
259

C H A P T E R 6

MEMORY CORRUPTION PART II—
HEAPS

In Chapter 5, “Memory Corruption Part I—Stacks,” we discussed how stack-based
buffer overflows can cause serious security problems for software and how stack-
based buffer overflows have been the primary attack angle for malicious software
authors. In recent years, however, another form of buffer overflow attack has gained
in popularity. Rather than relying on the stack to exploit buffer overflows, the
Windows heap manager is now being targeted. Even though heap-based security
attacks are much harder to exploit than their stack-based counterparts, their popu-
larity keeps growing at a rapid pace. In addition to potential security vulnerabilities,
this chapter discusses a myriad of stability issues that can surface in an application
when the heap is used in a nonconventional fashion.

Although the stack and the heap are managed very differently in Windows, the
process by which we analyze stack- and heap-related problems is the same. As such,
throughout this chapter, we employ the same troubleshooting process that we defined
in Chapter 5 (refer to Figure 5.1).

What Is a Heap?

A heap is a form of memory manager that an application can use when it needs to allo-
cate and free memory dynamically. Common situations that call for the use of a heap
are when the size of the memory needed is not known ahead of time and the size of
the memory is too large to neatly fit on the stack (automatic memory). Even though
the heap is the most common facility to accommodate dynamic memory allocations,
there are a number of other ways for applications to request memory from Windows.
Memory can be requested from the C runtime, the virtual memory manager, and
even from other forms of private memory managers. Although the different memory
managers can be treated as individual entities, internally, they are tightly connected.
Figure 6.1 shows a simplified view of Windows-supported memory managers and
their dependencies.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 259

260 Chapter 6 Memory Corruption Part II—Heaps

Figure 6.1 An overview of Windows memory management architecture

As illustrated in Figure 6.1, most of the high-level memory managers make use of the
Windows heap manager, which in turn uses the virtual memory manager. Although
high-level memory managers (and applications for that matter) are not restricted to
using the heap manager, they most typically do, as it provides a solid foundation for
other private memory managers to build on. Because of its popularity, the primary
focal point in this chapter is the Windows heap manager.

When a process starts, the heap manager automatically creates a new heap called
the default process heap. Although some processes use the default process heap, a
large number rely on the CRT heap (using new/delete and malloc/free family of APIs)
for all their memory needs. Some processes, however, create additional heaps (via the
HeapCreate API) to isolate different components running in the process. It is not
uncommon for even the simplest of applications to have four or more active heaps at
any given time.

The Windows heap manager can be further broken down as shown in Figure 6.2.

Application

[NTDLL] Heap Manager

Virtual Memory Manager

C Runtime
Heap

Default
Process

Heap

Application
Specific
Heaps

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 260

261What Is a Heap?

Figure 6.2 Windows heap manager

Front End Allocator
The front end allocator is an abstract optimization layer for the back end allocator. By
allowing different types of front end allocators, applications with different memory
needs can choose the appropriate allocator. For example, applications that expect
small bursts of allocations might prefer to use the low fragmentation front end allo-
cator to avoid fragmentation. Two different front end allocators are available in
Windows:

■ Look aside list (LAL) front end allocator
■ Low fragmentation (LF) front end allocator

With the exception of Windows Vista, all Windows versions use a LAL front end allo-
cator by default. In Windows Vista, a design decision was made to switch over to the
LF front end allocator by default. The look aside list is nothing more than a table of

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Look Aside Table

0

1

2

3

…

127

unused

16

24

32

…

1024

Front End Allocator

Free Lists

Variable size

unused

16

24

…

1016

Segment List

Segment 1

Segment 2

…

Segment x

0

1

2

3

…

127

Back End Allocator

…

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 261

262 Chapter 6 Memory Corruption Part II—Heaps

128 singly linked lists. Each singly linked list in the table contains free heap blocks of
a specific size starting at 16 bytes. The size of each heap block includes 8 bytes of
heap block metadata used to manage the block. For example, if an allocation request
of 24 bytes arrived at the front end allocator, the front end allocator would look for
free blocks of size 32 bytes (24 user-requested bytes + 8 bytes of metadata). Because
all heap blocks require 8 bytes of metadata, the smallest sized block that can be
returned to the caller is 16 bytes; hence, the front end allocator does not use table
index 1, which corresponds to free blocks of size 8 bytes.

Subsequently, each index represents free heap blocks, where the size of the heap
block is the size of the previous index plus 8. The last index (127) contains free heap
blocks of size 1024 bytes. When an application frees a block of memory, the heap man-
ager marks the allocation as free and puts the allocation on the front end allocator’s look
aside list (in the appropriate index). The next time a block of memory of that size is
requested, the front end allocator checks to see if a block of memory of the requested
size is available and if so, returns the heap block to the user. It goes without saying that
satisfying allocations via the look aside list is by far the fastest way to allocate memory.

Let’s take a look at a hypothetical example. Imagine that the state of the LAL is
as depicted in Figure 6.3.

Look Aside Table

0

1

2

3

…

127

16 16

32 32

16

Figure 6.3 Hypothetical state of the look aside list

The LAL in Figure 6.3 indicates that there are 3 heap blocks of size 16 (out of which
8 bytes is available to the caller) available at index 1 and two blocks of size 32 (out of
which 24 bytes are available to the caller) at index 3. When we try to allocate a block
of size 24, the heap manager knows to look at index 3 by adding 8 to the requested
block size (accounting for the size of the metadata) and dividing by 8 and subtracting
1 (zero-based table). The linked list positioned at index 3 contains two available heap
blocks. The heap manager simply removes the first one in the list and returns the allo-
cation to the caller.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 262

263What Is a Heap?

If we try allocating a block of size 16, the heap manager would notice that the
index corresponding to size 16 (16+8/8–1=2) is an empty list, and hence the allocat-
ing cannot be satisfied from the LAL. The allocation request now continues its trav-
els and is forwarded to the back end allocator for further processing.

Back End Allocator
If the front end allocator is unable to satisfy an allocation request, the request makes
its way to the back end allocator. Similar to the front end allocator, it contains a table
of lists commonly referred to as the free lists. The free list’s sole responsibility is to
keep track of all the free heap blocks available in a particular heap. There are 128 free
lists, where each list contains free heap blocks of a specific size. As you can see from
Figure 6.2, the size associated with free list[2] is 16, free list[3] is 24, and so on. Free
list[1] is unused because the minimum heap block size is 16 (8 bytes of metadata and
8 user-accessible bytes). Each size associated with a free list increases by 8 bytes from
the prior free list. Allocations whose size is greater than the maximum free list’s allo-
cation size go into index 0 of the free lists. Free list[0] essentially contains allocations
of sizes greater than 1016 bytes and less than the virtual allocation limit (discussed
later). The free heap blocks in free list[0] are also sorted by size (in ascending order)
to achieve maximum efficiency. Figure 6.4 shows a hypothetical example of a free list.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Free Lists

0

1

2

3

…

127

1200 2100

16 16

2300

Figure 6.4 Hypothetical state of the free lists

If an allocation request of size 8 arrives at the back end allocator, the heap manager
first consults the free lists. In order to maximize efficiency when looking for free heap
blocks, the heap manager keeps a free list bitmap. The bitmap consists of 128 bits,
where each bit represents an index into the free list table. If the bit is set, the free list

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 263

264 Chapter 6 Memory Corruption Part II—Heaps

corresponding to the index of the free list bitmap contains free heap blocks.
Conversely, if the bit is not set, the free list at that index is empty. Figure 6.5 shows
the free list bitmap for the free lists in Figure 6.4.

1 0 1 0 0 0 …

0 1 2 3 4 5 …

Figure 6.5 Free list bitmap

The heap manager maps an allocation request of a given size to a free list bitmap
index by adding 8 bytes to the size (metadata) and dividing by 8. Consider an alloca-
tion request of size 8 bytes. The heap manager knows that the free list bitmap index
is 2 [(8+8)/8]. From Figure 6.5, we can see that index 2 of the free list bitmap is set,
which indicates that the free list located at index 2 in the free lists table contains free
heap blocks. The free block is then removed from the free list and returned to the
caller. If the removal of a free heap block results in that free list becoming empty, the
heap manager also clears the free list bitmap at the specific index. If the heap man-
ager is unable to find a free heap block of requested size, it employs a technique
known as block splitting. Block splitting refers to the heap manager’s capability to
take a larger than requested free heap block and split it in half to satisfy a smaller allo-
cation request. For example, if an allocation request arrives for a block of size 8 (total
block size of 16), the free list bitmap is consulted first. The index representing blocks
of size 16 indicates that no free blocks are available. Next, the heap manager finds
that free blocks of size 32 are available. The heap manager now removes a block of
size 32 and splits it in half, which yields two blocks of size 16 each. One of the blocks
is put into a free list representing blocks of size 16, and the other block is returned to
the caller. Additionally, the free list bitmap is updated to indicate that index 2 now
contains free block entries of size 16. The result of splitting a larger free allocation
into two smaller allocations is shown in Figure 6.6.

As mentioned earlier, the free list at index 0 can contain free heap blocks of sizes
ranging from 1016 up to 0x7FFF0 (524272) bytes. To maximize free block lookup
efficiency, the heap manager stores the free blocks in sorted order (ascending). All
allocations of sizes greater than 0x7FFF0 go on what is known as the virtual alloca-
tion list. When a large allocation occurs, the heap manager makes an explicit alloca-
tion request from the virtual memory manager and keeps these allocations on the
virtual allocation list.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 264

265What Is a Heap?

Figure 6.6 Splitting free blocks

So far, the discussion has revolved around how the heap manager organizes
blocks of memory it has at its disposal. One question remains unanswered: Where
does the heap manager get the memory from? Fundamentally, the heap manager
uses the Windows virtual memory manager to allocate memory in large chunks. The
memory is then massaged into different sized blocks to accommodate the allocation
requests of the application. When the virtual memory chunks are exhausted, the heap
manager allocates yet another large chunk of virtual memory, and the process con-
tinues. The chunks that the heap manager requests from the virtual memory manag-
er are known as heap segments. When a heap segment is first created, the underlying
virtual memory is mostly reserved, with only a small portion being committed.
Whenever the heap manager runs out of committed space in the heap segment, it
explicitly commits more memory and divides the newly committed space into blocks
as more and more allocations are requested. Figure 6.7 illustrates the basic layout of
a heap segment.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Free Lists

Free List Bitmap

0

1

2

3

4

…

127

1200 2100

32 32

16

2300

Step 2: One 16 byte block
is added to the free list
and one is returned to

caller

Step 3: Free list bitmap
updated to reflect changes

after block splitting

Step 1: First block of size
32 is split into two 16 byte
blocks and removed from

the free list

1 0 1 0 1 0 …

0 1 2 3 4 5 …

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 265

266 Chapter 6 Memory Corruption Part II—Heaps

Figure 6.7 Basic layout of a heap segment

The segment illustrated in Figure 6.7 contains two allocations (and associated meta-
data) followed by a range of uncommitted memory. If another allocation request
arrives, and no available free block is present in the free lists, the heap manager would
commit additional memory from the uncommitted range, create a new heap block
within the committed memory range, and return the block to the user. Once a seg-
ment runs out of uncommitted space, the heap manager creates a new segment. The
size of the new segment is determined by doubling the size of the previous segment.
If memory is scarce and cannot accommodate the new segment, the heap manager
tries to reduce the size by half. If that fails, the size is halved again until it either suc-
ceeds or reaches a minimum segment size threshold—in which case, an error is
returned to the caller. The maximum number of segments that can be active within a
heap is 64. Once the new segment is created, the heap manager adds it to a list that
keeps track of all segments being used in the heap. Does the heap manager ever free
memory associated with a segment? The answer is that the heap manager decommits
memory on a per-needed basis, but it never releases it. (That is, the memory stays
reserved.)

As Figure 6.7 depicts, each heap block in a given segment has metadata associat-
ed with it. The metadata is used by the heap manager to effectively manage the heap
blocks within a segment. The content of the metadata is dependent on the status of
the heap block. For example, if the heap block is used by the application, the status
of the block is considered busy. Conversely, if the heap block is not in use (that is, has
been freed by the application), the status of the block is considered free. Figure 6.8
shows how the metadata is structured in both situations.

Pre
Allocation
Metadata

User
accessible

part

Post
Allocation
Metadata

Pre
Allocation
Metadata

Committed memory range

End of allocation End of allocation

Uncommitted memory
range

Post
Allocation
Metadata

User accessible
part

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 266

267What Is a Heap?

Figure 6.8 Structure of pre- and post-allocation metadata

It is important to note that a heap block might be considered busy in the eyes of the
back end allocator but still not being used by the application. The reason behind this
is that any heap blocks that go on the front end allocator’s look aside list still have their
status set as busy.

The two size fields represent the size of the current block and the size of the pre-
vious block (metadata inclusive). Given a pointer to a heap block, you can very easily
use the two size fields to walk the heap segment forward and backward. Additionally,
for free blocks, having the block size as part of the metadata enables the heap man-
ager to very quickly index the correct free list to add the block to. The post-allocation
metadata is optional and is typically used by the debug heap for additional book-
keeping information (see “Attaching Versus Running” under the debugger sidebar).

The flags field indicates the status of the heap block. The most important values
of the flags field are shown in Table 6.1.

