowset containing
the list of orders for the current customer. Next, the code starts to iterate
through the order rows, again displaying some values from the row and
then using the OrderID value to populate the @OrderID parameter of the
third Command. This Command is then executed, and the list of order items
(order lines) is displayed.

CHAPTER 5: ADO.NET AND SQL SERVER 2005178

05ADOR2.qxd 2/16/05 10:24 AM Page 178

Listing 5.4. Iterating through the Rows in the MARS Example

...

' open a rowset containing customer rows

' can use CommandBehavior.CloseConnection here to

' close the connection when this reader is closed

conn.Open()

Dim rdrCustomer As SqlDataReader = _

cmdCustomers.ExecuteReader(CommandBehavior.CloseConnection)

' iterate through the customer rows

While rdrCustomer.Read()

' display details of this customer

Console.WriteLine("Customer: {0}", rdrCustomer(1))

Console.WriteLine("{0}, {1}, {2}, {3}", rdrCustomer(2), _

rdrCustomer(3), rdrCustomer(4), rdrCustomer(5))

Console.WriteLine()

' set the parameter value for this customer

cmdOrders.Parameters("@CustID").Value = rdrCustomer(0)

' open a rowset containing the list of orders for this customer

' note: cannot use CommandBehavior.CloseConnection here because

' the single connection must remain open when this reader is closed

Dim rdrOrder As SqlDataReader = cmdOrders.ExecuteReader()

' iterate through the order rows

While rdrOrder.Read()

' display the details of each order

Console.WriteLine(" Order Number: {0} on {1:d} " _

& "Total Value: {2:C}", rdrOrder(1), rdrOrder(2), rdrOrder(3))

' set the parameter value for this order

cmdLines.Parameters("@OrderID").Value = rdrOrder(0)

' open a rowset containing the list of order lines for this order

' note: again, cannot use CommandBehavior.CloseConnection here

Dim rdrLines As SqlDataReader = cmdLines.ExecuteReader()

' iterate through the order line rows

While rdrLines.Read()

' display the details of each order line

Console.WriteLine(" {0} x {1} @ {2:C} Less {3:P} = {4:C}", _

rdrLines(1), rdrLines(0), rdrLines(2), _

rdrLines(3), rdrLines(4))

End While

MULTIPLE ACTIVE RESULTS SETS 179

continues

05ADOR2.qxd 2/16/05 10:24 AM Page 179

' close the order lines reader

rdrLines.Close()

Console.WriteLine()

End While

' close the orders reader

rdrOrder.Close()

Console.WriteLine()

End While

' close the customer reader

rdrCustomer.Close()

Notice that the code to open the root DataReader (the one containing
the customer details) uses the CommandBehavior.CloseConnection value.
This reader will remain open throughout the entire process, so it’s safe to
use this option because the connection will be closed only when this reader
is closed at the end of the process. However, you cannot use this option
when creating a DataReader that will be closed before the process com-
pletes, as is the case with the second and third Command instances.

SQL Server Query Notifications
In environments where different users regularly update data, there is often
a need to refresh cached data when the original data changes. One ap-
proach to this is to poll the server at preset intervals to detect changes or to
simply fetch a new copy of the data after a prescribed interval has elapsed.

However, these techniques are not the most efficient approach. It leads
to extra work and resource consumption that are simply not required if the
source data has not changed. To reduce this extra load, wait times between
polling and refreshing the data are often increased, which has the negative
effect of increasing the latency in seeing changes and, as a result, the fre-
quency with which outdated data is served. Arranging for the server to no-
tify the application that is caching the data of any changes to the source
data when, and only when, these changes occur can eliminate this waste of
processing and resources.

The caching features implemented in ASP.NET 2.0 and the changes to
the underlying request handling mechanism in Internet Information Ser-
vices (IIS) 6.0 both take this approach, automatically invalidating the cache
content based on user-defined rules. Now, in conjunction with updates to
some of the classes in the SqlClient namespace, SQL Server 2005 offers
the same opportunities for relational data.

CHAPTER 5: ADO.NET AND SQL SERVER 2005180

05ADOR2.qxd 2/16/05 10:24 AM Page 180

Note: There is a cost associated with registering for and receiving
notifications. Query Notifications are not designed to be associated
with every ad hoc query (where each result is different) but are in-
tended for use where multiple users or requests share the same
query results.

The notification infrastructure scales well to support large numbers of
similar queries that vary only on parameter values. It is not designed to
scale to support hundreds of different ad hoc queries. As a result, notifica-
tions work well for invalidating cached Web responses and Windows
Forms DataSet instances based on common database queries but not for
notifying any arbitrary queries posed by numerous users.

An Overview of Query Notifications
When a query that generates a rowset is executed, code can instruct SQL
Server 2005 that it wants to be notified of any change to the source data in-
cluded in the rowset returned. The changes that cause a notification to oc-
cur include the following:

• Tables being truncated, altered, or dropped

• Data being inserted into, updated within, or deleted from the tables,
which would result in different values being returned if the query
were reexecuted

• An internal server error or the server being restarted

When a notifiable event occurs, SQL Server creates a notification mes-
sage and places it into a queue on the server. You can think of a notifiable
event as anything that occurs on the server that would cause the results of
the query to be different from the original if it were executed again. A no-
tification can occur immediately when a command is executed. Examples
include but are not limited to situations such as a query that is not a suit-
able SELECT query (see the next subsection for details) or a query that
causes an error.

It’s important to remember that a notification is sent only once. After it
has been sent, you will get no other notifications if the data changes again.
If you want to continue to monitor for changes, you must reregister for no-
tifications again by subscribing and reexecuting the query.

SQL SERVER QUERY NOTIFICATIONS 181

05ADOR2.qxd 2/16/05 10:24 AM Page 181

In some cases a default queue is used, while in other cases you can cre-
ate and use custom queues (see Tables 5.3 and 5.4 later in this chapter). A
list of the queues for a database can be found in SQL Server 2005 Manage-
ment Studio, in the Service Broker section of the Object Explorer tree for each
database.

Query Types Suitable for Notifications
In general, the rules that govern the query types suitable for notifications
are the same as those for materialized views, as listed in SQL Server 2005
Books Online. Query Notifications are supported only for suitable SELECT
queries. This means a single SQL SELECT statement that returns rows, or a
stored procedure or batch statement that contains one or more SELECT
queries.

