
1

3
Activity Execution

B E C AU S E A WF P R O G R A M I S J U S T an activity (that typically is the root of a tree
of activities), the best way to understand how large WF programs execute is to

first understand what happens at the level of a single activity.
The WF programming model codifies the lifecycle of an activity in terms of a

finite state machine that we will call the activity automaton. Chapter 1, “Decon-
structing WF,” introduced a simple three-state version of this automaton for resum-
able program statements. The lifecycle of activities also follows this basic pattern but
adds several additional states that will be discussed in this chapter and the next.

The execution model for activities is fundamentally asynchronous because it is
designed to accommodate activities that perform episodic execution—short bursts
of execution punctuated by relatively long periods of time spent waiting for external
stimulus.

For efficiency reasons, it does not make sense to keep WF program instances in
memory while they are idle waiting for data to arrive. When a WF program instance
becomes idle, the WF runtime is capable of storing it in a (pluggable) durable stor-
age medium and evicting the program instance from memory. The process of storing
the instance state and evicting the instance from the memory is called passivation.
When relevant stimulus arrives from an external entity, perhaps after days spent
waiting, the WF runtime automatically reactivates the program, bringing it out of
durable storage (where it had been passivated) into memory, and resuming its exe-
cution. Relative to its logical lifetime, a typical WF program instance lives for a rel-
atively short duration in memory.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 1

Supporting passivation requires serialization of not only the program state but
also the execution state (managed by the WF runtime). When WF program instances
are passivated, they are captured by the WF runtime as continuations. A passivated
program instance may be resumed in a different process or even on a different
machine than the one on which it ran prior to passivation. This means that WF pro-
grams are thread-agile and process-agile. WF programs do indeed run on CLR
threads, but the execution model for activities across resumption points is stackless
because it does not rely on the stack associated with a CLR thread. The lifecycle of
a WF program instance may, in a physical sense, span processes and machines and is
distinctly different from the lifetimes of CLR objects (of type Activity) that tran-
siently represent such a program instance while it is in memory.

Scheduling

In general, when an activity executes, it quickly performs some work and then
either reports its completion or (having established one or more bookmarks) yields
and waits for stimulus. This pattern maps nicely to a conceptual model in which
work items are queued and then dispatched, one at a time, each to a target activity.

This pattern, depicted in Figure 3.1, is generally known as scheduling, so the
component of the WF runtime that encompasses this functionality is known as the
scheduler. The scheduler dispatches work items one at a time (from a queue), in a
first-in-first-out (FIFO) fashion. Additionally, because the WF runtime never inter-
venes in the processing of a work item that has been dispatched, the scheduler
behavior is strictly nonpreemptive.

To distinguish the scheduler’s internal queue of work items from WF program
queues (which are explicitly created by activity execution logic), we will call the
queue that holds scheduler work items the scheduler work queue. When its sched-
uler work queue is empty, a WF program instance is considered idle.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION2

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 2

Figure 3.1 WF scheduler

Scheduler Work Items

The work items in the scheduler work queue are delegates. Each work item (del-
egate) corresponds to a method on an activity in the WF program instance. The
activity method that is indicated by a work item (delegate) in the scheduler work
queue is known as the execution handler of that work item.

Although there is no API to directly manipulate (or view) the scheduler work
queue, certain actions taken by activities will cause work items to be enqueued.
Delivery of input to a WF program queue can also cause work items to be enqueued.

A given activity’s execution may include the invocation of any number of execu-
tion handlers. The state on which execution handlers operate is preserved across
invocations of execution handlers of the same activity. This state is heap-allocated
and is managed independently of the stack that is associated with the currently run-
ning CLR thread. The execution of activities across resumption points is stackless.

ACTIVIT Y EXECUTION 3

WF program (tree of activities)

Dispatch
Enqueue

WF Scheduler

Dequeue

Scheduler Work Queue

a
6

a
5

a
4

a
3

a
2

a
1

void Dispatch(){
 while (AreThereItemsInTheWorkQueue ()){
 Delegate del = this.workqueue.Dequeue<Delegate>();
 del.Invoke(this);
 }
 this.idle = true;
}

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 3

Scheduling of work items (delegates) is the mechanism by which methods on
activities are invoked. This simple machinery drives activity, and WF program, exe-
cution. But in order to understand the rules about how and when work items are
enqueued, we must understand the lifecycle of an activity, and that is our next topic.

Activity Automaton

The CLR virtualizes the instruction set of machine processors by describing its exe-
cution capabilities in terms of a hardware-agnostic instruction set, Microsoft Inter-
mediate Language (MSIL). Programs compiled to MSIL are ultimately translated
to machine-specific instructions, but virtualization allows language compilers to
target only MSIL and not worry about various processor architectures.

In the WF programming model, the program statements used to build WF pro-
grams are classes that derive from Activity and CompositeActivity. Therefore,
unlike MSIL, the “instruction set” supported by WF is not fixed. It is expected that
many kinds of activities will be built and used in WF programs, while the WF run-
time only relies upon the base classes. An activity developer can choose to imple-
ment anything—domain-specific or general-purpose—within the very general
boundaries set by the WF runtime. Consequently, the WF runtime is freed from the
actual semantics of specific activities.

The WF programming model does codify aspects of the interactions between the
WF runtime and activities (such as the dispatch of execution handlers) in terms of an
activity automaton (a finite state machine), which we will now explore in depth,
with examples.

This chapter focuses solely on the normal execution of an activity. An activity that
executes normally begins in the Initialized state, moves to the Executing state when
its work begins, and moves to the Closed state when its work is completed. This is
shown in Figure 3.2. The full activity automaton, shown in Figure 3.3, includes other
states that will be discussed in Chapter 4, “Advanced Activity Execution.”

ESSENTIAL WINDOWS WORKFLOW FOUNDATION4

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 4

Figure 3.3 Complete activity automaton

The lifecycle of any activity in an executing WF program is captured by the states
of the activity automaton and the transitions that exist between these states. Transi-
tions from one state to another are brokered by the WF runtime to ensure the cor-
rectness of WF program execution.

Another way to view the activity automaton is as an abstract execution contract
that exists between the WF runtime and any activity. It is the responsibility of the WF
runtime to enforce that the execution of an activity strictly follows the transitions of
the activity automaton. It is the responsibility of the activity to decide when certain
transitions should occur. Figure 3.4 depicts the participation of both the WF sched-
uler and an activity in driving the automata.

ACTIVIT Y EXECUTION 5

Initialized Executing Closed

Figure 3.2 Basic activity automaton

Initialized Executing Closed

Canceling

Faulting

Compensating

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 5

ESSENTIAL WINDOWS WORKFLOW FOUNDATION6

Figure 3.4 The dispatch of the execution handlers is governed by the activity automaton.

Activity Execution Status and Result

The WriteLine activity shown in Listing 3.1 prints the value of its Text property
to the console and then reports its completion.

Listing 3.1 WriteLine Activity

using System;

using System.Workflow.ComponentModel;

namespace EssentialWF.Activities

{

public class WriteLine : Activity

{

public static readonly DependencyProperty TextProperty

= DependencyProperty.Register("Text",

typeof(string), typeof(WriteLine));

void Dispatch(){
 while(AreThereItemsInTheWorkQueue()){
 Delegate executeMethodDelegate = workqueue.Dequeue<Delegate>();
 //invoke the execution handler based on automata
 executeMethodDelegate.Invoke(this);
 }
 this.idle = true;
}

ActivityExecutionStatus(ActivityExectutionContext aec) {
 …

 return ActivityExecutionStatus.Closed;
}

Initialized Executing Closed

Activity automata

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 6

public string Text

{

get { return (string) GetValue(TextProperty); }

set { SetValue(TextProperty, value); }

}

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

Console.WriteLine(Text);

return ActivityExecutionStatus.Closed;

}

}

}

The execution logic of WriteLine is found in its override of the Execute method,
which is inherited from Activity. The Execute method is the most important in
a set of virtual methods defined on Activity that collectively constitute an activ-
ity’s participation in the transitions of the activity automaton. All activities imple-
ment the Execute method; the other methods are more selectively overridden.

Listing 3.2 shows members defined by the Activity type that we will cover in
this chapter and the next.

Listing 3.2 Activity Revisited
namespace System.Workflow.ComponentModel

{

public class Activity : DependencyObject

{

protected internal virtual ActivityExecutionStatus Cancel(

ActivityExecutionContext context);

protected internal virtual ActivityExecutionStatus Execute(

ActivityExecutionContext context);

protected internal virtual ActivityExecutionStatus HandleFault(

ActivityExecutionContext context, Exception fault);

protected internal virtual void Initialize(

IServiceProvider provider);

protected internal virtual void Uninitialize(

IServiceProvider provider);

ACTIVIT Y EXECUTION 7

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 7

protected internal virtual void OnExecutionContextLoad(

IServiceProvider provider);

protected internal virtual void OnExecutionContextUnload(

IServiceProvider provider);

protected internal virtual void OnClosed(

IServiceProvider provider);

public ActivityExecutionResult ExecutionResult { get; }

public ActivityExecutionStatus ExecutionStatus { get; }

/* *** other members *** */

}

}

By returning a value of ActivityExecutionStatus.Closed from its Execute
method, the WriteLine activity indicates to the WF runtime that its work is done;
as a result, the activity moves to the Closed state.

Activity defines a property called ExecutionStatus, whose value indicates the
current state (in the activity automaton) of the activity. The type of Activity.
ExecutionStatus is ActivityExecutionStatus, which is shown in Listing 3.3.

Listing 3.3 ActivityExecutionStatus

namespace System.Workflow.ComponentModel

{

public enum ActivityExecutionStatus

{

Initialized,

Executing,

Canceling,

Closed,

Compensating,

Faulting

}

}

Activity also defines a property called ExecutionResult, whose value qualifies
an execution status of ExecutionStatus.Closed, because that state can be
entered from any of five other states. The type of Activity.ExecutionResult is
ActivityExecutionResult, which is shown in Listing 3.4. An activity with an
execution status other than Closed will always have an execution result of None.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION8

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 8

Listing 3.4 ActivityExecutionResult

namespace System.Workflow.ComponentModel

{

public enum ActivityExecutionResult

{

None,

Succeeded,

Canceled,

Compensated,

Faulted,

Uninitialized,

}

}

The values of the ExecutionStatus and ExecutionResult properties are settable
only by the WF runtime, which manages the lifecyle transitions of all activities.

