
67

4
Type Design Guidelines

ROM THE CLR PERSPECTIVE, there are only two categories of types—
reference types and value types—but for the purpose of framework

design discussion we divide types into more logical groups, each with its
own specific design rules. Figure 4-1 shows these logical groups.

Classes are the general case of reference types. They make up the bulk
of types in the majority of frameworks. Classes owe their popularity to the
rich set of object-oriented features they support and to their general appli-
cability. Base classes and abstract classes are special logical groups related
to extensibility. Extensibility and these classes are covered in Chapter 6.

Interfaces are types that can be implemented both by reference types and
value types. This allows them to serve as roots of polymorphic hierarchies
of reference types and value types. In addition, interfaces can be used to
simulate multiple inheritance, which is not natively supported by the CLR.

Structs are the general case of value types and should be reserved for
small, simple types, similar to language primitives.

Enums are a special case of value types used to define short sets of val-
ues, such as days of the week, console colors, and so on.

Static classes are types intended as containers for static members. They
are commonly used to provide shortcuts to other operations.

Delegates, exceptions, attributes, arrays, and collections are all special
cases of reference types intended for specific uses, and guidelines for their
design and usage are discussed elsewhere in this book.

F

Abrams_ch04.fm Page 67 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES68

✓ DO ensure that each type is a well-defined set of related members, not
just a random collection of unrelated functionality.

It is important that a type can be described in one simple sentence. A
good definition should also rule out functionality that is only tangen-
tially related.

Figure 4.1: The logical grouping of types

BRAD ABRAMS If you have ever managed a team of people you know
that they don’t do well without a crisp set of responsibilities. Well, types
work the same way. I have noticed that types without a firm and focused
scope tend to be magnets for more random functionality, which, over time,
make a small problem a lot worse. It becomes more difficult to justify why
the next member with even more random functionality does not belong in
the type. As the focus of the members in a type blurs, the developer’s ability
to predict where to find a given functionality is impaired, and therefore so
is productivity.

Types

Reference Types InterfacesValue Types

Collections

Arrays

Exceptions

Attributes

Classes Structs

Static Classes Envrns

Abrams_ch04.fm Page 68 Wednesday, August 3, 2005 10:27 AM

4.1 TYPES AND NAMESPACES 69

4.1 Types and Namespaces
Before designing a large framework you should decide how to factor your
functionality into a set of functional areas represented by namespaces. This
kind of top-down architectural design is important to ensure a coherent set
of namespaces containing types that are well integrated, don’t collide, and
are not repetitive. Of course the namespace design process is iterative and
it should be expected that the design will have to be tweaked as types are
added to the namespaces over the course of several releases. This leads to
the following guidelines.

✓ DO use namespaces to organize types into a hierarchy of related feature
areas.

The hierarchy should be optimized for developers browsing the frame-
work for desired APIs.

RICO MARIANI Good types are like good diagrams: What has been
omitted is as important to clarity and usability as what has been included.
Every additional member you add to a type starts at a net negative value
and only by proven usefulness does it go from there to positive. If you add
too much in an attempt to make the type more useful to some, you are just
as likely to make the type useless to everyone.

JEFFREY RICHTER When I was learning OOP back in the early 1980s, I
was taught a mantra that I still honor today: If things get too complicated,
make more types. Sometimes, I find that I am thinking really hard trying to
define a good set of methods for a type. When I start to feel that I’m spend-
ing too much time on this or when things just don’t seem to fit together
well, I remember my mantra and I define more, smaller types where each
type has well-defined functionality. This has worked extremely well for me
over the years. On the flip side, sometimes types do end up being dumping
grounds for various loosely related functions. The .NET Framework offers
several types like this, such as Marshal, GC, Console, Math, and Applica-
tion. You will note that all members of these types are static and so it is not
possible to create any instances of these types. Programmers seem to be OK
with this. Fortunately, these types’ methods are separated a bit by types. It
would be awful if all these methods were defined in just one type!

Abrams_ch04.fm Page 69 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES70

✗ AVOID very deep namespace hierarchies. Such hierarchies are difficult
to browse because the user has to backtrack often.

✗ AVOID having too many namespaces.

Users of a framework should not have to import many namespaces in
most common scenarios. Types that are used together in common sce-
narios should reside in a single namespace if at all possible.

✗ AVOID having types designed for advanced scenarios in the same
namespace as types intended for common programming tasks.

This makes it easier to understand the basics of the framework and to
use the framework in the common scenarios.

KRZYSZTOF CWALINA This is an important guideline. Contrary to
popular belief, the main purpose of namespaces is not to help in resolving
naming conflicts between types with the same name. As the guideline
states, the main purpose of namespaces is to organize types in a hierarchy
that is coherent, easy to navigate, and easy to understand.

I consider type name conflicts in a single framework to indicate sloppy
design. Types with identical names should either be merged to allow for
better integration between parts of the library or should be renamed to
improve code readability and searchability.

JEFFREY RICHTER As an example of a problem, the runtime serializer
types are defined under the System.Runtime.Serialization
namespace and its subnamespaces. However, the Serializable and
NonSerialized attributes are incorrectly defined in the System
namespace. Because these types are not in the same namespace, developers
don’t realize that they are closely related. In fact, I have run into many
developers who apply the Serializable attribute to a class that they are
serializing with the System.Xml.Serialization’s XmlSerializer
type. However, the XmlSerializer completely ignores the Serializ-
able attribute; applying the attribute gives no value and just bloats your
assembly’s metadata.

Abrams_ch04.fm Page 70 Wednesday, August 3, 2005 10:27 AM

4.1 TYPES AND NAMESPACES 71

✗ DO NOT define types without specifying their namespaces.

This organizes related types in a hierarchy, and can help to resolve
potential type name collisions. Please note that the fact that namespaces

BRAD ABRAMS One of the best features of Visual Studio is Intel-
lisense, which provides a drop-down for your likely next type or member
usage. The benefit of this feature is inversely proportional to the number of
options. That is, if there are too many items in the list it takes longer to find
the one you are looking for. Following this guideline to split out advanced
functionality into a separate namespace enables developers to see the small-
est number of types possible in the common case.

BRIAN PEPIN One thing we’ve learned is that most programmers live
or die by Intellisense. If something isn’t listed in the drop-down, most pro-
grammers won’t believe it exists. But, as Brad says above, too much of a
good thing can be bad and having too much stuff in the drop-down list
dilutes its value. If you have functionality that should be in the same
namespace, but you don’t think it needs to be shown all the time to users,
you can use the EditorBrowsable attribute. Put this attribute on a class
or member and you can instruct Intellisense to only show the class or mem-
ber for advanced scenarios.

