
4
The Caching Application Block

M A N Y E N T E R P R I S E A P P L I C AT I O N S focus on moving data and pre-
senting data to users in unique and interesting ways. Yet, all of this

data does not necessarily need to be retrieved from a backend database for
every request. Data that is semi-static, nontransactional, and consumed fre-
quently or is expensive to create, obtain, or transform is ideal for caching.
Caching helps not only reduce the amount of data that is transferred
between processes and computers, but it also helps reduce the amount of
data processing that occurs in a system and the number of disk access oper-
ations that must occur. Unfortunately, leveraging caching techniques to
improve the performance and scalability metrics in enterprise applications
is an important area that is too often overlooked.

For application architects, it is not good enough to design applications
that solve specific business problems. An application that “does the job”
but does not perform or scale well will eventually see little use. Even if
users are attracted to the application at first, as performance degrades and
the application is deemed unreliable, users will turn away. Unless thorough
stress testing is performed, these types of problems rarely show themselves
early on. It is the architect’s responsibility to ensure that applications and
systems are designed to meet performance, scalability, and availability
needs.

It would be ideal to have service-level agreements in place that detail the
metrics that need to be met for a specific application or system; however,

177

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 177

reality does not always match ideology. It is often the case that systems and
applications must be designed without specific information about how the
application needs to perform or scale. This, however, is not an excuse to
design a system that does not perform or scale well. Architects must strive
for a design that overcomes these challenges. It is important to remember
that caching isn’t something that can typically be added to an application at
any point in the development cycle; the application should be designed
with caching in mind.

The Microsoft patterns & practices team has published a lot of excellent
information on caching best practices, most notably the Caching Architecture
Guide for .NET Framework Applications.1 The section in the chapter that cov-
ers the design of the Caching Application Block details how the recom-
mendations in this guide are core to the design of Enterprise Library’s
Caching Application Block. The chapter describes how the application
block has been designed for extensibility and provides examples for how to
extend it. It also shows how to configure and develop an application so that
it can benefit from the features of the Caching Application Block.

Note that much of the information in this chapter is not new; rather, it
is a combination of parts of the Caching Architecture Guide for .NET Frame-
work Applications document and the Enterprise Library documentation for
the Caching Application Block. Most of the new information in this chapter
is where I show how to extend the Caching Application Block by way of a
custom Cache Storage Provider, expiration policy, and callback. I don’t
repeat all the information found in these guides, but I focus on the parts
that are specific to Enterprise Library’s implementation for caching.

What Is the Caching Application Block?

The Enterprise Library’s Caching Application Block is an implementation
of the recommendations that are put forth in the Caching Architecture Guide
for .NET Framework Applications. Its design contains all of the fundamental
elements found in the Solution Blueprint suggested in this guide; namely,

Chapter 4: The Caching Application Block178

1. Found at http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbda/
html/CachingArch.asp.

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 178

providing implementations for CacheManagers, a cache service, and cache
storage. Furthermore, the design of the Caching Application Block provides
extension points that allow an enterprise to add new implementations for
certain critical areas.

For example, if the cache StorageProviders (aka BackingStores) that ship
with the Caching Application Block are not sufficient for the needs of a par-
ticular enterprise, a new one can be developed and “plugged in” so that it
is as easy to use as the ones that ship with the block. Additionally, a simple
and consistent programming interface is exposed that allows the code for
an application to be written so that it is agnostic as to the type of Backing-
Store that is used. This allows the code for an application to remain
unchanged if a modification needs to be made to the BackingStore that is
used for caching. Overall, the major objective for the Caching Application
Block is to provide a set of classes and interfaces that make it easy for an
application to cache data to help tune that application’s performance, scal-
ability, and availability.

Performance
By storing data as close as possible to the consumer of the data, repetitive
data creation, processing of the data, and data retrieval can be avoided. Ref-
erence data like countries and states are excellent candidates for informa-
tion that should be cached, because this type of information rarely changes.
Therefore, it can be retrieved from the backend data source less frequently
and cached on an application server or Web server. This reduces or elimi-
nates the need to make multiple roundtrips to a database to retrieve this
type of data as well the need to recreate the same data for each request.
Eliminating these types of activities can dramatically improve an applica-
tion’s performance.

Scalability
Often the same data, business functionality, and user interface fragments
are required by many users and processes in an application. For example,
a combo box that lets users select a specific country in a form could be used
by all the users of a Web application regardless of who that user is or even
where they are in the Web application. If this information is processed for

What Is the Caching Application Block? 179

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 179

each request, valuable resources are wasted recreating the same output.
Instead, the page fragment can be stored in the ASP.NET output cache and
reused for each request. This improves the scalability of the application
because as the user base increases, the demand for server resources for
these tasks remains constant and the resources that would be used to ren-
der these results can now be used for other purposes. Furthermore, this
helps scale the resources of the backend database server. By storing fre-
quently used data in a cache, fewer database requests are made, meaning
that more users can be served.

Availability
Sometimes the services that provide information to an application may be
unavailable. This is very common, for example, in occasionally connected
smart client systems. By storing that data in another place, an application
may be able to survive system failures such as Web service problems or
hardware failures. Of course, this depends a lot on the type and amount of
the actual data that is cached and if the application has been designed to
cache information specifically to handle availability issues.

It is atypical and often inadvisable to cache all the information for an
application, especially if that data is not relatively static or is transactional
in nature. One exception to this rule, however, is if the application must be
designed to be available even when a backend data store is not available.
For example, it may be reasonable for the application to cache all of its
information because the data store has scheduled periods where it may be
offline or connectivity to the data source is unreliable. Each time a user
requests information from the data store while it is online, the information
can be returned and cached, updating the cache on each request. When the
data store becomes unavailable, requests can still be serviced using the
cached data until the data store comes back online.

Why Not Use the ASP.NET Cache?
We should. The .NET Framework includes support for caching in Web
applications and Web services with the System.Web.Caching namespace.
It should still be used to cache information in a Web application, especially
when it comes to page and page fragment caching. However, there are

Chapter 4: The Caching Application Block180

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 180

other scenarios in which a caching mechanism that is agnostic to the run-
time environment would be a valuable addition to the application to
increase performance and availability. The Caching Application Block is not
a replacement for the ASP.NET cache; it should be used in situations where
the ASP.NET cache is not an ideal fit. The Caching Application Block is a
good choice for the following circumstances.

• For situations that require a consistent form of caching across differ-
ent application environments. For example, it is a good idea to
design the data layers or business layers of enterprise applications
so that they can be used independently of the application environ-
ment in which they run; that is, the business or data layer can run
just as well in a Windows application as it does in a Web service or
Web application. Although it is possible to use the ASP.NET cache in
non-Web scenarios,2 it has not been tested and is not supported by
Microsoft.

• For smart client applications, Windows Services, and console appli-
cations that use locally cached reference data to create requests and
support offline operations or need a cache to improve performance.

• For situations that require a configurable and persistent Backing-
Store. The Caching Application Block supports both isolated storage
and database BackingStores. This allows cached data to survive
application restarts. Developers can create additional BackingStore
providers and add them to the Caching Application Block using its
configuration settings. The application block can also symmetrically
encrypt a cache item’s data before it is persisted to a BackingStore.

• For situations that need the cache to be highly configurable so that
changes to the cache configuration settings will not require applica-
tion source code changes. Developers first write the code that uses
one or more named caches, and then system operators and develop-

What Is the Caching Application Block? 181

2. This is true for the ASP.NET cache in .NET Framework 1.1. Microsoft has tested and does
support using the ASP.NET cache for non-Web scenarios for .NET Framework 2.0.

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 181

ers can configure each of these named caches differently using the
Enterprise Library Configuration Tool.

• When cache items require a combination of expiration settings for
absolute time, sliding time, extended time format (e.g., every
evening at midnight), file dependency, or never expired. The
ASP.NET cache supports absolute time and sliding time expirations;
however, it does not support setting both expirations at one time.
Only one type of expiration can be set for a particular cache item.
The CacheManager supports setting multiple types of cache item
expirations at the same time.

The Previous Version of the Caching Application Block
There are some significant differences between the previous version of the
Caching Application Block and the Enterprise Library version.

• First and foremost, Enterprise Library’s Caching Application Block
is thread-safe. The earlier version of the application block could
return incorrect data when multiple threads accessed a single cache
item in a short period of time.