However, there are other limitations. So that the notifications architecture
can track the tables and columns in the database correctly, the SELECT state-
ment must define the columns explicitly and not use the asterisk (all
columns) syntax. The name of the table must also be qualified with the
schema name as schema.table-name. For example, the following SELECT
statement is not suitable and may cause a notification to be sent immediately:

SELECT * FROM table

The next SELECT statement is suitable (assuming that the named table
and columns exist in the database), and a notification will be sent only
when the data changes, the table is modified, or a server error occurs:

SELECT ColumnA, ColumnB FROM dbo.MyTable

Note that the syntax requirements just stated apply to the current re-
lease, although breaking these “rules” may not result in an error or imme-
diate notification. It may also be possible to use a more relaxed syntax in
future releases.

Detecting a Notification
How the application detects and reacts to a change notification depends on
the type of application and the way that the notification is set up in the first
place. Applications can poll the queue to see if a notification has occurred.
OK, so this doesn’t seem like an advantage over polling the server in some
other way to check whether the source data has changed. However, the

CHAPTER 5: ADO.NET AND SQL SERVER 2005182

05ADOR2.qxd 2/16/05 10:24 AM Page 182

process of polling the queue for a notification message is far quicker and
far more efficient than querying the source data again.

It’s likely that you would only poll the queue just before your applica-
tion actually uses the data it cached from the original request, rather than
at regular intervals, though both approaches are perfectly valid. You might
even set it up as a user-controlled action, perhaps with a Refresh button or
command, so that users can check for changes when they want to.

Alternatively, with the new asynchronous execution model, you can ex-
ecute a query against the queue that will block until a change notification
is posted while allowing other code in the application to continue to exe-
cute. Because change notifications for multiple queries can be delivered to
the same queue, you can have this single query listening for a change from
multiple queries. Because SQL Server 2005 supports ADO.NET 2.0 asyn-
chronous command execution (as demonstrated in Chapter 2), executing
this blocking query asynchronously means that you don’t tie up a thread
on the client.

Subscribing to Notification Events
An even better way to maximize efficiency is to arrange for the notifica-
tions service to raise an event that an application can react to, rather than
having to poll the queue. This approach is also implemented in the notifi-
cations feature of SQL Server 2005 and ADO.NET 2.0.

Setting Up a Notification
The way that your application arranges to receive notifications determines
which of the two available techniques you must use. Setting up a notifica-
tion to raise an event requires a different set of classes to be used from set-
ting up a notification where your application will poll the queue directly.

To set up a notification that raises an event, you simply create an in-
stance of the SqlDependency class and specify an event handler that will
be called when the source data changes. This event handler can be associ-
ated with a cache entry. For example, in ASP.NET 2.0 the event can invali-
date any cached data, forcing the application to refresh the rowset from the
database to get the updated data.

Alternatively, you can use the SqlNotificationRequest class to send
a request for notifications to the server. The notification messages are
placed in a queue that you have previously created in the database and
that you specify when you create the SqlNotificationRequest instance.
You then poll the queue (as just described) to detect a notification.

SQL SERVER QUERY NOTIFICATIONS 183

05ADOR2.qxd 2/16/05 10:24 AM Page 183

Under the hood, the SqlDependency class uses a SqlNotificationRequest
instance to register for notifications with the server. The SqlDependency
class effectively acts as a higher-level abstraction, making it easier to create
applications that work with notifications using the default behavior. When
you need to tailor the behavior, however, you may prefer to use the
SqlNotificationRequest directly instead. We’ll look at this class first.

The SqlCommand Class and the SqlNotificationRequest Class
The SQL notifications feature in ADO.NET 2.0 adds the new
SqlNotificationRequest class to the System.Data.Sql namespace and
also adds two new properties to the SqlCommand class that allow it to in-
terface with notifications.

The SqlCommand Notification-Related Properties
The SqlCommand class in ADO.NET 2.0 can now be bound to an instance of
the SqlNotificationRequest class through a new property named
Notification (see Table 5.1), and auto-enlistment can be specified using
the new NotificationAutoEnlist property.

Table 5.1. The Notification-Related Properties of the SqlCommand Class

Property Description

Notification Sets or returns the SqlNotificationRequest
instance that is bound to this command and must be
set before the command is executed. By default the
value is null, indicating that no notification request
will be registered.

NotificationAutoEnlist Sets or returns a Boolean value that indicates whether
the command will automatically enlist the notifications
service when required. This is particularly useful in
controlling notifications behavior in ASP.NET pages,
where enlistment is automatic for all commands on the
page if a SqlDependency is declared as part of a
Cache directive.

The SqlNotificationRequest Constructors
The two overloads of the constructor for the SqlNotificationRequest
class are shown in Table 5.2.

CHAPTER 5: ADO.NET AND SQL SERVER 2005184

05ADOR2.qxd 2/16/05 10:24 AM Page 184

Table 5.2. The Constructors for the SqlNotificationRequest Class

Constructor Description

SqlNotificationRequest() Creates a new SqlNotificationRequest in-
stance with the properties set to null, ready for
values to be assigned to them.

SqlNotificationRequest Creates a new SqlNotificationRequest
(id, service, timeout) instance and sets the properties. See the property

descriptions in Table 5.3 for details of the parameters.

The SqlNotificationRequest Properties
The three properties of the SqlNotificationRequest class, which are
equivalent to the parameters to the constructor in Table 5.2, are shown in
Table 5.3.

Table 5.3. The Properties of the SqlNotificationRequest Class

Property Description

Id Sets or returns a String that defines application-specific information for
this notification. Although not actually used by the notifications system,
the ID allows the user to associate a notification with specific parts of the
application’s state. The value is included in the queue message when a
notification occurs, and the application can then invalidate the appropri-
ate cached data. This is useful if notifications from several commands are
posted to the same queue.

Service Sets or returns a String that is the name of the SQL Broker Service
queue to which notification messages will be posted. The service (queue)
must be configured on the server.

Timeout Sets or returns an Integer that specifies the length of time, in seconds,
that SQL Server will continue to monitor for changes. When the timeout
expires, a timeout notification is sent, even if no change to the data has
taken place. The default is 0, which means that the default timeout
defined for the server will be used.

Using a SqlNotificationRequest
To specify that an application should be notified of changes to the result of
executing a query that returns rows, you create a connection and command
as usual but then bind a new or an existing SqlNotificationRequest to
the command before executing it.

SQL SERVER QUERY NOTIFICATIONS 185

05ADOR2.qxd 2/16/05 10:24 AM Page 185

Note: The SqlNotificationRequest class is defined within the
System.Data.Sql namespace, not System.Data.SqlClient.
When creating instances of the SqlNotificationRequest class,
you must reference or import the System.Data.Sql namespace
into your project.