RICO MARIANI Don’t go crazy adding members for every exotic thing
someone might want to do with your type. You’ll make fatter, uglier assem-
blies that are hard to grasp. Provide good primitives with understandable
limitations. A great example of this is the urge people get to duplicate func-
tionality that is already easy to use via Interop to native. Interop is there
for a reason—it’s not an unwanted stepchild. When wrapping anything, be
sure you are adding plenty of value. Otherwise, the value added by being
smaller would have made your assembly more helpful to more people.

JEFFREY RICHTER I agree with this guideline but I’d like to further add
that the more advanced classes should be in a namespace that is under the
namespace that contains the simple types. For example, the simple types
might be in System.Mail and the more advanced types should be in
System.Mail.Advanced.

Abrams_ch04.fm Page 71 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES72

can help to resolve name collisions does not mean that such collisions
should be introduced. See section 3.4.1 for details.

BRAD ABRAMS It is important to realize that namespaces cannot actu-
ally prevent naming collisions but they can significantly reduce them. I
could define a class called MyNamespace.MyType in an assembly called
MyAssembly, and define a class with precisely the same name in another
assembly. I could then build an application that uses both of these assem-
blies and types. The CLR would not get confused because the type identity
in the CLR is based on strong name (which includes fully qualified assem-
bly name) rather than just the namespace and type name. This can be seen
by looking at the C# and ILASM of code creating an instance of MyType.

C#:

new MyType();

IL:

IL_0000: newobj instance void

[MyAssembly]MyNamespace.MyType::.ctor()

Notice that the C# compiler adds a reference to the assembly that defines
the type, of the form [MyAssembly], so the runtime always has a disam-
biguated, fully qualified name to work with.

JEFFREY RICHTER Although what Brad says is true, the C# compiler
doesn’t let you specify in source code which assembly to pull a type out of,
so if you have code that wants to use a type called MyNamespace.MyType
that exists in two or more assemblies, there is no easy way to do this in C#
source code. Prior to C# 2.0, distinguishing between the two types was
impossible. However, with C# 2.0, it is now possible using the new extern
aliases and namespace qualifier features.

RICO MARIANI Namespaces are a language thing. The CLR doesn’t
know anything about them really. As far as the CLR is concerned the name
of the class really is something like MyNameSpace.MyOtherNameSpace.
MyAmazingType. The compilers give you syntax (e.g., “using”) so that you
don’t have to type those long class names all the time. So the CLR is never
confused about class names because everything is always fully qualified.

Abrams_ch04.fm Page 72 Wednesday, August 3, 2005 10:27 AM

4.1 TYPES AND NAMESPACES 73

4.1.1 Standard Subnamespace Names
Types that are rarely used should be placed in subnamespaces to avoid
cluttering the main namespaces. We have identified several groups of
types that should be separated from their main namespaces.

4.1.1.1 The .Design Subnamespace

Design-time-only types should reside in a subnamespace named .Design.
For example, System.Windows.Forms.Design contains Designers and
related classes used to do design of applications based on System.
Windows.Forms.

System.Windows.Forms.Design

System.Messaging.Design

System.Diagnostics.Design

✓ DO use a namespace with the .Design suffix to contain types that pro-
vide design-time functionality for a base namespace.

4.1.1.2 The .Permissions Subnamespace

Permission types should reside in a subnamespace named .Permissions.

✓ DO use a namespace with the .Permissions suffix to contain types
that provide custom permissions for a base namespace.

4.1.1.3 The .Interop Subnamespace

Many frameworks need to support interoperability with legacy compo-
nents. Due diligence should be used in designing interoperability from the

KRZYSZTOF CWALINA In the initial design of the .NET Framework
namespaces, all types related to a given feature area were in the same
namespace. Prior to the first release, we moved design-related types to
subnamespaces with the .Design suffix. Unfortunately, we did not have
time to do it for the Permission types. This is a problem in several parts
of the Framework. For example, a large portion of the types in the
System.Diagnostics namespace are types needed for the security infra-
structure and very rarely used by the end users of the API.

Abrams_ch04.fm Page 73 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES74

ground up. However, the nature the problem often requires that the shape
and style of such interoperability APIs is often quite different from good
managed framework design. Thus, it makes sense to put functionality
related to interoperation with legacy components in a subnamespace.

You should not put types that completely abstract unmanaged concepts
and expose them as managed into the Interop subnamespace. It is often
the case that managed APIs are implemented by calling out to unmanaged
code. For example the System.IO.FileStream class calls out to Win32
CreateFile. This is perfectly acceptable and does not imply that the
FileStream class needs to be in System.IO.Interop namespace as
FileStream completely abstracts the Win32 concepts and publicly
exposes a nice managed abstraction.

✓ DO use a namespace with the .Interop suffix to contain types that
provide interop functionality for a base namespace.

✓ DO use a namespace with the .Interop suffix for all code in a Primary
Interop Assembly (PIA).

4.2 Choosing Between Class and Struct
One of the basic design decisions every framework designer faces is
whether to design a type as a class (a reference type) or as a struct (a value
type). Good understanding of the differences in the behavior of reference
types and value types is crucial in making this choice.

Reference types are allocated on the heap, and garbage-collected,
whereas value types are allocated either on the stack or inline in containing
types and deallocated when the stack unwinds or when their containing
type gets deallocated. Therefore, allocations and deallocations of value types
are in general cheaper than allocations and deallocations of reference types.

Arrays of reference types are allocated out-of-line, meaning the array
elements are just references to instances of the reference type residing on
the heap. Value type arrays are allocated in-line, meaning that the array
elements are the actual instances of the value type. Therefore, allocations
and deallocations of value type arrays are much cheaper than allocations
and deallocations of reference type arrays. In addition, in a majority of
cases value type arrays exhibit much better locality of reference.

Abrams_ch04.fm Page 74 Wednesday, August 3, 2005 10:27 AM

4.2 CHOOSING BETWEEN CLASS AND STRUCT 75

Value types get boxed when cast to object or one of the interfaces they
implement. They get unboxed when cast back to the value type. Because
boxes are objects that are allocated on the heap and are garbage collected,
too much boxing and unboxing can have a negative impact on the heap,
the garbage collector, and ultimately the performance of the application.

Reference type assignments copy the reference, whereas value type
assignments copy the entire value. Therefore assignments of large refer-
ence types are cheaper than assignments of large value types.

Finally, reference types are passed by reference, whereas value types are
passed by value. Changes to an instance of a reference type affect all refer-
ences pointing to the instance. Value type instances are copied when they
are passed by value. When an instance of a value type is changed, it of
course does not affect any of its copies. Because the copies are not created
explicitly by the user, but rather implicitly when arguments are passed or
return values are returned, value types that can be changed can be confus-
ing to many users. Therefore value types should be immutable.1

RICO MARIANI The preceding is often true but it’s a very broad gener-
alization that I would be very careful about. Whether or not you get better
locality of reference when value types get boxed when cast to an array of
value types will depend on how much of the value type you use, how much
searching you have to do, how much data reuse there could have been with
equivalent array members (sharing a pointer), the typical array access pat-
terns, and probably other factors I can’t think of at the moment. Your mile-
age might vary but value type arrays are a great tool for your toolbox.