• The earlier version supported multiple processes sharing a single
cache by way of a Singleton object (via the SingletonCacheStor-
age). The Enterprise Library version supports using a cache in a sin-
gle application domain only.

• The ICacheStorage interface has been replaced with the IBack-
ingStore interface. Persistent storage in a database is provided
through its dependency on the Data Access Application Block. Iso-
lated storage is supported for persistent storage via the new Iso-
latedStorageBackingStore. The application block does not,
however, include support for memory-mapped files.

• The earlier version included the scavenging algorithm as a pluggable
provider. In the Enterprise Library version, you must modify the
application block source code to change the scavenging algorithm.

• The earlier version included encryption as a pluggable provider. The
encryption of cache item data in the Enterprise Library version is
provided by the Cryptography Application Block.

Chapter 4: The Caching Application Block182

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 182

The Design of the Caching Application Block

The design goals for a custom cache outlined in the Caching Architecture
Guide for .NET Framework Applications are to:

• Decouple the front-end application interface from the internal imple-
mentation of the cache storage and management functions.

• Provide best practices for a high-performance, scalable caching solu-
tion.

• Offer support for cache-specific features, such as dependencies and
expirations, and enable the use of custom expiration and depend-
ency implementations.

• Allow for support of cache management features such as scaveng-
ing.

• Enable extension points for a custom cache storage solution by
implementing the storage class interfaces provided.

• Allow the use of custom cache scavenging algorithms by imple-
menting the classes and interfaces provided.

Except for the last bullet point, the design goals for the Caching Appli-
cation Block are the same. Additionally, the design goals for the Caching
Application Block include providing a caching API that is easy to use, easy
to maintain, and easy to configure. Furthermore, the caching solution needs
to perform efficiently and must be reliable by ensuring that the BackingStore
remains intact if an exception occurs while the cache is being accessed.

One of the most important design goals with this version of the Caching
Application Block was to ensure that the cache is thread safe, which helps to
ensure that the states of the in-memory cache and the BackingStore remain
synchronized. The following sections define the primary classes in the Caching
Application Block and explain how they are used to accomplish these design
goals. Figure 4.1 provides a high-level overview of many of these classes.

CacheManager, CacheManagerFactory, and CacheFactory
The CacheManager class lies at the core of the Caching Application Block
and provides the application interface for a single cache. In the Caching

The Design of the Caching Application Block 183

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 183

Chapter 4: The Caching Application Block184

Figure 4.1: Design of Enterprise Library’s Caching Application Block

Application Block, it is possible to configure and use multiple caches, and
thus multiple CacheManagers, in a single application. This is another fac-
tor that differentiates the Caching Application Block from the ASP.NET
cache; with ASP.NET there can be only one cache. However, it is recom-
mended by the patterns & practices team that when different types of items

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 184

(e.g., customer data, countries, zip codes, etc.) are being stored, it is best to
store them in different caches—one cache for each type of item. This
increases the efficiency of searching when retrieving an item because it
reduces the number of items in each cache. In the Caching Application
Block, all caching operations occur through the CacheManager class. The
CacheManager class provides all the methods needed to add, retrieve, and
remove items from the cache.

All of the Enterprise Library application blocks are designed using the
factory design pattern. Factories are objects that exist solely to create other
objects. In the Caching Application Block, the CacheManagerFactory is
used to create an instance of a CacheManager. The CacheManagerFactory
uses the features provided by the Configuration Application Block to
retrieve configuration information and determine which CacheManager
should be created. The CacheManagerFactory class has two overloads for
its GetCacheManager method that are used to create a CacheManager: one
overload takes the name of a CacheManager and the other one doesn’t take
any arguments. The overload that requires an argument will initialize the
CacheManager with the name that is supplied. The overload that takes no
arguments initializes the CacheManager that is configured as the Default-
CacheManager in the configuration data for this application block. In both
cases, the private CreateCacheManagermethod is called to ultimately cre-
ate the CacheManager.

In its CreateCacheManager method, the CacheManagerFactory first
creates a ScavengingPolicy and BackingStore and uses the instances of
these objects to construct the actual Cache object that the CacheManager
will encapsulate. It then creates instances of the ExpirationTask and
ScavengingTask and uses these instances to create a new Background-
Scheduler. The BackgroundScheduler is used to initialize the underly-
ing cache.

An ExpirationPollTimer is also created, and both the Background-
Scheduler and the ExpirationPollTimer are started. The instances of
the cache, BackgroundScheduler, and ExpirationPollTimer are passed
into the CacheManager’s constructor to create the new instance. This new
instance is then added to the HashTable of CacheManagers that the
CacheManagerFactory manages. Therefore, the CacheManager is held in

The Design of the Caching Application Block 185

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 185

the scope of the application, and as such, its cache can be accessed from any
class or thread concurrently without the need to recreate the CacheMan-
ager class multiple times.

It is important to note that the CacheManager does not hold any state
and is simply a front-end interface to the cache. This design allows the
CacheManager to provide the quickest possible response times to the cache
client by performing any operations on the cache metadata after returning
the control to the cache client. Because it is such a critical method, I have
included the code for the CreateCacheManager in Listing 4.1.

Listing 4.1: The CreateCacheManager Method

private CacheManager CreateCacheManager(string cacheManagerName)

{

CacheManager cacheManager =

cacheManagers[cacheManagerName] as CacheManager;

if (cacheManager != null)

{

return cacheManager;

}

CachingConfigurationView view =

new CachingConfigurationView(ConfigurationContext);

CacheManagerData cacheManagerData =

view.GetCacheManagerData(cacheManagerName);

CacheCapacityScavengingPolicy scavengingPolicy =

new CacheCapacityScavengingPolicy(cacheManagerName, view);

IBackingStore backingStore =

backingStoreFactory.CreateBackingStore(cacheManagerName);

Cache cache = new Cache(backingStore, scavengingPolicy);

ExpirationPollTimer timer = new ExpirationPollTimer();

ExpirationTask expirationTask = CreateExpirationTask(cache);

ScavengerTask scavengerTask =

new ScavengerTask(cacheManagerName, view,

scavengingPolicy, cache);

BackgroundScheduler scheduler =

new BackgroundScheduler(expirationTask, scavengerTask);

cache.Initialize(scheduler);

scheduler.Start();

timer.StartPolling(new

TimerCallback(scheduler.ExpirationTimeoutExpired),

cacheManagerData.ExpirationPollFrequencyInSeconds * 1000);

Chapter 4: The Caching Application Block186

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 186

cacheManager = new CacheManager(cache, scheduler, timer);

cacheManagers.Add(cacheManagerName, cacheManager);

return cacheManager;

}

[Visual Basic]

Private Function CreateCacheManager(ByVal cacheManagerName As String) _

As CacheManager

Dim cacheManager As CacheManager = _

IIf(TypeOf cacheManagers(cacheManagerName) Is CacheManager,_

CType(cacheManagers(cacheManagerName), CacheManager), _

CType(Nothing, CacheManager))

If Not cacheManager Is Nothing Then

Return cacheManager

End If

Dim view As CachingConfigurationView = _

New CachingConfigurationView(ConfigurationContext)

Dim cacheManagerData As CacheManagerData = _

view.GetCacheManagerData(cacheManagerName)

Dim scavengingPolicy As CacheCapacityScavengingPolicy = _

New CacheCapacityScavengingPolicy(cacheManagerName, view)

Dim backingStore As IBackingStore = _

backingStoreFactory.CreateBackingStore(cacheManagerName)

Dim cache As Cache = New Cache(backingStore, scavengingPolicy)

Dim timer As ExpirationPollTimer = New ExpirationPollTimer()

Dim expirationTask As ExpirationTask = CreateExpirationTask(cache)

Dim scavengerTask As ScavengerTask = _

New ScavengerTask(cacheManagerName, view, _

scavengingPolicy, cache)

Dim scheduler As BackgroundScheduler = _

New BackgroundScheduler(expirationTask, scavengerTask)

cache.Initialize(scheduler)

scheduler.Start()

timer.StartPolling(New TimerCallback(_

AddressOf scheduler.ExpirationTimeoutExpired), _

cacheManagerData.ExpirationPollFrequencyInSeconds * 1000)

cacheManager = New CacheManager(cache, scheduler, timer)

cacheManagers.Add(cacheManagerName, cacheManager)

Return cacheManager

End Function

The Design of the Caching Application Block 187

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 187

When the internal Cache object is constructed, all data in the Backing-
Store is loaded into an in-memory representation that is contained in the
Cache object. This is the only time that the BackingStore is ever read—when
an application makes changes to the cache, the changes are written to both
the internal cache and the BackingStore. An application can make requests
to the CacheManager object to retrieve cached data, add data to the cache,
and remove data from the cache, and it should always be synchronized
with the BackingStore. Table 4.1 describes the methods that the CacheMan-
ager class exposes for performing these functions.