Table 6.1 Possible Block Status as Indicated by the Heap Flag

Value Description

0x01 Indicates that the allocation is being used by the application or the heap manager
0x04 Indicates whether the heap block has a fill pattern associated with it
0x08 Indicates that the heap block was allocated directly from the virtual memory

manager
0x10 Indicates that this is the last heap block prior to an uncommitted range

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Current
Block
Size

Previous
Block
Size

Segment
Index Flags

Preallocation metadata

Size (in bytes)

Busy Block: Allocation Metadata

Postallocation metadata

Tag
Index

User accessible
partUnused

2 2 1 1 1 16 81

Suffix
Bytes

Heap
Extra

Fill area
(debug mode)

Current
Block
Size

Previous
Block
Size

Segment
Index Flags

Preallocation metadata

Size (in bytes)

Free Block: Allocation Metadata

Postallocation metadata

Tag
Index

User accessible
partUnused

2 2 1 1 1 16 81

Suffix
Bytes

Heap
Extra

Fill area
(debug mode)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 267

268 Chapter 6 Memory Corruption Part II—Heaps

You have already seen what happens when a heap block transitions from being busy to
free. However, one more technique that the heap manager employs needs to be dis-
cussed. The technique is referred to as heap coalescing. Fundamentally, heap coalesc-
ing is a mechanism that merges adjacent free blocks into one single large block to avoid
memory fragmentation problems. Figure 6.9 illustrates how a heap coalesce functions.

Prior to freeing the allocation of size 32

Allocation
Size: 32

Allocation
Size: 16

Allocation
Size: 16

After freeing the allocation of size 32

Allocation
Size: 64

Figure 6.9 Example of heap coalescing

When the heap manager is requested to free the heap block of size 32, it first checks
to see if any adjacent blocks are also free. In Figure 6.9, two blocks of size 16 sur-
round the block being freed. Rather than handing the block of size 32 to the free lists,
the heap manager merges all three blocks into one (of size 64) and updates the free
lists to indicate that a new block of size 64 is now available. Care is also taken by the
heap manager to remove the prior two blocks (of size 16) from the free lists since they
are no longer available. It should go without saying that the act of coalescing free
blocks is an expensive operation. So why does the heap manager even bother? The
primary reason behind coalescing heap blocks is to avoid what is known as heap frag-
mentation. Imagine that your application just had a burst of allocations all with a very
small size (16 bytes). Furthermore, let’s say that there were enough of these small
allocations to fill up an entire segment. After the allocation burst is completed, the
application frees all the allocations. The net result is that you have one heap segment
full of available allocations of size 16 bytes. Next, your application attempts to allo-
cate a block of memory of size 48 bytes. The heap manager now tries to satisfy the
allocation request from the segment, fails because the free block sizes are too small,
and is forced to create a new heap segment. Needless to say, this is extremely poor
use of memory. Even though we had an entire segment of free memory, the heap
manager was forced to create a new segment to satisfy our slightly larger allocation
request. Heap coalescing makes a best attempt at ensuring that situations such as this
are kept at a minimum by combining small free blocks into larger blocks.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 268

269What Is a Heap?

This concludes our discussion of the internal workings of the heap manager.
Before we move on and take a practical look the heap, let’s summarize what you have
learned.

When allocating a block of memory

1. The heap manager first consults the front end allocator’s LAL to see if a free
block of memory is available; if it is, the heap manager returns it to the caller.
Otherwise, step 2 is necessary.

2. The back end allocator’s free lists are consulted:
a. If an exact size match is found, the flags are updated to indicate that

the block is busy; the block is then removed from the free list and
returned to the caller.

b. If an exact size match cannot be found, the heap manager checks to
see if a larger block can be split into two smaller blocks that satisfy
the requested allocation size. If it can, the block is split. One block
has the flags updated to a busy state and is returned to the caller.
The other block has its flags set to a free state and is added to the
free lists. The original block is also removed from the free list.

3. If the free lists cannot satisfy the allocation request, the heap manager com-
mits more memory from the heap segment, creates a new block in the com-
mitted range (flags set to busy state), and returns the block to the caller.

When freeing a block of memory

1. The front end allocator is consulted first to see if it can handle the free block.
If the free block is not handled by the front end allocator step 2 is necessary.

2. The heap manager checks if there are any adjacent free blocks; if so, it coa-
lesces the blocks into one large block by doing the following:

a. The two adjacent free blocks are removed from the free lists.
b. The new large block is added to the free list or look aside list.
c. The flags field for the new large block is updated to indicate that it

is free.
3. If no coalescing can be performed, the block is moved into the free list or look

aside list, and the flags are updated to a free state.

Now it’s time to complement our theoretical discussion of the heap manager with
practice. Listing 6.1 shows a simple application that, using the default process heap,
allocates and frees some memory.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 269

270 Chapter 6 Memory Corruption Part II—Heaps

Listing 6.1 Simple application that performs heap allocations

#include <windows.h>

#include <stdio.h>

#include <conio.h>

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

BYTE* pAlloc1=NULL;

BYTE* pAlloc2=NULL;

HANDLE hProcessHeap=GetProcessHeap();

pAlloc1=(BYTE*)HeapAlloc(hProcessHeap, 0, 16);

pAlloc2=(BYTE*)HeapAlloc(hProcessHeap, 0, 1500);

//

// Use allocated memory

//

HeapFree(hProcessHeap, 0, pAlloc1);

HeapFree(hProcessHeap, 0, pAlloc2);

}

The source code and binary for Listing 6.1 can be found in the following folders:

Source code: C:\AWD\Chapter6\BasicAlloc
Binary: C:\AWDBIN\WinXP.x86.chk\06BasicAlloc.exe

Run this application under the debugger and break on the wmain function.
Because we are interested in finding out more about the heap state, we must start

by finding out what heaps are active in the process. Each running process keeps a list
of active heaps. The list of heaps is stored in the PEB (process environment block),
which is simply a data structure that contains a plethora of information about the
process. To dump out the contents of the PEB, we use the dt command, as illustrat-
ed in Listing 6.2.

Listing 6.2 Finding the PEB for a process

0:000> dt _PEB @$peb

+0x000 InheritedAddressSpace : 0 ‘’

+0x001 ReadImageFileExecOptions : 0 ‘’

+0x002 BeingDebugged : 0x1 ‘’

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 270

271What Is a Heap?

+0x003 SpareBool : 0 ‘’

+0x004 Mutant : 0xffffffff

+0x008 ImageBaseAddress : 0x01000000

+0x00c Ldr : 0x00191e90 _PEB_LDR_DATA

+0x010 ProcessParameters: 0x00020000 _RTL_USER_PROCESS_PARAMETERS

+0x014 SubSystemData : (null)

+0x018 ProcessHeap : 0x00080000

+0x01c FastPebLock : 0x7c97e4c0 _RTL_CRITICAL_SECTION

+0x020 FastPebLockRoutine : 0x7c901005

+0x024 FastPebUnlockRoutine : 0x7c9010ed

+0x028 EnvironmentUpdateCount : 1

+0x02c KernelCallbackTable : (null)

+0x030 SystemReserved : [1] 0

+0x034 AtlThunkSListPtr32 : 0

+0x038 FreeList : (null)

+0x03c TlsExpansionCounter : 0

+0x040 TlsBitmap : 0x7c97e480

+0x044 TlsBitmapBits : [2] 1

+0x04c ReadOnlySharedMemoryBase : 0x7f6f0000

+0x050 ReadOnlySharedMemoryHeap : 0x7f6f0000

+0x054 ReadOnlyStaticServerData : 0x7f6f0688 -> (null)

+0x058 AnsiCodePageData : 0x7ffb0000

+0x05c OemCodePageData : 0x7ffc1000

+0x060 UnicodeCaseTableData : 0x7ffd2000

+0x064 NumberOfProcessors : 1

+0x068 NtGlobalFlag : 0

+0x070 CriticalSectionTimeout : _LARGE_INTEGER 0xffffffff`dc3cba00

+0x078 HeapSegmentReserve : 0x100000

+0x07c HeapSegmentCommit : 0x2000

+0x080 HeapDeCommitTotalFreeThreshold : 0x10000

+0x084 HeapDeCommitFreeBlockThreshold : 0x1000

+0x088 NumberOfHeaps : 3

+0x08c MaximumNumberOfHeaps : 0x10

+0x090 ProcessHeaps : 0x7c97de80 -> 0x00080000

+0x094 GdiSharedHandleTable : (null)

+0x098 ProcessStarterHelper : (null)

+0x09c GdiDCAttributeList : 0

+0x0a0 LoaderLock : 0x7c97c0d8

+0x0a4 OSMajorVersion : 5

+0x0a8 OSMinorVersion : 1

+0x0ac OSBuildNumber : 0xa28

+0x0ae OSCSDVersion : 0x200

+0x0b0 OSPlatformId : 2

+0x0b4 ImageSubsystem : 3

+0x0b8 ImageSubsystemMajorVersion : 4

+0x0bc ImageSubsystemMinorVersion : 0

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

(continues)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 271

272 Chapter 6 Memory Corruption Part II—Heaps

+0x0c0 ImageProcessAffinityMask : 0

+0x0c4 GdiHandleBuffer : [34] 0

+0x14c PostProcessInitRoutine : (null)

+0x150 TlsExpansionBitmap : 0x7c97e478

+0x154 TlsExpansionBitmapBits : [32] 0

+0x1d4 SessionId : 0

+0x1d8 AppCompatFlags : _ULARGE_INTEGER 0x0

+0x1e0 AppCompatFlagsUser : _ULARGE_INTEGER 0x0

+0x1e8 pShimData : (null)

+0x1ec AppCompatInfo : (null)

+0x1f0 CSDVersion : _UNICODE_STRING “Service Pack 2”

+0x1f8 ActivationContextData : (null)

+0x1fc ProcessAssemblyStorageMap : (null)

+0x200 SystemDefaultActivationContextData : 0x00080000

+0x204 SystemAssemblyStorageMap : (null)

+0x208 MinimumStackCommit : 0

As you can see, PEB contains quite a lot of information, and you can learn a lot by
digging around in this data structure to familiarize yourself with the various compo-
nents. In this particular exercise, we are specifically interested in the list of process
heaps located at offset 0x90. The heap list member of PEB is simply an array of point-
ers, where each pointer points to a data structure of type _HEAP. Let’s dump out the
array of heap pointers and see what it contains:

0:000> dd 0x7c97de80

7c97de80 00080000 00180000 00190000 00000000

7c97de90 00000000 00000000 00000000 00000000

7c97dea0 00000000 00000000 00000000 00000000

7c97deb0 00000000 00000000 00000000 00000000

7c97dec0 01a801a6 00020498 00000001 7c9b0000

7c97ded0 7ffd2de6 00000000 00000005 00000001

7c97dee0 ffff7e77 00000000 003a0044 0057005c

7c97def0 004e0049 004f0044 00530057 0073005c

The dump shows that three heaps are active in our process, and the default process
heap pointer is always the first one in the list. Why do we have more than one heap
in our process? Even the simplest of applications typically contains more than one
heap. Most applications implicitly use components that create their own heaps. A
great example is the C runtime, which creates its own heap during initialization.

Listing 6.2 Finding the PEB for a process (continued)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 272

273What Is a Heap?

Because our application works with the default process heap, we will focus our inves-
tigation on that heap. Each of the process heap pointers points to a data structure of
type _HEAP. Using the dt command, we can very easily dump out the information
about the process heap, as shown in Listing 6.3.

Listing 6.3 Detailed view of the default process heap

0:000> dt _HEAP 00080000

+0x000 Entry : _HEAP_ENTRY

+0x008 Signature : 0xeeffeeff

+0x00c Flags : 0x50000062

+0x010 ForceFlags : 0x40000060

+0x014 VirtualMemoryThreshold : 0xfe00

+0x018 SegmentReserve : 0x100000

+0x01c SegmentCommit : 0x2000

+0x020 DeCommitFreeBlockThreshold : 0x200

+0x024 DeCommitTotalFreeThreshold : 0x2000

+0x028 TotalFreeSize : 0xcb

+0x02c MaximumAllocationSize : 0x7ffdefff

+0x030 ProcessHeapsListIndex : 1

+0x032 HeaderValidateLength : 0x608

+0x034 HeaderValidateCopy : (null)

+0x038 NextAvailableTagIndex : 0

+0x03a MaximumTagIndex : 0

+0x03c TagEntries : (null)

+0x040 UCRSegments : (null)

+0x044 UnusedUnCommittedRanges : 0x00080598 _HEAP_UNCOMMMTTED_RANGE

+0x048 AlignRound : 0x17

+0x04c AlignMask : 0xfffffff8

+0x050 VirtualAllocdBlocks : _LIST_ENTRY [0x80050 - 0x80050]

+0x058 Segments : [64] 0x00080640 _HEAP_SEGMENT

+0x158 u : __unnamed

+0x168 u2 : __unnamed

+0x16a AllocatorBackTraceIndex : 0

+0x16c NonDedicatedListLength : 1

+0x170 LargeBlocksIndex : (null)

+0x174 PseudoTagEntries : (null)

+0x178 FreeLists : [128] _LIST_ENTRY [0x829b0 - 0x829b0]

+0x578 LockVariable : 0x00080608 _HEAP_LOCK

+0x57c CommitRoutine : (null)

+0x580 FrontEndHeap : 0x00080688

+0x584 FrontHeapLockCount : 0

+0x586 FrontEndHeapType : 0x1 ‘’

+0x587 LastSegmentIndex : 0 ‘’

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 273

274 Chapter 6 Memory Corruption Part II—Heaps

Once again, you can see that the _HEAP structure is fairly large with a lot of infor-
mation about the heap. For this exercise, the most important members of the _HEAP
structure are located at the following offsets:

+0x050 VirtualAllocdBlocks : _LIST_ENTRY

Allocations that are greater than the virtual allocation size threshold are not managed
as part of the segments and free lists. Rather, these allocations are allocated directly
from the virtual memory manager. You track these allocations by keeping a list as part
of the _HEAP structure that contains all virtual allocations.