You can determine the current execution status and execution result of an activ-
ity by getting the values of its ExecutionStatus and ExecutionResult properties:

using System;

using System.Workflow.ComponentModel;

public class MyActivity : Activity

{

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

System.Diagnostics.Debug.Assert(

ActivityExecutionStatus.Executing == ExecutionStatus);

System.Diagnostics.Debug.Assert(

ActivityExecutionResult.None == ExecutionResult);

...

}

}

The ExecutionStatus and ExecutionResult properties only have meaning at
runtime for activities within a WF program instance.

ACTIVIT Y EXECUTION 9

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 9

Activity Execution Context

The Execute method has one parameter of type ActivityExecutionContext.
This object represents the execution context for the currently executing activity.

The ActivityExecutionContext type (abbreviated AEC) is shown in Listing 3.5.

Listing 3.5 ActivityExecutionContext

namespace System.Workflow.ComponentModel

{

public sealed class ActivityExecutionContext: IDisposable,

IServiceProvider

{

public T GetService<T>();

public object GetService(Type serviceType);

public void CloseActivity();

/* *** other members *** */

}

}

AEC has several roles in the WF programming model. The simplest view is that
AEC makes certain WF runtime functionality available to executing activities. A
comprehensive treatment of AEC will be given in Chapter 4.

The WF runtime manages ActivityExecutionContext objects carefully. AEC
has only internal constructors, so only the WF runtime creates objects of this type.
Moreover, AEC implements System.IDisposable. An AEC object is disposed
immediately after the return of the method call (such as Activity.Execute) in
which it is a parameter; if you try to cache an AEC object, you will encounter an
ObjectDisposedException exception when you access its properties and methods.
Allowing AEC objects to be cached could easily lead to violation of the activity
automaton:

public class MyActivity : Activity

{

private ActivityExecutionContext cachedContext = null;

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

this.cachedContext = context;

return ActivityExecutionStatus.Executing;

ESSENTIAL WINDOWS WORKFLOW FOUNDATION10

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 10

}

public void UseCachedContext()

{

// Next line will throw an ObjectDisposedException

this.cachedContext.CloseActivity();

}

}

Activity Services
ActivityExecutionContext has a role as a provider of services; these services are
an activity’s gateway to functionality that exists outside of the running WF
program instance. AEC implements System.IServiceProvider and offers
the required GetService method plus (for the sake of convenience) a typed
GetService<T> wrapper over GetService. Using these methods, an activity can
obtain services that are needed in order to complete its work.

In fact, AEC chains its service provider implementation to that of the WF runtime.
This means that an activity can obtain custom services proffered by the application
hosting the WF runtime, as shown in Figure 3.5.

Consider a WriterService that defines a Write method:

using System;

namespace EssentialWF.Activities

{

public abstract class WriterService

{

public abstract void Write(string s);

}

}

By defining the writer service abstractly (we could also have used an interface),
activities that use the service are shielded from details of how the service is imple-
mented. We can change our implementation of the service over time without
affecting activity code.

Here is a simple derivative of WriterService that uses the console to print the
string that is provided to the Write method:

using System;

using EssentialWF.Activities;

ACTIVIT Y EXECUTION 11

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 11

Figure 3.5 Chaining of services

A SimpleWriterService object can be added to the WF runtime, which acts as a
container of services:

using (WorkflowRuntime runtime = new WorkflowRuntime())

{

runtime.AddService(new SimpleWriterService());

ESSENTIAL WINDOWS WORKFLOW FOUNDATION12

AEC

AEC.GetService

Service1

Service2

WFRuntime.GetService

WriterService

User Service2

User Service 3

…

…

WriteLine

Program Instance

WF runtime

Application

namespace EssentialWF.Services

{

public class SimpleWriterService : WriterService

{

public override void Write(string s)

{

Console.WriteLine(s);

}

}

}

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 12

...

}

We can now change the execution logic of WriteLine to obtain a WriterService
and call its Write method:

public class WriteLine : Activity
{
// Text property elided for clarity...

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

WriterService writer = context.GetService<WriterService>();

writer.Write(Text);

return ActivityExecutionStatus.Closed;

}

}

This change may seem like a small matter, but if WriterService is defined as an
abstract class (or an interface), it can have multiple implementations. In this way,
the application hosting the WF runtime can choose the appropriate writer service
without affecting WF program instances that contain WriteLine activities (that
rely only upon the definition of that service).

In Chapter 6, “Transactions,” we will bring transactions into the picture and
explore how services used by activities (and activities themselves) can partipate in
the transactions that attend the execution of WF program instances.

Bookmarks Revisited

The simplest activities (in terms of execution logic) are like the WriteLine activity;
they complete their work entirely within their Execute method. If all activities did
this, you would not be able to build very interesting WF programs. Don’t get us
wrong; simple activities are useful, and indeed are essential to the definition of
most WF programs. Typical duties for such activities include obtaining services
and exchanging data with those services, and manipulating the state of the WF
program instance.

ACTIVIT Y EXECUTION 13

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 13

Most real-world processes, however, reach points in time at which further com-
putational progress cannot be made without stimulus (input) from an external entity.
It may be that a WF program waits for a person to make a decision about which
branch of execution logic should be taken. Or it may be that an activity delegates
some computation to an external entity and then waits for the result of that compu-
tation to be returned asynchronously.

In order to understand the mechanics of how this kind of activity executes, we
will begin by looking at a contrived example: an activity that delegates work
to…itself. Consider the version of WriteLine that is shown in Listing 3.6.

Listing 3.6 WriteLine Activity That Uses a Bookmark
using System;

using System.Workflow.ComponentModel;

namespace EssentialWF.Activities

{

public class WriteLine : Activity

{

// Text property elided for clarity...

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

base.Invoke(this.ContinueAt, EventArgs.Empty);

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender, EventArgs e)

{

ActivityExecutionContext context =

sender as ActivityExecutionContext;

WriterService writer = context.GetService<WriterService>();

writer.Write(Text);

context.CloseActivity();

}

}

}

ESSENTIAL WINDOWS WORKFLOW FOUNDATION14

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 14

Although the example is contrived, there are several things worth looking at here.
By calling Invoke<T> (a protected method defined by Activity), the WriteLine

activity creates a bookmark and immediately resumes that bookmark. The book-
mark’s resumption point is the WriteLine.ContinueAt method, and the payload
for the resumed bookmark is EventArgs.Empty.

The bookmark created by the call to Invoke<T> is managed internally by the WF
runtime, and because the Invoke<T> method also resumes this bookmark, an item
is enqueued in the scheduler work queue (corresponding to the ContinueAt
method).

Because it creates a bookmark (and is awaiting resumption of that bookmark), the
WriteLine activity can no longer report its completion at the end of the Execute
method. Instead it returns a value of ActivityExecutionStatus.Executing, indi-
cating that although WriteLine is yielding the CLR thread by returning from Exe-
cute, its work is not complete since there is a pending bookmark. The WriteLine
activity remains in the Executing state and does not transition (yet) to Closed.

When the scheduler dispatches the work item corresponding to the ContinueAt
method, it passes an ActivityExecutionContext as the sender parameter. This
allows the WriteLine to have access to its current execution context.

The ContinueAtmethod conforms to a standard .NET Framework event handler
signature and therefore has a return type of void. Because of this, the WF runtime
cannot use the return value of ContinueAt as the way of determining whether or not
the activity should remain in the Executing state or transition to the Closed state. The
CloseActivity method provided by ActivityExecutionContext can be used
instead. If this method is called, the currently executing activity moves to the Closed
state; if the method is not called, there is no change in the state of the activity. Because
ContinueAt calls CloseActivity, the WriteLine activity moves to the Closed
state.

The version of the WriteLine activity that uses Invoke<T>, though contrived,
is still illustrative of the general pattern that you will need to use in many of the
activities you develop. Although it is possible for an activity to complete its work
within the Execute method (as with the version of WriteLine that returns
ActivityExecutionStatus.Closed from its Execute method), this is a special
case. Just as subroutines are a special, simple case accommodated by the richer con-
cept of a coroutine, activities whose execution logic is embodied in a single Execute

ACTIVIT Y EXECUTION 15

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 15

method are a special, simple form of episodic computation, in which there is always
exactly one episode.

WF Program Execution

Now that we understand the basics of how to write activity execution logic, we can
take a closer look at the execution mechanics of a WF program. We will start with
a WF program that contains just one activity:

<WriteLine Text="hello, world" xmlns="http://EssentialWF/Activities" />

Running this program results in the expected output:

hello, world

In Chapter 2, “WF Programs,” we briefly looked at the code that is required to
host the WF runtime and run WF programs. We will return to the host-facing side
of the WF runtime in Chapter 5, “Applications.” For now, it is enough to know
the basics: First, the WorkflowRuntime.CreateWorkflow method returns a
WorkflowInstance representing a newly created instance of a WF program;
second, the WorkflowInstance.Start method tells the WF runtime to begin the
execution of that WF program instance.

The call to WorkflowRuntime.CreateWorkflow prepares a scheduler (and the
accompanying scheduler work queue) for the new WF program instance. When this
method returns, all activities in the WF program are in the Initialized state.

The call to WorkflowInstance.Start enqueues one item in the the scheduler
work queue—a delegate corresponding to the Execute method of the root activity
of the WF program. The root activity—in our example, the WriteLine—is now in
the Executing state, even though the Execute method has not actually been called
(the work item has not yet been dispatched). The scheduler work queue is shown in
Figure 3.6.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION16

w1.
Execute

Figure 3.6 Scheduler work queue after WorkflowInstance.Start

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 16

Let’s assume that we are using the version of WriteLine that doesn’t call
Invoke<T>.

When the Execute method returns a value of ActivityExecutionStatus.
Closed, the WriteLine activity moves to the Closed state. In this case, the WF run-
time recognizes that the program instance is complete since the root activity in the
program instance is complete.

The asynchronous version of WriteLine is only slightly more complex. The call
to Invoke<T> within Execute will enqueue a work item in the scheduler work
queue (corresponding to the resumption of the internally created bookmark).

Thus, when the Execute method (of the version of WriteLine that does call
Invoke<T>) returns, the activity remains in the Executing state and the scheduler
work queue looks as it is shown in Figure 3.7.