The code in Listing 5.5 uses the simpler of the two constructors for the
SqlNotificationRequest and then sets the Id, Service, and Timeout proper-
ties before binding the new SqlNotificationRequest instance to the Command
and calling the ExecuteReader method to get back a DataReader containing
the result.

Listing 5.5. Creating and Registering a Notification Request

' create a new SqlNotificationRequest

Dim notify As New SqlNotificationRequest()

notify.Id = "MyNotificationID"

notify.Service = "AdventureWorks.dbo.ServiceBrokerQueue"

notify.Timeout = 300

' create a Command and bind the notification request to it

Dim SQL As String = "SELECT colA, colB FROM database.schema.table"

Dim con As New SqlConnection("connection-string")

Dim cmd As New SqlCommand(SQL, con)

cmd.Notification = notify

' get the results and use them

Dim reader As SqlDataReader = cmd.ExecuteReader()

...

The DataReader can then be used in the application to display the data.
Alternatively, you can use the Command to fill a DataSet with the returned
rows.

Polling the Queue
Because the code has defined a notification request and sent it to the server,
any changes to the original data will cause a notification message to be
sent to the queue that was specified for the Service property. This mes-
sage will contain the value MyNotificationID that was assigned to the Id
property.

There is no built-in client-side support for polling the notification
queue. However, SQL Server 2005 does have the ability to poll the queue

CHAPTER 5: ADO.NET AND SQL SERVER 2005186

05ADOR2.qxd 2/16/05 10:24 AM Page 186

and return a notification message in response to a SQL query. The format
of this query is:

RECEIVE <field-list> FROM <queue-name>

You can approach polling the queue in different ways in terms of tim-
ing. The best option depends on the requirements of your application. For
example, you can execute the query when the user clicks a refresh button
or when an appropriate number of minutes or seconds have passed. An-
other alternative is to set up a stored procedure that is bound to the Broker
Service queue, which is automatically executed when the queue receives
the notification.

Another approach, should the previous ones be unsuitable for your re-
quirements, is to execute an asynchronous “blocking” command, such as
that shown in Listing 5.6, that will return only when a message is delivered
to the queue. It uses a Command object that has a polling query defined as
the CommandText and executes this command asynchronously with the
BeginExecuteReader method. An event handler named CommandCom-
pleted is declared as the callback for this method.

Listing 5.6. Creating a Blocking Command to Receive a Notification

...

' create a blocking command to receive a notification from the queue

Dim sqlPoll As String = "WAITFOR (RECEIVE * " _

& "FROM AdventureWorks.dbo.ServiceBrokerQueue)"

Dim con2 As New SqlConnection("async-connection-string")
Dim cmd2 As New SqlCommand(sqlPoll, con2)

con2.Open()

cmd2.BeginExecuteReader(_

New AsyncCallback(AddressOf CommandCompleted), cmd2)

...

When a change to the data occurs and a notification message is deliv-
ered to the queue, the CommandCompleted event handler is automatically
called (see Listing 5.7). It can retrieve the message from the queue by using
the DataReader returned by the EndExecuteReader method. (For more
details on asynchronous command execution, see Chapter 2.)

Listing 5.7. Handling the Delivery of a Notification

' called when a notification message is delivered to MyQueue

Sub CommandCompleted(ByVal result As IAsyncResult)

' get a reference to the original Command from AsyncState

Dim cmd As SqlCommand = CType(result.AsyncState, SqlCommand)

SQL SERVER QUERY NOTIFICATIONS 187

continues

05ADOR2.qxd 2/16/05 10:24 AM Page 187

Try

' get a DataReader and display the results

Dim reader As SqlDataReader = cmd.EndExecuteReader(result)

Console.WriteLine("Data changed at {0}", _

DateTime.Now.ToLongTimeString())

' ... read data from the DataReader here ...

Console.WriteLine(reader(0))

Catch e As Exception

Console.WriteLine("* ERROR: " & e.Message)

End Try

cmd.Connection.Close()

End Sub

The samples you can download from our Web site at
http://www.daveandal.net/books/7124/ include an example of using the
SqlNotificationRequest class. This is in the chapter-05 folder
as a console application named notifications-request. The ex-
amples are available in both Visual Basic .NET and C#.

The SqlDependency Class
Instead of creating and binding a SqlNotificationRequest instance to
the Command, you can use the alternative SqlDependency approach to de-
fine a required notification. In the beta 1 release, the SqlDependency class
has three overloads for the constructor and exposes three properties, two
methods, and a single event. The range of constructors available changes
in the beta 2 release, however, with fewer parameters being supported.

The SqlDependency Constructors (Beta 1 Release)
The constructor for the SqlDependency class creates a new SqlDependency
and automatically binds it to a Command instance if one is specified. Table
5.4 shows the three overloads.

Table 5.4. The Constructors for the SqlDependency Class

Constructor Description

SqlDependency() Creates a new SqlDependency instance with the proper-
ties set to null, ready for values to be assigned to them.

CHAPTER 5: ADO.NET AND SQL SERVER 2005188

05ADOR2.qxd 2/16/05 10:24 AM Page 188

Table 5.4. The Constructors for the SqlDependency Class (continued)

Constructor Description

SqlDependency(command) Creates a new SqlDependency instance that is bound to
the specified SqlCommand instance. The remaining proper-
ties are set to null, ready for values to be assigned to
them.

SqlDependency(command, Creates a new SqlDependency instance that is bound to
service-name, the specified SqlCommand instance. The remaining
authentication, parameters are:
encryption, service-name: The name of the SQL Broker Service
transport, timeout) queue as a String.

authentication: The authentication type to be used by
the client listener. This value is one from the
SqlNotificationAuthType enumeration:

• None: The connection to the client doesn’t use authenti-
cation. Any connection will be considered valid. This is the
default.

• Integrated: Use NT integrated authentication.

encryption: The encryption type to be used when sending
notification data from the server to the client. This is a
value from the SqlNotificationEncryptionType
enumeration:

• None: Data is exchanged in plain text. This is the default.

• Certificate: Use a server certificate to encrypt the
SSL channel.

Note that the encryption parameter will be removed
from the beta 2 and final release versions.

transport: The method used by the server to send a
notification to the client. This value is one from the
SqlNotificationTransports enumeration:

• Any: Use HTTP if available, or use TCP otherwise. This is
the default.