RICO MARIANI If you make your value type mutable you will find
that you end up having to pass it by reference a lot to get the semantics you
want (using, e.g., “out” syntax in C#). This might be important in cases in
which the value type is expected to be embedded in a variety of other

1. Immutable types are types that don’t have any public members that can modify this
instance. For example, System.String is immutable. Its members, such as ToUpper,
do not modify the sting on which they are called, but rather return a new modified
string and leave the original string unchanged.

Abrams_ch04.fm Page 75 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES76

As a rule of thumb, majority of types in a framework should be classes.
There are, however, some situations in which the characteristics of a value
type make it more appropriate to use structs.

✓ CONSIDER defining a struct instead of a class if instances of the type are
small and commonly short-lived or are commonly embedded in other
objects.

✗ DO NOT define a struct unless the type has all of the following character-
istics:

• It logically represents a single value, similar to primitive types (int,
double, etc.).

• It has an instance size under 16 bytes.

• It is immutable.

• It will not have to be boxed frequently.

In all other cases, you should define your types as classes.

objects that are themselves reference types or embedded in arrays. The big-
gest trouble from having mutable value types is where they look like inde-
pendent entities like, for example, a complex number. Value types that have
a mission in life of being an accumulator of sorts or a piece of a reference
type have fewer pitfalls for mutability.

JEFFREY RICHTER In my opinion, a value type should be defined for
types that have approximately 16 bytes or less. Value types can be more
than 16 bytes if you don’t intend to pass them to other methods or copy
them to and from a collection class (like an array). I would also define a
value type if you expect instances of the type to be used for short periods of
time (usually they are created in a method and no longer needed after a
method returns). I used to discourage defining value types if you thought
that instances of them would be placed in a collection due to all the boxing
that would have to be done. But, fortunately, newer versions of the CLR,
C#, and other languages support generics so that boxing is no longer neces-
sary when putting value type instances in a collection.

Abrams_ch04.fm Page 76 Wednesday, August 3, 2005 10:27 AM

4.3 CHOOSING BETWEEN CLASS AND INTERFACE 77

4.3 Choosing Between Class and Interface
In general, classes are the preferred construct for exposing abstractions.

The main drawback of interfaces is that they are much less flexible than
classes when it comes to allowing for evolution of APIs. Once you ship an
interface, the set of its members is fixed forever. Any additions to the inter-
face would break existing types implementing the interface.

A class offers much more flexibility. You can add members to classes
that have already shipped. As long as the method is not abstract (i.e., as
long as you provide a default implementation of the method), any existing
derived classes continue to function unchanged.

Let’s illustrate the concept with a real example from the .NET Frame-
work. The System.IO.Stream abstract class shipped in version 1.0 of the
framework without any support for timing out pending I/O operations. In
version 2.0, several members were added to Stream to allow subclasses to
support timeout-related operations, even when accessed through their
base class APIs.

public abstract class Stream {

 public virtual bool CanTimeout {

 get { return false; }

 }

 public virtual int ReadTimeout{

 get{

 throw new NotSupportedException(…);

 {

 set {

 throw new NotSupportedException(…);

 }

 }

}

public class FileStream : Stream {

 public override bool CanTimeout {

 get { return true; }

 }

 public override int ReadTimeout{

 get{

 …

 {

 set {

 …

 }

 }

}

Abrams_ch04.fm Page 77 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES78

The only way to evolve interface-based APIs is to add a new interface
with the additional members. This might seem like a good option, but it
suffers from several problems. Let’s illustrate this on a hypothetical
IStream interface. Let’s assume we had shipped the following APIs in ver-
sion 1.0 of the Framework.

public interface IStream {

 …

}

public class FileStream : IStream {

 …

}

If we wanted to add support for timeouts to streams in version 2.0, we
would have to do something like the following:

public interface ITimeoutEnabledStream : IStream {

 int ReadTimeout{ get; set; }

}

public class FileStream : ITimeoutEnabledStream {

 public int ReadTimeout{

 get{

 …

 {

 set {

 …

 }

 }

}

But now we would have a problem with all the existing APIs that con-
sume and return IStream. For example StreamReader has several con-
structor overloads and a property typed as Stream.

public calss StreamReader {

public StreamReader(IStream stream){ … }

public IStream BaseStream { get { … } }

}

How would we add support for ITimeoutEnabledStream to Stream-
Reader? We would have several options, each with substantial develop-
ment cost and usability issues:

Abrams_ch04.fm Page 78 Wednesday, August 3, 2005 10:27 AM

4.3 CHOOSING BETWEEN CLASS AND INTERFACE 79

Leave the StreamReader as is, and ask users who want to access the
timeout-related APIs on the instance returned from BaseStream property
to use a dynamic cast and query for the ITimeoutEnabledStream inter-
face.

StreamReader reader = GetSomeReader();

ITimeoutEnabledStream stream = reader.BaseStream as

ITimeoutEnabledStream;

if(stream != null){

 stream.ReadTimeout = 100;

}

This option unfortunately does not perform well in usability studies. The
fact that some streams can now support the new operations is not immedi-
ately visible to the users of StreamReader APIs. Also, some developers
have difficulties understanding and using dynamic casts.

Add a new property to StreamReader that would return ITimeout-
EnabledStream if one was passed to the constructor or null if IStream
was passed.

StreamReader reader = GetSomeReader();

ITimeoutEnabledStream stream = reader.TimeoutEnabledBaseStream;

if(stream!= null){

 stream.ReadTimeout = 100;

}

Such APIs are only marginally better in terms of usability. It’s really not
obvious to the user that the TimeoutEnabledBaseStream property getter
might return null, which results in confusing and often unexpected Null-
ReferenceExceptions.

Add a new type called TimeoutEnabledStreamReader that would
take ITimeoutEnabledStream parameters to the constructor overloads
and return ITimeoutEnabledStream from the BaseStream property. The
problem with this approach is that every additional type in the framework
adds complexity for the users. What’s worse, the solution usually creates
more problems like the one it is trying to solve. StreamReader itself is
used in other APIs. These other APIs will now need new versions that can
operate on the new TimeoutEnabledStreamReader.

Abrams_ch04.fm Page 79 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES80

The Framework streaming APIs are based on an abstract class. This
allowed for an addition of timeout functionality in version 2.0 of the
Framework. The addition is straightforward, discoverable, and had little
impact on other parts of the framework.