ACTIVIT Y EXECUTION 17

w1.ContinueAt

Figure 3.7 Scheduler work queue after WriteLine.Execute

When the WriteLine.ContinueAt method returns, the WriteLine activity
moves to the Closed state and the program instance completes.

WF Program Queues

Any activity that requires input from an external entity must figure out a way to (a)
let that external entity know that it requires input, and (b) receive notification when
the input is available. This simple pattern is at the heart of episodic computation,
and it is supported in a first-class way by the WF runtime. The plain requirement
is that an activity must be able to receive input even if the WF program instance
in which it exists is idle and sitting in persistent storage like a SQL Server database
table. When the input arrives, the WF program instance must be reactivated and its
execution resumed (at the appropriate bookmark).

In Chapter 2, we developed an activity called ReadLine (shown again in Listing
3.7), which waits for a string to arrive from an external entity. If you understand how
this activity is built and how it executes, you will have the right basis for

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 17

understanding and creating higher level communication patterns that are used in
WF programs. All such patterns are built on top of the same notion of bookmarks.1

Listing 3.7 ReadLine Activity
using System;

using System.Workflow.ComponentModel;

using System.Workflow.Runtime;

namespace EssentialWF.Activities

{

public class ReadLine : Activity

{

private string text;

public string Text

{

get { return text; }

}

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

WorkflowQueue queue =

qService.CreateWorkflowQueue(this.Name, true);

queue.QueueItemAvailable += this.ContinueAt;

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender, QueueEventArgs e)

{

ActivityExecutionContext context =

sender as ActivityExecutionContext;

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

WorkflowQueue queue = qService.GetWorkflowQueue(this.Name);

text = (string) queue.Dequeue();

qService.DeleteWorkflowQueue(this.Name);

ESSENTIAL WINDOWS WORKFLOW FOUNDATION18

1 Although various communication technologies (such as WCF or ASMX) can be layered upon
WF, they all must use the WorkflowQueuingService to robustly deliver data to passivated
WF program instances.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 18

context.CloseActivity();

}

}

}

The execution logic of the ReadLine activity uses a WF program queue. A WF pro-
gram queue is essentially a named location (a bookmark) where an activity can
receive data, even if the WF program instance in which the activity exists is not in
memory. A WF program queue is not the same as the WF program instance’s
scheduler queue, which is managed by the WF runtime. Think of a WF program
queue as the data structure in which an explicitly created bookmark holds its pay-
load (to be delivered upon the resumption of the bookmark). It is an addressable
location where external entities can deliver data.

The Execute method of ReadLine obtains the WorkflowQueuingService from
its ActivityExecutionContext. The WorkflowQueuingService is asked to create
a WF program queue with a name that is the same as that of the activity
(this.Name). The name of a WF program queue can be any IComparable object;
usually a string will suffice. We are choosing a simple queue naming convention
here, but other schemes are possible. Regardless, the external code that provides
input to a WF program instance must know the name of the appropriate WF pro-
gram queue.

The WorkflowQueuingService type is shown in Listing 3.8.

Listing 3.8 WorkflowQueuingService

namespace System.Workflow.Runtime

{

public class WorkflowQueuingService

{

public WorkflowQueue CreateWorkflowQueue(IComparable queueName,

bool transactional);

public bool Exists(IComparable queueName);

public WorkflowQueue GetWorkflowQueue(IComparable queueName);

public void DeleteWorkflowQueue(IComparable queueName);

/* *** other members *** */

}

}

ACTIVIT Y EXECUTION 19

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 19

The same WF program queue name may be used in more than one WF program
instance. This just means that if we write a WF program containing a ReadLine
activity named “r1”, we can execute any number of instances of this WF program
without any problems. Each instance will create a separate WF program queue
with the name “r1”. Because data is always enqueued to a specific WF program
instance (via WorkflowInstance.EnqueueItem), there is no conflict or ambigu-
ity. Another way of stating this is that WF program queues are not shared across
WF program instances. This allows us to think of the logical address of a WF pro-
gram queue as the WorkflowInstance.InstanceId identifying the WF program
instance that owns the WF program queue, plus the WF program queue name.

A WF program queue acts as a conduit for communication between external enti-
ties and an activity in a WF program instance. Code outside of the WF program
instance can deposit data into a WF program queue using the EnqueueItem method
defined on the WorkflowInstance class. An activity (and, by extension, a WF pro-
gram) can create as many distinct WF program queues as it requires.

The CreateWorkflowQueue method returns a WorkflowQueue object that rep-
resents the WF program queue. The WorkflowQueue type is shown in Listing 3.9.

Listing 3.9 WorkflowQueue

namespace System.Workflow.Runtime

{

public class WorkflowQueue

{

public IComparable QueueName { get; }

public int Count { get; }

public object Dequeue();

public object Peek();

public event EventHandler<QueueEventArgs>

QueueItemAvailable;

/* *** other members *** */

}

}

The QueueItemAvailable event is raised when an item is enqueued into the WF
program queue. Under the covers, this is just a bookmark (disguised using C#
event syntax).

ESSENTIAL WINDOWS WORKFLOW FOUNDATION20

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 20

The QueueItemAvailable event is also raised if, when an activity subscribes to
this event, there are already (previously enqueued) items present in the WF program
queue. This permits a decoupling of the delivery of data to a bookmark and the
resumption of that bookmark.

Here is a simple WF program that contains only a single ReadLine activity:

<ReadLine x:Name="r1" xmlns="http://EssentialWF/Activities"
xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml" />

If we save this WF program as a file called “Read.xoml”, we can execute it using
the console application of Listing 3.10, which hosts the WF runtime and delivers
data to the ReadLine activity via the WF program queue.

Listing 3.10 A Console Application That Delivers Data to a ReadLine
Activity

using System;

using System.Workflow.ComponentModel.Compiler;

using System.Workflow.Runtime;

using System.Xml;

class Program

{

static void Main()

{

using (WorkflowRuntime runtime = new WorkflowRuntime())

{

TypeProvider tp = new TypeProvider(null);

tp.AddAssemblyReference("EssentialWF.dll");

runtime.AddService(tp);

runtime.StartRuntime();

runtime.WorkflowIdled += delegate(object sender,

WorkflowEventArgs e)

{

Console.WriteLine("WF program instance " +

e.WorkflowInstance.InstanceId + " is idle");

};

runtime.WorkflowCompleted += delegate(object sender,

WorkflowCompletedEventArgs e)

{

Console.WriteLine("WF program instance " +

e.WorkflowInstance.InstanceId + " completed");

};

ACTIVIT Y EXECUTION 21

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 21

WorkflowInstance instance = null;

using (XmlTextReader reader = new XmlTextReader("Read.xoml"))

{

instance = runtime.CreateWorkflow(reader);

instance.Start();

}

string text = Console.ReadLine();

instance.EnqueueItem("r1", text, null, null);

// Prevent Main from exiting before

// the WF program instance completes

Console.ReadLine();

runtime.StopRuntime();

}

}

}

The console application calls WorkflowRuntime.CreateWorkflow, which loads
the WF program from XAML. It then calls WorkflowInstance.Start, which
causes the Execute method of ReadLine—the root activity in the WF program—
to be scheduled.

The console application then waits for the user to enter text at the console. Mean-
while, the WF runtime begins the execution of the WF program instance on a thread
that is different than the thread on which Main is running. The ReadLine activity has
its Execute method invoked. The ReadLine activity creates its WF program queue
and then waits for data to arrive there. Because there are no other items in the sched-
uler work queue, the WF program instance is idle.

The console application subscribes for the WorkflowRuntime.WorkflowIdled
event and, when this event is raised by the WF runtime, writes the InstanceId of
the WF program instance to the console:

WF program instance 631855e5-1958-4ce7-a29a-dc6f8e2a9238 is idle

When a line of text is read, the console application calls EnqueueItem, passing the
text it received from the console as payload associated with the resumption of the
bookmark.

The implementation of WorkflowInstance.EnqueueItem enqueues (in the
scheduler work queue) work items for all activities that are subscribed to this WF
program queue’s QueueItemAvailable event. This is depicted in Figure 3.8.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION22

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 22

Figure 3.8 Enqueuing data to a WF program queue

In our example, the ReadLine activity’s callback is called ContinueAt. This del-
egate will be scheduled as a work item and dispatched by the schedule; if the idle WF
program instance had been passivated (not shown in this example), the WF runtime
would automatically bring it back into memory.

The ReadLine activity will set its Text property with the string obtained from the
Dequeue operation on its WF program queue. In the example, we are doing no error
checking to ensure that the object is indeed of type string. The ContinueAtmethod
informs the WF runtime that it is complete by calling CloseActivity. The WF pro-
gram instance, because it only contains the ReadLine, also completes. The console
application, which subscribed to the WorkflowRuntime.WorkflowCompleted
event, prints this fact to the console.

WF Program instance 631855e5-1958-4ce7-a29a-dc6f8e2a9238 completed

If the console application tries to enqueue data to a WF program queue that does
not exist, the EnqueueItem method will throw an InvalidOperationException
indicating that the WF program queue could not be found. In our implementation

ACTIVIT Y EXECUTION 23

ReadLine WorkflowQueuingService Worfklow Instance Application

CreateWorkflowQueue("r1")

Scheduler

EnqueueItem("r1")

Execute()

ContinueAt()

DeleteQueue()

Initialize()

Invoked from the dispatcher loop of the Schduler

QueueItemAvailable += ContinueAt

EnqueueItem(ContinueAt)

Invoked from the dispatcher loop of the scheduler

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 23

of ReadLine, the WF program queue is not created until the ReadLine activity
begins executing. Thus, the following lines of code are problematic:

WorkflowInstance instance = runtime.CreateWorkflow(...);

instance.EnqueueItem("r1", "hello", null, null);

The preceding code omits the call to WorkflowInstance.Start, and because of
this the WF program queue named “r1” does not yet exist. In other words, the
implementation of ReadLine requires that the application doesn’t enqueue the
data until after the ReadLine activity starts to execute. Even the code in the console
application of Listing 3.9 presents a race condition because the execution of the WF
program instance occurs on a different thread than the execution of the console
application. We may be able to work around this race condition quite easily in our
contrived example where the WF program is just a single ReadLine activity. But
in a larger WF program, with many activities managing WF program queues, and
executing at different times, this is a lot trickier.