Another class, CacheFactory, refines the CacheManagerFactory class
with static methods that simply pass through to an instance of the Cache-
ManagerFactory class. This provides a simpler interface for developers
because it allows a CacheManager to be created without directly having to
instantiate a factory class, and it just contains a single method: GetCache-
Manager. GetCacheManager contains two overloads: one overload accepts

Chapter 4: The Caching Application Block188

Table 4.1: CacheManager Class

Method/Property Description

Add This overloaded method adds new CacheItem to cache. If
another item already exists with the same key, that item is
removed before the new item is added. The Add method
enables adding items to the cache with or without metadata
(expiration policies, scavenging priority, etc.). In the simplest
case, the Add method just contains a key/value pair. If any fail-
ure occurs during this process, the cache will not contain the
item being added.

Count Returns the number of items currently in the cache.

Flush Removes all items and metadata from the cache. If an error
occurs during the removal, the cache is left unchanged.

GetData Returns the value associated with the given key.

Item Returns the item identified by the provided key.

Remove Removes the given item and its metadata from the cache. If no
item exists with that key, this method does nothing.

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 188

no arguments and wraps around the CacheManagerFactory’s GetCache-
Manager method, and the other overload accepts a string and wraps
around the CacheManagerFactory’s GetCacheManager(string) meth-
od. Both the CacheManagerFactory and the CacheFactory class can be
used to obtain a CacheManager.

Cache Objects
A Cache object receives requests from a CacheManager and implements all
operations between the BackingStore and the in-memory representation of
the cached data. A cache is simply a copy of the master data stored in mem-
ory or on disk. Therefore, a Cache object simply contains a hash table that
holds the in-memory representation of the data; however, that item of data
must first be packaged as a CacheItem object. A CacheItem includes the
data itself, together with other information such as the item’s key, its pri-
ority, a RefreshAction, and an array of expiration policies. (All of these
classes are explained in detail in the following sections.) The Cache object
uses a hash table as a lock to control access to the items in the cache, both
from the application and from the BackgroundScheduler. It also provides
thread safety for the entire Caching Application Block.

When an application adds an item to the cache by calling CacheMan-
ager’s Add method, the CacheManager simply forwards the request to the
Cache object. If there isn’t an item in the in-memory hash table that matches
the key for the item being added, the Cache object will first create a dummy
cache item and add it to an in-memory hash table. Then, whether the item
exists or not, it will use the item found for this key as a snapshot of the item
before performing the insert. It then locks the cache item in the in-memory
hash table, adds the item to BackingStore, and finally replaces the existing
cache item in the in-memory hash table with the new cache item. (In the
case where the item was not already in the in-memory hash table, it
replaces the dummy item.)

If there is an exception while writing to the BackingStore, it removes the
dummy item added to the in-memory hash table and does not continue.
The Caching Application Block enforces a strong exception safety guaran-
tee. This means that if an Add operation fails, the state of the cache rolls back

The Design of the Caching Application Block 189

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 189

to what it was before it tried to add the item. In other words, either an oper-
ation is completed successfully or the state of the cache remains unchanged.
(This is also true for the Remove and Flush methods.)

If the number of cached items exceeds a predetermined limit when the
item is added, the BackgroundScheduler object begins scavenging. When
adding an item, the application can use an overload of the Add method to
specify an array of expiration policies, the scavenging priority, and an
object that implements the ICacheItemRefreshAction interface. As
explained later in this chapter, a RefreshAction receives a notification
when an item is removed from the cache.

When an application calls the CacheManager’s GetData method to
retrieve an item, the CacheManager object forwards the request to the
Cache object. If the item is in the cache, it is returned from the Cache’s in-
memory representation. If it isn’t in the cache, the request returns the value
null (or Nothing in VB.NET). If the item is expired, the item also returns the
value null (or Nothing in VB.NET).

CacheService Objects
As described in the section “Custom Cache Detailed Design” of the Caching
Architecture Guide for .NET Framework Applications, a CacheManager
object has references to both a CacheStorage and a CacheService object.
The CacheStorage object is used for inserting, getting, and removing items
from the cache storage. The Caching Application Block implements this
design by way of the BaseBackingStore class (and classes that inherit
from it). The CacheService object is designed to manage metadata that
may be associated with CacheItems. This metadata may include items like
expiration policies, priorities, and callbacks. While a single CacheService
class does not exist in the Caching Application Block, the functionality that
such a service is designed to implement does exist by way of the Back-
groundScheduler and ExpirationPollTimer classes.

The BackgroundScheduler Class

The BackgroundScheduler class is designed to periodically monitor the
lifetime of the items in the cache. It is responsible for expiring aging cache
items and scavenging lower-priority cache items. When an item expires, the

Chapter 4: The Caching Application Block190

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 190

BackgroundScheduler first removes it and then, optionally, notifies the
application that the item was removed. At this point, it is the application’s
responsibility to refresh the cache as necessary.

The BackgroundScheduler operates in a worker thread. If a request is
made to the BackgroundScheduler, the BackgroundScheduler packages
the request as a message and puts it in a message queue instead of imme-
diately executing the requested behavior. This all occurs in the caller’s
thread. From its own thread, the BackgroundScheduler sequentially
removes messages from the queue and then executes the request. The
advantage to performing operations serially on a single thread is that it
guarantees that the code will run in a single-threaded environment. This
makes both the code and its effects simpler to understand.

The ExpirationPollTimer Class

The ExpirationPollTimer triggers the expiration cycle and makes a call to
the BackgroundScheduler. The frequency of the timer that regulates how
often the BackgroundScheduler should check for expired items can be set
through configuration. The unit is in seconds and is determined by the
ExpirationPollFrequencyInSecond attribute in the configuration data.

Expiration Policies

An important aspect of caching state is the way in which it is kept consis-
tent with the master data and other application resources. Expiration poli-
cies can be used to define the contents of a cache that are invalid based on
the amount of time that the data has been in the cache or on notification
from another resource. The first type of expiration policy is known as a
time-based expiration and the second is known as a notification-based
expiration.

The Caching Application Block’s expiration process is performed by the
BackgroundScheduler that periodically examines the CacheItems to see
if any items have expired. The ExpirationPollFrequencyInSeconds set-
ting for a CacheManager controls how frequently the expiration cycle
occurs for that instance of the CacheManager. Expiration is a two-part
process. The first part is known as marking and the second part is known
as sweeping. The process is divided into separate tasks to avoid any con-

The Design of the Caching Application Block 191

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 191

flicts that can occur if the application is using a cache item that the Back-
groundScheduler is trying to expire.

• During marking, BackgroundScheduler makes a copy of the hash
table and examines each cache item in it to see if it can be expired. It
locks the item while it is doing this. If an item is eligible for expira-
tion, the BackgroundScheduler sets a flag in the cache item.

• During sweeping, the BackgroundScheduler reexamines each
flagged CacheItem to see if it has been accessed since it was flagged.
If it has been accessed, the item is kept in the cache. If it hasn’t been
accessed, it is expired and removed from the cache. A Windows
Management Instrumentation (WMI) event occurs when an item
expires. WMI events publish management information, like per-
formance counters, about an application so that management sys-
tems, like Microsoft Operations Manager, can better manage an
application.

The Caching Application Block ships with four expiration policies; three
are time-based expirations and one is a notification-based expiration. The
time-based expirations are AbsoluteTime, SlidingTime, and Extended-
FormatTime. The notification-based expiration is FileDependency. Fur-
thermore, the Caching Application Block provides the capability for adding
a custom extension policy to the ones that already exist by creating a new
class that implements the ICacheItemExpiration interface. This inter-
face, as well as the expiration policies that ship with Enterprise Library, are
shown in Figure 4.2.