StreamReader reader = GetSomeReader();

if(reader.BaseStream.CanTimeout){

 reader.BaseStream.ReadTimeout = 100;

}

One of the most common arguments in favor of interfaces is that they
allow separating contract from the implementation. However, the argu-
ment incorrectly assumes that you cannot separate contracts from imple-
mentation using classes. Abstract classes residing in a separate assembly
from their concrete implementations are a great way to achieve such sepa-
ration. For example, the contract of IList<T> says that when an item is
added to a collection, the Count property is incremented by one. Such a
simple contract can be expressed and, what’s more important, locked for
all subtypes, using the following abstract class:

public abstract class CollectionContract<T> : IList<T> {

 public void Add(T item){

 AddCore(item);

 this.count++;

 }

 public int Count {

 get { return this.count; }

 }

 protected abstract void AddCore(T item);

 private int count;

}

KRZYSZTOF CWALINA I often hear people saying that interfaces spec-
ify contracts. I believe this is a dangerous myth. Interfaces, by themselves,
do not specify much beyond the syntax required to use an object. The inter-
face-as-contract myth causes people to do the wrong thing when trying to
separate contracts from implementation, which is a great engineering prac-
tice. Interfaces separate syntax from implementation, which is not that use-
ful, and the myth provides a false sense of doing the right engineering. In
reality, the contract is semantics, and these can actually be nicely expressed
with some implementation.

Abrams_ch04.fm Page 80 Wednesday, August 3, 2005 10:27 AM

4.3 CHOOSING BETWEEN CLASS AND INTERFACE 81

COM exposed APIs exclusively through interfaces, but you should not
assume that COM did this because interfaces were superior. COM did it
because COM is an interface standard that was intended to be supported
on many execution environments. CLR is an execution standard and it pro-
vides a great benefit for libraries that rely on portable implementation.

✓ DO favor defining classes over interfaces.

Class-based APIs can be evolved with much greater ease than interface-
based APIs because it is possible to add members to a class without
breaking existing code.

✓ DO use abstract classes instead of interfaces to decouple the contract
from implementations.

Abstract classes, if designed correctly, allow for the same degree of
decoupling between contract and implementation.

KRZYSZTOF CWALINA Over the course of the three versions of the
.NET Framework, I have talked about this guideline with quite a few devel-
opers on our team. Many of them, including those who initially disagreed
with the guideline, have said that they regret having shipped some API as
an interface. I have not heard of even one case in which somebody regretted
that they shipped a class.

JEFFREY RICHTER I agree with Krzysztof in general. However, you do
need to think about some other things. There are some special base classes,
such as MarshalByRefObject. If your library type provides an abstract
base class that isn’t itself derived from MarshalByRefObject, then types
that derive from your abstract base class cannot live in a different AppDo-
main. My recommendation to people is this: Define an interface first and
then define an abstract base class that implements the interface. Use the
interface to communicate to the object and let end-user developers decide
for themselves whether they can just define their own type based on your
abstract base class (for convenience) or define their own type based on
whatever base class they desire and implement the interface (for flexibility).
A good example of this is the IComponent interface and the Component
base class that implements IComponent.

Abrams_ch04.fm Page 81 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES82

✓ DO define an interface if you need to provide a polymorphic hierarchy
of value types.

Value types cannot inherit from other types, but they can implement
interfaces. For example, IComparable, IFormattable, and IConvert-
ible are all interfaces so value types such as Int32, Int64, and other
primitives can all be comparable, formattable, and convertible.

public struct Int32 : IComparable, IFormattable, IConvertible {

 …

}

public struct Int64 : IComparable, IFormattable, IConvertible {

 …

}

✓ CONSIDER defining interfaces to achieve a similar effect to that of mul-
tiple inheritance.

CHRIS ANDERSON Here is one instance in which the design guide-
line, if followed too strictly, can paint you into a corner. Abstract types do
version much better, and allow for future extensibility, but they also burn
your one and only one base type. Interfaces are appropriate when you are
really defining a contract between two objects that is invariant over time.
Abstract base types are better for defining a common base for a family of
types. When we did .NET there was somewhat of a backlash against the
complexity and strictness of COM—interfaces, Guids, variants, and IDL,
were all seen as bad things. I believe today that we have a more balanced
view of this. All of these COMisms have their place, and in fact you can see
interfaces coming back as a core concept in Indigo.

BRIAN PEPIN One thing I’ve started doing is to actually bake as much
contract into my abstract class as possible. For example, I might want to
have four overloads to a method where each overload offers an increasingly
complex set of parameters. The best way to do this is to provide a nonvir-
tual implementation of these methods on the abstract class, and have the
implementations all route to a protected abstract method that provides the
actual implementation. By doing this, you can write all the boring argu-
ment-checking logic once. Developers who want to implement your class
will thank you.

Abrams_ch04.fm Page 82 Wednesday, August 3, 2005 10:27 AM

4.4 ABSTRACT CLASS DESIGN 83

For example, System.IDisposable and System.ICloneable are
both interfaces so types, like System.Drawing.Image, can be both dis-
posable, cloneable, and still inherit from System.MarshalByRef-
Object class.

public class Image : MarshalByRefObject, IDisposable, ICloneable {

…

}

4.4 Abstract Class Design
✗ DO NOT define public or protected-internal constructors in abstract

types.

Constructors should be public only if users will need to create instances
of the type. Because you cannot create instances of an abstract type, an
abstract type with a public constructor is incorrectly designed and mis-
leading to the users.2

RICO MARIANI Good interface candidates often have this “mix in” feel
to them. All sorts of objects can be IFormattable—it isn’t restricted to a
certain subtype. It’s more like a type attribute. Other times we have inter-
faces that look more like they should be classes—IFormatProvider
springs to mind. The fact that the best interface name ended in “er” speaks
volumes.

BRIAN PEPIN Another sign that you’ve got a well-defined interface is
that the interface does exactly one thing. If you have an interface that has a
grab bag of functionality, that’s a warning sign. You’ll end up regretting it
because in the next version of your product you’ll want to add new func-
tionality to this rich interface, but you can’t.

JEFFREY RICHTER When a class is derived from a base class, I say that
the derived class has an IS-A relationship with the base. For example, a
FileStream IS-A Stream. However, when a class implements an inter-
face, I say that the implementing class has a CAN-DO relationship with the
interface. For example, a FileStream CAN-DO disposing.

Abrams_ch04.fm Page 83 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES84

// bad design

public abstract class Claim {

 public Claim (int number) {

 }

}

// good design

public abstract class Claim {

 // incorrect Design

 protected Claim (int number) {

 }

}

✓ DO define a protected or an internal constructor on abstract classes.