One of the ways to mitigate this problem is to allow activities to create WF pro-
gram queues during the creation of a WF program instance. This will ensure that,
after the call to WorkflowRuntime.CreateWorkflow, the WF program instance can
immediately receive data (even if it cannot yet process it, which will only begin once
WorkflowInstance.Start is called). In the next section, we will change ReadLine
to do exactly this.

Timers
Another example of an activity that cannot complete its execution logic entirely
within the Execute method is a Wait activity that simply waits for a specified
amount of time to elapse before completing. The Wait activity is shown in
Listing 3.11.

Listing 3.11 Wait Activity
using System;

using System.Workflow.ComponentModel;

using System.Workflow.Runtime;

namespace EssentialWF.Activities

{

public class Wait : Activity

ESSENTIAL WINDOWS WORKFLOW FOUNDATION24

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 24

{

private Guid timerId;

public static readonly DependencyProperty DurationProperty

= DependencyProperty.Register("Duration",

typeof(TimeSpan), typeof(Wait));

public TimeSpan Duration

{

get { return (TimeSpan) GetValue(DurationProperty); }

set { SetValue(DurationProperty, value); }

}

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

timerId = Guid.NewGuid();

WorkflowQueue queue = qService.CreateWorkflowQueue(

timerId, true);

queue.QueueItemAvailable += this.ContinueAt;

TimerService timerService = context.GetService<TimerService>();

timerService.SetTimer(timerId, Duration);

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender, QueueEventArgs e)

{

ActivityExecutionContext context =

sender as ActivityExecutionContext;

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

WorkflowQueue queue = qService.GetWorkflowQueue(timerId);

qService.DeleteWorkflowQueue(timerId);

context.CloseActivity();

}

}

}

ACTIVIT Y EXECUTION 25

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 25

Listing 3.11 shows the basic implementation of a Wait activity that depends upon
an implementation of a TimerService (see Listing 3.12) for the actual manage-
ment of the timer. The Wait activity, in its Execute method, creates a WF program
queue providing the bookmark resumption point (ContinueAt) and calls
TimerService.SetTimer, passing a unique identifier representing the timer. The
TimerService is responsible for managing the actual timers. When the timer is
triggered, the timer service resumes the bookmark by enqueuing data in the WF
program queue created by the Wait activity. When the ContinueAt method is
invoked by the scheduler (with the AEC as the sender argument), the Wait activ-
ity deletes the WF program queue and transitions to the Closed state.

The TimerService defines a SetTimer method that allows the activity to
specify the duration of the timer as a TimeSpan, along with the name of the
WF program queue that the TimerService will use to deliver a notification using
WorkflowInstance.EnqueueItem (with a null payload) when the specified
amount of time has elapsed.

Listing 3.12 TimerService Used by the Wait Activity
using System;

using System.Workflow.ComponentModel;

using System.Workflow.Runtime;

namespace EssentialWF.Activities

{

public abstract class TimerService

{

public abstract void SetTimer(Guid timerId, TimeSpan duration);

public abstract void CancelTimer(Guid timerId);

}

}

A simple implementation of the timer service is shown in Listing 3.13.

Listing 3.13 Implementation of a TimerService

using System;

using System.Collections.Generic;

using System.Threading;

using System.Workflow.ComponentModel;

using System.Workflow.Runtime;

using EssentialWF.Activities;

ESSENTIAL WINDOWS WORKFLOW FOUNDATION26

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 26

namespace EssentialWF.Services

{

public class SimpleTimerService : TimerService

{

WorkflowRuntime runtime;

Dictionary<Guid, Timer> timers = new Dictionary<Guid, Timer>();

public SimpleTimerService(WorkflowRuntime runtime)

{

this.runtime = runtime;

}

public override void SetTimer(Guid timerId, TimeSpan duration)

{

Guid instanceId = WorkflowEnvironment.WorkflowInstanceId;

Timer timer = new Timer(delegate(object o)

{

WorkflowInstance instance = runtime.GetWorkflow(instanceId);

instance.EnqueueItem(timerId, null, null, null);

}, timerId, duration, new TimeSpan(Timeout.Infinite));

timers.Add(timerId, timer);

}

public override void CancelTimer(Guid timerId)

{

((IDisposable)timers[timerId]).Dispose();

timers.Remove(timerId);

}

}

}

The SimpleTimerService mantains a set of System.Threading.Timer objects.
The timerId that is passed as a parameter to the SetTimer method serves as the
name of the WF program queue created by the Wait activity. When a timer fires,
the callback (written as an anonymous delegate) enqueues a (null) item into the
appropriate WF program queue, and the Wait activity resumes its execution.

In Chapter 6 we will discuss transactions, and we will see how transactional serv-
ices (such as a durable timer service) can be implemented. Because we have followed
the practice of making the Wait activity dependent only on the abstract definition
of the timer service, we can change the implementation of the timer service without
affecting our activities and WF programs.

ACTIVIT Y EXECUTION 27

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 27

As mentioned earlier, the WF runtime is a container of services. Custom services
that are added to the WF runtime can be obtained by executing activities. An imple-
mentation of a TimerService can be added to the WF runtime like so:

using (WorkflowRuntime runtime = new WorkflowRuntime())

{

runtime.AddService(new SimpleTimerService(runtime));

...

}

Executing the Wait activity within a simple WF program will cause the program to
pause (and potentially passivate) and later, when the timeout occurs, resume the
execution. The following program will start and then pause for 5 seconds, and
finally resume its execution and complete:

<Wait Duration="00:00:05" xmlns="http://EssentialWF/Activities" />

Our reason for introducing the Wait activity is to illustrate a general pattern.
There is nothing at all special about timers. The Wait activity makes a request to

a service on which it depends, and indicates to the service where (to which WF pro-
gram queue) the result of the requested work should be delivered. The service takes
some amount of time to complete the requested work. When the work is done, the
service returns the result of the work to the activity via the WF program queue.

This bookmarking pattern is the basis for developing WF programs that are
“coordinators of work” that is performed outside their boundaries.

Activity Initialization and Uninitialization

In the activity automaton, Initialized is the start state in which all activities begin
their lifecycle. When the WorkflowRuntime.CreateWorkflow method returns, all
activities in the newly created WF program instance are in the Initialized state.

Within the implementation of CreateWorkflow, the WF runtime calls the
Initialize method of the root activity in the WF program. There are other inter-
esting details related to the creation of new WF program instances, and they will be
covered in Chapter 5; here we will focus only on activity initialization.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION28

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 28

Activities can use the Initialize method to perform whatever initialization
is necessary when a WF program instance is created. Custom services added to the
WF runtime (and also the WorkflowQueuingService) can be obtained by the activ-
ity via the IServiceProvider that is passed as a parameter to Initialize.
ActivityExecutionContext is not available because the activity (indeed, the WF
program) has not yet begun its execution.

The CompositeActivity class overrides Initialize and in its implementation
invokes the Initializemethod of all enabled child activities. If you develop a com-
posite activity, or indeed any activity that requires initialization logic, you should
always call base.Initialize within your implementation of the Initialize
method to ensure proper initialization of the WF program instance.

The WF runtime’s scheduler machinery is not used during initialization to dis-
patch the calls to Initialize. It would be overkill to do so because the WF program
instance is not yet running. Because invocation of Initialize is synchronous, the
WF runtime can guarantee that when the WorkflowRuntime.CreateWorkflow
method returns, the WF program instance is fully initialized and ready for execution.

If an exception is thrown from any activity’s Initialize method, the initializa-
tion of the WF program instance fails, and the WorkflowRuntime.CreateWorkflow
method will throw an exception indicating that this has occurred.

So, what can an activity do in its Initialize method? Initialize carries one
parameter of type System.IServiceProvider. No execution context exists at this
time for the activity, so it is not correct for the WF runtime to provide AEC. Still, the
IServiceProvider of Initialize does the same service chaining that AEC does.
Any custom services that you add to the WorkflowRuntime are proffered by this
service provider so that an activity may do whatever resource initialization is
required. The WorkflowQueuingService is available too, so that WF program
queues may be created.

To summarize, the Initialized state is the start state of the activity automaton.
Activities in this state have not started their execution, and can be said to be in a
latent form, but do get a chance to perform initialization logic in their Initialize
method.

Listing 3.14 updates the ReadLine activity so that it creates its WF program
queue within its Initialize method.

ACTIVIT Y EXECUTION 29

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 29

Listing 3.14 The ReadLine Activity with Initialization Logic
using System;

using System.Workflow.ComponentModel;

using System.Workflow.Runtime;

namespace EssentialWF.Activities

{

public class ReadLine : Activity

{

private string text;

public string Text

{

get { return this.text; }

}

protected override void Initialize(

IServiceProvider provider)

{

WorkflowQueuingService qService =

(WorkflowQueuingService) provider.GetService(

typeof(WorkflowQueuingService));

if (!qService.Exists(this.Name))

qService.CreateWorkflowQueue(this.Name, true);

}

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context) {

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

WorkflowQueue queue = qService.GetWorkflowQueue(Name);

if (queue.Count > 0)

{

this.text = (string) queue.Dequeue();

return ActivityExecutionStatus.Closed;

}

queue.QueueItemAvailable += this.ContinueAt;

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender, QueueEventArgs e)

{

ActivityExecutionContext context =

sender as ActivityExecutionContext;

ESSENTIAL WINDOWS WORKFLOW FOUNDATION30

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 30

WorkflowQueuingService qService =

context.GetService<WorkflowQueuingService>();

WorkflowQueue queue = qService.GetWorkflowQueue(Name);

this.text = (string) queue.Dequeue();

context.CloseActivity();

}

protected override void Uninitialize(IServiceProvider provider)

{

WorkflowQueuingService qService =

(WorkflowQueuingService) provider.GetService(

typeof(WorkflowQueuingService));

if (qService.Exists(this.Name))

qService.DeleteWorkflowQueue(this.Name);

}

}

}

The implementation of Execute accounts for the fact that by the time the activity
executes, there may already be an item in its WF program queue. If an item is
indeed available, there is no need to subscribe to the QueueItemAvailable event.
The ReadLine activity also contains an implementation of the Uninitialize
method, in which the WF program queue is deleted.