+0x058 Segments : [64]

The Segments field is an array of data structures of type _HEAP_SEGMENT. Each
heap segment contains a list of heap entries active within that segment. Later on, you
will see how we can use this information to walk the entire heap segment and locate
allocations of interest.

+0x16c NonDedicatedListLength

As mentioned earlier, free list[0] contains allocations of size greater than 1016KB and
less than the virtual allocation threshold. To efficiently manage this free list, the heap
stores the number of allocations in the nondedicates list in this field. This information
can come in useful when you want to analyze heap usage and quickly see how many
of your allocations fall into the variable sized free list[0] category.

+0x178 FreeLists : [128] _LIST_ENTRY

The free lists are stored at offset 0x178 and contain doubly linked lists. Each list con-
tains free heap blocks of a specific size. We will take a closer look at the free lists in a
little bit.

+0x580 FrontEndHeap

The pointer located at offset 0x580 points to the front end allocator. We know the
overall architecture and strategy behind the front end allocator, but unfortunately, the
public symbol package does not contain definitions for it, making an in-depth inves-
tigation impossible. It is also worth noting that Microsoft reserves the right to change
the offsets previously described between Windows versions.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 274

275What Is a Heap?

Back to our sample application—let’s continue stepping through the code in the
debugger. The first call of interest is to the GetProcessHeap API, which returns a
handle to the default process heap. Because we already found this handle/pointer
ourselves, we can verify that the explicit call to GetProcessHeap returns what we
expect. After the call, the eax register contains 0x00080000, which matches our
expectations. Next are two calls to the kernel32!HeapAlloc API that attempt allo-
cations of sizes 16 and 1500. Will these allocations be satisfied by committing more
segment memory or from the free lists? Before stepping over the first HeapAlloc
call, let’s try to find out where the heap manager will find a free heap block to satisfy
this allocation. The first step in our investigation is to see if any free blocks of size 16
are available in the free lists. To check the availability of free blocks, we use the fol-
lowing command:

dt _LIST_ENTRY 0x00080000+0x178+8

This command dumps out the first node in the free list that corresponds to allocations
of size 16. The 0x00080000 is the address of our heap. We add an offset of 0x178 to
get the start of the free list table. The first entry in the free list table points to free
list[0]. Because our allocation is much smaller than the free list[0] size threshold, we
simply skip this free list by adding an additional 8 bytes (the size of the _LIST_ENTRY
structure), which puts us at free list[1] representing free blocks of size 16.

0:000> dt _LIST_ENTRY 0x00080000+0x178+8

[0x80180 - 0x80180]

+0x000 Flink : 0x00080180 _LIST_ENTRY [0x80180 - 0x80180]

+0x004 Blink : 0x00080180 _LIST_ENTRY [0x80180 - 0x80180]

Remember that the free lists are doubly linked lists; hence the Flink and Blink
fields of the _LIST_ENTRY structure are simply pointers to the next and previous
allocations. It is critical to note that the pointer listed in the free lists actually points
to the user-accessible part of the heap block and not to the start of the heap block
itself. As such, if you want to look at the allocation metadata, you need to first sub-
tract 8 bytes from the pointer. Both of these pointers seem to point to 0x00080180,
which in actuality is the address of the list node we were just dumping out
(0x00080000+0x178+8=0x00080180). This implies that the free list corresponding to
allocations of size 16 is empty. Before we assume that the heap manager must com-
mit more memory in the segment, remember that it will only do so as the absolute
last resort. Hence, the heap manager first tries to see if there are any other free blocks
of sizes greater than 16 that it could split to satisfy the allocation. In our particular
case, free list[0] contains a free heap block:

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 275

276 Chapter 6 Memory Corruption Part II—Heaps

0:000> dt _LIST_ENTRY 0x00080000+0x178

[0x82ab0 - 0x82ab0]

+0x000 Flink : 0x00082ab0 _LIST_ENTRY [0x80178 - 0x80178]

+0x004 Blink : 0x00082ab0 _LIST_ENTRY [0x80178 - 0x80178]

The Flink member points to the location in the heap block available to the caller. In
order to see the full heap block (including metadata), we must first subtract 8 bytes
from the pointer (refer to Figure 6.8).

0:000> dt _HEAP_ENTRY 0x00082ab0-0x8

+0x000 Size : 0xab

+0x002 PreviousSize : 0xb

+0x000 SubSegmentCode : 0x000b00ab

+0x004 SmallTagIndex : 0xee ‘’

+0x005 Flags : 0x14 ‘’

+0x006 UnusedBytes : 0xee ‘’

+0x007 SegmentIndex : 0 ‘’

It is important to note that the size reported is the true size of the heap block divid-
ed by the heap granularity. The heap granularity is easily found by taking the size of
the _HEAP_ENTY_STRUCTURE. A heap block, the size of which is reported to be 0xab,
is in reality 0xb8*8 = 0x558 (1368) bytes.

The free heap block we are looking at definitely seems to be big enough to fit our
allocation request of size 16. In the debug session, step over the first instruction that
calls HeapAlloc. If successful, we can then check free list[0] again and see if the allo-
cation we looked at prior to the call has changed:

0:000> dt _LIST_ENTRY 0x00080000+0x178

[0x82ad8 - 0x82ad8]

+0x000 Flink : 0x00082ad8 _LIST_ENTRY [0x80178 - 0x80178]

+0x004 Blink : 0x00082ad8 _LIST_ENTRY [0x80178 - 0x80178]

0:000> dt _HEAP_ENTRY 0x00082ad8-0x8

+0x000 Size : 0xa6

+0x002 PreviousSize : 5

+0x000 SubSegmentCode : 0x000500a6

+0x004 SmallTagIndex : 0xee ‘’

+0x005 Flags : 0x14 ‘’

+0x006 UnusedBytes : 0xee ‘’

+0x007 SegmentIndex : 0 ‘’

Sure enough, what used to be the first entry in free list[0] has now changed. Instead
of a free block of size 0xab, we now have a free block of size 0xa6. The difference in
size (0x5) is due to our allocation request breaking up the larger free block we saw

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 276

277What Is a Heap?

previously. If we are allocating 16 bytes (0x10), why is the difference in size of the free
block before splitting and after only 0x5 bytes? The key is to remember that the size
reported must first be multiplied by the heap granularity factor of 0x8. The true size
of the new free allocation is then 0x00000530 (0xa6*8), with the true size difference
being 0x28. 0x10 of those 0x28 bytes are our allocation size, and the remaining 0x18
bytes are all metadata associated with our heap block.

The next call to HeapAlloc attempts to allocate memory of size 1500. We know
that free heap blocks of this size must be located in the free list[0]. However, from
our previous investigation, we also know that the only free heap block on the free
list[0] is too small to accommodate the size we are requesting. With its hands tied, the
heap manager is now forced to commit more memory in the heap segment. To get a
better picture of the state of our heap segment, it is useful to do a manual walk of the
segment. The _HEAP structure contains an array of pointers to all segments current-
ly active in the heap. The array is located at the base _HEAP address plus an offset of
0x58.

0:000> dd 0x00080000+0x58 l4

00080058 00080640 00000000 00000000 00000000

0:000> dt _HEAP_SEGMENT 0x00080640

+0x000 Entry : _HEAP_ENTRY

+0x008 Signature : 0xffeeffee

+0x00c Flags : 0

+0x010 Heap : 0x00080000 _HEAP

+0x014 LargestUnCommittedRange : 0xfd000

+0x018 BaseAddress : 0x00080000

+0x01c NumberOfPages : 0x100

+0x020 FirstEntry : 0x00080680 _HEAP_ENTRY

+0x024 LastValidEntry : 0x00180000 _HEAP_ENTRY

+0x028 NumberOfUnCommittedPages : 0xfd

+0x02c NumberOfUnCommittedRanges : 1

+0x030 UnCommittedRanges : 0x00080588 _HEAP_UNCOMMMTTED_RANGE

+0x034 AllocatorBackTraceIndex : 0

+0x036 Reserved : 0

+0x038 LastEntryInSegment : 0x00082ad0 _HEAP_ENTRY

The _HEAP_SEGMENT data structure contains a slew of information used by the heap
manager to efficiently manage all the active segments in the heap. When walking a seg-
ment, the most useful piece of information is the FirstEntry field located at the base
segment address plus an offset of 0x20. This field represents the first heap block in the
segment. If we dump out this block and get the size, we can dump out the next heap
block by adding the size to the first heap block’s address. If we continue this process, the
entire segment can be walked, and each allocation can be investigated for correctness.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 277

278 Chapter 6 Memory Corruption Part II—Heaps

0:000> dt _HEAP_ENTRY 0x00080680

+0x000 Size : 0x303

+0x002 PreviousSize : 8

+0x000 SubSegmentCode : 0x00080303

+0x004 SmallTagIndex : 0x9a ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x18 ‘’

+0x007 SegmentIndex : 0 ‘’

0:000> dt _HEAP_ENTRY 0x00080680+(0x303*8)

+0x000 Size : 8

+0x002 PreviousSize : 0x303

+0x000 SubSegmentCode : 0x03030008

+0x004 SmallTagIndex : 0x99 ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x1e ‘’

+0x007 SegmentIndex : 0 ‘’

0:000> dt _HEAP_ENTRY 0x00080680+(0x303*8)+(8*8)

+0x000 Size : 5

+0x002 PreviousSize : 8

+0x000 SubSegmentCode : 0x00080005

+0x004 SmallTagIndex : 0x91 ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x1a ‘’

+0x007 SegmentIndex : 0 ‘’

…

…

…

+0x000 Size : 0xa6

+0x002 PreviousSize : 5

+0x000 SubSegmentCode : 0x000500a6

+0x004 SmallTagIndex : 0xee ‘’

+0x005 Flags : 0x14 ‘’

+0x006 UnusedBytes : 0xee ‘’

+0x007 SegmentIndex : 0 ‘’

Let’s see what the heap manager does to the segment (if anything) to try to satisfy the
allocation request of size 1500 bytes. Step over the HeapAlloc call and walk the seg-
ment again. The heap block of interest is shown next.

+0x000 Size : 0xbf

+0x002 PreviousSize : 5

+0x000 SubSegmentCode : 0x000500bf

+0x004 SmallTagIndex : 0x10 ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x1c ‘’

+0x007 SegmentIndex : 0 ‘’

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 278

279What Is a Heap?

Before we stepped over the call to HeapAlloc, the last heap block was marked as
free and with a size of 0xa6. After the call, the block status changed to busy with a size
of 0xbf (0xbf*8= 0x5f8), indicating that this block is now used to hold our new alloca-
tion. Since our allocation was too big to fit into the previous size of 0xa6, the heap
manager committed more memory to the segment. Did it commit just enough to hold
our allocation? Actually, it committed much more and put the remaining free mem-
ory into a new block at address 0x000830c8. The heap manager is only capable of
asking for page sized allocations (4KB on x86 systems) from the virtual memory man-
ager and returns the remainder of that allocation to the free lists.

The next couple of lines in our application simply free the allocations we just
made. What do we anticipate the heap manager to do when it executes the first
HeapFree call? In addition to updating the status of the heap block to free and
adding it to the free lists, we expect it to try and coalesce the heap block with other
surrounding free blocks. Before we step over the first HeapFree call, let’s take a look
at the heap block associated with that call.

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)

+0x000 Size : 5

+0x002 PreviousSize : 0xb

+0x000 SubSegmentCode : 0x000b0005

+0x004 SmallTagIndex : 0x1f ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x18 ‘’

+0x007 SegmentIndex : 0 ‘’

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)-(0xb*8)

+0x000 Size : 0xb

+0x002 PreviousSize : 5

+0x000 SubSegmentCode : 0x0005000b

+0x004 SmallTagIndex : 0 ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x1c ‘’

+0x007 SegmentIndex : 0 ‘’

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)

+0x000 Size : 0xbf

+0x002 PreviousSize : 5

+0x000 SubSegmentCode : 0x000500bf

+0x004 SmallTagIndex : 0x10 ‘’

+0x005 Flags : 0x7 ‘’

+0x006 UnusedBytes : 0x1c ‘’

+0x007 SegmentIndex : 0 ‘’

The status of the previous and next heap blocks are both busy (Flags=0x7), which
means that the heap manager is not capable of coalescing the memory, and the heap

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 279

280 Chapter 6 Memory Corruption Part II—Heaps

block is simply put on the free lists. More specifically, the heap block will go into free
list[1] because the size is 16 bytes. Let’s verify our theory—step over the HeapFree
call and use the same mechanism as previously used to see what happened to the
heap block.

0:000> dt _HEAP_ENTRY 0x000830c8-(0xbf*8)-(0x5*8)

+0x000 Size : 5

+0x002 PreviousSize : 0xb

+0x000 SubSegmentCode : 0x000b0005

+0x004 SmallTagIndex : 0x1f ‘’

+0x005 Flags : 0x4 ‘’

+0x006 UnusedBytes : 0x18 ‘’

+0x007 SegmentIndex : 0 ‘’

As you can see, the heap block status is indeed set to be free, and the size remains the
same. Since the size remains the same, it serves as an indicator that the heap manag-
er did not coalesce the heap block with adjacent blocks. Last, we verify that the block
made it into the free list[1].

I will leave it as an exercise for the reader to figure out what happens to the seg-
ment and heap blocks during the next call to HeapFree. Here’s a hint: Remember
that the size of the heap block being freed is 1500 bytes and that the state of one of
the adjacent blocks is set to free.