A protected constructor is more common and simply allows the base
class to do its own initialization when subtypes are created.

public abstract class Claim {

 protected Claim() {

 …

 }

}

An internal constructor can be used to limit concrete implementations
of the abstract class to the assembly defining the class.

public abstract class Claim {

 internal Claim() {

 …

 }

}

✓ DO provide at least one concrete type that inherits from each abstract
class that you ship.

2. This also applies to protected-internal constructors.

BRAD ABRAMS Many languages (such as C#) will insert a protected
constructor if you do not. It is a good practice to define the constructor
explicitly in the source so that it can be more easily documented and main-
tained over time.

Abrams_ch04.fm Page 84 Wednesday, August 3, 2005 10:27 AM

4.5 STATIC CLASS DESIGN 85

This helps to validate the design of the abstract class. For example, Sys-
tem.IO.FileStream is an implementation of the System.IO.Stream
abstract class.

4.5 Static Class Design
A static class is defined as a class that contains only static members (of
course besides the instance members inherited from System.Object and
possibly a private constructor). Some languages provide built-in support
for static classes. In C# 2.0, when a class is declared to be static, it is sealed,
abstract, and no instance members can be overridden or declared.

public static class File {

 …

}

If your language does not have built-in support for static classes, you
can declare such classes manually as in the following C++ example:

public class File abstract sealed {

 …

}

Static classes are a compromise between pure object-oriented design and
simplicity. They are commonly used to provide shortcuts to other opera-
tions (such as System.IO.File), or functionality for which a full object-
oriented wrapper is unwarranted (such as System.Environment).

✓ DO use static classes sparingly.

BRAD ABRAMS I have seen countless examples of a “well-designed”
base class or interface where the designers spent hundreds of hours debat-
ing and tweaking the design only to have it blown out of the water when
the first real-world client came to use the design. Far too often these real-
world clients come too late in the product cycle to allow time for the correct
fix. Forcing yourself to provide at least one concrete implementation
reduces the chances of finding a new problem late in the product cycle.

Abrams_ch04.fm Page 85 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES86

Static classes should be used only as supporting classes for the object-
oriented core of the framework.

✗ DO NOT treat static classes as a miscellaneous bucket.

There should be a clear charter for the class.

✗ DO NOT declare or override instance members in static classes.

✓ DO declare static classes as sealed, abstract, and add a private instance
constructor, if your programming language does not have built-in sup-
port for static classes.

4.6 Interface Design
Although most APIs are best modeled using classes and structs, there are
cases in which interfaces are more appropriate or are the only option.

The CLR does not support multiple inheritance (i.e., CLR classes cannot
inherit from more than one base class), but it does allow types to imple-
ment one or more interfaces in addition to inheriting from a base class.
Therefore interfaces are often used to achieve the effect of multiple inherit-
ance. For example, IDisposable is an interface that allows types to sup-

BRIAN GRUNKEMEYER In the .NET Framework 1.0, I wrote the code
for the System.Environment class, which is an excellent example of a
static class. I messed up and accidentally added a property to this class that
wasn’t static (HasShutdownStarted). Because it was an instance method
on a class that could never be instantiated, no one could call it. We didn’t
discover the problem early enough in the product cycle to fix it before
releasing version 1.0.

If I were inventing a new language, I would explicitly add the concept of
a static class into the language to help people avoid falling into this trap.
And in fact, in C# 2.0 did add support for static classes!

JEFFREY RICHTER Make sure that you do not attempt to define a static
structure, because structures (value types) can always be instantiated no
matter what. Only classes can be static.

Abrams_ch04.fm Page 86 Wednesday, August 3, 2005 10:27 AM

4.6 INTERFACE DESIGN 87

port disposability independent of any other inheritance hierarchy in which
they want to participate.

public class Component : MarshalByRefObject, IDisposable, IComponent {

…

}

The other situation in which defining an interface is appropriate is in
creating a common interface that can be supported by several types includ-
ing some value types. Value types cannot inherit from types other than
System.ValueType, but they can implement interfaces, so using an inter-
face is the only option to provide a common base type.

public struct Boolean : IComparable {

 …

}

public class String: IComparable {

 …

}

✓ DO define an interface if you need some common API to be supported
by a set of types that includes value types.

✓ CONSIDER defining an interface if you need to support its functionality
on types that already inherit from some other type.

✓ AVOID using marker interfaces (interfaces with no members).

If you need to mark a class as having a specific characteristic (marker),
in general, use a custom attribute rather than an interface.

// Avoid

public interface IImmutable {} // empty interface

public class Key: IImmutable {

 …

}

//Do

[Immutable]

public class Key {

 …

}

Abrams_ch04.fm Page 87 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES88

Methods can be implemented to reject parameters that are not marked
with a specific attribute as follows:

public void Add(Key key, object value){

 if(!key.GetType().IsDefined(typeof(ImmutableAttribute),

false)){

 throw new ArgumentException(“The parameter must be

immutable”,“key”);

 }

 …

}

The problem with this approach is that the check for the custom
attribute can occur only at runtime. Sometimes, it is very important that
the check for the marker be done at compile-time. For example, a
method that can serialize objects of any type might be more concerned
with verifying the presence of the marker than with type verification at
compile-time. Using marker interfaces might be acceptable in such situ-
ations. The following example illustrates this design approach:

public interface ITextSerializable {} // empty interface

public void Serialize(ITextSerializable item){

 // use reflection to serialize all public properties

 …

}

✓ DO provide at least one type that is an implementation of an interface.

This helps to validate the design of the interface. For example,

System.Collections.ArrayList is an implementation of the
System.Collections.IList interface.

RICO MARIANI Of course any kind of marking like this has a cost.
Attribute testing is a lot more costly than type checking. You might find that
it’s necessary to use the marker interface approach for performance rea-
sons—measure and see. My own experience is that true markers (with no
members) don’t come up very often. Most of the time, you need a no-
kidding-around interface with actual functionality to do the job, in which
case there is no choice to make.

Abrams_ch04.fm Page 88 Wednesday, August 3, 2005 10:27 AM

4.7 STRUCT DESIGN 89

✓ DO provide at least one API consuming each interface you define (a
method taking the interface as a parameter or a property typed as the
interface).

This helps to validate the interface design. For example, List<T>.Sort
consumes IComparer<T> interface.

✗ DO NOT add members to an interface that has previously shipped.

Doing so would break implementations of the interface. You should
create a new interface to avoid versioning problems.

Except for the situations described in these guidelines, you should, in
general, choose classes rather than interfaces in designing managed code
reusable libraries.

4.7 Struct Design
The general-purpose value type is most often referred to as a struct, its C#
keyword. This section provides some guidelines for general struct design.
Section 4.8 presents guidelines for the design of a special case of value
type, the enum.

✗ DO NOT provide a default constructor for a struct.