• Tcp: Use raw sockets as the transport. This is useful
where a kernel-mode HTTP listener is not available. A
separate port is required for each application domain that
uses notifications, which can reduce scalability and
performance.

• Http: Use HTTP through the kernel-mode HTTP listener in
IIS 6.0, allowing a single port to be shared across all
application domains.

• None: No transport type is specified.

timeout: The timeout in seconds for this notification. If not
specified, the server default timeout is used.

SQL SERVER QUERY NOTIFICATIONS 189

05ADOR2.qxd 2/16/05 10:24 AM Page 189

The SqlDependency Properties
The three properties of the SqlDependency class are shown in Table 5.5.

Table 5.5. The Properties of the SqlDependency Class

Property Description

Id Returns a String representation of the GUID that identified
this dependency. Used with the computer name, authentica-
tion type, and encryption type to define the Id property of the
underlying SqlNotificationRequest object. Read-only.

HasChanges Returns True if any of the results bound to this dependency
have changed, or returns False otherwise. Read-only.

InvalidationString Returns the information required by SQL Server to send back
the notification, as an XML document fragment, such as:

<MachineAddress>address</MachineAddress>

<AuthType>authentication_type</AuthType>

<EncryptionType>encryption_type</EncryptionType>

<Key>id</Key>

The SqlDependency Method
There is a single method for the SqlDependency class, which can be used
to bind a dependency to a command (see Table 5.6).

Table 5.6. The Method of the SqlDependency Class

Method Description

AddCommandDependency(command) Binds this dependency to the specified
SqlCommand instance. More than one
command can be added to a dependency if
required. The dependency will raise a notifica-
tion when any result fetched by any of the
commands changes. No return value.

The SqlDependency Event
There is a single event raised by the SqlDependency instance when the val-
ues in the source data change or when any other event in the database
(such as an error or a timeout) requires a notification to be sent to the client
(see Table 5.7). Remember that a notification can be raised when the com-
mand is executed if there is an error or if the command is not valid for no-
tifications, and that a notification is only sent once.

CHAPTER 5: ADO.NET AND SQL SERVER 2005190

05ADOR2.qxd 2/16/05 10:24 AM Page 190

Table 5.7. The Event of the SqlDependency Class

Event Description

OnChanged Calls the specified event handler when a notifiable event occurs in the database.
Passes an instance of a SqlNotificationEventArgs class to that event
handler. The properties of the SqlNotificationEventArgs class are:

Info: Indicates the reason for the notification. This is a value from the
SqlNotificationInfo enumeration:

• Alter: An underlying object related to the query was modified.

• Delete: Data was changed by a DELETE statement.

• Drop: An underlying object related to the query was dropped.

• Error: An internal error occurred in the server.

• Insert: Data was changed by an INSERT statement.

• Invalid: A non-notifiable statement was provided (e.g., an UPDATE
statement).

• Isolation: An invalid isolation mode (e.g., Snapshot) was used when
executing the query.

• Options: The SET options were not correctly specified when subscribing
for notifications.

• Query: A statement for which notifications are enabled was provided (i.e.,
a suitable SELECT statement) and the data has changed.

• Restart: The database server was started or restarted (notifications are
sent when it starts).

• Truncate: One or more tables were truncated.

• Update: Data was changed by an UPDATE statement.

Source: Indicates the item in the database that generated the notification or
the reason it was generated. This is a value from the SqlNotificationSource
enumeration:

• Data: The source data has changed, for example, there was an INSERT,
UPDATE, DELETE, TRUNCATE, or similar statement executed that affected
the source data.

• Database: The state of a database that affects the source data has
changed, for example, the database was detached or dropped.

• Environment: The runtime environment was not compatible with notifica-
tions, for example, snapshot isolation or incompatible SET options were
specified.

• Execution: A runtime error occurred while executing the statement.

• Object: A database object has changed, for example, a table containing
the source data was modified or dropped from the database.

• Statement: The statement being executed is not valid for notifications,
for example, a non-notifiable SELECT statement or any statement other
than a SELECT statement.

• System: A system event occurred, for example, an internal error, the server
was restarted, or lack of resources caused invalidation of data.

• Timeout: The specified timeout period for the notification has expired.

Type: Indicates whether this notification is due to an actual change in the
data. This is a value from the SqlNotificationType enumeration:

• Change: The notification occurred because the data has changed.

• Subscribe: The notification occurred when the command was executed or
when the notification request was being processed.

SQL SERVER QUERY NOTIFICATIONS 191

05ADOR2.qxd 2/16/05 10:24 AM Page 191

Using a SqlDependency
Specifying and requesting notifications using the SqlDependency class is
just as easy as using the SqlNotificationRequest class. You can create
the dependency and then bind it to the Command object. Or, as shown in
Listing 5.8, you can specify the Command instance in the constructor for the
SqlDependency. Before executing the command, you have to attach the
event handler that will be called when a notification occurs. Then you use
the command in the normal way to return a DataReader or to fill a
DataSet.

Listing 5.8. Creating a SqlDependency

' create a new Command object from an existing Connection instance

Dim SQL As String = "SELECT colA, colB FROM database.schema.table"

Dim con As New SqlConnection("connection-string")

Dim cmd As New SqlCommand(SQL, con)

' create a dependency and associate it with the command

Dim depend As New SqlDependency(cmd)

' subscribe to the dependency event

AddHandler depend.OnChanged, _

New OnChangedEventHandler(AddressOf MyHandler)

' get the results and use them

Dim reader As SqlDataReader = cmd.ExecuteReader()

...

The difference between the SqlDependency and SqlNotificationRequest
classes is that you don’t have to poll the notifications queue when using
the SqlDependency class. Your code can continue to execute, and the event
handler you specified is called only when a notification occurs. In the
event handler you can access the three properties, Info, Source, and Type,
to see what caused the event. If the data has changed, you can invalidate
any cached data and even perform a refresh to fetch the updated data (see
Listing 5.9).

Listing 5.9. Handling the OnChanged Event of a SqlDependency

' event handler routine

Sub MyHandler(sender As Object, args As SqlNotificationEventArgs)

' display the properties of the SqlNotificationEventArgs event...

Console.WriteLine("OnChanged event raised...")