This concludes our overview of the internal workings of the heap manager.
Although it might seem like a daunting task to understand and be able to walk the var-
ious heap structures, after a little practice, it all becomes easier. Before we move on
to the heap corruption scenarios, one important debugger command can help us be
more efficient when debugging heap corruption scenarios. The extension command
is called !heap and is part of the exts.dll debugger extension. Using this command,
you can very easily display all the heap information you could possibly want. Actually,
all the information we just manually gathered is outputted by the !heap extension
command in a split second. But wait—we just spent a lot of time figuring out how to
analyze the heap by hand, walk the segments, and verify the heap blocks. Why even
bother if we have this beautiful command that does all the work for us? As always, the
answer lies in how the debugger arrives at the information it presents. If the state of
the heap is intact, the !heap extension command shows the heap state in a nice and
digestible form. If, however, the state of the heap has been corrupted, it is no longer
sufficient to rely on the command to tell us what and how it became corrupted. We
need to know how to analyze the various parts of the heap to arrive at sound conclu-
sions and possible culprits.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 280

281Heap Corruptions

Attaching Versus Starting the Process Under the Debugger

The debug session you have seen so far has involved running a process under the debugger
from start to finish. Another option when debugging processes is attaching the debugger to
an already-running process. Typically, using either approach will not dramatically change
the way you debug the process. The exception to the rule is when debugging heap-related
issues. When starting the process under the debugger, the heap manager modifies all
requests to create new heaps and change the heap creation flags to enable debug-friendly
heaps (unless the _NO_DEBUG_HEAP environment variable is set to 1). In comparison,
attaching to an already-running process, the heaps in the process have already been creat-
ed using default heap creation flags and will not have the debug-friendly flags set (unless
explicitly set by the application). The heap modification flags apply across all heaps in the
process, including the default process heap. The biggest difference when starting a process
under the debugger is that the heap blocks contain an additional fill pattern field after the
user-accessible part (see Figure 6.8). The fill pattern is used by the heap manager to vali-
date the integrity of the heap block during heap operations. When an allocation is success-
ful, the heap manager fills this area of the block with a specific fill pattern. If an application
mistakenly writes past the end of the user-accessible part, it overwrites all or portions of this
fill pattern field. The next time the application uses that allocation in any calls to the heap
manager, the heap manager takes a close look at the fill pattern field to make sure that it
hasn’t changed. If the fill pattern field was overwritten by the application, the heap manag-
er immediately breaks into the debugger, giving you the opportunity to look at the heap
block and try to infer why it was overwritten. Writing to any area of a heap block outside
the bounds of the actual user-accessible part is a serious error that can be devastating to the
stability of an application.

Heap Corruptions

Heap corruptions are arguably some of the trickiest problems to figure out. A process
can corrupt any given heap in nearly infinite ways. Armed with the knowledge of how
the heap manager functions, we now take a look at some of the most common rea-
sons behind heap corruptions. Each scenario is accompanied by sample source code
illustrating the type of heap corruption being examined. A detailed debug session is
then presented, which takes you from the initial fault to the source of the heap cor-
ruption. Along the way, we also introduce invaluable tools that can be used to more
easily get to the root cause of the corruption.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 281

282 Chapter 6 Memory Corruption Part II—Heaps

Using Uninitialied State
Uninitialized state is a common programming mistake that can lead to numerous
hours of debugging to track down. Fundamentally, uninitialized state refers to a block
of memory that has been successfully allocated but not yet initialized to a state in
which it is considered valid for use. The memory block can range from simple native
data types, such as integers, to complex data blobs. Using an uninitialized memory
block results in unpredictable behavior. Listing 6.4 shows a small application that suf-
fers from using uninitialized memory.

Listing 6.4 Simple application that uses uninitialized memory

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define ARRAY_SIZE 10

BOOL InitArray(int** pPtrArray);

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

int iRes=1;

wprintf(L”Press any key to start...”);

_getch();

int** pPtrArray=(int**)HeapAlloc(GetProcessHeap(),

0,

sizeof(int*[ARRAY_SIZE]));

if(pPtrArray!=NULL)

{

InitArray(pPtrArray);

*(pPtrArray[0])=10;

iRes=0;

HeapFree(GetProcessHeap(), 0, pPtrArray);

}

return iRes;

}

BOOL InitArray(int** pPtrArray)

{

return FALSE ;

}

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 282

283Heap Corruptions

The source code and binary for Listing 6.4 can be found in the following folders:

Source code: C:\AWD\Chapter6\Uninit
Binary: C:\AWDBIN\WinXP.x86.chk\06Uninit.exe

The code in Listing 6.4 simply allocates an array of integer pointers. It then calls
an InitArray function that initializes all elements in the array with valid integer
pointers. After the call, the application tries to dereference the first pointer and sets
the value to 10. Can this code fail? Absolutely! Because we are not checking the
return value of the call to InitArray, the function might fail to initialize the array.
Subsequently, when we try to dereference the first element, we might incorrectly
pick up a random address. The application might experience an access violation if the
address is invalid (in the sense that it is not accessible memory), or it might succeed.
What happens next depends largely on the random pointer itself. If the pointer is
pointing to a valid address used elsewhere, the application continues execution. If,
however, the pointer points to inaccessible memory, the application might crash
immediately. Suffice it to say that even if the application does not crash immediately,
memory is being incorrectly used, and the application will eventually fail.

When the application is executed, we can easily see that a failure does occur. To
get a better picture of what is failing, run the application under the debugger, as
shown in Listing 6.5.

Listing 6.5 Application crash seen under the debugger

…

…

…

0:000> g

Press any key to start...(740.5b0): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000000 ebx=7ffdb000 ecx=00082ab0 edx=baadf00d esi=7c9118f1 edi=00011970

eip=010011c9 esp=0006ff3c ebp=0006ff44 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

06uninit!wmain+0x49:

010011c9 c7020a000000 mov dword ptr [edx],0Ah ds:0023:baadf00d=????????

0:000> kb

ChildEBP RetAddr Args to Child

0007ff7c 01001413 00000001 00034ed8 00037118 06uninit!wmain+0x4b

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd4000 06uninit!__wmainCRTStartup+0x102

0007fff0 00000000 01001551 00000000 78746341 kernel32!BaseProcessStart+0x23

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 283

284 Chapter 6 Memory Corruption Part II—Heaps

The instruction that causes the crash corresponds to the line of code in our applica-
tion that sets the first element in the array to the value 10:

mov dword ptr [edx],0xAh ; *(pPtrArray[0])=10;

The next logical step is to understand why the access violation occurred. Because we
are trying to write to a memory location that equates to the first element in our array,
the access violation might be because the memory being written to is inaccessible.
Dumping out the contents of the memory in question yields

0:000> dd edx

baadf00d ???????? ???????? ???????? ????????

baadf01d ???????? ???????? ???????? ????????

baadf02d ???????? ???????? ???????? ????????

baadf03d ???????? ???????? ???????? ????????

baadf04d ???????? ???????? ???????? ????????

baadf05d ???????? ???????? ???????? ????????

baadf06d ???????? ???????? ???????? ????????

baadf07d ???????? ???????? ???????? ????????

The pointer located in the edx register has a really strange value (baadf00d) that
points to inaccessible memory. Trying to dereference this pointer is what ultimately
caused the access violation. Where does this interesting pointer value (baadf00d)
come from? Surely, the pointer value is incorrect enough that it wasn’t left there by
some prior allocation. The bad pointer we are seeing was explicitly placed there by the
heap manager. Whenever you start a process under the debugger, the heap manager
automatically initializes all memory with a fill pattern. The specifics of the fill pattern
depend on the status of the heap block. When a heap block is first returned to the
caller, the heap manager fills the user-accessible part of the heap block with a fill pat-
tern consisting of the values baadf00d. This indicates that the heap block is allocated
but has not yet been initialized. Should an application (such as ours) dereference this
memory block without initializing it first, it will fail. On the other hand, if the applica-
tion properly initializes the memory block, execution continues. After the heap block
is freed, the heap manager once again initializes the user-accessible part of the heap
block, this time with the values feeefeee. Again, the free-fill pattern is added by the
heap manager to trap any memory accesses to the block after it has been freed. The
memory not being initialized prior to use is the reason for our particular failure.

Let’s see how the allocated memory differs when the application is not started
under the debugger but rather attached to the process. Start the application, and
when the Press any key to start prompt appears, attach the debugger. Once
attached, set a breakpoint on the instruction that caused the crash and dump out the
contents of the edx register.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 284

285Heap Corruptions

0:000> dd edx

00080178 000830f0 000830f0 00080180 00080180

00080188 00080188 00080188 00080190 00080190

00080198 00080198 00080198 000801a0 000801a0

000801a8 000801a8 000801a8 000801b0 000801b0

000801b8 000801b8 000801b8 000801c0 000801c0

000801c8 000801c8 000801c8 000801d0 000801d0

000801d8 000801d8 000801d8 000801e0 000801e0

000801e8 000801e8 000801e8 000801f0 000801f0

This time around, you can see that the edx register contains a pointer value that is
pointing to accessible, albeit incorrect, memory. No longer is the array initialized to
pointer values that cause an immediate access violation (baadf00d) when derefer-
enced. As a matter of fact, stepping over the faulting instruction this time around suc-
ceeds. Do we know the origins of the pointer value we just used? Not at all. It could
be any memory location in the process. The incorrect usage of the pointer value
might end up causing serious problems somewhere else in the application in paths
that rely on the state of that memory to be intact. If we resume execution of the appli-
cation, we will notice that an access violation does in fact occur, albeit much later in
the execution.

0:000> g

(1a8.75c): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0000000a ebx=00080000 ecx=00080178 edx=00000000 esi=00000002 edi=0000000f

eip=7c911404 esp=0006f77c ebp=0006f99c iopl=0 nv up ei pl nz ac po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010212

ntdll!RtlAllocateHeap+0x6c9:

7c911404 0fb70e movzx ecx,word ptr [esi] ds:0023:00000002=????

0:000> g

(1a8.75c): Access violation - code c0000005 (!!! second chance !!!)

eax=0000000a ebx=00080000 ecx=00080178 edx=00000000 esi=00000002 edi=0000000f

eip=7c911404 esp=0006f77c ebp=0006f99c iopl=0 nv up ei pl nz ac po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000212

ntdll!RtlAllocateHeap+0x6c9:

7c911404 0fb70e movzx ecx,word ptr [esi] ds:0023:00000002=????

0:000> k

ChildEBP RetAddr

0007f9b0 7c80e323 ntdll!RtlAllocateHeap+0x6c9

0007fa24 7c80e00d kernel32!BasepComputeProcessPath+0xb3

0007fa64 7c80e655 kernel32!BaseComputeProcessDllPath+0xe3

0007faac 7c80e5ab kernel32!GetModuleHandleForUnicodeString+0x28

0007ff30 7c80e45c kernel32!BasepGetModuleHandleExW+0x18e

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 285

286 Chapter 6 Memory Corruption Part II—Heaps

0007ff48 7c80b6c0 kernel32!GetModuleHandleW+0x29

0007ff54 77c39d23 kernel32!GetModuleHandleA+0x2d

0007ff60 77c39e78 msvcrt!__crtExitProcess+0x10

0007ff70 77c39e90 msvcrt!_cinit+0xee

0007ff84 01001429 msvcrt!exit+0x12

0007ffc0 7c816fd7 06uninit!__wmainCRTStartup+0x118

0007fff0 00000000 kernel32!BaseProcessStart+0x23

As you can see, the stack reporting the access violation has nothing to do with any of
our own code. All we really know is that when the process is about to exit, as you can
see from the bottommost frame (msvcrt!__crtExitProcess+0x10), it tries to
allocate memory and fails in the memory manager. Typically, access violations occur-
ring in the heap manager are good indicators that a heap corruption has occurred.
Backtracking the source of the corruption from this location can be an excruciatingly
difficult process that should be avoided at all costs. From the two previous sample
runs, it should be evident that trapping a heap corruption at the point of occurrence
is much more desirable than sporadic failures in code paths that we do not directly
own. One of the ways we can achieve this is by starting the process under the debug-
ger and letting the heap manager use fill patterns to provide some level of protection.
Although the heap manager does provide this mechanism, it is not necessarily the
strongest level of protection. The usage of fill patterns requires that a call be made to
the heap manager so that it can validate that the fill pattern is still valid. Most of the
time, the damage has already been done at the point of validation, and the fault
caused by the heap manager still requires us to work backward and figure out what
caused the fault to begin with.

In addition to uninitialized state, another very common scenario that results in
heap corruptions is a heap overrun.

Heap Overruns and Underruns
In the introduction to this chapter, we looked at the internal workings of the heap
manager and how all heap blocks are laid out. Figure 6.8 illustrated how a heap block
is broken down and what auxiliary metadata is kept on a per-block basis for the heap
manager to be capable of managing the block. If a faulty piece of code overwrites any
of the metadata, the integrity of the heap is compromised and the application will
fault. The most common form of metadata overwriting is when the owner of the heap
block does not respect the boundaries of the block. This phenomenon is known as a
heap overrun or, reciprocally, a heap underrun.