The Uninitializemethod is the logical counterpart of the Initializemethod.
Uninitialize is called (synchronously, not via a work item in the scheduler

work queue) as the final part of an activity’s transition to the Closed state from the
Executing state. It is also called when it is determined by the WF runtime that an
activity in the Initialized state will never be executed. The latter case occurs when
the parent of an activity transitions to the Closed state without having requested the
execution of that child activity.

Activities cannot assume that they will always be executed, just as the program
statements in all but one branch of a C# if statement will be passed over. Any
resources created in an activity’s Initialize method should therefore be cleaned
up in its Uninitialize method.

As part of an activity’s transition to the Closed state (and just prior to the invo-
cation of Uninitialize), the WF runtime synchronously invokes the OnClosed
method that is defined by Activity. Activities can here clean up the resources they
allocated during their execution (as opposed to during their initialization).

ACTIVIT Y EXECUTION 31

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 31

You might wonder why OnClosed exists when we also have Uninitialize.
The simple answer is that Uninitialize should clean up resources allocated in
Initialize, whereas the purpose of OnClosed is to clean up resources allocated
during the execution of the activity. An executing activity can transition to the Closed
state from several different states (which will be discussed more in the next chapter),
and the OnClosed method will be called in each of these cases.

To summarize, when we execute a ReadLine activity, ReadLine has its methods
invoked in the following order:

• Initialize

• Execute

• ContinueAt

• OnClose

• Uninitialize

If a ReadLine activity is present in a WF program, but never executes, it will only
have its Initialize and Uninitialize methods called.

Activities as CLR Objects

Because Activity implements System.ComponentModel.IComponent, which
extends System.IDisposable, activities are given yet another opportunity to per-
form cleanup of resources. The Idisposable.Dispose method, however (like an
activity’s constructor), is a practicality necessitated by the fact that a WF program
instance is transiently realized as a set of CLR objects when that program instance
is in memory. These objects, like any objects, are created and destroyed subject to
the rules of the CLR. However, transitions in the CLR object lifecycle are logically
unrelated to the execution lifecycle of the WF program instance (and the activities
within it). In other words, the calling of the Activity.Disposemethod reflects the
passivation cycles of a WF program instance—every time a WF program instance
is passivated, the activity objects that represent the program instance while it is in
memory are disposed because they no longer represent the (passivated) program
instance.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION32

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 32

The WF runtime will call the Dispose method on the CLR object representing an
activity every time the WF program instance containing the activity is evicted from
memory. In contrast, Initialize and Uninitialize are called exactly once during
the logical lifetime of an activity, which can span any number of passivation cycles. In
contrast, Dispose may be invoked multiple times for an activity during its lifetime.

It is not recommended that activities perform any resource management in their
object constructors. The CLR object that transiently represents an activity may be
constructed and disposed multiple times during the course of its execution lifetime.
The constructor of an activity may be called multiple times even during the creation
of a single program instance (or reactivation of an instance). It is crucial to under-
stand that because an activity is an intrinsically resumable entity, its logical lifespan
is governed by the activity automaton and not by the lifetime of any CLR object.

In order to provide well-defined points for resource allocation and cleanup,
Activity defines two additional methods, OnExecutionContextLoad and
OnExecutionContextUnload, which bracket the lifetime of a CLR object repre-
senting an activity in a WF instance. You can rely upon the WF runtime to
call OnExecutionContextLoad during the creation (or reactivation) and
OnExecutionContextUnload during the passivation of a WF instance.
OnExecutionContextUnload is essentially just like Dispose except that it accepts
an IServiceProvider as a parameter and therefore has access to runtime services.

Dispose, OnExecutionContextLoad, and OnExecutionContextUnload are
side effects of the fact that the WF runtime is layered on top of the CLR, and are
related to the management of CLR objects which transiently represent a WF program
instance. In contrast, Initialize, Uninitialize, and OnClose are related to the
lifetime of the activity as described by the activity automaton. It is crucial to under-
stand this difference between CLR programs and WF programs. From the perspec-
tive of the CLR, a CLR program instance is defined by its in-memory existence and
lifetime. From the point of view of the WF runtime, a WF program instance is
defined on an altogether different plane, and in fact can spend most of its lifetime in
persistent storage. Because a WF program instance may passivate and reactivate
many times (perhaps on different machines), objects that represent the activities in
that instance in memory might need to be constructed and disposed of many times
before the WF program instance completes (see Figure 3.9).

ACTIVIT Y EXECUTION 33

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 33

Figure 3.9 Lifecycle of a WF program instance

Many activities require only an empty constructor and Dispose method, but it
is important nonetheless to know when and why they will be called.

Composite Activity Execution

Enough with WF programs that are only a single activity! It’s time to develop some
composite activities and then declare and run some more interesting WF pro-
grams.

We will begin with the Sequence activity of Chapter 2, shown again here:

public class Sequence : CompositeActivity

{

protected override ActivityExecutionStatus Execute(

ESSENTIAL WINDOWS WORKFLOW FOUNDATION34

WF Program WF Runtime CLR

Root Activity Object Construction from the Program Prototype

Initialize

OnExecutionContextUnload

Dispose

activity deserialization (OnExecutionContextLoad)

OnExecutionContextUnload

Dispose

activity deserialization (OnExecutionContextLoad)

OnExecutionContextUnload

Dispose

Uninitialize

WF Program Lifetime

CLR Object Lifetime (1)

CLR Object Lifetime (2)

CLR Object Lifetime (3)

OnExecutionContextLoad

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 34

ActivityExecutionContext context)

{

if (this.EnabledActivities.Count == 0)

return ActivityExecutionStatus.Closed;

Activity child = this.EnabledActivities[0];

child.Closed += this.ContinueAt;

context.ExecuteActivity(child);

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender,

ActivityExecutionStatusChangedEventArgs e)

{

ActivityExecutionContext context =

sender as ActivityExecutionContext;

e.Activity.Closed -= this.ContinueAt;

int index = this.EnabledActivities.IndexOf(e.Activity);

if ((index + 1) == this.EnabledActivities.Count)

context.CloseActivity();

else

{

Activity child = this.EnabledActivities[index + 1];

child.Closed += this.ContinueAt;

context.ExecuteActivity(child);

}

}

The job of the Sequence activity is to emulate a C# { } statement block, and exe-
cute its child activities one by one. Only when the final child activity of a Sequence
finishes can the Sequence report that it is complete.

The Execute method of Sequence first checks to see if there are any child
activities at all. If none are present, the method returns ActivityExecution
Status.Closed. The Sequence is done because it has nothing to do. It is like an
empty C# statement block. If one or more child activities are present, though, the first
child activity needs to be scheduled for execution. In order to do this, two lines of
code are necessary:

child.Closed += ContinueAt;

context.ExecuteActivity(child);

ACTIVIT Y EXECUTION 35

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 35

These two statements constitute a very simple bookmarking pattern that you will
encounter repeatedly in composite activity implementations. The subscripton to
the Closed event of the child activity sets up a bookmark that is managed inter-
nally by the WF runtime. The Activity.Closed event is merely syntactic sugar on
top of the bookmark management infrastructure. The += results in the creation of
a bookmark, and the dispatch of the Closed event (the resumption of the book-
mark), is brokered via the scheduler.

The invocation of ActivityExecutionContext.ExecuteActivity requests
that the indicated child activity be scheduled for execution. Specifically, the Execute
method of the child activity is added as a work item in the scheduler work queue.

In order to enforce the activity automaton, the WF runtime will throw an excep-
tion from within ExecuteActivity if the child activity is not in the Initialized state.
If the call to ExecuteActivity succeeds, an item is added to the scheduler work
queue, representing the invocation of the child activity’s Execute method. A suc-
cessful call to ExecuteActivity also immediately places the child activity in the
Executing state.

The Sequence activity’s code that schedules the execution of its first child activ-
ity and subscribes for this child activity’s Closed event is analogous to the ReadLine
activity’s logic that creates a WF program queue and subscribes to that queue’s
QueueItemAvailable event. In both cases, the activity is dependent upon some
work, outside of its control, and can proceed no further until it is notified that this
work has been completed. The code is somewhat different, but the bookmarking pat-
tern is exactly the same.

Of course, for a composite activity like Sequence, the pattern must be repeated
until all child activities have completed their execution. This is achieved in the Con-
tinueAt method, which is scheduled for execution when the currently executing
child activity moves to the Closed state. When it receives notification that a child
activity has completed its execution, Sequence first removes its subscription for that
child activity’s Closed event. If the child activity that just completed is the last child
activity in the Sequence, the Sequence reports its own completion. Otherwise, the
bookmarking pattern is repeated for the next child activity.

There are a couple of crucial aspects to the WF runtime’s role as the enforcer of
state transitions. If the Sequence activity tries to report its completion while a child
activity is in the Executing state, this transition will not be allowed. This fact is the

ESSENTIAL WINDOWS WORKFLOW FOUNDATION36

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 36

cornerstone of the WF runtime’s composition-related enforcement (and is not implied by
the activity automaton).

The corollary to this rule is that only an activity’s parent is allowed to request that
activity’s execution. A call to ActivityExecutionContext.ExecuteActivity by
its parent is the only stimulus that will cause an activity to move to the Executing
state.

These simple enforcements play a huge role in establishing the meaning and
ensuring the integrity of composite activities and, by extension, WF programs.

Of course, there must be one exception to the rule that only the parent of an activ-
ity can schedule its execution, and that is for the root activity, whose Parent prop-
erty is null. As we have already seen, it is the application hosting the WF runtime
that makes a request to the WF runtime to schedule the execution of the root activ-
ity’s Execute method.

Effectively, as part of the creation of a WF program instance, the WF runtime cre-
ates an implicit bookmark whose resumption point is the Execute method of the
root activity. The invocation of WorkflowInstance.Start resumes this bookmark,
and begins the execution of the program instance.

It will be instructive to trace the execution of a simple WF program that uses
Sequence, noting the changes that occur at each step to the scheduler work queue.
The XAML in Listing 3.15 is a Sequence with a set of WriteLine child activities.

Listing 3.15 A WF Program That Uses Sequence
<Sequence x:Name="s1" xmlns="http://EssentialWF/Activities"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<WriteLine x:Name="w1" Text="One" />

<WriteLine x:Name="w2" Text="Two" />

<WriteLine x:Name="w3" Text="Three" />

<WriteLine x:Name="w4" Text="Four" />

</Sequence>

Running an instance of this program will result in the expected output.