Console.WriteLine("Reason why notification was raised: Info=" _

& "SqlNotificationInfo{0}", args.Info.ToString())

CHAPTER 5: ADO.NET AND SQL SERVER 2005192

05ADOR2.qxd 2/16/05 10:24 AM Page 192

Console.WriteLine("Reason why notification was sent: Type=" _

& "SqlNotificationType.{0}", args.Type.ToString())

Console.WriteLine("Source that generated notification: Source=" _

& "SqlNotificationSource.{0}", args.Source.ToString())

' probably invalidate the cached data, and maybe refresh it

' maybe even use the asynchronous feature new in ADO.NET 2.0!

If args.Type = SqlNotificationType.Change Then

' invalidate cached data, and maybe refresh

...

End If

End Sub

The samples you can download from our Web site at
http://www.daveandal.net/books/7124/ include an example of using the
SqlDependency class. This is in the chapter-05 folder as a con-
sole application named notifications-cachedependency. The
examples are available in both Visual Basic .NET and C#.

Using SqlDependency in ASP.NET Applications
ASP.NET has provided a Cache object for which dependencies can be spec-
ified since version 1.0. In version 2.0 of the Framework, the ASP.NET cache
infrastructure is extended to work with the new SqlDependency class. This
means that you can now specify Cache dependencies as being dependent
on a result returned from SQL Server 2005. For example, when saving data
in the Cache instance exposed for the application, you can use a
SqlDependency instance to specify when the cache will be invalidated.

The code in Listing 5.10 creates a DataSet and fills it with rows, after
binding a SqlDependency to the Command that the DataSet uses. This
SqlDependency is then specified in the call to the Insert method of the
Cache instance. When the notification of a change is received, the DataSet
is invalidated and removed from the cache automatically.

Listing 5.10. Using a SqlDependency in ASP.NET

' create a new Command object from an existing Connection instance

Dim SQL As String = "SELECT colA, colB FROM database.schema.table"

Dim con As New SqlConnection("connection-string")

Dim cmd As New SqlCommand(SQL, con)

SQL SERVER QUERY NOTIFICATIONS 193

continues

05ADOR2.qxd 2/16/05 10:24 AM Page 193

' create a dependency and associate it with the command

Dim depend As New SqlDependency(cmd)

' create a new DataSet and fill with rows

Dim ds As New DataSet()

Dim adapter As New SqlDataAdapter(cmd)

adapter.Fill(ds, "TableName")

' insert into cache to use as and when required

Cache.Insert("MyDataSet", ds, depend)

...

Of course, this means that the code will have to check whether the
DataSet is in the cache before attempting to use it later and recreate it if it’s
not there.

Page-Level Output Caching Dependencies
SQL query notifications can also be used to invalidate a response gener-
ated by an ASP.NET page. An attribute is specified in the @OutputCache
directive of the page to denote that the cached response is dependent on all
SqlClient commands used to retrieve and generate the content for the
page. If the results of any of these commands change, the page is automat-
ically removed from the cache.

When ASP.NET sees SqlDependency="CommandNotification" in the
@OutputCache page directive, it automatically creates a SqlDependency
under the covers. All commands created within the page register with that
SqlDependency. Then, if any one of the results becomes invalid due to
changes in the database or to other notifiable events on the database server,
the ASP.NET page output is invalidated on the Web server. The next re-
quest will then cause fresh and up-to-date copies of the data to be fetched
from the database. Here’s an example of such a directive:

<%@ OutputCache Duration="300" VaryByParam="none"
SqlDependency="CommandNotification" %>

The same kind of process can also be implemented for individual com-
mands in code at runtime, rather than being automatically applied to all
commands through the @OutputCache directive. The AddCacheDependency
method adds the SqlDependency to the response (output) cache, causing
the cached data to be invalidated when the data retrieved by the Command
changes in the database (see Listing 5.11).

CHAPTER 5: ADO.NET AND SQL SERVER 2005194

05ADOR2.qxd 2/16/05 10:24 AM Page 194

Listing 5.11. Using a SqlDependency to Invalidate Cache Entries

...

' create a dependency and associate it with the command as before

Dim depend As New SqlDependency(cmd)

...

' set any other values required for response cache

Response.Cache.SetExpires(DateTime.Now.AddSeconds(300))

Response.Cache.VaryByParams("None") = True

Response.Cache.SetCacheability(HttpCacheability.Public)

Response.Cache.SetValidUntilExpires(True)

' add the SqlDependency

Response.AddCacheDependency(depend)

...

Remember that you can set the Boolean property NotificationAutoEnlist
of a Command instance to specify whether that command will automatically
enlist the notifications service in an ASP.NET page that uses SqlDependency.

See the companion book ASP.NET v. 2.0—The Beta Version (Boston,
MA: Addison-Wesley, 2005, ISBN 0-321-25727-8) for a more detailed
look at how object-level and output (page-level) caching works in
ASP.NET 2.0.

SQL Server User-Defined Types
In conjunction with the changes taking place to SQL Server in the forth-
coming release, it’s now possible to execute managed code—in any of the
supported .NET languages—on the Web or application server, the client,
and within SQL Server itself. This is due to the Common Language Run-
time (CLR) being embedded within SQL Server 2005, allowing managed
code to run within the database itself. One opportunity this raises is an ex-
tension of the data types that can be stored in a SQL Server database. This
is just one of the many extensions to SQL Server; more are covered in
Chapter 6.

User-defined data types can easily be created in .NET by defining a
structure or class that exposes the individual items of data as properties.
For example, consider a complex number; this cannot be stored directly
within the standard SQL types. Within SQL Server 2005, however, you

SQL SERVER USER-DEFINED T YPES 195

05ADOR2.qxd 2/16/05 10:24 AM Page 195

could create a structure called ComplexNumber and use it as the data type
for the column. Likewise, you could create data types that contain multiple
pieces of information: a Point to combine x- and y-coordinates, Longitude
and Latitude to combine degrees, minutes, seconds, and hemisphere.
These could easily be stored as separate columns, but they would need to
be recombined when required. This may not seem such a burden, but con-
sider dates, which store three sets of information: a day, a month, and a
year. You certainly wouldn’t want every date to be stored as three separate
columns.

When to Use UDTs
The idea of using UDTs does not mean that you should store your classes
directly in SQL Server as UDTs. For example, consider classes such as
User, Product, and Invoice. These occur frequently as classes to define
the entities of a business, but they are not suitable as UDTs. The reason is
simple—SQL Server is not an object-oriented database. These types of
classes are business abstractions, not data types. For data to be considered
as a UDT, it should be a scalar object (a value that can be represented in a
single dimension) that requires more than one field to store it.