Let’s take a look at an example. The application shown in Listing 6.6 simply makes
a copy of the string passed in on the command line and prints out the copy.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 286

287Heap Corruptions

Listing 6.6 Heap-based string copy application

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define SZ_MAX_LEN 10

WCHAR* pszCopy = NULL ;

BOOL DupString(WCHAR* psz);

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

int iRet=0;

if(argc==2)

{

printf(“Press any key to start\n”);

_getch();

DupString(pArgs[1]);

}

else

{

iRet=1;

}

return iRet;

}

BOOL DupString(WCHAR* psz)

{

BOOL bRet=FALSE;

if(psz!=NULL)

{

pszCopy=(WCHAR*) HeapAlloc(GetProcessHeap(),

0,

SZ_MAX_LEN*sizeof(WCHAR));

if(pszCopy)

{

wcscpy(pszCopy, psz);

wprintf(L”Copy of string: %s”, pszCopy);

HeapFree(GetProcessHeap(), 0, pszCopy);

bRet=TRUE;

}

}

return bRet;

}

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 287

288 Chapter 6 Memory Corruption Part II—Heaps

The source code and binary for Listing 6.6 can be found in the following folders:

Source code: C:\AWD\Chapter6\Overrun
Binary: C:\AWDBIN\WinXP.x86.chk\06Overrun.exe

When you run this application with various input strings, you will quickly notice that
input strings of size 10 or less seem to work fine. As soon as you breach the 10-character
limit, the application crashes. Let’s pick the following string to use in our debug session:

C:\AWDBIN\WinXP.x86.chk\06Overrun.exe ThisStringShouldReproTheCrash

Run the application and attach the debugger when you see the Press any key to
start prompt. Once attached, press any key to resume execution and watch how the
debugger breaks execution with an access violation.

…

…

…

0:001> g

(1b8.334): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00650052 ebx=00080000 ecx=00720070 edx=00083188 esi=00083180 edi=0000000f

eip=7c91142e esp=0006f77c ebp=0006f99c iopl=0 nv up ei ng nz na po cy

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010283

ntdll!RtlAllocateHeap+0x653:

7c91142e 8b39 mov edi,dword ptr [ecx] ds:0023:00720070=????????

0:000> k

ChildEBP RetAddr

0007f70c 7c919f5d ntdll!RtlpInsertFreeBlock+0xf3

0007f73c 7c918839 ntdll!RtlpInitializeHeapSegment+0x186

0007f780 7c911c76 ntdll!RtlpExtendHeap+0x1ca

0007f9b0 7c80e323 ntdll!RtlAllocateHeap+0x623

0007fa24 7c80e00d kernel32!BasepComputeProcessPath+0xb3

0007fa64 7c80e655 kernel32!BaseComputeProcessDllPath+0xe3

0007faac 7c80e5ab kernel32!GetModuleHandleForUnicodeString+0x28

0007ff30 7c80e45c kernel32!BasepGetModuleHandleExW+0x18e

0007ff48 7c80b6c0 kernel32!GetModuleHandleW+0x29

0007ff54 77c39d23 kernel32!GetModuleHandleA+0x2d

0007ff60 77c39e78 msvcrt!__crtExitProcess+0x10

0007ff70 77c39e90 msvcrt!_cinit+0xee

0007ff84 010014c2 msvcrt!exit+0x12

0007ffc0 7c816fd7 06overrun!__wmainCRTStartup+0x118

0007fff0 00000000 kernel32!BaseProcessStart+0x23

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 288

289Heap Corruptions

Glancing at the stack, it looks like the application was in the process of shutting down
when the access violation occurred. As per our previous discussion, whenever you
encounter an access violation in the heap manager code, chances are you are experi-
encing a heap corruption. The only problem is that our code is nowhere on the stack.
Once again, the biggest problem with heap corruptions is that the faulting code is not
easily trapped at the point of corruption; rather, the corruption typically shows up
later on in the execution. This behavior alone makes it really hard to track down the
source of heap corruption. However, with an understanding of how the heap manag-
er works, we can do some preliminary investigation of the heap and see if we can find
some clues as to some potential culprits. Without knowing which part of the heap is
corrupted, a good starting point is to see if the segments are intact. Instead of manu-
ally walking the segments, we use the !heap extension command, which saves us a
ton of grueling manual heap work. A shortened version of the output for the default
process heap is shown in Listing 6.7.

Listing 6.7 Heap corruption analysis using the heap debugger command

0:000> !heap -s

Heap Flags Reserv Commit Virt Free List UCR Virt Lock Fast

(k) (k) (k) (k) length blocks cont. heap

00080000 00000002 1024 16 16 3 1 1 0 0 L

00180000 00001002 64 24 24 15 1 1 0 0 L

00190000 00008000 64 12 12 10 1 1 0 0

00260000 00001002 64 28 28 7 1 1 0 0 L

0:000> !heap -a 00080000

Index Address Name Debugging options enabled

1: 00080000

Segment at 00080000 to 00180000 (00004000 bytes committed)

Flags: 00000002

ForceFlags: 00000000

Granularity: 8 bytes

Segment Reserve: 00100000

Segment Commit: 00002000

DeCommit Block Thres: 00000200

DeCommit Total Thres: 00002000

Total Free Size: 000001d0

Max. Allocation Size: 7ffdefff

Lock Variable at: 00080608

Next TagIndex: 0000

Maximum TagIndex: 0000

Tag Entries: 00000000

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

(continues)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 289

290 Chapter 6 Memory Corruption Part II—Heaps

PsuedoTag Entries: 00000000

Virtual Alloc List: 00080050

UCR FreeList: 00080598

FreeList Usage: 00000000 00000000 00000000 00000000

FreeList[00] at 00080178: 00083188 . 00083188

00083180: 003a8 . 00378 [00] - free

Unable to read nt!_HEAP_FREE_ENTRY structure at 0065004a

Segment00 at 00080640:

Flags: 00000000

Base: 00080000

First Entry: 00080680

Last Entry: 00180000

Total Pages: 00000100

Total UnCommit: 000000fc

Largest UnCommit:000fc000

UnCommitted Ranges: (1)

00084000: 000fc000

Heap entries for Segment00 in Heap 00080000

00080000: 00000 . 00640 [01] - busy (640)

00080640: 00640 . 00040 [01] - busy (40)

00080680: 00040 . 01808 [01] - busy (1800)

00081e88: 01808 . 00210 [01] - busy (208)

00082098: 00210 . 00228 [01] - busy (21a)

000822c0: 00228 . 00090 [01] - busy (84)

00082350: 00090 . 00030 [01] - busy (22)

00082380: 00030 . 00018 [01] - busy (10)

00082398: 00018 . 00068 [01] - busy (5b)

00082400: 00068 . 00230 [01] - busy (224)

00082630: 00230 . 002e0 [01] - busy (2d8)

00082910: 002e0 . 00320 [01] - busy (314)

00082c30: 00320 . 00320 [01] - busy (314)

00082f50: 00320 . 00030 [01] - busy (24)

00082f80: 00030 . 00030 [01] - busy (24)

00082fb0: 00030 . 00050 [01] - busy (40)

00083000: 00050 . 00048 [01] - busy (40)

00083048: 00048 . 00038 [01] - busy (2a)

00083080: 00038 . 00010 [01] - busy (1)

00083090: 00010 . 00050 [01] - busy (44)

000830e0: 00050 . 00018 [01] - busy (10)

000830f8: 00018 . 00068 [01] - busy (5b)

00083160: 00068 . 00020 [01] - busy (14)

00083180: 003a8 . 00378 [00]

000834f8: 00000 . 00000 [00]

Listing 6.7 Heap corruption analysis using the heap debugger command (continued)

0

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 290

291Heap Corruptions

The last heap entry in a segment is typically a free block. In Listing 6.7, however, we
have a couple of odd entries at the end. The status of the heap blocks (0) seems to
indicate that both blocks are free; however, the size of the blocks does not seem to
match up. Let’s look at the first free block:

00083180: 003a8 . 00378 [00]

The heap block states that the size of the previous block is 003a8 and the size of the cur-
rent block is 00378. Interestingly enough, the prior block is reporting its own size to be
0x20 bytes, which does not match up well. Even worse, the last free block in the seg-
ment states that both the previous and current sizes are 0. If we go even further back in
the heap segment, we can see that all the heap entries prior to 00083160 make sense (at
least in the sense that the heap entry metadata seems intact). One of the potential theo-
ries should now start to take shape. The usage of the heap block at location 00083160
seems suspect, and it’s possible that the usage of that heap block caused the metadata of
the following block to become corrupt. Who allocated the heap block at 00083160? If
we take a closer look at the block, we can see if we can recognize the content:

0:000> dd 00083160

00083160 000d0004 000c0199 00000000 00730069

00083170 00740053 00690072 0067006e 00680053

00083180 0075006f 0064006c 00650052 00720070

00083190 0054006f 00650068 00720043 00730061

000831a0 00000068 00000000 00000000 00000000

000831b0 00000000 00000000 00000000 00000000

000831c0 00000000 00000000 00000000 00000000

000831d0 00000000 00000000 00000000 00000000

Parts of the block seem to resemble a string. If we use the du command on the block
starting at address 000830f8+0xc, we see the following:

0:000> du 00083160+c

0008316c “isStringShouldReproTheCrash”

The string definitely looks familiar. It is the same string (or part of it) that we passed
in on the command line. Furthermore, the string seems to stretch all the way to
address 000831a0, which crosses the boundary to the next reported free block at
address 00083180. If we dump out the heap entry at address 00083180, we can see
the following:

0:000> dt _HEAP_ENTRY 00083180

+0x000 Size : 0x6f

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 291

292 Chapter 6 Memory Corruption Part II—Heaps

+0x002 PreviousSize : 0x75

+0x000 SubSegmentCode : 0x0075006

+0x004 SmallTagIndex : 0x6c ‘l’

+0x005 Flags : 0 ‘’

+0x006 UnusedBytes : 0x64 ‘d’

+0x007 SegmentIndex : 0 ‘’

The current and previous size fields correspond to part of the string that crossed the
boundary of the previous block. Armed with the knowledge of which string seemed to
have caused the heap block overwrite, we can turn to code reviewing and figure out
relatively easily that the string copy function wrote more than the maximum number
of characters allowed in the destination string, causing an overwrite of the next heap
block. While the heap manager was unable to detect the overwrite at the exact point
it occurred, it definitely detected the heap block overwrite later on in the execution,
which resulted in an access violation because the heap was in an inconsistent state.

In the previous simplistic application, analyzing the heap at the point of the
access violation yielded a very clear picture of what overwrote the heap block and
subsequently, via code reviewing, who the culprit was. Needless to say, it is not always
possible to arrive at these conclusions merely by inspecting the contents of the heap
blocks. The complexity of the system can dramatically reduce your success when
using this approach. Furthermore, even if you do get some clues to what is overwrit-
ing the heap blocks, it might be really difficult to find the culprit by merely review-
ing code. Ultimately, the easiest way to figure out a heap corruption would be if we
could break execution when the memory is being overwritten rather than after.
Fortunately, the Application Verifier tool provides a powerful facility that enables this
behavior. The application verifier test setting commonly used when tracking down
heap corruptions is called the Heaps test setting (also referred to as pageheap).
Pageheap works on the basis of surrounding the heap blocks with a protection layer
that serves to isolate the heap blocks from one another. If a heap block is overwritten,
the protection layer detects the overwrite as close to the source as possible and breaks
execution, giving the developer the ability to investigate why the overwrite occurred.
Pageheap runs in two different modes: normal pageheap and full pageheap. The pri-
mary difference between the two modes is the strength of the protection layer.
Normal pageheap uses fill patterns in an attempt to detect heap block corruptions.
The utilization of fill patterns requires that another call be made to the heap manag-
er post corruption so that the heap manager has the chance to validate the integrity
(check fill patterns) of the heap block and report any inconsistencies. Additionally,
normal page heap keeps the stack trace for all allocations, making it easier to under-
stand who allocated the memory. Figure 6.10 illustrates what a heap block looks like
when normal page heap is turned on.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 292

293Heap Corruptions

Figure 6.10 Normal page heap block layout

The primary difference between a regular heap block and a normal page heap block
is the addition of pageheap metadata. The pageheap metadata contains information,
such as the block requested and actual sizes, but perhaps the most useful member of
the metadata is the stack trace. The stack trace member allows the developer to get
the full stack trace of the origins of the allocation (that is, where it was allocated). This
aids greatly when looking at a corrupt heap block, as it gives you clues to who the
owner of the heap block is and affords you the luxury of narrowing down the scope of
the code review. Imagine that the HeapAlloc call in Listing 6.6 resulted in the fol-
lowing pointer: 0019e260. To dump out the contents of the pageheap metadata, we
must first subtract 32 (0x20) bytes from the pointer.

0:000> dd 0019e4b8-0x20

0019e498 abcdaaaa 80081000 00000014 0000003c

0019e4a8 00000018 00000000 0028697c dcbaaaaa

0019e4b8 e0e0e0e0 e0e0e0e0 e0e0e0e0 e0e0e0e0

0019e4c8 e0e0e0e0 a0a0a0a0 a0a0a0a0 00000000

0019e4d8 00000000 00000000 000a0164 00001000

0019e4e8 00180178 00180178 00000000 00000000

0019e4f8 00000000 00000000 00000000 00000000

0019e508 00000000 00000000 00000000 00000000

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Regular Heap
Entry Metadata

8 bytes 32 bytes

Allocated Heap Block

Fill pattern:
ABCDAAAA

Pageheap
Metadata

Fill pattern:
DCBAAAAA

User accessible
part fill pattern:

E0

Suffix fill
pattern:

A0A0A0A0

Heap
Extra

Regular Heap
Entry Metadata

8 bytes 32 bytes

Free Heap Block

Fill pattern:
ABCDAAA9

Pageheap
Metadata

Fill pattern:
DCBAAAA9

User accessible
part fill pattern:

F0

Suffix fill
pattern:

A0A0A0A0

Heap
Extra

Heap

Pageheap Metadata

Requested
size

Actual
size

FreeQueue Trace Index StackTrace

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 293

294 Chapter 6 Memory Corruption Part II—Heaps

Here, we can clearly see the starting (abcdaaaa) and ending (dcbaaaaa) fill patterns
that enclose the metadata. To see the pageheap metadata in a more digestible form,
we can use the _DPH_BLOCK_INFORMATION data type:

0:000> dt _DPH_BLOCK_INFORMATION 0019e4b8-0x20

+0x000 StartStamp :

+0x004 Heap : 0x80081000

+0x008 RequestedSize :

+0x00c ActualSize :

+0x010 FreeQueue : _LIST_ENTRY 18-0

+0x010 TraceIndex : 0x18

+0x018 StackTrace : 0x0028697c

+0x01c EndStamp :

The stack trace member contains the stack trace of the allocation. To see the stack
trace, we have to use the dds command, which displays the contents of a range of
memory under the assumption that the contents in the range are a series of address-
es in the symbol table.