Time-Based Expirations. Time-based expirations invalidate data based
on either relative or absolute time periods. Use time-based expiration when
volatile cache items, such as those that have regular data refreshes or those
that are valid for only a set amount of time, are stored in a cache. Time-
based expiration enables policies to be set that keep items in the cache only
as long as their data remains current. For example, if an application dis-
plays product information that gets updated in the product catalog once a
day at most, the product information can be cached for the time that those
products remain constant in the catalog, that is, for a 24-hour period.

Chapter 4: The Caching Application Block192

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 192

The Design of the Caching Application Block 193

Fi
gu

re
 4

.2
:E

xp
ir

at
io

n
Po

lic
ie

s
in

 E
nt

er
pr

is
e

Li
br

ar
y’

s
Ca

ch
in

g
A

pp
lic

at
io

n
B

lo
ck

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 193

There are two categories of time-based expiration policies: absolute and
sliding.

• Absolute time expiration policies allow the lifetime of an item to be
defined by specifying the absolute time for an item to expire. They
can use a simple or extended time format. With a simple format
absolute time expiration, the lifetime of an item is defined by setting
a specific date and time, for example, July 26, 2007 12:00 AM. The
Caching Application Block refers to this type of expiration simply as
an AbsoluteTime expiration. Listing 4.2 shows the code to create an
AbsoluteTime expiration.

Absolute time expirations can also be in an extended time format.
With an extended time format, the lifetime of an item is defined by
specifying expressions such as every minute, every Sunday, expire at
5:15 AM on the 15th of every month, and so on. Extended time for-
mat uses this format:

<Minute> <Hour> <Day of month> <Month> <Day of week>

where an asterisk (*) is used to represent all periods. Therefore, an
expression to indicate that an item should expire at midnight every
Saturday can be represented by the string 0 0 * * 6 (0 minutes, 0
hours, every day of the month, every month, on Saturday). Listing
4.3 shows the code to create this ExtendedFormatTime expiration
expression.

• Sliding expiration policies allow the lifetime of an item to be
defined by specifying an interval between the last time the item was
accessed and the duration until it is expired. For example, it might
be desirable to expire a particular cache item if it hasn’t been
accessed in the last five minutes. The code to create such a Sliding-
Time expiration is shown in Listing 4.4.

Listing 4.2: Creating an AbsoluteTime Expiration

[C#]

DateTime expiryTime = new DateTime(2007, 7, 26, 0, 0, 0);

AbsoluteTime absExpiryTime = new AbsoluteTime(expiryTime);

[Visual Basic]

Dim expiryTime As DateTime = New DateTime(2007, 7, 26, 0, 0, 0)

Dim absExpiryTime As AbsoluteTime = New AbsoluteTime(expiryTime)

Chapter 4: The Caching Application Block194

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 194

Listing 4.3: Creating an ExtendedFormatTime Expiration

[C#]

ExtendedFormatTime expireTime = new ExtendedFormatTime("0 0 * * 6");

[Visual Basic]

Dim expireTime As ExtendedFormatTime = _

New ExtendedFormatTime("0 0 * * 6")

Listing 4.4: Creating a SlidingTime Expiration

[C#]

TimeSpan expiryTime = new TimeSpan(0, 5, 0);

SlidingTime slideExpireTime = new SlidingTime(expiryTime);

[Visual Basic]

Dim expiryTime As TimeSpan = New TimeSpan(0, 5, 0)

Dim slideExpireTime As SlidingTime = New SlidingTime(expiryTime)

Notification-Based Expirations. Notification-based expirations invali-
date data based on instructions from an internal or external source. Notifi-
cation-based expirations define the validity of a cached item based on the
properties of an application resource, such as a file, a folder, or any other
type of data source. If a dependency changes, the cached item is invalidated
and removed from the cache.

The Caching Application Block ships with one notification-based expi-
ration: the FileDependency expiration. With the FileDependency expi-
ration, the item expires after a specific file has been modified. For example,
a cache item can be set to expire if an XML file that contains product infor-
mation has been modified. Listing 4.5 shows how to create a FileDepen-
dency expiration.

Listing 4.5: Creating a FileDependency Expiration

[C#]

FileDependency expireNotice = new FileDependency("ProductInfo.xml");

productsCache.Add(myProduct.ProductID, myProduct,

CacheItemPriority.Normal, null, expireNotice);

[Visual Basic]

Dim expireNotice As FileDependency = New FileDependency(“Products.XML”)

The Design of the Caching Application Block 195

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 195

productsCache.Add(myProduct.ProductID, myProduct, _

CacheItemPriority.Normal, Nothing, expireNotice)

Creating a Custom Expiration Policy

More often than not, the master data source for an enterprise application
is a database and not a file. Therefore, a useful notification-based expiration
would be one that expires a cached item based on modifications that are
made to a database table instead of a file. While no such notification-based
expiration policy ships with Enterprise Library, there is an example of a
similar type of expiration that extends the ASP.NET cache capabilities. It
was developed by Rob Howard and can be found at www.gotdotnet
.com/team/rhoward. It is called the SqlDependency Expiration and can
be found under the example for ASP.NET Cache Invalidation on Database
Change. I have taken the ideas behind this expiration policy and refactored
it to not only work with Enterprise Library’s Caching Application Block,
but to also take advantage of the Data Access Application Block’s data
transparency features (explained in more detail in Chapter 3).

Fortunately, the designers of the Caching Application Block foresaw that
there might be a need for other expiration policies other than the ones that
shipped with Enterprise Library and allowed the addition of custom expi-
ration policies as an extension point. All that is required of a custom expi-
ration policy is to implement the ICacheItemExpiration interface. This
interface contains three methods: Initialize, HasExpired, and Notify.
Listing 4.6 shows the HasExpired method for a custom DatabaseDepen-
dency expiration policy. This is the most interesting part of this expiration
policy, because it is the check to determine if any data in the table has been
modified and signifies to the BackgroundScheduler that this item has
expired if it has. The Notify and Initialize methods for this expiration
policy do nothing.

Listing 4.6: HasExpired Method for the DatabaseDependency Expiration Policy

[C#]

public bool HasExpired()

{

bool bRetVal = false;

try

Chapter 4: The Caching Application Block196

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 196

{

DateTime currentLastWriteTime = DateTime.MinValue;

Database db =

DatabaseFactory.CreateDatabase

(dependencyDatabaseInstance);

IDataReader dataReader =

db.ExecuteReader

("GetLastNotificationDate", dependencyTableName);

if(dataReader.Read())

currentLastWriteTime = dataReader.IsDBNull(0) ?

DateTime.MinValue :

dataReader.GetDateTime(0);

dataReader.Close();

if (lastModifiedTime.Equals(DateTime.MinValue))

{

lastModifiedTime = currentLastWriteTime;

}

if (lastModifiedTime.Equals(currentLastWriteTime) == false)

{

lastModifiedTime = currentLastWriteTime;

bRetVal = true;

}

}

catch (Exception e)

{

throw new ApplicationException(String.Format("{0}: {1}",

SR.ExceptionInvalidDatabaseNotificationInfo

(dependencyTableName),e.Message), e);

}

return bRetVal;

}

[Visual Basic]

Public Function HasExpired() As Boolean

Dim bRetVal As Boolean = False

Try

Dim currentLastWriteTime As DateTime = DateTime.MinValue

Dim db As Database = _

DatabaseFactory.CreateDatabase _

(dependencyDatabaseInstance)

Dim dataReader As IDataReader = _

db.ExecuteReader _

("GetLastNotificationDate", dependencyTableName)

If dataReader.Read() Then

The Design of the Caching Application Block 197

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 197

currentLastWriteTime = IIf(dataReader.IsDBNull(0), _

DateTime.MinValue, _

dataReader.GetDateTime(0))

End If

dataReader.Close()

If lastModifiedTime.Equals(DateTime.MinValue) Then

lastModifiedTime = currentLastWriteTime

End If

If lastModifiedTime.Equals(currentLastWriteTime) = False Then

lastModifiedTime = currentLastWriteTime

bRetVal = True

End If

Catch e As Exception

Throw New ApplicationException(String.Format("{0}: {1}", _

SR.ExceptionInvalidDatabaseNotificationInfo _

(dependencyTableName),e.Message), e)

End Try

Return bRetVal

End Function

After the DatabaseDependency expiration policy has been created,
using it with the Caching Application Block is just as easy as using the other
expiration policies (see Listing 4.7).