This allows arrays of structs to be created without having to run the
constructor on each item of the array. Notice that C# does not allow
structs to have default constructors.

✓ DO ensure that a state where all instance data is set to zero, false, or null
(as appropriate) is valid.

This prevents accidental creation of invalid instances when an array of
the structs is created. For example, the following struct is incorrectly
designed. The parameterized constructor is meant to ensure valid state,
but the constructor is not executed when an array of the struct is created
and so the instance filed value gets initialized to 0, which is not a valid
value for this type.

// bad design

public struct PositiveInteger {

 int value;

Abrams_ch04.fm Page 89 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES90

 public PositiveInteger(int value) {

 if (value <= 0) throw new ArgumentException(…);

 this.value = value;

 }

 public override string ToString() {

 return value.ToString();

 }

}

The problem can be fixed by ensuring that the default state (in this case
the value field equal to 0) is a valid logical state for the type.

// good design

public struct PositiveInteger {

 int value; // the logical value is value+1

 public PositiveInteger(int value) {

 if (value <= 0) throw new ArgumentException(…);

 this.value = value-1;

 }

 public override string ToString() {

 return (value+1).ToString();

 }

}

✓ DO implement IEquatable<T> on value types.

The Object.Equals method on value types causes boxing and its
default implementation is not very efficient, as it uses reflection.
IEquatable<T>.Equals can have much better performance and can
be implemented such that it will not cause boxing. See Chapter 8, sec-
tion 8.5, on implementing IEquatable<T>.

✗ DO NOT explicitly extend System.ValueType. In fact, most languages
prevent this.

In general, structs can be very useful, but should only be used for small,
single, immutable values that will not be boxed frequently. Next are guide-
lines for enum design, a more complex matter.

Abrams_ch04.fm Page 90 Wednesday, August 3, 2005 10:27 AM

4.8 ENUM DESIGN 91

4.8 Enum Design
Enums are a special kind of value type. There are two kinds of enums: sim-
ple enums and flag enums.

Simple enums represent small, closed sets of choices. A common exam-
ple of the simple enum is a set of colors. For example,

public enum Color {

 Red,

 Green,

 Blue,

 …

}

Flag enums are designed to support bitwise operations on the enum
values. A common example of the flags enum is a list of options. For
example,

[Flags]

public enum AttributeTargets {

 Assembly= 0x0001,

 Module = 0x0002,

 Cass = 0x0004,

 Struct = 0x0008,

 …

}

BRAD ABRAMS We had some debates about what to call enums that
are designed to be bitwise ORed together. We considered bitfields, bitflags,
and even bitmasks, but ultimately decided to use flag enums as it was clear,
simple, and approachable.

STEVEN CLARKE I’m sure that less experienced developers will be able
to understand bitwise operations on flags. The real question, though, is
whether they would expect to have to do this. Most of the APIs that I have
run through the labs don’t require them to perform such operations so I
have a feeling that they would have the same experience that we observed
during a recent study—it’s just not something that they are used to doing so
they might not even think about it.

Abrams_ch04.fm Page 91 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES92

Historically, many reusable libraries (e.g., Win32 APIs) represented sets
of values using integer constants. Enums make such sets more strongly
typed, and thus improve compile-time error checking, usability, and read-
ability. For example, use of enums allows development tools to know the
possible values for a property or a parameter.

✓ DO use an enum to strongly type parameters, properties, and return
values that represent sets of values.

✓ DO favor using an enum over static constants.

// Avoid the following

public static class Color {

 public static int Red = 0;

 public static int Green = 1;

 public static int Blue = 2;

 …

}

// Favor the following

public enum Color {

 Red,

 Green,

 Blue,

 …

}

Where it could get worse, I think, is that if less advanced developers don’t
realize they are working with a set of flags that can be combined with one
another, they might just look at the list available and think that is all the
functionality they can access. As we’ve seen in other studies, if an API
makes it look to them as though a specific scenario or requirement isn’t
immediately possible, it’s likely that they will change the requirement and
do what does appear to be possible, rather than being motivated to spend
time investigating what they need to do to achieve the original goal.

JEFFREY RICHTER An enum is a structure with a set of static constants.
The reason to follow this guideline is because you will get some additional
compiler and reflection support if you define an enum versus manually
defining a structure with static constants.

Abrams_ch04.fm Page 92 Wednesday, August 3, 2005 10:27 AM

4.8 ENUM DESIGN 93

✗ DO NOT use an enum for open sets (such as the operating system ver-
sion, names of your friends, etc.).

✗ DO NOT provide reserved enum values that are intended for future use.

You can always simply add values to the existing enum at a later stage.
See section 4.8.2 for more details on adding values to enums. Reserved
values just pollute the set of real values and tend to lead to user errors.

public enum DeskType {

 Circular,

 Oblong,

 Rectangular,

 // the following two values should not be here

 ReservedForFutureUse1,

ReservedForFutureUse2,

}

✗ AVOID publicly exposing enums with only one value.

A common practice for ensuring future extensibility of C APIs is to add
reserved parameters to method signatures. Such reserved parameters
can be expressed as enums with a single default value. This should not
be done in managed APIs. Method overloading allows adding parame-
ters in future releases.

// Bad Design

public enum SomeOption {

 DefaultOption

 // we will add more options in the future

}

…

// The option parameter is not needed.

// It can always be added in the future

// to an overload of SomeMethod().

public void SomeMethod(SomeOption option) {

 …

}

✗ DO NOT include sentinel values in enums.

Although they are sometimes helpful to framework developers, they
are confusing to users of the framework. Sentinel values are values

Abrams_ch04.fm Page 93 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES94

used to track the state of the enum, rather than being one of the values
from the set represented by the enum. The following example shows an
enum with an additional sentinel value used to identify the last value of
the enum, and intended for use in range checks. This is bad practice in
framework design.

public enum DeskType {

 Circular = 1,

 Oblong = 2,

 Rectangular = 3,

 LastValue = 3 // this sentinel value should not be here

}

public void OrderDesk(DeskType desk){

 if((desk > DeskType.LastValue){

 throw new ArgumentOutOfRangeException(…);

 }

 …

}

Rather than relying on sentinel values, framework developers should
perform the check using one of the real enum values.

public void OrderDesk(DeskType desk){

 if(desk > DeskType.Rectangular || desk < DeskType.Circular){

 throw new ArgumentOutOfRangeException(…);

 }

 …

}

RICO MARIANI You can get yourself into a lot of trouble by trying to
be too clever with enums. Sentinel values are a great example of this: People
write code like the above but using the sentinel value LastValue instead
of Rectangular as recommended. When a new value comes along and
LastValue is updated, their program “automatically” does the right thing
and accepts the new input value without giving an ArgumentOutOf-
RangeException. That sounds grand except for all that we didn’t show,
the part that’s doing the actual work, and might not yet expect or even han-
dle the new value. The less clever tests will force you to revisit all the right
places to ensure that the new value really is going to work. The few minutes
you spend visiting those call sites will be more than repaid in time you save
avoiding bugs.