0:000> dds 0x0028697c

0028697c abcdaaaa

00286980 00000001

00286984 00000006

…

…

…

0028699c 7c949d18 ntdll!RtlAllocateHeapSlowly+0x44

002869a0 7c91b298 ntdll!RtlAllocateHeap+0xe64

002869a4 01001224 06overrun!DupString+0x24

002869a8 010011eb 06overrun!wmain+0x2b

002869ac 010013a9 06overrun!wmainCRTStartup+0x12b

002869b0 7c816d4f kernel32!BaseProcessStart+0x23

002869b4 00000000

002869b8 00000000

…

…

…

The shortened version of the output of the dds command shows us the stack trace of
the allocating code. I cannot stress the usefulness of the recorded stack trace database
enough. Whether you are looking at heap corruptions or memory leaks, given any
pageheap block, you can very easily get to the stack trace of the allocating code, which
in turn allows you to focus your efforts on that area of the code.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 294

295Heap Corruptions

Now let’s see how the normal pageheap facility can be used to track down the
memory corruption shown earlier in Listing 6.6. Enable normal pageheap on the
application (see Appendix A, “Application Verifier Test Settings”), and start the process
under the debugger using ThisStringShouldReproTheCrash as input. Listing 6.8
shows how Application Verifier breaks execution because of a corrupted heap block.

Listing 6.8 Application verifier reported heap block corruption

…

…

…

0:000> g

Press any key to start

Copy of string: ThisStringShouldReproTheCrash

=======================================

VERIFIER STOP 00000008 : pid 0x640: Corrupted heap block.

00081000 : Heap handle used in the call.

001A04D0 : Heap block involved in the operation.

00000014 : Size of the heap block.

00000000 : Reserved

=======================================

This verifier stop is not continuable. Process will be terminated

when you use the `go’ debugger command.

=======================================

(640.6a8): Break instruction exception - code 80000003 (first chance)

eax=000001ff ebx=0040acac ecx=7c91eb05 edx=0006f949 esi=00000000 edi=000001ff

eip=7c901230 esp=0006f9dc ebp=0006fbdc iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc int 3

The information presented by Application Verifier gives us the pointer to the heap block
that was corrupted. From here, getting the stack trace of the allocating code is trivial.

0:000> dt _DPH_BLOCK_INFORMATION 001A04D0-0x20

+0x000 StartStamp : 0xabcdaaaa

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 295

296 Chapter 6 Memory Corruption Part II—Heaps

+0x004 Heap : 0x80081000

+0x008 RequestedSize : 0x14

+0x00c ActualSize : 0x3c

+0x010 FreeQueue : _LIST_ENTRY [0x18 - 0x0]

+0x010 TraceIndex : 0x18

+0x018 StackTrace : 0x0028697c

+0x01c EndStamp : 0xdcbaaaaa

0:000> dds 0x0028697c

0028697c abcdaaaa

00286980 00000001

00286984 00000006

00286988 00000001

0028698c 00000014

00286990 00081000

00286994 00000000

00286998 0028699c

0028699c 7c949d18 ntdll!RtlAllocateHeapSlowly+0x44

002869a0 7c91b298 ntdll!RtlAllocateHeap+0xe64

002869a4 01001202 06overrun!DupString+0x22

002869a8 010011c1 06overrun!wmain+0x31

002869ac 0100138d 06overrun!wmainCRTStartup+0x12f

002869b0 7c816fd7 kernel32!BaseProcessStart+0x23

…

…

…

Knowing the stack trace allows us to efficiently find the culprit by narrowing down
the scope of the code review.

If you compare and contrast the non-Application Verifier-enabled approach of
finding out why a process has crashed with the Application Verifier-enabled
approach, you will quickly see how much more efficient it is. By using normal page-
heap, all the information regarding the corrupted block is given to us, and we can use
that to analyze the heap block and get the stack trace of the allocating code. Although
normal pageheap breaks execution and gives us all this useful information, it still does
so only after a corruption has occurred, and it still requires us to do some backtrack-
ing to figure out why it happened. Is there a mechanism to break execution even clos-
er to the corruption? Absolutely! Normal pageheap is only one of the two modes of
pageheap that can be enabled. The other mode is known as full pageheap. In addi-
tion to its own unique fill patterns, full pageheap adds the notion of a guard page to
each heap block. A guard page is a page of inaccessible memory that is placed either
at the start or at the end of a heap block. Placing the guard page at the start of the
heap block protects against heap block underruns, and placing it at the end protects
against heap overruns. Figure 6.11 illustrates the layout of a full pageheap block.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 296

297Heap Corruptions

Figure 6.11 Full page heap block layout

The inaccessible page is added to protect against heap block overruns or underruns.
If a faulty piece of code writes to the inaccessible page, it causes an access violation,
and execution breaks on the spot. This allows us to avoid any type of backtracking
strategy to figure out the origins of the corruption.

Now we can once again run our sample application, this time with full pageheap
enabled (see Appendix A), and see where the debugger breaks execution.

…

…

…

0:000> g

Press any key to start

(414.494): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Fillpattern:
ABCDBBBB

32 bytes

Forward Overrun: Allocated Heap Block

Pageheap
Metadata

Fill pattern:
DCBABBBB

User accessible
part fill pattern:

C0

Suffix fill
pattern:

D0D0D0D0

Inaccessible
Page

Fillpattern:
ABCDBBBA

32 bytes

Forward Overrun: Free Heap Block

Pageheap
Metadata

User accessible
part fill pattern:

F0

User accessible
part fill pattern:

F0

Suffix fill
pattern:

D0D0D0D0

Inaccessible
Page

Backward Overun

User accessible
part fill pattern:

F0

Heap

Pageheap Metadata

Requested
size

Actual
size

FreeQueue Trace Index StackTrace

Inaccessible
Page

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 297

298 Chapter 6 Memory Corruption Part II—Heaps

This exception may be expected and handled.

eax=006f006f ebx=7ffd7000 ecx=005d5000 edx=006fefd8 esi=7c9118f1 edi=00011970

eip=77c47ea2 esp=0006ff20 ebp=0006ff20 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010202

msvcrt!wcscpy+0xe:

77c47ea2 668901 mov word ptr [ecx],ax ds:0023:005d5000=????

0:000> kb

ChildEBP RetAddr Args to Child

0006ff20 01001221 005d4fe8 006fefc0 00000000 msvcrt!wcscpy+0xe

0006ff34 010011c1 006fefc0 00000000 0006ffc0 06overrun!DupString+0x41

0006ff44 0100138d 00000002 006fef98 00774f88 06overrun!wmain+0x31

0006ffc0 7c816fd7 00011970 7c9118f1 7ffd7000 06overrun!wmainCRTStartup+0x12f

0006fff0 00000000 0100125e 00000000 78746341 kernel32!BaseProcessStart+0x23

This time, an access violation is recorded during the string copy call. If we take a clos-
er look at the heap block at the point of the access violation, we see

0:000> dd 005d4fe8

005d4fe8 00680054 00730069 00740053 00690072

005d4ff8 0067006e 00680053 ???????? ????????

005d5008 ???????? ???????? ???????? ????????

005d5018 ???????? ???????? ???????? ????????

005d5028 ???????? ???????? ???????? ????????

005d5038 ???????? ???????? ???????? ????????

005d5048 ???????? ???????? ???????? ????????

005d5058 ???????? ???????? ???????? ????????

0:000> du 005d4fe8

005d4fe8 “ThisStringSh????????????????????”

005d5028 “????????????????????????????????”

005d5068 “????????????????????????????????”

005d50a8 “????????????????????????????????”

005d50e8 “????????????????????????????????”

005d5128 “????????????????????????????????”

005d5168 “????????????????????????????????”

005d51a8 “????????????????????????????????”

005d51e8 “????????????????????????????????”

005d5228 “????????????????????????????????”

005d5268 “????????????????????????????????”

005d52a8 “????????????????????????????????”

We can make two important observations about the dumps:

■ The string we are copying has overwritten the suffix fill pattern of the block, as
well as the heap entry.

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 298

299Heap Corruptions

■ At the point of the access violation, the string copied so far is ThisStringSh,
which indicates that the string copy function is not yet done and is about to
write to the inaccessible page placed at the end of the heap block by Application
Verifier.

By enabling full pageheap, we were able to break execution when the corruption
occurred rather than after. This can be a huge time-saver, as you have the offending
code right in front of you when the corruption occurs, and finding out why the cor-
ruption occurred just got a lot easier. One of the questions that might be going
through your mind is, “Why not always run with full pageheap enabled?” Well, full
pageheap is very resource intensive. Remember that full pageheap places one page
of inaccessible memory at the end (or beginning) of each allocation. If the process you
are debugging is memory hungry, the usage of pageheap might increase the overall
memory consumption by an order of magnitude.

In addition to heap block overruns, we can experience the reciprocal: heap
underruns. Although not as common, heap underruns overwrite the part of the heap
block prior to the user-accessible part. This can be because of bad pointer arithmetic
causing a premature write to the heap block. Because normal pageheap protects the
pageheap metadata by using fill patterns, it can trap heap underrun scenarios as well.
Full pageheap, by default, places a guard page at the end of the heap block and will
not break on heap underruns. Fortunately, using the backward overrun option of full
pageheap (see Appendix A), we can tell it to place a guard page at the front of the
allocation rather than at the end and trap the underrun class of problems as well.

The !heap extension command previously used to analyze heap state can also be
used when the process is running under pageheap. By using the –p flag, we can tell
the !heap extension command that the heap in question is pageheap enabled. The
options available for the –p flag are

heap -p Dump all page heaps.

heap -p -h ADDR Detailed dump of page heap at ADDR.

heap -p -a ADDR Figure out what heap block is at ADDR.

heap -p -t [N] Dump N collected traces with heavy heap users.

heap -p -tc [N] Dump N traces sorted by count usage (eqv. with -t).

heap -p -ts [N] Dump N traces sorted by size.

heap -p -fi [N] Dump last N fault injection traces.

For example, the heap block returned from the HeapAlloc call in our sample appli-
cation resembles the following when used with the –p and –a flags:

0:000> !heap -p -a 005d4fe8

address 005d4fe8 found in

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 299

300 Chapter 6 Memory Corruption Part II—Heaps

_DPH_HEAP_ROOT @ 81000

in busy allocation (DPH_HEAP_BLOCK: UserAddr UserSize -

VirtAddr VirtSize)

8430c: 5d4fe8 14 -

5d4000 2000

7c91b298 ntdll!RtlAllocateHeap+0x00000e64

01001202 06overrun!DupString+0x00000022

010011c1 06overrun!wmain+0x00000031

0100138d 06overrun!wmainCRTStartup+0x0000012f

7c816fd7 kernel32!BaseProcessStart+0x00000023

The output shows us the recorded stack trace as well as other auxiliary information,
such as which fill pattern is in use. The fill patterns can give us clues to the status of
the heap block (allocated or freed). Another useful switch is the –t switch. The –t
switch allows us to dump out part of the stack trace database to get more information
about all the stacks that have allocated memory. If you are debugging a process that
is using up a ton of memory and want to know which part of the process is responsi-
ble for the biggest allocations, the heap –p –t command can be used.

Heap Handle Mismatches
The heap manager keeps a list of active heaps in a process. The heaps are considered
separate entities in the sense that the internal per-heap state is only valid within the
context of that particular heap. Developers working with the heap manager must take
great care to respect this separation by ensuring that the correct heaps are used when
allocating and freeing heap memory. The separation is exposed to the developer by
using heap handles in the heap API calls. Each heap handle uniquely represents a
particular heap in the list of heaps for the process. An example of this is calling the
GetProcessHeap API, which returns a unique handle to the default process.
Another example is calling the HeapCreate API, which returns a unique handle to
the newly created heap.

If the uniqueness is broken, heap corruption will ensue. Listing 6.9 illustrates an
application that breaks the uniqueness of heaps.