Listing 4.7: Setting a DatabaseDependency Expiration Policy for a CacheItem

[C#]

//Monitor the Products table in the Northwind DB instance.

DatabaseDependency expireNotice =

new DatabaseDependency(“Northwind”, “Products”);

productsCache.Add(myProduct.ProductID, myProduct,

CacheItemPriority.Normal, null, expireNotice);

[Visual Basic]

'Monitor the Products table in the Northwind DB instance.

Dim expireNotice As DatabaseDependency = _

New DatabaseDependency (“Northwind”, “Products”);

productsCache.Add(myProduct.ProductID, myProduct, _

CacheItemPriority.Normal, Nothing, expireNotice)

The ICacheItemRefreshAction Interface

(aka CacheItemRemovedCallback)

The ICacheItemRefreshAction is a bit of a misnomer. The Caching
Application Block does an excellent job of keeping similar terminology and
design to what it laid out in the Caching Architecture Guide for .NET Frame-

Chapter 4: The Caching Application Block198

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 198

work Applications; however, it seems to deviate on this one item. The dele-
gate that is described as the CacheItemRemovedCallback in the Caching
Architecture Guide for .NET Framework Applications is known as the
ICacheItemRefreshAction interface in the Caching Application Block.

During the development of the Caching Application Block, the respon-
sibility for this delegate changed. Originally, callbacks were only designed
for expirations, and the purpose of the callback was solely to allow the
owner of that item to refresh it in the cache. However, as development pro-
gressed, the requirement surfaced that callbacks were needed for removals
and scavengings too, but the name was never changed. So, even though the
name implies that an implementation of this interface should refresh a
cached item, it is not necessary to do so. Rather, the ICacheItemRefre-
shAction interface just defines the contract that must be implemented so
that an object will be notified when an item is removed from cache. It is then
up to that implementation to determine what action should occur.

It is important to note that the implementing class of an ICacheItem-
RefreshAction must be serializable. Take care when implementing this
interface not to create an object that maintains too much state about its envi-
ronment, because all portions of its environment will be serialized as well,
possibly creating a huge object graph. Figure 4.3 illustrates the ICacheIt-
emRefreshAction interface as well as the enumeration that is passed to the
Refreshmethod, which lists the possible values for why an item may have

The Design of the Caching Application Block 199

Figure 4.3: The ICacheItemRefreshAction Interface and Reasons for Removing an
Item from Cache

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 199

been removed from the cache. This enumeration is named CacheItemRe-
movedReason.

As Figure 4.3 illustrates, there is only one method that must be devel-
oped to implement the ICacheItemRefreshAction interface. This is the
Refresh method. Listing 4.8 provides an example of an implementation
that does not refresh the cache, but instead leverages the Logging and
Instrumentation Application Block to log the fact that an item was removed
from the cache.

Listing 4.8: Implementing the ICacheItemRefreshAction Interface

[C#]

public class LoggingRefreshAction : ICacheItemRefreshAction

{

public void Refresh(string key,

object expiredValue,

CacheItemRemovedReason removalReason)

{

// Log that the item has been removed from cache.

Logger.Write(String.Format("The {0} with the key {1} was

removed from the cache for the following reason: {2}",

expiredValue.GetType().Name, key,

removalReason.ToString()), Category.General,

Priority.Normal);

}

}

[Visual Basic]

Public Class LoggingRefreshAction : Inherits ICacheItemRefreshAction

Public Sub Refresh(ByVal key As String, _

ByVal expiredValue As Object, _

ByVal removalReason As CacheItemRemovedReason)

'Log that the item has been removed from cache.

Logger.Write(String.Format("The {0} with the key {1} was" & _

" removed from the cache for the following " & _

"reason: {2}", expiredValue.GetType().Name, key, _

removalReason.ToString()), Category.General, _

Priority.Normal)

End Sub

End Class

Chapter 4: The Caching Application Block200

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 200

CacheStorage

The Caching Architecture Guide for .NET Framework Applications defines the
third major component of a custom cache triad to be CacheStorage. The
CacheStorage implementation separates the cache functionality from the
cache data store. The Caching Application Block implements this design
and provides an extension point to the block with the IBackingStore
interface and the BaseBackingStore abstract base class. This interface
defines the contract that must be implemented by all BackingStores.

Implementers of this method are responsible for interacting with their
underlying persistence mechanisms to store and retrieve CacheItems. All
methods must guarantee Weak Exception Safety—that operations must
complete entirely, or they must completely clean up from the failure and
leave the cache in a consistent state. The mandatory cleanup process will
remove all traces of the item that caused the failure, causing that item to be
expunged from the cache entirely.

The abstract BaseBackingStore class, which implements the IBack-
ingStore interface, is provided to facilitate the creation of BackingStores.
This class contains implementations of common policies and utilities that
can be used by all BackingStores. Table 4.2 lists the BaseBackingStore’s
methods and properties. All methods other than the Add, CurrentCache-
Manager, and Loadmethods are abstract and must therefore be overridden
by a concrete BackingStore.

The concrete cache storage classes that are included with the Caching
Application Block are the NullBackingStore, the IsolatedStorage-
BackingStore, and the DataBackingStore.

• The NullBackingStore class simply retains the cached items in
memory.

• The IsolatedStorageBackingStore class stores cache items in
domain-specific isolated storage and is configured to use a named
isolated storage.

• The DataBackingStore class uses a database as its BackingStore
and leverages the Data Access Application Block to connect to and
perform database operations against a database.

The Design of the Caching Application Block 201

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 201

The Caching Application Block communicates with all BackingStores
through the IBackingStore interface. Figure 4.4 shows the relationship
between the IBackingStore, BaseBackingStore, DataBackingStore,
IsolatedStorageBackingStore, and NullBackingStore classes.

Chapter 4: The Caching Application Block202

Table 4.2: BaseBackingStore Methods and Properties

Method/Property Description

Add Is responsible for adding a CacheItem to the
BackingStore. This operation must be successful
even if an item with the same key already exists.
This method must also meet the exception safety
guarantee and make sure that all traces of the new
or old item are gone if the add fails in any way.

CurrentCacheManager Gets the current name of the CacheManager using
this instance.

Load Loads all CacheItems from the underlying data-
base.

AddNewItem A protected method that adds a new item to the
persistence store.

Count The number of objects stored in the BackingStore.

Flush Flushes all CacheItems from the BackingStore.
This method must meet the Strong Exception Safety
guarantee.

LoadDataFromStore A protected method that is responsible for loading
items from the underlying persistence store.

Remove An overloaded method that removes an item with
the given key from the BackingStore.

RemoveOldItem A protected method that removes existing items
stored in the persistence store with the same key as
the new item.

UpdateLastAccessedTime An overloaded protected method that updates the
last accessed time for a cache item referenced by
this unique storage key.

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 202

The Design of the Caching Application Block 203

Figure 4.4: Available BackingStores in Enterprise Library’s Caching Application Block

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 203

Memory-Resident Cache (NullBackingStore)

A memory-resident cache contains techniques that implement in-memory
temporary data storage. Memory-based caching is usually used when an
application is frequently using the same data or an application often needs
to reacquire the data. By default, the Caching Application Block stores
items only in memory by way of a NullBackingStore. The NullBack-
ingStore doesn’t persist cached items; cached data exists only in memory.
This means that cached data will not live past application restarts; that is,
the cached items will be refreshed from the original data source when the
application restarts.

Disk-Resident Cache

A disk-resident cache contains technologies that use disk-based data stor-
ages, such as files or databases. Disk-based caching is useful when large
amounts of data need to be handled, the data in the application services
may not always be available for reacquisition, or the cached data must sur-
vive process recycles and computer reboots. Both the overhead associated
with data processing and interprocess communications can be reduced by
storing data that has already been transformed or rendered nearer to the
data consumer.

If a CacheManager has been configured to use a persistent BackingStore,
the Caching Application Block will load the cache contents from the Back-
ingStore when the cache is first created. After the initial load, the Backing-
Store is updated after each operation on the in-memory cache. However,
the BackingStore is never read from again (unless the cache is disposed and
recreated, for example, on application restart). It is also important to note
that while an application can use more than one CacheManager, the
Caching Application Block does not support the use of the same persistent
BackingStore location and partition name by multiple CacheManagers in
an application. For example, configuring an application with two Cache-
Managers that both leverage isolated storage and have a partition name of
ProductCache will most likely cause data corruption.