Abrams_ch04.fm Page 94 Wednesday, August 3, 2005 10:27 AM

4.8 ENUM DESIGN 95

✓ DO provide a value of zero on simple enums.

Consider calling the value something like None. If such value is not
appropriate for this particular enum, the most common default value
for the enum should be assigned the underlying value of zero.

public enum Compression {

 None = 0,

 GZip,

 Deflate,

}

public enum EventType {

 Error = 0,

 Warning,

 Information,

 …

}

✓ CONSIDER using Int32 (the default in most programming languages)
as the underlying type of an enum unless any of the following is true:

• The enum is a flags enum and you have more than 32 flags, or expect
to have more in the future.

• The underlying type needs to be different than Int32 for easier
interoperability with unmanaged code expecting different size
enums.

BRAD ABRAMS This might not be as uncommon a concern as you first
expect. We are only in version 2.0 of the .NET Framework and we are
already running out of values in the CodeDom GeneratorSupport enum.
In retrospect, we should have used a different mechanism for communicat-
ing the generator support options than an enum.

RICO MARIANI Did you know that the CLR supports enums with an
underlying type of float or double even though most languages don’t
choose to expose it? This is very handy for strongly typed constants that
happen to be floating point (e.g., a set of canonical conversion factors for
different measuring systems). It’s in the ECMA standard.

Abrams_ch04.fm Page 95 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES96

• A smaller underlying type would result in substantial savings in
space. If you expect for enum to be used mainly as an argument for
flow of control, the size makes little difference. The size savings
might be significant if:

• You expect to the enum to be used as a field in a very frequently
instantiated structure or class.

• You expect users to create large arrays or collections of the enum
instances.

• You expect a large number of instances of the enum to be
serialized.

For in-memory usage, be aware that managed objects are always
DWORD aligned so you effectively need multiple enums or other small
structures in an instance to pack a smaller enum with to make a differ-
ence, as the total instance size is always going to be rounded up to a
DWORD.

✓ DO name flag enums with plural nouns or noun phrases and simple
enums with singular nouns or noun phrases.

See Chapter 3, section 3.5.3 for details.

✗ DO NOT extend System.Enum directly.

System.Enum is a special type used by the CLR to create user-defined
enumerations. Most programming languages provide a programming
element that gives you access to this functionality. For example, in C#
the enum keyword is used to define an enumeration.

BRAD ABRAMS Keep in mind that it is a binary breaking change to
change the size of the enum type once you have shipped, so choose wisely
with an eye on the future. Our experience is that Int32 is usually the right
choice and thus we made it the default.

Abrams_ch04.fm Page 96 Wednesday, August 3, 2005 10:27 AM

4.8 ENUM DESIGN 97

4.8.1 Designing Flag Enums

✓ DO apply the System.FlagsAttribute to flag enums. Do not apply
this attribute to simple enums.

[Flags]

public enum AttributeTargets {

 …

}

✓ DO use powers of two for the flags enum values so they can be freely
combined using the bitwise OR operation.

[Flags]

public enum WatcherChangeTypes {

 Created = 0x0002,

 Deleted = 0x0004,

 Changed = 0x0008,

 Renamed = 0x0010,

}

✓ CONSIDER providing special enum values for commonly used combina-
tions of flags.

Bitwise operations are an advanced concept and should not be required
for simple tasks. FileAccess.ReadWrite is an example of such a spe-
cial value.

[Flags]

public enum FileAccess {

 Read = 1,

 Write = 2,

 ReadWrite = Read | Write

}

JEFFREY RICHTER I use flag enums quite frequently in my own pro-
gramming. They store very efficiently in memory and manipulation is very
fast. In addition, they can be used with interlocked operations, making
them ideal for solving thread synchronization problems. I’d love to see the
System.Enum type offer a bunch of additional methods that could be
easily inlined by the JIT compiler that would make source code easier to
read and maintain. Here are some of the methods I’d like to see added to
Enum: IsExactlyOneBitSet, CountOnBits, AreAllBitsOn,
AreAnyBitsOn, and TurnBitsOnOff.

Abrams_ch04.fm Page 97 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES98

✗ AVOID creating flag enums where certain combinations of values are
invalid.

The System.Reflection.BindingFlags enum is an example of an
incorrect design of this kind. The enum tries to represent many different
concepts, such as visibility, staticness, member kind, and so on.

[Flags]

public enum BindingFlags {

 Instance,

 Static,

 NonPublic,

 Public,

 CreateInstance,

 GetField,

 SetField,

 GetProperty,

 SetProperty,

 InvokeMethod,

 …

}

Certain combinations of the values are not valid. For example, the
Type.GetMembers method accepts this enum as a parameter but the
documentation for the method warns users, “You must specify either
BindingFlags.Instance or BindingFlags.Static in order to get a
return.” Similar warnings apply to several other values of the enum.

If you have an enum with this problem, you should separate the values
of the enum into two or more enums or other types. For example, the
Reflection APIs could have been designed as follows:

[Flags]

public enum Visibilities {

 Public,

 NonPublic

}

[Flags]

public enum MemberScopes {

 Instance,

 Static

}

[Flags]

public enum MemberKinds {

Abrams_ch04.fm Page 98 Wednesday, August 3, 2005 10:27 AM

4.8 ENUM DESIGN 99

 Constructor,

 Field,

 PropertyGetter,

 PropertySetter,

 Method,

}

public class Type {

 public MemberInfo[] GetMembers(MemberKinds members,

 Visibilities visibility,

 MemberScopes scope);

}

✗ AVOID using flag enum values of zero, unless the value represents “all
flags are cleared” and is named appropriately as prescribed by the fol-
lowing guideline.

The following example shows a common implementation of a check
that programmers use to determine if a flag is set (see the if-statement
below). The check works as expected for all flag enum values except the
value of zero, where the Boolean expression always evaluates to true.

[Flags]

public enum SomeFlag {

 ValueA = 0, // this might be confusing to users

 ValueB = 1,

 ValueC = 2,

 ValueBAndC = ValueB | ValueC,

}

SomeFlag flags = GetValue();

if ((flags & SomeFlag.ValueA) === SomeFlag.ValueA) {

 …

}

ANDERS HEJLSBERG Note that in C# the literal constant 0 implicitly
converts to any enum type, so you could just write:

if (Foo.SomeFlag == 0)…

We support this special conversion to provide programmers with a con-
sistent way of writing the default value of an enum type, which by CLR
decree is “all bits zero” for any value type.