One

Two

Three

Four

ACTIVIT Y EXECUTION 37

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 37

When the application hosting the WF runtime calls WorkflowInstance.Start, it
is telling the WF runtime to resume the initial, implicit bookmark. The result of the
call to Start is that the scheduler work queue for this instance contains a single
item—a work item for the Execute method of the root activity.

The root activity—in our example, the Sequence—is now in the Executing state,
even though its Execute method has not actually been called. Figure 3.10 shows the
scheduler work queue, along with the state of the WF program instance (with
Executing activities shown in boldface).

ESSENTIAL WINDOWS WORKFLOW FOUNDATION38

s1.
Execute

Sequence (s1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

Figure 3.10 WF program instance after WorkflowInstance.Start

At this point, the WF runtime’s dispatcher logic enters the picture, and invokes
the Sequence activity’s Execute method, removing the corresponding item from
the scheduler work queue. From this point forward, it is the activities in the WF pro-
gram that drive the program forward; the WF runtime plays a passive role as the
scheduler of work and the enforcer of activity state transitions.

The Executemethod of Sequencewill, as we know, schedule its first child activ-
ity for execution. When the Execute method returns, the scheduler work queue
looks as it is shown in Figure 3.11. The first WriteLine activity is now in the Exe-
cuting state (again, even though its Execute method has not been called). The
Sequence too is in the Executing state.

w1.Execute

Sequence (s1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

Figure 3.11 WF program instance after Sequence.Execute

As we know from the basic pattern used for child activity execution, Sequence
has, at this point, also subscribed to the Closed event of its first child activity. Even
though Closed (and the other events defined on the Activity class) looks like a
normal event, under the covers it is an internally managed bookmark.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 38

When the Executemethod of WriteLine returns, the WriteLine activity moves
to the Closed state. Because the Sequence has subscribed to the event corresponding
to this transition, an appropriate work item will be placed in the scheduler work
queue. The current state of the program instance is as shown in Figure 3.12; the first
WriteLine is underlined to indicate that it has completed its execution and is in the
Closed state.

ACTIVIT Y EXECUTION 39

s1.ContinueAt

Sequence (s1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

Figure 3.12 WF program instance after first child activity completes

Now the work item for the ContinueAt method of Sequence is dispatched. As
we know, ContinueAt will follow the standard pattern for requesting the execution
of the second child activity. When ContinueAt method returns, the program state
is as shown in Figure 3.13, with the second WriteLine activity now in the Execut-
ing state.

w2.Execute

Sequence (s1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

Figure 3.13 WF program instance after first callback to Sequence.ContinueAt

This pattern will continue as the Sequence marches through the list of its child
activities. When the last child activity reports its completion, the ContinueAt
method will report the completion of the Sequence. The WF runtime will observe
this (you can think of the WF runtime as a subscriber to the root activity’s Closed
event), and will do the necessary bookkeeping to complete this WF program
instance.

Figure 3.14 summarizes the execution of our WF program as an interaction
diagram.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 39

Figure 3.14 Interaction diagram of the execution of Listing 3.15

One crucial point about the Sequence activity is that it implemented sequential
execution of its child activities using the general-purpose methods and events avail-
able on AEC and Activity. The WF runtime contains no knowledge of sequential
activity execution; it only pays attention to the activity automaton and the contain-
ment relationships between activities in its role as enforcer of state transitions.

To see how easy it is to define other forms of control flow as composite activities,
let’s write a composite activity that executes its child activities in an interleaved
manner.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION40

Sequence (s1) WriteLine (w1) AEC Scheduler

Schedule(w1.Execute)
w1.Closed += ContinueAt

Shedule(s1.ContinueAt)

WriteLine (w2) WriteLine (w3) WriteLine (w4)

w2.Closed += s1.ContinueAt

AEC.ExecuteActivity (w2) Schedule(w2.Execute)

w2.Execute

AEC.CloseActivity Schedule(s1.ContinueAt)

s1.ContinueAt

w3.Closed += s1.ContinueAt

AEC.ExecuteActivity (w3) Schedule(w3.Execute)

w3.Execute

AEC.CloseActivity Schedule(s1.ContinueAt)

s1.ContinueAt()

w4.Closed += s1.ContinueAt

AEC.ExecuteActivity (w4) Schedule(w4.Execute)

w4.Execute

AEC.CloseActivity Schedule(s1.ContinueAt)

s1.ContinueAt

AEC.CloseActivity

s1.Execute

w1.Execute

AEC.

AEC.CloseActivity

s1.ContinueAt

(w1)ExecuteActivity

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 40

The Interleave activity shown in Listing 3.16 implements an AND join by first
scheduling the execution of all child activities in a single burst and waiting for them
all to complete before reporting its own completion.

Listing 3.16 Interleave Activity
using System;

using System.Collections;

using System.Workflow.ComponentModel;

namespace EssentialWF.Activities

{

public class Interleave : CompositeActivity

{

protected override ActivityExecutionStatus Execute(

ActivityExecutionContext context)

{

if (this.EnabledActivities.Count == 0)

return ActivityExecutionStatus.Closed;

IList<Activity> shuffled = ShuffleList(EnabledActivities);

foreach (Activity child in shuffled)

{

child.Closed += ContinueAt;

context.ExecuteActivity(child);

}

return ActivityExecutionStatus.Executing;

}

void ContinueAt(object sender,

ActivityExecutionStatusChangedEventArgs e)

{

e.Activity.Closed -= ContinueAt;

ActivityExecutionContext context =

sender as ActivityExecutionContext;

foreach (Activity child in this.EnabledActivities)

{

if ((child.ExecutionStatus !=

ActivityExecutionStatus.Initialized)

&& (child.ExecutionStatus !=

ActivityExecutionStatus.Closed))

return;

}

ACTIVIT Y EXECUTION 41

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 41

context.CloseActivity();

}

// ShuffleList method elided for clarity

}

}

We will discuss the finer points of the Interleave activity’s execution (which
induces a form of pseudo-concurrency) a bit later in this chapter. First, though, let's
look at the mechanics of how Interleave executes, just as we did for Sequence.

You can see right away that the code for Interleave is quite similar to that of
Sequence. In the Execute method, all of the child activities are scheduled for exe-
cution, not merely the first one as with Sequence. In the implementation of
ContinueAt, the Interleave reports itself as completed only if all child activities
are in the Closed state.

There is one other interesting line of code:

IList<Activity> shuffled = ShuffleList(EnabledActivities);

ShuffleList is presumed to be a private helper method that simply shuffles the
list of child activities into some random order. The Interleave activity will work
just fine without ShuffleList, but we have added it so that users of Interleave
cannot predict or rely upon the order in which child activities are scheduled for
execution.

The XAML in Listing 3.17 is an Interleave activity that contains a set of
WriteLine child activities.

Listing 3.17 Interleaved Execution of WriteLine Activities
<Interleave x:Name="i1" xmlns="http://EssentialWF/Activities"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml">

<WriteLine x:Name="w1" Text="One" />

<WriteLine x:Name="w2" Text="Two" />

<WriteLine x:Name="w3" Text="Three" />

<WriteLine x:Name="w4" Text="Four" />

</Interleave>

Running the program in Listing 3.17 may result in the following output:

Four

Two

ESSENTIAL WINDOWS WORKFLOW FOUNDATION42

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 42

Three

One

Or the following:

Three

One

Four

Two

Or the following:

One

Two

Three

Four

Or any of the other possible orderings of the four strings printed by the four
WriteLine activities.

Let’s trace through the execution of an instance of this program, showing the
scheduler work queue and program state. The program is started exactly like the one
we developed earlier with Sequence; an item is placed in the scheduler work queue
representing a call to the Execute method of the root activity, and the root activity
is placed in the Executing state (see Figure 3.15).

ACTIVIT Y EXECUTION 43

i1.
Execute

Interleave (i1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

Figure 3.15 WF program instance in Listing 3.17 after WorkflowInstance.Start

Let’s assume that the call to ShuffleList results in the following ordering of
child activities: w2, w4, w1, w3. When the Execute method of Interleave returns,
the program state is as shown in Figure 3.16.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 43

Figure 3.16 WF program instance in Listing 3.17 after Interleave.Execute

Now all four child activities are queued for execution and all four child activities
of the Interleave are in the Executing state. The dispatcher will pick the item from
the front of the queue (Execute “w2”). This will cause the Execute method of
WriteLine named “w2” to be invoked. When this method returns, “Two” will have
been printed to the console and the state of the program is as shown in Figure 3.17.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION44

w3.Execute

w1.Execute

w4.Execute

w2.Execute

Interleave (i1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)
WriteLine (w4)

i1.ContinueAt

w3.Execute

w1.Execute

w4.Execute

Interleave (i1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)
WriteLine (w4)

Figure 3.17 WF program instance in Listing 3.17 after WriteLine “w2” completes

As expected, because Interleave has subscribed to the Closed event of each
child activity, there is a callback to the ContinueAt method present in the scheduler
work queue. This item, however, sits behind three other items—the execution han-
dlers for the Execute methods of w4, w1, and w3. The process outlined for w2 will
therefore repeat three more times, resulting in the state shown in Figure 3.18.

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 44

Figure 3.18 WF program instance in Listing 3.17 after WriteLine “w4” completes

At this point, all four WriteLine activities have completed. The Interleave
activity, though, has not actually received any notifications because its work items
are still in the scheduler work queue. The four work items in the scheduler work
queue are all resumptions of the same bookmark. The resumption point is the
ContinueAt method of Interleave; the four work items differ only in the
EventArgs data that is the payload of each resumed bookmark.

When the first work item is delivered to Interleave, the logic of the
ContinueAt method will determine that all child activities are in the Closed state,
so the Interleave itself is reported as complete. When the other three callbacks are
subsequently dispatched, the WF runtime observes that the Interleave is already
in the Closed state, so the callbacks are not delivered (they are simply discarded);
delivery of these callbacks would violate the activity automaton because the
Interleave cannot resume execution once it is in the Closed state.