Listing 6.9 Example of heap handle mismatch

#include <windows.h>

#include <stdio.h>

#include <conio.h>

#define MAX_SMALL_BLOCK_SIZE 20000

HANDLE hSmallHeap=0;

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 300

301Heap Corruptions

HANDLE hLargeHeap=0;

VOID* AllocMem(ULONG ulSize);

VOID FreeMem(VOID* pMem, ULONG ulSize);

BOOL InitHeaps();

VOID FreeHeaps();

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

printf(“Press any key to start\n”);

_getch();

if(InitHeaps())

{

BYTE* pBuffer1=(BYTE*) AllocMem(20);

BYTE* pBuffer2=(BYTE*) AllocMem(20000);

//

// Use allocated memory

//

FreeMem(pBuffer1, 20);

FreeMem(pBuffer2, 20000);

FreeHeaps();

}

printf(“Done...exiting application\n”);

return 0;

}

BOOL InitHeaps()

{

BOOL bRet=TRUE ;

hSmallHeap = GetProcessHeap();

hLargeHeap = HeapCreate(0, 0, 0);

if(!hLargeHeap)

{

bRet=FALSE;

}

return bRet;

}

VOID FreeHeaps()

{

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

(continues)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 301

302 Chapter 6 Memory Corruption Part II—Heaps

if(hLargeHeap)

{

HeapDestroy(hLargeHeap);

hLargeHeap=NULL;

}

}

VOID* AllocMem(ULONG ulSize)

{

VOID* pAlloc = NULL ;

if(ulSize<MAX_SMALL_BLOCK_SIZE)

{

pAlloc=HeapAlloc(hSmallHeap, 0, ulSize);

}

else

{

pAlloc=HeapAlloc(hLargeHeap, 0, ulSize);

}

return pAlloc;

}

VOID FreeMem(VOID* pAlloc, ULONG ulSize)

{

if(ulSize<=MAX_SMALL_BLOCK_SIZE)

{

HeapFree(hSmallHeap, 0, pAlloc);

}

else

{

HeapFree(hLargeHeap, 0, pAlloc);

}

}

The source code and binary for Listing 6.9 can be found in the following folders:
Source code: C:\AWD\Chapter6\Mismatch
Binary: C:\AWDBIN\WinXP.x86.chk\06Mismatch.exe

The application in Listing 6.9 seems pretty straightforward. The main function
requests a couple of allocations using the AllocMem helper function. Once done with
the allocations, it calls the FreeMem helper API to free the memory. The allocation

Listing 6.9 Example of heap handle mismatch (continued)

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 302

303Heap Corruptions

helper APIs work with the memory from either the default process heap (if the allo-
cation is below a certain size) or a private heap (created in the InitHeaps API) if the
size is larger than the threshold. If we run the application, we see that it successfully
finishes execution:

C:\AWDBIN\WinXP.x86.chk\06Mismatch.exe

Press any key to start

Done...exiting application

We might be tempted to conclude that the application works as expected and sign off
on it. However, before we do so, let’s use Application Verifier and enable full page-
heap on the application and rerun it. This time, the application never finished. As a
matter of fact, judging from the crash dialog that appears, it looks like we have a
crash. In order to get some more information on the crash, we run the application
under the debugger:

…

…

…

0:000> g

Press any key to start

(118.3c8): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc54 ebx=00000000 ecx=0211b000 edx=0211b008 esi=021161e0 edi=021161e0

eip=7c96893a esp=0006fbec ebp=0006fc20 iopl=0 nv up ei ng nz ac po cy

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010293

ntdll!RtlpDphIsNormalHeapBlock+0x81:

7c96893a 8039a0 cmp byte ptr [ecx],0A0h ds:0023:0211b000=??

0:000> kb

ChildEBP RetAddr Args to Child

0006fc20 7c96ac47 00081000 021161e0 0006fc54 ntdll!RtlpDphIsNormalHeapBlock+0x81

0006fc44 7c96ae5a 00081000 01000002 00000007 ntdll!RtlpDphNormalHeapFree+0x1e

0006fc94 7c96defb 00080000 01000002 021161e0 ntdll!RtlpDebugPageHeapFree+0x79

0006fd08 7c94a5d0 00080000 01000002 021161e0 ntdll!RtlDebugFreeHeap+0x2c

0006fdf0 7c9268ad 00080000 01000002 021161e0 ntdll!RtlFreeHeapSlowly+0x37

0006fec0 003ab9eb 00080000 00000000 021161e0 ntdll!RtlFreeHeap+0xf9

0006ff18 010012cf 00080000 00000000 021161e0 vfbasics!AVrfpRtlFreeHeap+0x16b

0006ff2c 010011d3 021161e0 00004e20 021161e0 06mismatch!FreeMem+0x1f

0006ff44 01001416 00000001 02060fd8 020daf80 06mismatch!wmain+0x53

0006ffc0 7c816fd7 00011970 7c9118f1 7ffdc000 06mismatch!wmainCRTStartup+0x12f

0006fff0 00000000 010012e7 00000000 78746341 kernel32!BaseProcessStart+0x23

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 303

304 Chapter 6 Memory Corruption Part II—Heaps

From the stack trace, we can see that our application was trying to free a block of
memory when the heap manager access violated. To find out which of the two mem-
ory allocations we were freeing, we unassemble the 06mismatch!wmain function
and see which of the calls correlate to the address located at
06mismatch!wmain+0x55.

0:000> u 06mismatch!wmain+0x53-10

06mismatch!wmain+0x43:

010011c3 0000 add byte ptr [eax],al

010011c5 68204e0000 push 4E20h

010011ca 8b4df8 mov ecx,dword ptr [ebp-8]

010011cd 51 push ecx

010011ce e8dd000000 call 06mismatch!FreeMem (010012b0)

010011d3 e858000000 call 06mismatch!FreeHeaps (01001230)

010011d8 688c100001 push offset 06mismatch!`string’ (0100108c)

010011dd ff1550100001 call dword ptr [06mismatch!_imp__printf (01001050)]

Since the call prior to 06mismatch!FreeHeaps is a FreeMem, we know that the last
FreeMem call in our code is causing the problem. We can now employ code review-
ing to see if anything is wrong. From Listing 6.9, the FreeMem function frees memo-
ry either on the default process heap or on a private heap. Furthermore, it looks like
the decision is dependent on the size of the block. If the block size is less than or
equal to 20Kb, it uses the default process heap. Otherwise, the private heap is used.
Our allocation was exactly 20Kb, which means that the FreeMem function attempted
to free the memory from the default process heap. Is this correct? One way to easily
find out is dumping out the pageheap block metadata, which has a handle to the own-
ing heap contained inside:

0:000> dt _DPH_BLOCK_INFORMATION 021161e0-0x20

+0x000 StartStamp : 0xabcdbbbb

+0x004 Heap : 0x02111000

+0x008 RequestedSize : 0x4e20

+0x00c ActualSize : 0x5000

+0x010 FreeQueue : _LIST_ENTRY [0x21 - 0x0]

+0x010 TraceIndex : 0x21

+0x018 StackTrace : 0x00287510

+0x01c EndStamp : 0xdcbabbbb

The owning heap for this heap block is 0x02111000. Next, we find out what the
default process heap is:

0:000> x 06mismatch!hSmallHeap

01002008 06mismatch!hSmallHeap = 0x00080000

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 304

305Heap Corruptions

The two heaps do not match up, and we are faced with essentially freeing a block of
memory owned by heap 0x02111000 on heap 0x00080000. This is also the reason
Application Verifier broke execution, because a mismatch in heaps causes serious sta-
bility issues. Armed with the knowledge of the reason for the stop, it should now be
pretty straightforward to figure out why our application mismatched the two heaps.
Because we are relying on size to determine which heaps to allocate and free the mem-
ory on, we can quickly see that the AllocMem function uses the following conditional:

if(ulSize<MAX_SMALL_BLOCK_SIZE)

{

pAlloc=HeapAlloc(hSmallHeap, 0, ulSize);

}

while the FreeMem function uses:

if(ulSize<=MAX_SMALL_BLOCK_SIZE)

{

HeapFree(hSmallHeap, 0, pAlloc);

}

The allocating conditional checks that the allocation size is less than the threshold,
whereas the freeing conditional checks that it is less than or equal. Hence, when free-
ing an allocation of size 20Kb, incorrectly uses the default process heap.

In addition to being able to analyze and get to the bottom of heap mismatch prob-
lems, another very important lesson can be learned from our exercise: Never assume
that the application works correctly just because no errors are reported during a nor-
mal noninstrumented run. As you have already seen, heap corruption problems do
not always surface during tests that are run without any type of debugging help. Only
when a debugger is attached and the application verifier is enabled do the problems
surface. The reason is simple. In a nondebugger, non–Application Verifier run, the
heap corruption still occurs but might not have enough time to surface in the form of
an access violation. Say that the test runs through scenarios A, B, and C, and the heap
corruption occurs in scenario C. After the heap has been corrupted, the application
exits without any sign of the heap corruption, and you are led to believe that every-
thing is working correctly. Once the application ships and gets in the hands of the cus-
tomer, they run the same scenarios, albeit in a different order: C, B, and A. The first
scenario ran C, immediately causing the heap corruption, but the application does not
exit; rather, it continues running with scenario B and A, providing for a much larger
window for the heap corruption to actually affect the application.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 305

306 Chapter 6 Memory Corruption Part II—Heaps

Heap Reuse After Deletion
Next to heap overruns, heap reuse after deletion is the second most common source
of heap corruptions. As you have already seen, after a heap block has been freed, it is
put on the free lists (or look aside list) by the heap manager. From there on, it is con-
sidered invalid for use by the application. If an application uses the free block in any
way, shape, or form, the state of the block on the free list will most likely be corrupt-
ed and the application will crash.

Before we take a look at some practical examples of heap reuse after free, let’s review
the deletion process. Figure 6.12 shows a hypothetical example of a heap segment.

Free Lists

Segment

0

1

2

3

…

127

Bx

Metadata Metadata B2
User accessible part

B1
User accessible

part
Rest of segmentMetadata Metadata

Figure 6.12 Hypothetical example of a heap segment

The segment consists of two busy blocks (B1 and B2) whose user-accessible part is
surrounded by their associated metadata. Additionally, the free list contains one free
block (Bx) of size 16. If the application frees block B1, the heap manager, first and
foremost, checks to see if the block can be coalesced with any adjacent free blocks.
Because there are no adjacent free blocks, the heap manager simply updates the sta-
tus of the block (flags field of the metadata) to free and updates the corresponding
free list to include B1. It is critical to note that the free list consists of a forward link
(FLINK) and a backward link (BLINK) that each points to the next and previous free
block in the list. Are the FLINK and BLINK pointers part of a separately allocated
free list node? Not quite—for efficiency reasons, when a block is freed, the structure

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 306

307Heap Corruptions

of the existing free block changes. More specifically, the user-accessible portion of the
heap block is overwritten by the heap manager with the FLINK and BLINK point-
ers, each pointing to the next and previous free block on the free list. In our hypo-
thetical example in Figure 6.12, B1 is inserted at the beginning of the free list
corresponding to size 16. The user-accessible portion of B1 is replaced with a FLINK
that points to Bx and a BLINK that points to the start of the list (itself). The existing
free block Bx is also updated by the BLINK pointing to B1. Figure 6.13 illustrates the
resulting layout after freeing block B1.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

Free Lists

Segment

0

1

2

3

…

127

B1 Bx

B2
User accessible part

FLINK=Bx
BLINK=B1

Rest of segmentMetadata Metadata Metadata Metadata

Figure 6.13 Heap segment and free lists after freeing B1

Next, when the application frees block B2, the heap manager finds an adjacent free
block (B1) and coalesces both blocks into one large free block. As part of the coa-
lescing process, the heap manager must remove block B1 from the free list since it
no longer exists and add the new larger block to its corresponding free list. The result-
ing large block’s user-accessible part now contains FLINK and BLINK pointers that
are updated according to the state of the free list.

So far, we have assumed that all heap blocks freed make their way to the back end
allocator’s free lists. Although it’s true that some free blocks go directly to the free lists,
some of the allocations may end up going to the front end allocator’s look aside list. When
a heap block goes into the look aside list, the primary differences can be seen in the heap
block metadata:

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 307

308 Chapter 6 Memory Corruption Part II—Heaps

■ Heap blocks that go into the look aside list have their status bit set to busy (in
comparison to free in free lists)

■ The look aside list is a singly linked list (in comparison to the free lists doubly
linked), and hence only the FLINK pointer is considered valid.

The most important aspect of freeing memory, as related to heap reuse after free, is the
fact that the structure of the heap block changes once it is freed. The user-accessible
portion of the heap block is now used for internal bookkeeping to keep the free lists up-
to-date. If the application overwrites any of the content (thinking the block is still busy),
the FLINK and BLINK pointers become corrupt, and the structural integrity of the
free list is compromised. The net result is most likely a crash somewhere down the road
when the heap manager tries to manipulate the free list (usually during another allocate
or free call).

Listing 6.10 shows an example of an application that allocates a block of memory
and subsequently frees the block twice.

Listing 6.10 Simple example of double free

#include <windows.h>

#include <stdio.h>

#include <conio.h>

int __cdecl wmain (int argc, wchar_t* pArgs[])

{

printf(“Press any key to start\n”);

_getch();

BYTE* pByte=(BYTE*) HeapAlloc(GetProcessHeap(), 0, 10);

(*pByte)=10;

HeapFree(GetProcessHeap(), 0, pByte);

HeapFree(GetProcessHeap(), 0, pByte);

printf(“Done...exiting application\n”);

return 0;

}

The source code and binary for Listing 6.9 can be found in the following folders:

Source code: C:\AWD\Chapter6\DblFree
Binary: C:\AWDBIN\WinXP.x86.chk\06DblFree.exe

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 308

309Heap Corruptions

Running the application yields no errors:

C:\AWDBIN\WinXP.x86.chk\06DblFree.exe

To make sure that nothing out of the ordinary is happening, let’s start the application
under the debugger and make our way to the first heap allocation.