In its original state, the Caching Application Block supports two types
of persistent BackingStores, each of which is suited to particular situations:
isolated storage and data cache storage. Additionally, you can also extend

Chapter 4: The Caching Application Block204

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 204

the Caching Application Block to support additional types of Backing-
Stores, including custom cache storage.

Isolated Storage. Isolated storage is a data storage mechanism that pro-
vides isolation and safety by defining standardized ways of associating
code with saved data. When an application stores data in a file without
leveraging isolated storage, the file name and storage location must be care-
fully chosen to minimize the possibility that the storage location will be
known to another application and, therefore, vulnerable to corruption.
Without a standard system in place to manage these problems, developing
ad hoc techniques that minimize storage conflicts can be complex and the
results can be unreliable.

With isolated storage, data is always isolated by user and by assembly.
Credentials such as the origin or the strong name of the assembly deter-
mine assembly identity. Data can also be isolated by application domain
using similar credentials. Because of the obstacles that must be overcome to
isolate by user, isolated storage is rarely used for server applications; it is,
however, a good choice for smart client applications.

When using isolated storage, you don’t need to write any code to deter-
mine unique paths to specify safe locations in the file system, and data is
protected from other applications that only have isolated storage access.
“Hard-coded” information that indicates where an application’s storage
area is located is unnecessary.

When configured to use isolated storage, the Caching Application Block
isolates the BackingStore by the cache instance name, the user name, the
assembly, and the application domain. The data compartment is an abstrac-
tion, not a specific storage location; it consists of one or more isolated stor-
age files, called stores, which contain the actual directory locations where
data is stored. For example, a smart client application might have a data
compartment associated with it, and a directory in the file system would
implement the store that actually preserves the data for that application.
For the developer, the location of the data compartment is transparent.3

The Design of the Caching Application Block 205

3. Introductory formation about isolated storage is from http://msdn.microsoft.com/
library/en-us/cpguide/html/cpconintroductiontoisolatedstorage.asp.

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 205

The decision whether or not to use isolated storage must be weighed
very carefully. The general rule is that it usually makes sense for smart
client applications where the cache needs to survive application restarts,
but it does not generally make sense for server applications. The following
are some other scenarios for using isolated storage.

• Downloaded controls. Managed code controls downloaded from
the Internet are not allowed to write to the hard drive through nor-
mal I/O classes, but they can use isolated storage to persist users’
settings and application states.

• Persistent Web application storage. Web applications are also pre-
vented from using I/O classes. These programs can use isolated
storage for the same purposes as downloaded components.

• Shared component storage. Components that are shared between
applications can use isolated storage to provide controlled access to
data stores.

• Roaming. Applications can also use isolated storage with roaming
user profiles. This allows a user’s isolated stores to roam with the
profile.

Data Cache Storage. The data cache storage is a disk-resident storage
mechanism that allows an application to leverage the Data Access Appli-
cation Block to store cached data in a database. The Data Access Applica-
tion Block BackingStore option is suitable for server applications where
each application domain has its own cache and access to a database. Cur-
rently, the Caching Application Block includes a script to create the
required database schema for Microsoft SQL Server and has only been
tested against Microsoft SQL Server databases. Other database types, like
Oracle and DB2, can certainly be used as BackingStores; however, you must
first port the SQL script to support that database type.

It is important to note that each CacheManager object that is running in
a single application domain must use a different portion of the database. A
partition for a data cache store is defined as a combination of the applica-
tion name and the cache instance name. Therefore, two separate and dis-
tinct applications cannot have the same application name and cache

Chapter 4: The Caching Application Block206

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 206

instance name where both leverage the same Data Access Application
Block configuration. For example, two distinct applications that are both
configured to use the DataBackingStore, both named Northwind, and
both have CacheManagers named ProductCache will be seen as sharing a
CacheManager across application domains and is not supported by the
Caching Application Block. Rather, every application that leverages the
data cache store should have its own instance and partition.

It is possible, however, to have the same application run in multiple
processes (for example, the application is deployed on multiple computers
in a Web farm). There are three possible ways to configure the Caching
Application Block for this circumstance.

• Partitioned caches. All instances of the application use the same
database instance, but each instance of the application uses a differ-
ent database partition. In this scenario, each CacheManager operates
independently. Although they share the same BackingStore database
instance, each CacheManager persists the cache data to a different
partition. In effect, there is one cache for each application instance.
When an application restarts, each CacheManager loads its data
from its own partition in the BackingStore.

• Shared partition. All instances of the application use the same data-
base instance and the same database partition, and all CacheMan-
agers can read from and write to the cache. Each instance of an
application operates against a unique in-memory cache. When an
application creates a CacheManager, the CacheManager populates
the in-memory cache with the data in the BackingStore. This means
that if an application creates a CacheManager when it starts, and if
all of the application instances are started at the same time, each in-
memory cache will be loaded with identical data. Because the appli-
cations are using the same partition, each application instance does
not require additional storage in the BackingStore.

After the CacheManagers are created, the in-memory cache con-
tents are determined by the application instance using the cache.
How an instance of the application uses the cache can vary from one
instance to another as requests are routed to different servers. Differ-

The Design of the Caching Application Block 207

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 207

ent instances of an executing application can have in-memory caches
with different contents. As an application adds and removes items,
the contents of the in-memory cache change. The in-memory cache
contents also change when the CacheManager removes or scavenges
expired items.

As the in-memory cache changes, the CacheManager updates the
BackingStore to reflect these changes. This is risky, though, because
the BackingStore does not notify CacheManager instances when its
contents have changed. Therefore, when one application instance
changes the BackingStore contents, the other application instances
will have in-memory caches that don’t match the BackingStore data.
This means that after an application restarts, the in-memory cache
can have contents that are different from the contents it contained
before the application restarted.

• Single writer. All instances of the application use the same database
instance and the same database partition, and only one CacheMan-
ager can write to the cache. All CacheManagers can read from the
cache. In this scenario, only one instance of the application writes to
the cache. All other application instances can only read from the
cache.

The instance of the application that writes to the cache is the mas-
ter. The in-memory cache of the master is always identical to the
data in the BackingStore. The in-memory cache in each application
instance is populated with data from the BackingStore at the time
the CacheManager is created. The application instances that can
only read data from the cache receive a snapshot of the data. How-
ever, this is rarely wise because the application instances don’t have
the ability to refresh their caches; therefore, their caches become stale
and shrink as items expire.

Custom Cache Storage. As previously mentioned, Enterprise Library’s
Caching Application Block has been designed to allow another extension
point by adding and using custom BackingStores in addition to the Back-
ingStores that ship with the application block. There are two ways that the
Caching Application Block can be extended with a BackingStore: by creat-

Chapter 4: The Caching Application Block208

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 208

ing and adding a custom BackingStore, or by creating and adding a new
BackingStore with all the design-time features as the ones that ship with the
Caching Application Block.

The simplest approach from a development perspective is to simply
create a new custom BackingStore that inherits from the abstract Base-
BackingStore class. Be sure that the implementation guarantees the Back-
ingStore will remain intact and functional if an exception occurs during any
operation that accesses it. For example, if the application tries to add an
item to the cache and there is already an item in the cache with the same
name, an exception may be thrown. The implementation should remove
the older item from both the BackingStore and the in-memory representa-
tion, and then it should throw an exception to the application.

Because of the way the Cache object operates, any BackingStore is guar-
anteed to be called in a single-threaded manner. This means that custom
BackingStore implementations do not need to be overly concerned with
thread safety. Furthermore, custom configuration information for a custom
BackingStore can be retrieved through an Extensions collection that the
Caching Application Block provides for all custom BackingStores. When
the BackingStore is initialized, it can retrieve its necessary configuration
information via this collection.

For example, imagine that a new BackingStore was needed in an enter-
prise that leveraged an XML file on the server instead of a database. A quick
way to provide this type of functionality and use it with the Caching Appli-
cation Block is to create a new class that derives from the BaseBacking-
Store class and overrides the abstract methods. This class would need to
read configuration information to determine the name of the file that it
should use as the BackingStore, and it might also need a partition name to
avoid collisions between applications that might choose the same XML file
name. Listing 4.9 illustrates how you can use the Extensions collection to
get the configuration information for just such a custom BackingStore.