Now, what we have seen in the execution of this WF program is quite a bit dif-
ferent than what we saw for the WF program that used Sequence. Things get even
more interesting, though, if each child activity of the Interleave is not a simple
activity like WriteLine, but a Sequence (which might contain other Interleave
activities). Furthermore, it’s clearly not very interesting or useful to simply execute
WriteLine activities in an interleaved manner. It is much more realistic for each
branch to be performing work that depends upon external input. In this way, the
ordering of the execution of activities is determined, in part, by the timing of
EnqueueItem operations performed by external code on WF program queues. By
modeling these interactions in an Interleave, no branch is blocked by any other
(because activities use bookmarks when their execution awaits external stimulus)
and the execution of the activities within the branches can interleave.

ACTIVIT Y EXECUTION 45

i1.ContinueAt

i1.ContinueAt

i1.ContinueAt

i1.ContinueAt

Interleave (i1)
WriteLine (w1)
WriteLine (w2)
WriteLine (w3)

WriteLine (w4)

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 45

As we know, the Interleave activity uses an explicit shuffling technique to
decide the ordering in which its child activities are scheduled for execution. The
influence of Interleave, however, ends there. If a Sequence activity is added as a
child activity of an Interleave, the Interleave controls when the Sequence exe-
cutes, but only the Sequence controls when its child activities are executed.

The XAML in Listing 3.18 is an Interleave with a set of Sequence child activi-
ties that contain child activities. The name of the WF program queue created by
ReadLine in its Initialize method is the name of the activity. So, four WF pro-
gram queues will be created during the initialization of a WF program instance, and
these WF program queues are named r1, r2, r3, and r4.

Listing 3.18 Interleaved Execution of Sequence Activities
<Interleave x:Name="i1" xmlns="http://EssentialWF/Activities"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:wf="http://schemas.microsoft.com/winfx/2006/xaml/workflow">

<Sequence x:Name="s1">

<ReadLine x:Name="r1" />

<WriteLine x:Name="w1" Text="{wf:ActivityBind r1,Path=Text}" />

<ReadLine x:Name="r2" />

<WriteLine x:Name="w2" Text="{wf:ActivityBind r2,Path=Text}" />

</Sequence>

<Sequence x:Name="s2">

<ReadLine x:Name="r3" />

<WriteLine x:Name="w3" Text="{wf:ActivityBind r3,Path=Text}" />

<ReadLine x:Name="r4" />

<WriteLine x:Name="w4" Text="{wf:ActivityBind r4,Path=Text}" />

</Sequence>

</Interleave>

We are not going to go through the execution of an instance of this program step by
step—it would take a few pages of diagrams—but we know enough about the exe-
cution logic of the Sequence and Interleave activities to predict what will hap-
pen. Assuming that no items are enqueued into any of the WF program queues, the
program will reach the state shown in Figure 3.19.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION46

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 46

Figure 3.19 WF program instance in Listing 3.18 after reaching ReadLine activities

At this point, the program is idle. Both Sequence activities have started execut-
ing, and each has, in turn, requested the execution of their first child activity (which
happens to be a ReadLine activity in both cases). Each ReadLine activity is stuck
waiting for an item to appear in its WF program queue. If the Interleave had a
third child activity that was a Sequence of any number of WriteLine activities, then
this Sequence would run to completion.

If we enqueue the string “hello” into WF program queue “r3”, there will be an
episode of action. The ContinueAtmethod of the ReadLine activity with name “r3”
will be scheduled (the name of the WF program queue created by ReadLine is the
same as its Name property). This will cause the ReadLine activity to complete, which
will schedule notification of its Closed event to the enclosing Sequence “s2”. That
Sequence will schedule the execution of the WriteLine “w3” that follows the just-
completed ReadLine. The WriteLine will get the string received by the ReadLine
activity (via activity databinding) and write it to the console. The WriteLine will
complete, again causing a notification to the enclosing Sequence. The Sequencewill
then move on to its third child activity, another ReadLine, which will now wait until
an item is enqueued into its WF program queue.

The series of steps just described will result in the state of the program shown in
Figure 3.20.

ACTIVIT Y EXECUTION 47

Interleave (i1)
Sequence (s1)

ReadLine (r1)
WriteLine (w1)
ReadLine (r2)

WriteLine (w2)
Sequence (s2)

ReadLine (r3)
WriteLine (w3)
ReadLine (r4)

WriteLine (w4)

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 47

Figure 3.20 WF program instance in Listing 3.18 again in an idle state

This example is typical of the episodic execution we described at the outset of the
chapter. As a result of stimulus from the external world, the WF program instance
moves forward. And it is truly the composite activities that are driving the program’s
execution by providing the control flow; the WF runtime is passively dispatching
whatever items appear in the scheduler work queue while enforcing adherence to
the activity automaton.

Once you understand the activity automaton and the execution-related rules of
activity composition, it is easy to model other control flow patterns beyond simple
sequential and interleaved execution. This allows your programs to mirror more pre-
cisely whatever processes they are trying to coordinate. In the next chapter, we will
look at several additional aspects of composite activity development that aid in
building different kinds of control flow.

It may be helpful to pause here and consolidate what you’ve learned from this
chapter so far. As an exercise, we suggest writing a custom composite activity. An
appropriate choice on which to test your skills is PrioritizedInterleave. The
PrioritizedInterleave activity executes its child activities in priority order. Each
child activity has a property, named Priority, of type int.

When PrioritizedInterleave executes, first all child activities with a prior-
ity of 1 are executed in an interleaved manner; when those are completed, all child
activities with a priority of 2 are executed (also in an interleaved manner). This con-
tinues until all child activities have been executed. As you might guess, the execution
logic of PrioritizedInterleave is something of a combination of the logic we
developed for Sequence and the logic we developed for Interleave.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION48

Interleave (i1)
Sequence (s1)

ReadLine (r1)
WriteLine (w1)
ReadLine (r2)

WriteLine (w2)
Sequence (s2)

ReadLine (r3)
WriteLine (w3)
ReadLine(r4)
WriteLine (w4)

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 48

Listing 3.19 shows an example WF program containing a Prioritized-
Interleave. The seven child activities of the PrioritizedInterleave are
grouped into three different sets according to the values of their Priority property.
The best way to implement the Priority property is as an attached property, which
supports the XAML syntax shown in Listing 3.19. Attached properties are covered in
Chapter 7, “Advanced Authoring.” You can take a simpler approach and add a Pri-
ority property to WriteLine and then test your PrioritizedParallel activity
using the modified WriteLine.

Listing 3.19 WF Program that Is a PrioritizedInterleave
<PrioritizedInterleave xmlns="http://EssentialWF/Activities">

<B PrioritizedInterleave.Priority="1" />

<C PrioritizedInterleave.Priority="2" />

<A PrioritizedInterleave.Priority="1" />

<E PrioritizedInterleave.Priority="2" />

<F PrioritizedInterleave.Priority="3" />

<G PrioritizedInterleave.Priority="3" />

<D PrioritizedInterleave.Priority="2" />

</PrioritizedInterleave>

This WF program is depicted in a more readable form in Figure 3.21, which con-
veys the interleaved execution that occurs within the groupings of child activities.

ACTIVIT Y EXECUTION 49

AA BB

CC

F G

DD EE

{ Priority 1 }

{ Priority 2 }

{ Priority 3 }

Figure 3.21 PrioritizedInterleave activity containing three groupings

You might conclude from Figure 3.21 that this WF program could just as easily be
built using the Sequence and Interleave activities we developed previously. True,

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 49

but there is another way of looking at things. Both Sequence and Interleave are
nothing but degenerate cases of our PrioritizedInterleave, in which the prior-
ities of the child activities are either all different or all the same, respectively. This is
a simple but instructive example of the control flow flexibility afforded by the com-
position model of WF.

WF Threads

From the point of view of activities, the WF runtime makes no guarantee about
which CLR thread is used to dispatch a work item in a scheduler work queue. It
is possible for any two work items, even consecutively enqueued work items, to be
dispatched using different threads.

It is the application hosting the WF runtime that decides how CLR threads are to
be allocated to WF program instances (though the WF runtime does impose a limit
of one thread at a time for a specific WF program instance). It is also solely the host
application that determines when a WF program instance should be passivated. Typ-
ically, passivation occurs when a WF program instance becomes idle, but it is pos-
sible, as we will see in Chapter 5, for a WF program instance to be passivated even
when its scheduler work queue is not empty. As a developer of activities, the safest
assumption is that every work item is dispatched on a different thread. Although in
practice the same CLR thread will be used to dispatch a set of work items, it is best
to not make any assumption about the CLR thread on which activity methods are
invoked. This means not storing data in the thread context or call context or, more
generally, not relying on Thread.CurrentThread in any way.

The WF runtime does guarantee that the scheduler managing the work items for
a single WF program instance utilizes exactly one CLR thread at a time. In other
words, the scheduler never performs concurrent dispatch of work items in its work
queue. Dispatch always occurs one item at a time. Furthermore, the WF runtime
never preempts the execution of a dispatched work item. Activities are counted upon
to employ bookmarks when they are logically blocked, allowing them to yield the
CLR thread while they await stimulus.

The fact that the WF runtime uses a single CLR thread at a time for a given WF
program instance is a pragmatic decision. It is possible to imagine concurrent dis-
patch of work items, but the benefits appear to be outweighed by the drawbacks.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION50

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 50

One big advantage of a single-threaded execution model is the simplification of
activity development. Activity developers need not worry about concurrent execu-
tion of an activity’s methods. Locking, preemption, and other aspects of multi-
threaded programming are not a part of WF activity development, and these
simplifications are important given WF’s goal of broad adoption by .NET developers.

Some readers might object to the fact that the threading model of the WF runtime
eliminates the possibility of true, or fine-grained, concurrency (the simultaneous use
of more than one machine processor). Let’s be clear: What is precluded is the possi-
bility of true concurrency within an instance of a WF program. In any application where
the number of simultaneously executing (non-idle) WF program instances tends to
be greater than the number of machine processors, true concurrency would not buy
you much. The design-time overhead of a vastly more challenging programming
model for activities weighs down this approach, and mightily so in our estimation.
Computations that benefit from true concurrency are, for WF programs, best
abstracted as features of a service; the service can be made available to activities
(using the service chaining techniques we’ve already described). In this way, the
service can be executed in an environment optimized for true concurrency, which
may or may not be on the machine on which the WF program instance is running.