This definition of a scalar value is restrictive and excludes defining
types such as Point, Longitude, and Latitude as UDTs. One view is that
a UDT is suitable if the “between” rule can be applied. That is, is it easy to
define one value as being between two other values? For example, with
dates this is clearly so because it is easy to determine whether one date lies
between two others. For points the answer becomes vague; technically, a
point is between other points only when on a line—a scalar object because
a line is single dimensional. If the middle point is not directly on the line
between two other points, is it still classified as between? Strictly speaking,
three points like this define a triangle; the middle point is not between the
others and therefore a point shouldn’t be used for a UDT. However, using
this rigid rule to define what can be considered a UDT is restrictive. Using
SQL Server 2005 to store shape data for a graphical application is not
something new, and using UDTs for point storage is a natural extension.

Creating a UDT
Creating a UDT is simply a matter of creating a class or structure and dec-
orating it with certain attributes to identify it to SQL Server. Visual Studio
2005 makes this easy by supplying a SQL Server Project template, provid-
ing you with the opportunity to connect to a SQL Server database. Then
from the Project menu you can select Add User-Defined Type, which provides

CHAPTER 5: ADO.NET AND SQL SERVER 2005196

05ADOR2.qxd 2/16/05 10:24 AM Page 196

a base class for your type. This class is a standard .NET class, but for it to
be available as a UDT, it must implement the interfaces, methods, and
properties defined in Table 5.8.

Table 5.8. Class Requirements for a User-Defined Type

Task Reason

Implement the INullable interface Types in SQL Server can contain null values, so
the UDT must be able to contain a null value.

Implement the INullable.IsNull This is called to identify whether or not the
property UDT contains a null value.

Override the ToString method ToString is called automatically when a textual
representation of the UDT is required. In this
method, you convert the internal representation
into a human-readable form.

Implement the Null property This property defines a null value for the UDT,
typically by setting the internal values to some
known value that can be used to represent null
(e.g., a Boolean flag).

Implement the Parse method This method is used to convert string values into
the internal representation. It will be called when
values are inserted into the column.

In addition to the required implementation of methods and properties,
you can also define custom ones. To make this clearer, consider the Point
structure as a UDT in which we want to store x- and y-coordinates. We’d
want to implement X and Y as properties to allow clients to access the indi-
vidual parts of the type, as shown in Listing 5.12.

Listing 5.12. The Point User-Defined Type

Imports System

Imports System.Data.Sql

Imports System.Data.SqlTypes

Imports System.Runtime.Serialization

<Serializable(), SqlUserDefinedTypeAttribute(Format.Native)> _

Public Structure Point

Implements INullable

Private _isNull As Boolean

Private _x As Double

Private _y As Double

SQL SERVER USER-DEFINED T YPES 197

continues

05ADOR2.qxd 2/16/05 10:24 AM Page 197

Public Sub New(ByVal x As Double, ByVal y As Double)

_x = x

_y = y

End Sub

Public ReadOnly Property IsNull() As Boolean _

Implements INullable.IsNull

Get

Return _isNull

End Get

End Property

Public Overrides Function ToString() As String

If Me.IsNull Then

Return "NULL"

Else

Return Me._x & ":" & Me._y

End If

End Function

Public Shared Function Parse(ByVal s As SqlString) As Point

If s.IsNull OrElse s.ToString() = "NULL" Then

Dim pt As New Point()

pt._isNull = True

Return pt

Else

' parse the input string here to separate out points

Dim xy() As String = s.ToString().Split(":")

If xy.Length <> 2 Then

Throw New Exception("Point must be supplied as x:y")

End If

' construct a new point from the given coordinates

Dim pt As New Point()

pt.X = Convert.ToDouble(xy(0))

pt.Y = Convert.ToDouble(xy(1))

Return (pt)

End If

End Function

Public Shared ReadOnly Property Null() As Point

Get

Dim pt As New Point

pt._isNull = True

Return (pt)

CHAPTER 5: ADO.NET AND SQL SERVER 2005198

05ADOR2.qxd 2/16/05 10:24 AM Page 198

End Get

End Property

Public Property X() As Double

Get

Return (Me._x)

End Get

Set(ByVal Value As Double)

_x = Value

End Set

End Property

Public Property Y() As Double

Get

Return (Me._y)

End Get

Set(ByVal Value As Double)

_y = Value

End Set

End Property

End Structure

Internally, the x- and y-coordinates are stored as private variables of
type Double. There is also a private Boolean flag to identify whether the
type is null; the IsNull property simply returns this value. The ToString
method returns the internal types formatted as a string, with the x- and y-
coordinates separated by a colon. The Parse method provides the opposite
service—accepting a string that contains the colon-separated x- and y-
coordinates (or the string "NULL") and converting that into the internal
representation.

As you can see, this is a simple structure that obeys some standard
rules, and you can add additional properties and methods as required.

One requirement not yet mentioned is the decoration of the structure
with attributes:

<Serializable(), SqlUserDefinedTypeAttribute(Format.Native)>

The Serializable attribute indicates that the structure can be serialized,
a requirement for SQL Server 2005 to store the data internally. The

SQL SERVER USER-DEFINED T YPES 199

05ADOR2.qxd 2/16/05 10:24 AM Page 199

Format.Native parameter of the SqlUserDefinedTypeAttribute indi-
cates that serialization should take place by the native method—this
means that SQL Server 2005 should control the serialization. One impor-
tant point to note is that when using Native serialization, the internal
types can be only value types. These types are bool, byte, sbyte, short,
ushort, int, uint, long, ulong, float, double, SqlByte, SqlInt16,
SqlInt32, SqlInt64, SqlDateTime, SqlSingle, SqlDouble, SqlMoney,
and SqlBoolean. Notice that string is not among this list—the string
type is a reference type and is therefore not allowed when using Native se-
rialization. If you require a type other than these, you need to serialize the
type yourself. For more details, see the SQL Server 2005 and Visual Studio
2005 documentation. Additionally, Microsoft recommends that UDTs
should be structures, not classes. This is mostly due to structures being
value types, which are cheaper to construct, don’t involve boxing, and
have less overhead on the garbage collector. This is particularly important
in the SQL CLR because a large number of UDT instances will be created
when querying over large tables with UDT columns.

Installing a UDT into SQL Server 2005 with Visual Studio 2005
Once you’ve created a UDT, you need to install it into SQL Server 2005. All
custom types are compiled into an assembly that is loaded into SQL Server.
This means that once deployed into SQL Server 2005, the original code is
not required; the database is self-contained.