…

…

…

0:001> u wmain

06dblfree!wmain:

01001180 55 push ebp

01001181 8bec mov ebp,esp

01001183 51 push ecx

01001184 68a8100001 push offset 06dblfree!`string’ (010010a8)

01001189 ff1548100001 call dword ptr [06dblfree!_imp__printf (01001048)]

0100118f 83c404 add esp,4

01001192 ff1550100001 call dword ptr [06dblfree!_imp___getch (01001050)]

01001198 6a0a push 0Ah

0:001> u

06dblfree!wmain+0x1a:

0100119a 6a00 push 0

0100119c ff1508100001 call dword ptr [06dblfree!_imp__GetProcessHeap

(01001008)]

010011a2 50 push eax

010011a3 ff1500100001 call dword ptr [06dblfree!_imp__HeapAlloc (01001000)]

010011a9 8945fc mov dword ptr [ebp-4],eax

010011ac 8b45fc mov eax,dword ptr [ebp-4]

010011af c6000a mov byte ptr [eax],0Ah

010011b2 8b4dfc mov ecx,dword ptr [ebp-4]

0:001> g 010011a9

eax=000830c0 ebx=7ffde000 ecx=7c9106eb edx=00080608 esi=01c7078e edi=83485b7a

eip=010011a9 esp=0006ff40 ebp=0006ff44 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000246

06dblfree!wmain+0x29:

010011a9 8945fc mov dword ptr [ebp-4],eax

ss:0023:0006ff40={msvcrt!__winitenv (77c61a40)}

Register eax now contains the pointer to the newly allocated block of memory:

0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size : 3

+0x002 PreviousSize : 3

+0x000 SubSegmentCode : 0x00030003

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 309

310 Chapter 6 Memory Corruption Part II—Heaps

+0x004 SmallTagIndex : 0x21 ‘!’

+0x005 Flags : 0x1 ‘’

+0x006 UnusedBytes : 0xe ‘’

+0x007 SegmentIndex : 0 ‘’

Nothing seems to be out of the ordinary—the size fields all seem reasonable, and the
flags field indicates that the block is busy. Now, continue execution past the first call
to HeapFree and dump out the same heap block.

0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size : 3

+0x002 PreviousSize : 3

+0x000 SubSegmentCode : 0x00030003

+0x004 SmallTagIndex : 0x21 ‘!’

+0x005 Flags : 0x1 ‘’

+0x006 UnusedBytes : 0xe ‘’

+0x007 SegmentIndex : 0 ‘’

Even after freeing the block, the metadata looks identical. The flags field even has its
busy bit still set, indicating that the block is not freed. The key here is to remember
that when a heap block is freed, it can go to one of two places: look aside list or free
lists. When a heap block goes on the look aside list, the heap block status is kept as
busy. On the free lists, however, the status is set to free.

In our particular free operation, the block seems to have gone on the look aside
list. When a block goes onto the look aside list, the first part of the user-accessible por-
tion of the block gets overwritten with the FLINK pointer that points to the next avail-
able block on the look aside list. The user-accessible portion of our block resembles

0:000> dd 000830c0

000830c0 00000000 00080178 00000000 00000000

000830d0 000301e6 00001000 00080178 00080178

000830e0 00000000 00000000 00000000 00000000

000830f0 00000000 00000000 00000000 00000000

00083100 00000000 00000000 00000000 00000000

00083110 00000000 00000000 00000000 00000000

00083120 00000000 00000000 00000000 00000000

00083130 00000000 00000000 00000000 00000000

As you can see, the FLINK pointer in our case is NULL, which means that this is the
first free heap block. Next, continue execution until right after the second call to
HeapFree (of the same block). Once again, we take a look at the state of the heap
block:

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 310

311Heap Corruptions

0:000> dt _HEAP_ENTRY 000830c0-0x8

+0x000 Size : 3

+0x002 PreviousSize : 3

+0x000 SubSegmentCode : 0x00030003

+0x004 SmallTagIndex : 0x21 ‘!’

+0x005 Flags : 0x1 ‘’

+0x006 UnusedBytes : 0xe ‘’

+0x007 SegmentIndex : 0 ‘’

Nothing in the metadata seems to have changed. Block is still busy, and the size fields
seem to be unchanged. Let’s dump out the user-accessible portion and take a look at
the FLINK pointer:

0:000> dd 000830c0

000830c0 000830c0 00080178 00000000 00000000

000830d0 000301e6 00001000 00080178 00080178

000830e0 00000000 00000000 00000000 00000000

000830f0 00000000 00000000 00000000 00000000

00083100 00000000 00000000 00000000 00000000

00083110 00000000 00000000 00000000 00000000

00083120 00000000 00000000 00000000 00000000

00083130 00000000 00000000 00000000 00000000

This time, FLINK points to another free heap block, with the user-accessible portion
starting at location 000830c0. The block corresponding to location 000830c0 is the
same block that we freed the first time. By double freeing, we have essentially man-
aged to put the look aside list into a circular reference. The consequence of doing so
can cause the heap manager to go into an infinite loop when subsequent heap oper-
ations force the heap manager to walk the free list with the circular reference.

At this point, if we resume execution, we notice that the application finishes exe-
cution. Why did it finish without failing in the heap code? For the look aside list cir-
cular reference to be exposed, another call has to be made to the heap manager that
would cause it to walk the list and hit the circular link. Our application was finished
after the second HeapFree call, and the heap manager never got a chance to fail.
Even though the failure did not surface in the few runs we did, it is still a heap cor-
ruption, and it should be fixed. Corruption of a heap block on the look aside list (or
the free lists) can cause serious problems for an application. Much like the previous
types of heap corruptions, double freeing problems typically surface in the form of
post corruption crashes when the heap manager needs to walk the look aside list (or
free list). Is there a way to use Application Verifier in this case, as well to trap the
problem as it is occurring? The same heaps test setting used throughout the chapter
also makes a best attempt at catching double free problems. By tagging the heap

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 311

312 Chapter 6 Memory Corruption Part II—Heaps

blocks in a specific way, Application Verifier is able to catch double freeing problems
as they occur and break execution, allowing the developer to take a closer look at the
code that is trying to free the block the second time. Let’s enable full pageheap on
our application and rerun it under the debugger. Right away, you will see a first
chance access violation occur with the following stack trace:

0:000> kb

ChildEBP RetAddr Args to Child

0007fcc4 7c96ac47 00091000 005e4ff0 0007fcf8 ntdll!RtlpDphIsNormalHeapBlock+0x1c

0007fce8 7c96ae5a 00091000 01000002 00000000 ntdll!RtlpDphNormalHeapFree+0x1e

0007fd38 7c96defb 00090000 01000002 005e4ff0 ntdll!RtlpDebugPageHeapFree+0x79

0007fdac 7c94a5d0 00090000 01000002 005e4ff0 ntdll!RtlDebugFreeHeap+0x2c

0007fe94 7c9268ad 00090000 01000002 005e4ff0 ntdll!RtlFreeHeapSlowly+0x37

0007ff64 0100128a 00090000 00000000 005e4ff0 ntdll!RtlFreeHeap+0xf9

0007ff7c 01001406 00000001 0070cfd8 0079ef68 06DblFree!wmain+0x5a

0007ffc0 7c816fd7 00011970 7c9118f1 7ffd7000 06DblFree!__wmainCRTStartup+0x102

0007fff0 00000000 01001544 00000000 78746341 kernel32!BaseProcessStart+0x23

Judging from the stack, we can see that our wmain function is making its second call
to HeapFree, which ends up access violating deep down in the heap manager code.
Anytime you have this test setting turned on and experience a crash during a
HeapFree call, the first thing you should check is whether a heap block is being freed
twice. Because a heap block can go on the look aside list when freed (its state might
still be set to busy even though it’s considered free from a heap manager’s perspec-
tive), the best way to figure out if it’s really free is to use the !heap –p –a <heap
block> command. Remember that this command dumps out detailed information
about a page heap block, including the stack trace of the allocating or freeing code.
Find the address of the heap block that we are freeing twice (as per preceding stack
trace), and run the !heap extension command on it:

0:000> !heap -p -a 005d4ff0

address 005d4ff0 found in

_DPH_HEAP_ROOT @ 81000

in free-ed allocation (DPH_HEAP_BLOCK: VirtAddr VirtSize)

8430c: 5d4000 2000

7c9268ad ntdll!RtlFreeHeap+0x000000f9

010011c5 06dblfree!wmain+0x00000045

0100131b 06dblfree!wmainCRTStartup+0x0000012f

7c816fd7 kernel32!BaseProcessStart+0x00000023

As you can see from the output, the heap block status is free. Additionally, the stack
shows us the last operation performed on the heap block, which is the first free call
made. The stack trace shown corresponds nicely to our first call to HeapFree in the

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 312

313Heap Corruptions

wmain function. If we resume execution of the application, we notice several other
first-chance access violations until we finally get an Application Verifier stop:

0:000> g

(1d4.6d4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc7c ebx=00081000 ecx=00000008 edx=00000000 esi=005d4fd0 edi=0006fc4c

eip=7c969a1d esp=0006fc40 ebp=0006fc8c iopl=0 nv up ei pl nz na po cy

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010203

ntdll!RtlpDphReportCorruptedBlock+0x25:

7c969a1d f3a5 rep movs dword ptr es:[edi],dword ptr [esi]

es:0023:0006fc4c=00000000 ds:0023:005d4fd0=????????

0:000> g

(1d4.6d4): Access violation - code c0000005 (first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0006fc20 ebx=00000000 ecx=005d4ff0 edx=00000000 esi=00000000 edi=00000000

eip=7c968a84 esp=0006fc08 ebp=0006fc30 iopl=0 nv up ei pl zr na pe nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00010246

ntdll!RtlpDphGetBlockSizeFromCorruptedBlock+0x13:

7c968a84 8b41e0 mov eax,dword ptr [ecx-20h] ds:0023:005d4fd0=????????

0:000> g

=======================================

VERIFIER STOP 00000008 : pid 0x1D4: Corrupted heap block.

00081000 : Heap handle used in the call.

005D4FF0 : Heap block involved in the operation.

00000000 : Size of the heap block.

00000000 : Reserved

=======================================

This verifier stop is not continuable. Process will be terminated

when you use the `go’ debugger command.

=======================================

(1d4.6d4): Break instruction exception - code 80000003 (first chance)

eax=000001ff ebx=0040acac ecx=7c91eb05 edx=0006f959 esi=00000000 edi=000001ff

eip=7c901230 esp=0006f9ec ebp=0006fbec iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 fs=003b gs=0000 efl=00000202

ntdll!DbgBreakPoint:

7c901230 cc int 3

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 313

314 Chapter 6 Memory Corruption Part II—Heaps

The last-chance Application Verifier stop shown gives some basic information about
the corrupted heap block. If you resume execution at this point, the application will
simply terminate because this is a nonrecoverable stop.

This concludes our discussion of the problems associated with double freeing
memory. As you have seen, the best tool for catching double freeing problems is to
use the heaps test setting (full pageheap) available in Application Verifier. Not only
does it report the problem at hand, but it also manages to break execution at the point
where the problem really occurred rather than at a post corruption stage, making it
much easier to figure out why the heap block was being corrupted. Using full page-
heap gives you the strongest possible protection level available for memory-related
problems in general. The means by which full pageheap is capable of giving you this
protection is by separating the heap block metadata from the heap block itself. In a
nonfull pageheap scenario, the metadata associated with a heap block is part of the
heap block itself. If an application is off by a few bytes, it can very easily overwrite the
metadata, corrupting the heap block and making it difficult for the heap manager to
immediately report the problem. In contrast, using full pageheap, the metadata is
kept in a secondary data structure with a one-way link to the real heap block. By using
a one-way link, it is nearly impossible for faulty code to corrupt the heap block meta-
data, and, as such, full pageheap can almost always be trusted to contain intact infor-
mation. The separation of metadata from the actual heap block is what gives full
pageheap the capability to provide strong heap corruption detection.

Summary

Heap corruption is a serious error that can wreak havoc on your application. A single,
off-by-one byte corruption can cause your application to exhibit all sorts of odd
behaviors. The application might crash, it might have unpredictable behavior, or it
might even go into infinite loops. To make things worse, the net result of a heap cor-
ruption typically does not surface until after the corruption has occurred, making it
extremely difficult to figure out the source of the heap corruption. To efficiently track
down heap corruptions, you need a solid understanding of the internals of the heap
manager. The first part of the chapter discussed the low-level details of how the heap
manager works. We took a look at how a heap block travels through the various lay-
ers of the heap manager and how the status and block structure changes as it goes
from being allocated to freed. We also took a look at some of the most common forms
of heap corruptions (unitialized state, heap over- and underruns, mismatched heap
handles, and heap reuse after deletion) and how to manually analyze the heap at the
point of a crash to figure out the source of the corruption. Additionally, we discussed

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 314

315Summary

how Application Verifier (pageheap) can be used to break execution closer to the
source of the corruption, making it much easier to figure out the culprit. As some of
the examples in this chapter show, heap corruptions might go undetected while soft-
ware is being tested, only to surface on the customer’s computer when run in a dif-
ferent environment and under different conditions. Making use of Application
Verifier (pageheap) at all times is a prerequisite to ensuring that heap corruptions are
detected before shipping software and avoiding costly problems on the customer site.

6.
M

EM
O

RY
CO

RRUPTIO
N

P
ART

II—
H

EAPS

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 315

08_0321374460_ch06.qxd 10/3/07 10:49 PM Page 316

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (Japan Web Coated \050Ad\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket true
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /SyntheticBoldness 1.000000
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200066006f007200200052005200200044006f006e006e0065006c006c0065007900200042006f006f006b00200070006c0061006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