Abrams_ch04.fm Page 99 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES100

✓ DO name the zero-value of flag enums None. For a flag enum, the value
must always mean “all flags are cleared.”

[Flags]

public enum BorderStyle {

 Fixed3D = 0x1,

 FixedSingle = 0x2,

 None = 0x0

}

if (foo.BorderStyle == BorderStyle.None)....

4.8.2 Adding Values to Enums
It is very common to discover that you need to add values to an enum after
you have already shipped it. There is a potential application compatibility
problem when the newly added value is returned from an existing API,
because poorly written applications might not handle the new value cor-
rectly. Documentation, samples, and FxCop rules encourage application
developers to write robust code that can help applications deal with unex-
pected values. Therefore, it is generally acceptable to add values to enums,

VANCE MORRISON The rational for avoiding zero in a flag enumera-
tion for an actual flag (only the special enum member None should have the
value zero) is that you can’t OR it in with other flags as expected.

However, notice that this rule only applies to flag enumerations; in the
case where enumeration is not a flag enumeration, there is a real disadvan-
tage to avoiding zero that we have discovered. All enumerations begin their
life with this value (memory is zeroed by default). Thus if you avoid zero,
every enumeration has an illegal value in it when it first starts its life in the
run time (we can’t even pretty print it properly). This seems bad.

In my own coding, I do one of two things for nonflag enumerations.
If there is an obvious default that is highly unlikely to cause grief if pro-

grammers forget to set it (program invariants do not depend on it), I make
this the zero case. Usually this is the most common value, which makes the
code a bit more efficient (it is easier to set memory to 0 than to any other
value).

If no such default exists, I make zero my “error” (none-of-the-above)
enumeration value. That way when people forget to set it, some assert will
fire later and we will find the problem.

In either case, however, from the compiler (and runtime), point of view,
every enumeration has a value for 0 (which means we can pretty print it).

Abrams_ch04.fm Page 100 Wednesday, August 3, 2005 10:27 AM

4.9 NESTED TYPES 101

but as with most guidelines there might be exceptions to the rule based on
the specifics of the framework.

✓ CONSIDER adding values to enums, despite a small compatibility risk.

If you have real data about application incompatibilities caused by
additions to an enum, consider adding a new API that returns the new
and old values, and deprecate the old API, which should continue
returning just the old values. This will ensure that your existing appli-
cations remain compatible.

4.9 Nested Types
A nested type is a type defined within the scope of another type, which is
called the enclosing type. A nested type has access to all members of its en-
closing type. For example, it has access to private fields defined in the
enclosing type and to protected fields defined in all ascendants of the en-
closing type.

CLEMENS SZYPERSKI Adding a value to an enum presents a very real
possibility of breaking a client. Before the addition of the new enum value,
a client who was throwing unconditionally in the default case presumably
never actually threw the exception, and the corresponding catch path is
likely untested. Now that the new enum value can pop up, the client will
throw and likely fold.

The biggest concern with adding values to enums is that you don’t
know whether clients perform an exhaustive switch over an enum or a pro-
gressive case analysis across wider-spread code. Even with the FxCop rules
above in place and even when it is assumed that client apps pass FxCop
without warnings, we still would not know about code that performs
things like if (myEnum == someValue) ... in various places.

Clients might instead perform point-wise case analyses across their
code, resulting in fragility under enum versioning. It is important to pro-
vide specific guidelines to developers of enum client code detailing what
they need to do to survive the addition of new elements to enums they use.
Developing with the suspected future versioning of an enum in mind is the
required attitude.

Abrams_ch04.fm Page 101 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES102

// enclosing type

public class OuterType {

 private string name;

 // nested type

 public class InnerType {

 public InnerType(OuterType outer){

 // the name field is private, but it works just fine

 Console.WriteLine(outer.name);

 }

 }

}

In general, nested types should be used sparingly. There are several rea-
sons for this. Some developers are not fully familiar with the concept.
These developers might, for example, have problems with the syntax of
declaring variables of nested types. Nested types are also very tightly cou-
pled with their enclosing types, and as such are not suited to be general-
purpose types.

Nested types are best suited for modeling implementation details of
their enclosing types. The end user should rarely have to declare variables
of a nested type and almost never explicitly instantiate nested types. For
example, the enumerator of a collection can be a nested type of that collec-
tion. Enumerators are usually instantiated by their enclosing type and
because many languages support the foreach statement, enumerator vari-
ables rarely have to be declared by the end user.

✓ DO use nested types when the relationship between the nested type
and its outer type is such that member-accessibility semantics are
desirable.

For example, the nested type needs to have access to private members
of the outer-type.

public OrderCollection : IEnumerable<Order> {

 Order[] data = …;

 public IEnumerator<Order> GetEnumerator(){

 return new OrderEnumerator(this);

 }

Abrams_ch04.fm Page 102 Wednesday, August 3, 2005 10:27 AM

4.9 NESTED TYPES 103

 // This nested type will have access to the data array

 // of its outer type.

 class OrderEnumerator : IEnumerator<Order> {

 }

}

✗ DO NOT use public nested types as a logical grouping construct; use
namespaces for this.

✗ AVOID publicly exposed nested types. The only exception to this is if
variables of the nested type need to be declared only in rare scenarios
such as subclassing or other advanced customization scenarios.

✗ DO NOT use nested types if the type is likely to be referenced outside of
the containing type.

For example, an enum passed to a method defined on a class should not
be defined as a nested type in the class.

✗ DO NOT use nested types if they need to be instantiated by client code. If
a type has a public constructor, it should probably not be nested.

If a type can be instantiated, it seems to indicate that the type has a
place in the framework on its own (you can create it, work with it, and
destroy it, without ever using the outer type), and thus should not be
nested. Inner types should not be widely reused outside of the outer
type without any relationship whatsoever to the outer type.

✗ DO NOT define a nested type as a member of an interface. Many lan-
guages do not support such a construct.

In general, nested types should be used sparingly, and exposure as pub-
lic types should be avoided.

KRZYSZTOF CWALINA The main motivation for this guideline is that
many less skilled developers don’t understand why some type names have
dots in them and some don’t. As long as they don’t have to type in the type
name, they don’t care. But the moment you ask them to declare a variable of
a nested type, they get lost. Therefore, we, in general, avoid nested types
and use them only in places where developers almost never have to declare
variables of that type (e.g., collection enumerators).

Abrams_ch04.fm Page 103 Wednesday, August 3, 2005 10:27 AM

TYPE DESIGN GUIDELINES104

4.10 Summary
This chapter presented guidelines that describe when and how to design
classes, structs, and interfaces.

The next chapter goes to the next level in type design—the design of
members.

Abrams_ch04.fm Page 104 Wednesday, August 3, 2005 10:27 AM