Using Visual Studio 2005 to deploy the UDT is simply a matter of se-
lecting the Deploy Solution item from the Build menu. The assembly is com-
piled and loaded into SQL Server 2005, and the UDT is created. You can
then create other types, such as tables, that depend upon the UDT.

Installing a UDT into SQL Server 2005 Manually
Installing a UDT manually requires more steps. First you have to install the
assembly into SQL Server 2005:

CREATE ASSEMBLY PointAssembly

FROM "c:\SQLProjects\Point.dll"

This creates the assembly within SQL Server but doesn’t create the type. So
you then enter:

CREATE TYPE Point

EXTERNAL NAME PointAssembly.Point

CHAPTER 5: ADO.NET AND SQL SERVER 2005200

05ADOR2.qxd 2/16/05 10:24 AM Page 200

If the structures are contained within a namespace, you must also include
the namespace when creating the type:

CREATE TYPE Point

EXTERNAL NAME PointAssembly.PointNamespace.Point

The point can now be used within tables, as demonstrated in this example:

CREATE TABLE ShapeData

(

ShapeID int NOT NULL,

Position Point

)

INSERT INTO ShapeData

VALUES(1, '2:4')

INSERT INTO ShapeData

VALUES (2, CAST('2:4' As Point))

Notice that the second column is the point and that the data has been en-
tered as a string with the x and y values separated by a colon—the format
required by the Parse method.

Accessing a UDT
Accessing a UDT from clients is much like accessing any other data type
but with one exception: The client must have a reference to the assembly
containing the type. For example, SQL Server Management Studio (SSMS)
is a client application so you cannot simply run this query:

SELECT * FROM ShapeData

The client application has no knowledge of the UDT and therefore cannot
return a column of that type, so the query results in the following error:

An error occurred while executing batch. Error message is: File or

assembly name 'Point, Version=1.0.1710.21243, Culture=neutral,

PublicKeyToken=null', or one of its dependencies, was not found.

You can, however, access methods of the type directly, making the fol-
lowing query possible:

SELECT ShapeID, Position.ToString() FROM ShapeData

Because the ToString method is executed within the database, which does
know about the type, only text is returned to the client. Remember that the

SQL SERVER USER-DEFINED T YPES 201

05ADOR2.qxd 2/16/05 10:24 AM Page 201

term client refers not to a physical entity but to the application requesting
the UDT. So an ASP.NET application would be a client even if it resided
physically on a server.

Making a UDT Available to Clients
To be made available to clients, a UDT needs to be referenced in the same
way that other user types (such as custom classes) are referenced—by the
client application directly (a private assembly) or installed into the Global
Assembly Cache (GAC) and referenced from there. For Visual Studio 2005
this is simply a matter of using the Add Reference item from the Project

menu.
Using the GAC avoids the explicit reference and also means that the

UDT becomes available to SSMS, enabling the SELECT * type of query to
work.

Accessing a UDT in SQL
The UDT column can be used like any other column when used from client
applications—within SQL statements (either directly in the Query window
in the SSMS or from within stored procedures), or in SQL on the client.
Methods and properties can be called directly, as shown in Listing 5.13.

Listing 5.13. Directly Accessing UDTs from SQL

SELECT Position FROM ShapeData

SELECT Position.X FROM ShapeData

DECLARE @pos Point

SET @pos = CONVERT(Point, '5:3')

PRINT @pos.X

PRINT @Pos.Y

Notice that Point behaves like any other data type, so you can use it to de-
clare local variables, to write CONVERT statements, and so on.

Accessing a UDT via a DataReader
Within client ADO.NET code, the UDT acts just like any other .NET type.
Consider the code fragment shown in Listing 5.14, where the rows from a
query are simply iterated through with a reader, and ToString is called on
the UDT column.

CHAPTER 5: ADO.NET AND SQL SERVER 2005202

05ADOR2.qxd 2/16/05 10:24 AM Page 202

Listing 5.14. Accessing a UDT from Client Code

Dim connect As String = _

"Server=localhost; Database=AWL; Trusted_Connection=True"

Dim sql As String = "SELECT * FROM ShapeData"

Dim conn As New SqlConnection(connect)

Using (conn)

SqlCommand cmd = new SqlCommand(sql, conn)

conn.Open()

SqlDataReader rdr = cmd.ExecuteReader()

While rdr.Read()

Console.WriteLine("Point: " & rdr("Position").ToString())

End While

End Using

You can call other methods and properties in addition to ToString. You
can also reference the column as a strong type, as shown in Listing 5.15.

Listing 5.15. Strongly Typed Access to a UDT

...

Dim pt As Point

While rdr.Read()

pt = CType(rdr("Position"), Point)

Console.WriteLine("X=" & pt.X.ToString() & _

"Y=" & pt.Y.ToString())

End While

...

Accessing a UDT via a DataSet
The process of accessing a UDT stored in a DataSet is much the same as
for one stored in a DataReader. For example, consider Listing 5.16, where
myDataSet contains data from the ShapeData table.

Listing 5.16. Accessing a UDT Column from a DataSet

Dim pt As Point = myDataSet.Tables(0).Rows(0)("Position")

Console.WriteLine("X=" & pt.X.ToString() & _

"Y=" & pt.Y.ToString())

SQL SERVER USER-DEFINED T YPES 203

05ADOR2.qxd 2/16/05 10:24 AM Page 203

Using UDTs in Query Parameters
When you work with UDTs in ADO.NET, you’ll come across the situation
where you need to use a UDT as a parameter to a SQL statement or stored
procedure. The SqlParameter class has been modified in ADO.NET 2.0 to
support a new constructor and new methods that allow UDTs to be used.
They hinge on the way that a UDT is identified.

The identification is done by using the type name as the value for a
new property on the SqlParameter class named UdtTypeName. The new
addition to the SqlDbType enumeration, Udt, is specified for the DbType
property to identify the data type as being a UDT. For example:

Dim param As New SqlParameter()
param.DbType = SqlDbType.Udt
param.UdtTypeName = "dbo.Point"

The constructors for a SqlParameter accept a value from the SqlDbType
enumeration, so a parameter for a Point type can alternatively be created
using the following code:

param = oCmd.Parameters.Add("@pos", SqlDbType.Udt)
param.UdtTypeName = "dbo.Point"

Therefore, you could create a new Point UDT instance and pass it to a
SQL statement or a stored procedure as a UDT parameter, using code like
that shown in Listing 5.17.