Listing 4.9: Initialize Method for a Custom BackingStore

[C#]

public override void Initialize(ConfigurationView configurationView)

{

ArgumentValidation.CheckForNullReference

(configurationView, "configurationView");

ArgumentValidation.CheckExpectedType

The Design of the Caching Application Block 209

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 209

(configurationView, typeof (CachingConfigurationView));

CachingConfigurationView cachingConfigurationView =

(CachingConfigurationView) configurationView;

CustomCacheStorageData customConfiguration =

(CustomCacheStorageData)

cachingConfigurationView.GetCacheStorageDataForCacheManager

(CurrentCacheManager);

partitionName = customConfiguration.Extensions["PartitionName"];

xmlFileName = String.Format("{0}.{1}",

customConfiguration.Extensions["XmlFileName"],partitionName);

if (customConfiguration.StorageEncryption != null)

{

StorageEncryptionFactory encryptionFactory = new

StorageEncryptionFactory

(cachingConfigurationView.ConfigurationContext);

encryptionProvider =

encryptionFactory.CreateSymmetricProvider

(CurrentCacheManager);

}

}

[Visual Basic]

Public Overrides Sub Initialize _

(ByVal configurationView As ConfigurationView)

ArgumentValidation.CheckForNullReference _

(configurationView, "configurationView")

ArgumentValidation.CheckExpectedType _

(configurationView, GetType(CachingConfigurationView))

Dim cachingConfigurationView As CachingConfigurationView = _

CType(configurationView, CachingConfigurationView)

Dim customConfiguration As CustomCacheStorageData = _

(CustomCacheStorageData) _

cachingConfigurationView.GetCacheStorageDataForCacheManager _

(CurrentCacheManager)

partitionName = customConfiguration.Extensions("PartitionName")

xmlFileName = String.Format("{0}.{1}", _

customConfiguration.Extensions("XmlFileName"),partitionName)

If Not customConfiguration.StorageEncryption Is Nothing Then

Dim encryptionFactory As StorageEncryptionFactory = _

Chapter 4: The Caching Application Block210

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 210

New StorageEncryptionFactory _

(cachingConfigurationView.ConfigurationContext)

encryptionProvider = _

encryptionFactory.CreateSymmetricProvider _

(CurrentCacheManager)

End If

End Sub

Implementing this method as well as the abstract methods defined by
the BaseBackingStore class makes it easy to create new custom Backing-
Stores. This is a nice feature of the Caching Application Block because it
does not tie an enterprise into just using the BackingStores that ship with
the application block, and it doesn’t require a massive amount of develop-
ment to create a new one.

One of the worrisome aspects of using this approach, however, is that
the configuration information will not be strongly typed. That is, there is a
greater possibility that an error can be made when entering the configura-
tion information for a custom BackingStore than there is when adding con-
figuration information for one of the BackingStores that ship with the
Caching Application Block. The Enterprise Library Configuration Tool will
not perform any validation on the name or the values of the items that are
stored in the Extensions collection. For example, an administrator may
accidentally transpose some of the characters for the name of the Xml-
FileName item by accidentally typing XlmFileName. Such an error would
not be caught at design time, but rather it would be caught at runtime when
an attempt to retrieve the XmlFileName item takes place in the Initial-
ize method.

To avoid these types of errors and provide a more user-friendly experi-
ence for configuring a custom BackingStore, a new BackingStore can be cre-
ated and used that has all the design-time features as the ones that ship
with the Caching Application Block. To create such a BackingStore, a few
more steps are required than with the kind of custom BackingStore just dis-
cussed.

The first task is to create a data transfer object that is responsible for
housing the configuration information needed by the new BackingStore. By
expanding the previous example and creating a custom BackingStore that

The Design of the Caching Application Block 211

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 211

uses an XML file, the custom BackingStore will need to retain information
about the name of the XML file and the partition name. Therefore, a data
transfer object must be created that encapsulates this information. This
object will be used by design-time classes for setting the configuration
information, and it will be used by the custom BackingStore to initialize
itself in its Initialize method. Listing 4.10 shows two properties of an
xmlFileCacheStorageData class that let the file name and partition name
be set and retrieved.

Listing 4.10: Properties for the XmlFileCacheStorageData Class

[C#]

[XmlAttribute("xmlFileName")]

public string XmlFileName

{

get { return xmlFileName; }

set { xmlFileName = value; }

}

[XmlAttribute("partitionName")]

public string PartitionName

{

get { return partitionName; }

set { partitionName = value; }

}

[Visual Basic]

<XmlAttribute("xmlFileName")> _

Public Property XmlFileName() As String

Get

Return xmlFileName

End Get

Set

xmlFileName = Value

End Set

End Property

<XmlAttribute("partitionName")> _

Public Property PartitionName() As String

Get

Return partitionName

End Get

Set

partitionName = Value

End Set

End Property

Chapter 4: The Caching Application Block212

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 212

The second task that must be completed is the same as the task that
needed to be completed for the previous type of custom BackingStore; that
is, to create a class that inherits from the abstract BaseBackingStore class
and override the abstract methods. The only difference between this class
and the one created for the previous type is that in this class’ Initialize
method, the data transfer object that was just created will be used instead
of the CustomCacheStorageData class. Listing 4.11 shows what the
revised Initialize method would look like.

Listing 4.11: Initialize Method for the XmlFileBackingStore

[C#]

public override void Initialize(ConfigurationView configurationView)

{

ArgumentValidation.CheckForNullReference

(configurationView, "configurationView");

ArgumentValidation.CheckExpectedType

(configurationView, typeof (CachingConfigurationView));

CachingConfigurationView cachingConfigurationView =

(CachingConfigurationView) configurationView;

xmlFileCacheStorageData xmlFileConfiguration =

(xmlFileCacheStorageData)

cachingConfigurationView.GetCacheStorageDataForCacheManager

(CurrentCacheManager);

partitionName = xmlFileConfiguration.PartitionName;

xmlFileName = String.Format("{0}.{1}",

xmlFileConfiguration.XmlFileName,

xmlFileConfiguration.PartitionName);

if (xmlFileConfiguration.StorageEncryption != null)

{

StorageEncryptionFactory encryptionFactory = new

StorageEncryptionFactory

(cachingConfigurationView.ConfigurationContext);

encryptionProvider =

encryptionFactory.CreateSymmetricProvider

(CurrentCacheManager);

}

}

[Visual Basic]

Public Overrides Sub Initialize _

The Design of the Caching Application Block 213

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 213

(ByVal configurationView As ConfigurationView)

ArgumentValidation.CheckForNullReference _

(configurationView, "configurationView")

ArgumentValidation.CheckExpectedType _

(configurationView, GetType(CachingConfigurationView))

Dim cachingConfigurationView As CachingConfigurationView = _

CType(configurationView, CachingConfigurationView)

Dim xmlFileConfiguration As xmlFileCacheStorageData = CType _

(cachingConfigurationView.GetCacheStorageDataForCacheManager _

(CurrentCacheManager), xmlFileCacheStorageData)

Dim partitionName = xmlFileConfiguration.PartitionName

Dim xmlFileName = String.Format("{0}.{1}", _

xmlFileConfiguration.XmlFileName, _

xmlFileConfiguration.PartitionName)

If Not xmlFileConfiguration.StorageEncryption Is Nothing Then

Dim encryptionFactory As StorageEncryptionFactory = New _

StorageEncryptionFactory _

(cachingConfigurationView.ConfigurationContext)

encryptionProvider = _

encryptionFactory.CreateSymmetricProvider _

(CurrentCacheManager)

End If

End Sub

The last step is to create the design-time classes that allow the Enterprise
Library Configuration Tool to present the user-friendly interface that makes
configuring a new BackingStore easier and less error-prone. This step is not
absolutely necessary; a new BackingStore can still be used even if design-
time classes for it do not exist. In that case, however, the configuration infor-
mation for it needs to be entered and modified manually, and the benefits
with respect to validating configuration information will not be realized.

Three tasks must be performed to create the design-time classes needed
to configure a new BackingStore.

1. Create a ConfigurationNode for the new BackingStore.

2. Create a ConfigurationDesignManager for the new BackingStore.

Chapter 4: The Caching Application Block214

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 214

3. Modify the AssemblyInfo file so the Enterprise Library Configura-
tion Tool can recognize the design-time features for the new Back-
ingStore.