True concurrency is a rather simple concept to describe, but the techniques for
synchronization that are available in most mainstream programming paradigms are
difficult to master and, when not applied properly, are notorious for causing hard-
to-find bugs that make programs defective (or, perhaps, in the eyes of their users,
capricious). The WF programming model arguably has found a sweet spot, given the
types of problems that WF is intended to solve. WF program instances clearly allow
interleaved (pseudo-concurrent) execution of activities, and WF makes it easy to write
and use the constructs that permit interleaving. We have seen an example of such an
activity, Interleave, and how essentially similar it is to Sequence, in both its imple-
mentation and its usage in a WF program.

Just like the CLR virtualizes a set of operating system threads, the WF runtime
can be said to virtualize CLR threads. The interleaved execution of activities within
a WF program instance is therefore not unlike the interleaved execution of CLR
threads within an operating system process. Each child activity of an Interleave
can be thought of as executing on a separate WF thread, though in fact this WF
thread is a purely conceptual entity and does not have any physical manifestation

ACTIVIT Y EXECUTION 51

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 51

in the WF programming model. Figure 3.22 depicts the relationship between these
shadowy WF threads and actual CLR threads.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION52

Scheduler

WF Program Instance

a
1

a
2

a
3

a
4

a
5

a
6

Scheduler

WF Program Instance

a
1

a
2

a
3

a
4

a
5

a
6

Workflow Runtime

CLR Thread

WF Thread

CLR App Domain

Figure 3.22 WF threads

This pattern of execution is sometimes called pseudo-concurrency or perceived
parallelism.

Synchronized Access to State

Given the WF runtime’s threading model, it should be clear that the synchroniza-
tion primitives used in C# programs are not applicable in WF programs.

Synchronization primitives are not aware of the interleaved execution of WF
threads. In fact, they can get you into quite a bit of trouble in a WF program and
should be generally avoided. For example, if two activities in a WF program refer to

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 52

some shared state (for instance, several fields of a third activity, accessed as proper-
ties of that activity), then CLR synchronization techniques will not be the right choice
for ensuring synchronized access to the shared state. CLR locking primitives are gen-
erally not designed to survive and remain valid across passivation cycles of a WF
program instance.

Put another way, since the WF programming model virtualizes threads of pro-
gram execution, it must also carry the burden of providing synchronized access to
shared data.

WF provides the ability to synchronize access to state shared by multiple
WF threads in terms of a special composite activity defined in the System.
Workflow.ComponentModel namespace. This activity is named
SynchronizationScopeActivity and it executes its child activities sequentially.

SynchronizationScopeActivity is the WF programming model’s synchro-
nization primitive. It allows the developer of a WF program to draw boundaries
around synchronization domains of (pseudo)concurrently executing activities,
which, conceptually, run on different WF threads.

The SynchronizationScopeActivity type is shown in Listing 3.20.

Listing 3.20 SynchronizationScopeActivity

namespace System.Workflow.ComponentModel

{

public sealed class SynchronizationScopeActivity : CompositeActivity

{

public ICollection<string> SynchronizationHandles { get; set; }

/* *** other members *** */

}

}

As you can see, the SynchronizationScopeActivity type carries a property
called SynchronizationHandles of type ICollection<string>. This property
holds a set of named synchronization handles. A synchronization handle is essen-
tially a locking primitive.

The WF runtime guarantees that occurrences of SynchronizationScope
Activity sharing a synchronization handle token will be executed serially without
any interleaving of their contained activities. In other words, one Synchronization
ScopeActivity will complete before the next one (that shares a synchronization

ACTIVIT Y EXECUTION 53

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 53

handle with the first) begins. To avoid deadlocks, the WF runtime internally man-
ages virtual locks (not CLR locks) corresponding to the synchronization handles
specified by the occurrences of SynchronizationScopeActivity in a WF pro-
gram. These virtual locks survive passivation of the WF program instance.

Before the execution of a SynchronizationScopeActivity begins, all of the vir-
tual locks associated with that SynchronizationScopeActivity activity’s set of
synchronization handles are obtained.

Listing 3.21 shows a WF program that uses SynchronizationScopeActivity to
provide synchronized execution of interleaving activities. Even though there is no
actual shared data, the two occurrences of SynchronizationScopeActivity
require the same virtual lock and therefore execute serially.

Listing 3.21 Synchronization Using SynchronizationScopeActivity
<Interleave xmlns="http://EssentialWF/Activities"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:wf="http://schemas.microsoft.com/winfx/2006/xaml/workflow" >

<wf:SynchronizationScopeActivity SynchronizationHandles="h1">

<WriteLine x:Name="w1" Text="One"/>

<WriteLine x:Name="w2" Text="Two"/>

</wf:SynchronizationScopeActivity>

<wf:SynchronizationScopeActivity SynchronizationHandles="h1">

<WriteLine x:Name="w3" Text="Three"/>

<WriteLine x:Name="w4" Text="Four"/>

</wf:SynchronizationScopeActivity>

</Interleave>

This WF program will always produce one of the following outputs:

One Three

Two Four

Three One

Four Two

There are only two possible outputs for the preceding program. The Interleave
activity will schedule both of the SynchronizationScopeActivity activities.
Whichever one is scheduled first acquires the virtual lock that protects the
synchronization handle “h1”. Once the lock is obtained, the second
SynchronizationScopeActivity activity is not allowed to execute, even though

ESSENTIAL WINDOWS WORKFLOW FOUNDATION54

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 54

it has a work item in the scheduler work queue. Only when the first Synchro-
nizationScopeActivity transitions to the Closed state will the lock be released,
and the second SynchronizationScopeActivity be permitted to execute.

In the preceding example, there is no interleaving of activity execution across the
two occurrences of SynchronizationScopeActivity, due to the fact that they
require the same lock. If we change the program by altering the value of the
SynchronizationHandles property for one SynchronizationScopeActivity to
“h2”, then the presence of the two SynchronizationScopeActivity activities is
meaningless because they are defining different synchronization domains. Inter-
leaved execution of the activities contained within them can and will occur.

SynchronizationScopeActivity activities can be nested in a WF program.
Each SynchronizationScopeActivity acts as a lock manager that is responsible
for granting locks to its child activities and managing a wait list of activities waiting
to acquire locks (the WF runtime acts as the lock manager for the root activity of the
program).

SynchronizationScopeActivity, when it begins its execution, collects the
locks corresponding to its synchronization handles as well as those for all nested
SynchronizationScopeActivity activities.

Because a parent SynchronizationScopeActivity is guaranteed to start its
execution before a SynchronizationScopeActivity nested within it, the parent
acquires the locks needed for all of its nested child SynchronizationScopeActiv-
ity instances before executing them, and deadlocks are safely avoided.

For the WF program shown in Listing 3.22, either SynchronizationScope
Activity s1 or SynchronizationScopeActivity s4 will execute in its entirety
before the other one begins executing. In this example, the locks required by s1 and
s4 are the same (indicated by the synchronization handles “a”, “b”, and “c”). In fact,
the execution of s1 and s4 will be serialized even if they share a single synchroniza-
tion handle name in their respective subtrees.

Listing 3.22 Nested SynchronizationScopeActivity Declarations
<Interleave xmlns="http://EssentialWF/Activities"

xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

xmlns:wf="http://schemas.microsoft.com/winfx/2006/xaml/workflow">

<wf:SynchronizationScopeActivity x:Name="s1"

SynchronizationHandles="a">

ACTIVIT Y EXECUTION 55

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 55

<Interleave x:Name="i1">

<wf:SynchronizationScopeActivity x:Name="s2"

SynchronizationHandles=”b”>

<WriteLine x:Name="w3" Text="One"/>

<WriteLine x:Name="w4" Text="Two"/>

</wf:SynchronizationScopeActivity>

<wf:SynchronizationScopeActivity x:Name="s3"

SynchronizationHandles=”c”>

<WriteLine x:Name="w5" Text="Three"/>

<WriteLine x:Name="w6" Text="Four"/>

</wf:SynchronizationScopeActivity>

</Interleave>

</wf:SynchronizationScopeActivity>

<wf:SynchronizationScopeActivity x:Name="s4"

SynchronizationHandles=”c”>

<Interleave x:Name="i2">

<wf:SynchronizationScopeActivity x:Name="s5"

SynchronizationHandles=”b”>

<WriteLine x:Name="w9" Text="Five"/>

<WriteLine x:Name="w10" Text="Six"/>

</wf:SynchronizationScopeActivity>

<wf:SynchronizationScopeActivity x:Name="s6"

SynchronizationHandles=”a”>

<WriteLine x:Name="w11" Text="Seven"/>

<WriteLine x:Name="w12" Text="Eight"/>

</wf:SynchronizationScopeActivity>

</Interleave>

</wf:SynchronizationScopeActivity>

</Interleave>

SynchronizationScopeActivity provides a simple way to synchronize the inter-
leaved execution of WF threads. Effectively, this synchronization technique orders
the dispatch of operations in the scheduler work queue in accordance with the
synchronization domains that are named by SynchronizationScopeActivity
activities.

Where Are We?

This chapter introduced the activity automaton, which describes the lifecycle of
any activity in a WF program instance. Our foray into custom activity develop-
ment introduced the service-chaining capabilities of the WF runtime, as well as the
use of bookmarks (and associated WF program queues) as a mechanism by which
activities can receive stimulus from external entities.

ESSENTIAL WINDOWS WORKFLOW FOUNDATION56

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 56

We turned to composite activities next and discussed three—Sequence,
Interleave, and PrioritizedInterleave—that provided insights into the flexi-
bility of WF’s model for control flow. Control flow patterns are a theme that will be
continued in the next chapter.

We discussed the WF execution model and threading model, and specifically
examined how the WF scheduler works. By looking at how the execution of various
WF programs unfolds, we saw the nuts and bolts of how the scheduler performs its
role as an intermediary for the dispatch of resumed bookmarks. As well, we learned
that the WF runtime enforces the activity automaton and also protects the integrity
of the containment relationships between activities in a WF program. Pseudo-
concurrency within a WF program instance is caused by the interleaving of WF
threads of execution.

The next chapter is a continuation of this one (feel free to bookmark it now). We
will examine the Canceling, Faulting, and Compensating states of the activity
automaton, and also introduce the WF programming model’s support for explicit
management of activity execution contexts.

ACTIVIT Y EXECUTION 57

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 57

03_Shukla_ch03.qxd 8/15/06 4:16 PM Page 58