Listing 5.17. Using a UDT as a Query Parameter

' create a new Command object from an existing Connection instance

' SQL statement updates a UDT position column value in a table

Dim oCmd As New SqlCommand("UPDATE ShapeData " & _

"SET Position = @pos " & _

"WHERE ID = @RowID", oConn)

Dim oParam As SqlParameter

' add an Integer parameter for the RowID

oParam = oCmd.Parameters.Add("@RowID", SqlDbType.Int)

oParam.Value = 1

' now add a UDT parameter of type Vehicle

param = oCmd.Parameters.Add("@Pos", SqlDbType.Udt)

param.UdtTypeName = "dbo.Point"

' set the parameter's value using the constructor for the Point class

param.Value = New Point(5, 5)

' execute the command

Dim rowsAffected As Integer = oCmd.ExecuteNonQuery()

CHAPTER 5: ADO.NET AND SQL SERVER 2005204

05ADOR2.qxd 2/16/05 10:24 AM Page 204

Interface Changes to Support UDTs
Several changes have been made to the classes in the SqlClient name-
space to support UDTs. These include changes to the SqlParameter and
SqlDataReader classes, and a class called SqlMetaData that is added to
SQL Server 2005 as a general extension.

Changes to the SqlParameter Class
The SqlParameter class allows a UDT to be specified as a parameter to a
stored procedure or SQL statement. There are two new constructors, two
new properties, and changes to the way that a couple of the existing prop-
erties work to support UDTs. The new constructors are documented in
Table 5.9.

Table 5.9. The Constructors for the SqlParameter Class for UDT Support

Constructor Description

SqlParameter(name, dbtype, All the parameters to this constructor are
the same as existing constructors with two
exceptions. The dbtype is a value from the
SqlDbType enumeration, which now contains
the value Udt. The new udt-type-name
parameter takes a String that contains the
name of the UDT type. If SqlDbType.Udt is
specified for dbtype, udt-type-name
must be a non-null value that is the type. If
dbtype is any other value, udt-type-name
must be null.

SqlParameter(meta-data) This takes a SqlMetaData instance that
fully describes the data type for the parame-
ter. It can be used to create a parameter of
other types as well, but for UDT parameters
the SqlMetaData instance must include the
UDT type name.

The two new properties for the SqlParameter are UdtTypeName and
MetaData. The two properties that have been updated are SqlDbType and
Value (see Table 5.10).

SQL SERVER USER-DEFINED T YPES 205

size, direction, nullable,
precision, scale, source-col,
source-version, value,
offset, compare-info,
locale, database, schema,
udt-type-name)

05ADOR2.qxd 2/16/05 10:24 AM Page 205

Table 5.10. The Properties of the SqlParameter Class for UDT Support

Property Description

UdtTypeName Sets or returns the UDT type as a String. This should be a two-part
dotted name such as dbo.Point.

MetaData Returns a SqlMetaData instance that fully describes the metadata
for the parameter, or sets it using a SqlMetaData instance. To
change the parameter type, you must create a new SqlMetaData
instance and assign it to the parameter. You cannot change individual
values for the metadata.

SqlDbType Sets or returns the parameter type using values from the SqlDbType
enumeration, which now includes the value Udt for a UDT. If this is
set, the UdtTypeName must be set to a UDT type name. If any other
value is used for this property, the UdtTypeName property must be
null.

Value Sets or returns the value of the parameter. When the parameter is a
UDT, this property accepts or returns an instance of the UDT. Note that
the value is a reference type, so changes to the values of this instance
of the UDT will be reflected in the parameter value.

Changes to the SqlDataReader Class
The SqlDataReader class exposes one new method to return metadata
about a column, and six of the existing methods have been updated to sup-
port the use of UDTs (see Table 5.11).

Table 5.11. The Methods of the SqlDataReader Class for UDT Support

Method Description

GetSqlMetaData(index) Returns the SqlMetaData instance that describes the
column at the specified index. New in this release.

GetDataTypeName(index) This method has been updated to return the three-part type
name for the specified column if the column contains a UDT.

GetFieldType(index) This method has been updated to return a System.Type
instance that represents the UDT type for the specified col-
umn. Calling this method may trigger an assembly download if
the assembly for the UDT is not present locally and the option
to download assemblies is enabled.

CHAPTER 5: ADO.NET AND SQL SERVER 2005206

05ADOR2.qxd 2/16/05 10:24 AM Page 206

Table 5.11. The Methods of the SqlDataReader Class for UDT Support (continued)

Method Description

GetValue(index) These methods have been updated to return a new
GetSqlValue(index) instance of the UDT with the values for the specified
GetValues(values-array) column if it contains a UDT. Calling them may trigger
GetSqlValues(values-array) an assembly download if the assembly for the UDT

is not present locally and the option to download
assemblies is enabled. This will block the
DataReader even when asynchronous execution
is taking place.

The SqlMetaData Class
The SqlMetaData class introduced in this release of SQL Server can be
used to hold metadata about a column in a DataReader or the value in a
SqlParameter, and for other purposes within the SqlClient namespace
of the Framework. It exposes a field named UdtTypeName (see Table 5.12).

Table 5.12. The SqlMetaData Class UdtTypeName Field

Field Description

UdtTypeName Returns the metadata for a column or a parameter. In the beta 2 release,
this is the three-part dotted name of the UDT as defined in SQL Server. In
future releases, the property will expose a System.Type instance
instead. Read-only.

SUMMARY

In this chapter we examined some of the new features for client access to
SQL Server 2005. We started with a look at MARS, which allows you to
have more than one results set active on the same data store connection.
Although this at first looks like a way to save resources because fewer con-
nections could be required, the use of multiple readers, for example, could
lead to potential performance problems if these readers are not closed ap-
propriately. Therefore, MARS is best suited to batch or complex data pro-
cessing scenarios.

We then looked at Query Notifications, through which client applica-
tions can register to be notified when data changes. This solves the prob-

SUMMARY 207

05ADOR2.qxd 2/16/05 10:24 AM Page 207

lem of stale data being displayed and gets around the existing methods of
keeping data up-to-date, such as constant polling.

Finally, we looked at the CLR within SQL Server 2005 and how its use
allows the type system to be extended by the addition of user-defined
types. These allow you to add complex data types to the existing type sys-
tem, giving more flexibility in data storage.

Now it’s time to look at the CLR in SQL Server 2005 in more depth.

CHAPTER 5: ADO.NET AND SQL SERVER 2005208

05ADOR2.qxd 2/16/05 10:24 AM Page 208