Chapter 2 provides much more detail about how and why these classes
need to be created. The next few paragraphs document the specific steps
needed to create the design-time interface for the XmlFileBackingStore.

The first task is to create a new ConfigurationNode that provides a user
with the ability to add and modify the configuration properties of the Xml-
FileBackingStore. The specific properties that need to be exposed are the
FileName and the PartitionName. The Caching Application Block’s
design-time assembly provides an abstract base class named CacheStor-
ageNode that makes it easier to create a ConfigurationNode for a Backing-
Store. Listing 4.12 shows the XmlFileCacheStorageNode class that is
derived from the CacheStorageNode base class.

Listing 4.12: XmlFileCacheStorageNode Class

[C#]

public class XmlFileCacheStorageNode : CacheStorageNode

{

xmlFileCacheStorageData xmlFileCacheStorageData;

public XmlFileCacheStorageNode():

this(new xmlFileCacheStorageData(SR.XmlFileCacheStorage))

{

}

[Browsable(false)]

public override string Type

{

get { return xmlFileCacheStorageData.TypeName; }

}

[Required]

[SRDescription(SR.Keys.FileNameDescription)]

[SRCategory(SR.Keys.CategoryGeneral)]

public string FileName

{

get { return xmlFileCacheStorageData.XmlFileName; }

set { xmlFileCacheStorageData.XmlFileName = value; }

}

The Design of the Caching Application Block 215

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 215

[Required]

[SRDescription(SR.Keys.FilePartitionNameDesciption)]

[SRCategory(SR.Keys.CategoryGeneral)]

public string PartitionName

{

get { return xmlFileCacheStorageData.PartitionName; }

set { xmlFileCacheStorageData.PartitionName = value; }

}

}

[Visual Basic]

Public Class XmlFileCacheStorageNode : Inherits CacheStorageNode

Private xmlFileCacheStorageData As xmlFileCacheStorageData

Public Sub New()

Me.New(New xmlFileCacheStorageData(SR.XmlFileCacheStorage))

End Sub

<Browsable(False)> _

Public Overrides ReadOnly Property Type() As String

Get

Return xmlFileCacheStorageData.TypeName

End Get

End Property

<Required, _

SRDescription(SR.Keys.FileNameDescription), _

SRCategory(SR.Keys.CategoryGeneral)> _

Public Property FileName() As String

Get

Return xmlFileCacheStorageData.XmlFileName

End Get

Set

xmlFileCacheStorageData.XmlFileName = Value

End Set

End Property

<Required, _

SRDescription(SR.Keys.FilePartitionNameDesciption), _

SRCategory(SR.Keys.CategoryGeneral)> _

Public Property PartitionName() As String

Get

Return xmlFileCacheStorageData.PartitionName

End Get

Set

xmlFileCacheStorageData.PartitionName = Value

End Set

End Property

End Class

Chapter 4: The Caching Application Block216

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 216

A new class that implements the IConfigurationDesignManager inter-
face is needed to register the new XmlFileCacheStorageNode and asso-
ciate menu items and commands with it. An XmlIncludeType also needs
to be added so the Configuration Application Block knows how to create
the xmlFileCacheStorageData type. Listing 4.13 shows the Register-
IncludeTypes and RegisterNodeTypes methods that are called from the
virtual Register method for the new xmlFileBackingStoreConfigura-
tionDesignManager.

Listing 4.13: Registration Methods for the xmlFileBackingStore-
ConfigurationDesignManager

[C#]

private static void RegisterXmlIncludeTypes

(IServiceProvider serviceProvider)

{

IXmlIncludeTypeService xmlIncludeTypeService =

serviceProvider.GetService(typeof(IXmlIncludeTypeService))

as IXmlIncludeTypeService;

xmlIncludeTypeService.AddXmlIncludeType

(CacheManagerSettings.SectionName,

typeof(xmlFileCacheStorageData));

}

private static void RegisterNodeTypes(IServiceProvider serviceProvider)

{

INodeCreationService nodeCreationService =

ServiceHelper.GetNodeCreationService(serviceProvider);

Type nodeType = typeof(XmlFileCacheStorageNode);

NodeCreationEntry entry =

NodeCreationEntry.CreateNodeCreationEntryNoMultiples

(new AddChildNodeCommand(serviceProvider, nodeType), nodeType,

typeof(xmlFileCacheStorageData), SR.XmlFileCacheStorage);

nodeCreationService.AddNodeCreationEntry(entry);

}

[Visual Basic]

Private Shared Sub RegisterXmlIncludeTypes _

(ByVal serviceProvider As IServiceProvider)

Dim xmlIncludeTypeService As IXmlIncludeTypeService = _

IIf(TypeOf serviceProvider.GetService _

The Design of the Caching Application Block 217

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 217

(GetType(IXmlIncludeTypeService)) Is IXmlIncludeTypeService, _

CType(serviceProvider.GetService _

(GetType(IXmlIncludeTypeService)), IXmlIncludeTypeService), _

CType(Nothing, IXmlIncludeTypeService))

xmlIncludeTypeService.AddXmlIncludeType _

(CacheManagerSettings.SectionName, GetType(xmlFileCacheStorageData))

End Sub

Private Shared Sub RegisterNodeTypes _

(ByVal serviceProvider As IServiceProvider)

Dim nodeCreationService As INodeCreationService = _

ServiceHelper.GetNodeCreationService(serviceProvider)

Dim nodeType As Type = GetType(XmlFileCacheStorageNode)

Dim entry As NodeCreationEntry = _

NodeCreationEntry.CreateNodeCreationEntryNoMultiples _

(New AddChildNodeCommand(serviceProvider, nodeType), _

nodeType, GetType(xmlFileCacheStorageData), _

SR.XmlFileCacheStorage)

nodeCreationService.AddNodeCreationEntry(entry)

End Sub

Lastly, a new assembly attribute needs to be added to the Assembly-
Info.cs (or vb) file because the Enterprise Library Configuration Tool
looks for this to determine whether it should load a new Configura-
tionDesignManager. Listing 4.14 shows the part of the AssemblyInfo file
that sets the ConfigurationDesignManagerAttribute to the xmlFile-
BackingStoreConfigurationDesignManager.

Listing 4.14: Assembly Attribute for the xmlFileBackingStore-
ConfigurationDesignManager

[C#]

[assembly :

ConfigurationDesignManager(

typeof(xmlFileBackingStoreConfigurationDesignManager))

]

[Visual Basic]

<assembly : _

ConfigurationDesignManager(_

GetType(xmlFileBackingStoreConfigurationDesignManager))

>

Chapter 4: The Caching Application Block218

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 218

Once this assembly has been compiled and deployed so the Enterprise
Library Configuration Tool can access it, you can add and configure the
XmlFileBackingStore just as easily as any of the BackingStores that
ship with Enterprise Library’s Caching Application Block. (You’ll see how
to do this for all of the BackingStores a little later in the chapter.) Figure 4.5
shows the list of options for adding a BackingStore in the Enterprise
Library Configuration Tool once this new assembly has been deployed.

Encrypting Cached Data

It is often important to ensure that data that must be secured in its original
format is also secured when being transmitted to and from the cache and
when stored inside the cache. Data that is stored in a cache may be accessed
or altered by a process that isn’t permitted access to the master data. The
DataBackingStore, IsolatedStorageBackingStore, and custom Back-
ingStores allow cache item data to be encrypted before it is persisted to stor-
age; however, the NullBackingStore does not.

The Design of the Caching Application Block 219

Figure 4.5: Available BackingStores Now Include the XmlFileBackingStore

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 219

Methods to prevent tampering of cache items usually include signing and
verifying the items, and spoofing can be prevented by encrypting the cache
items. The Caching Application Block does not offer any functionality in the
way of signing data; however, it does offer the option to encrypt the cache
data that is written to persistent storage. The Caching Application Block uses
the Cryptography Application Block to create a symmetric encryption algo-
rithm provider that you can use to encrypt cached data. You’ll learn how to
configure a BackingStore to use a symmetric encryption algorithm later in
this chapter. More detailed information about using symmetric encryption
algorithms in Enterprise Library can be found in Chapter 8.

Chapter 4: The Caching Application Block

220

5409_FEN_CH04_p177-240 5/15/06 3:35 PM Page 220

Julie Nahil
Text Box
This is an excerpt of Chapter 4. The complete chapter appears in the printed book.

